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ABSTRACT

Discovering causal relationships between different variables from time series data
has been a long-standing challenge for many domains such as climate science,
finance, and healthcare. Given the complexity of real-world relationships and the
nature of observations in discrete time, causal discovery methods need to con-
sider non-linear relations between variables, instantaneous effects and history-
dependent noise (the change of noise distribution due to past actions). However,
previous works do not offer a solution addressing all these problems together. In
this paper, we propose a novel causal relationship learning framework for time-
series data, called Rhino, which combines vector auto-regression, deep learning
and variational inference to model non-linear relationships with instantaneous ef-
fects while allowing the noise distribution to be modulated by historical observa-
tions. Theoretically, we prove the structural identifiability of Rhino. Our empir-
ical results from extensive synthetic experiments and two real-world benchmarks
demonstrate better discovery performance compared to relevant baselines, with
ablation studies revealing its robustness under model misspecification.

1 INTRODUCTION

Time series data is a collection of data points recorded at different timestamps describing a pattern
of chronological change. Identifying the causal relations between different variables and their in-
teractions through time (Spirtes et al., 2000; Berzuini et al., 2012; Guo et al., 2020; Peters et al.,
2017) is essential for many applications e.g. climate science, health care, etc. Randomized control
trials are the gold standard for discovering such relationships, but may be unavailable due to cost
and ethical constraints. Therefore, causal discovery with just observational data is important and
fundamental to many real-world applications (Löwe et al., 2022; Bussmann et al., 2021; Moraffah
et al., 2021; Wu et al., 2020; Runge, 2018; Tank et al., 2018; Hyvärinen et al., 2010; Pamfil et al.,
2020).

The task of temporal causal discovery can be challenging for several reasons: (1) relations between
variables can be non-linear in the real world; (2) with a slow sampling interval, everything happens
in between will be aggregated into the same timestamp, i.e. instantaneous effect; (3) the noise may
be non-stationary (its distribution depends on the past observations), i.e. history-dependent noise.
For example, in stock markets, the announcements of some decisions from a leading company after
the market closes may have complex effects (i.e. non-linearity) on its stock price immediately after
the market opening (i.e. slow sampling interval and instantaneous effect) and its price volatility may
also be changed (i.e. history-dependent noise). Similarly, in education, students that recently earned
good marks on algebra tests should also score well on an upcoming algebra exam with little variation
(i.e. history-dependent noise).

To the best of our knowledge, existing frameworks’ performances suffer in many real-world sce-
narios as they cannot address these aspects in a satisfactory way. Especially, history-dependent
noise has been rarely considered in past. A large category of the preceding works, called Granger
causality (Granger, 1969), is based on the fact that cause-effect relationships can never go against
time. Despite many recent advances (Wu et al., 2020; Shojaie & Michailidis, 2010; Siggiridou &
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Kugiumtzis, 2015; Amornbunchornvej et al., 2019; Löwe et al., 2022; Tank et al., 2018; Bussmann
et al., 2021; Dang et al., 2018; Xu et al., 2019), they all rely on the absence of instantaneous effects
with a fixed noise distribution. Constraint-based methods have also been extended for time series
causal discovery (Runge, 2018; 2020), which is commonly applied by folding the time-series. This
introduced new assumptions and translated the aforementioned requirements to challenges in condi-
tional independence testing (Shah & Peters, 2020).Additionally, they require a stronger faithfulness
assumption and can only identify the causal graph up to a Markov equivalence class without detailed
functional relationships.

An alternative line of research leverages the development of causal discovery with functional causal
models (Hyvärinen et al., 2010; Pamfil et al., 2020; Peters et al., 2013). They can model both instan-
taneous and lagged effects as long as they have theoretically guaranteed structural identifiability.
Unfortunately, they do not consider history-dependent noise. One central challenge of modelling
this dependency is that noise depending on the lagged parents may break the model structural iden-
tifiability. For static data, Khemakhem et al. (2021) proves the structural identifiability only when
this dependency is restricted to a simple functional form. Thus, the key research question is whether
the identifiability can be preserved with complex historical dependencies in the temporal setting.

Motivated by these requirements, we propose a novel temporal discovery framework called Rhino
(deep causal temporal relationship learning with history dependent noise), which can model non-
linear lagged and instantaneous effects with flexible history-dependent noise. Our contributions are:

• A novel causal discovery framework called Rhino, Revision(Q2)-Reviewer hiTaconsist-
ing of a novel functional form of its SEMs and variational training framework, where the
proposed form of its SEM combines vector auto-regression and deep learning to model
non-linear lagged and instantaneous effects with history-dependent noise.

• We prove that Rhino SEMs with the proposed form are structurally identifiable. To achieve
this, we provide general conditions for structural identifiability with history-dependent
noise, of which the form of Rhino SEMs is a special case. Furthermore, we clarify re-
lations to several previous works.

• We conduct extensive synthetic experiments with ablation studies to demonstrate the ad-
vantages of Rhino and its robustness across different settings. Additionally, we compare its
performance to a wide range of baselines in two real-world discovery benchmarks.

2 BACKGROUND

In this section, we briefly introduce necessary prerequisite knowledge. In particular, we focus on
structural equation models, Granger causality (Granger, 1969) and vector auto-regression. For re-
view of more recent related work, please refer to Section 5.

Structural Equation Models (SEMs) Consider X ∈ RD with D variables, SEM describes the
causal relationships between them given a causal graph G:

Xi = fi(Pai
G, ϵ

i) (1)

where Pai
G are the parents of node i and ϵi are mutually independent noise variables. Under the

context of multivariate time series, Xt =
(
Xi

t

)
i∈V

where V is a set of nodes with size D, the
corresponding SEM given a temporal causal graph G is

Xi
t = fi,t(PaiG(< t),Pai

G(t), ϵ
i
t), (2)

where Pai
G(< t) contains the parent values specified by G in previous time (lagged parents); Pai

G(t)
are the parents at the current time t (instantaneous parents). The above SEM induces a joint distri-
bution over the stationary time series {Xt}Tt=0 (see Assumption 1 in Appendix B for the definition).
However, functional causal models with the above general form cannot be directly used for causal
discovery due to the structural unidentifiability (Lemma 1, Zhang et al. (2015) One way to solve this
is sacrificing the flexibility by restricting the functional class. For example, additive noise models
(ANM), (Hoyer et al., 2008)

Xi = fi(PaG(X
i)) + ϵi, (3)

which have recently been used for causal reasoning with non-temporal data (Geffner et al., 2022).
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Granger Causality Granger causality (Granger, 1969) has been extensively used for temporal
causal discovery. It is based on the idea that the series Xj does not Granger cause Xi if the history,
Xj

<t, does not help the prediction of Xi
t for some t given the past of all other time series Xk for

k ̸= j, i.
Definition 2.1 (Granger Causality (Tank et al., 2018; Löwe et al., 2022)). Given a multivariate
stationary time series {Xt}Tt=0 and a SEM fi,t defined as

Xi
t = fi,t(Pai

G(< t)) + ϵit, (4)

Xj Granger causes Xi if ∃l ∈ [1, t] such that Xj
t−l ∈ Pai

G(< t) and fi,t depends on Xj
t−l.

Granger causality is equivalent to causal relations for directed acyclic graph (DAG) if there are no
latent confounders and instantaneous effects (Peters et al., 2013; 2017). Apart from the lack of
instantaneous effects, it also ignore the history-dependent noise with independent ϵit.

Vector Auto-regressive Model Another line of research focuses on directly fitting the identifiable
SEM to the observational data with instantaneous effects. One commonly-used approach is called
vector auto-regression (Hyvärinen et al., 2010; Pamfil et al., 2020):

Xi
t = βi +

K∑
τ=0

D∑
j=1

Bτ,jiX
j
t−τ + ϵit (5)

where βi is the offset, τ is the model lag, Bτ ∈ RD×D is the weighted adjacency matrix specifying
the connections at time t − τ (i.e. if Bτ,ji = 0 means no connection from Xj

t−τ to Xi
t ) and ϵit is

the independent noise. Under these assumptions, the above linear SEM is structurally identifiable,
which is a necessary condition for recovering the ground truth graph (Hyvärinen et al., 2010; Peters
et al., 2013; Pamfil et al., 2020). However, the above linear SEM with independent noise variables
is too restrictive to fulfil the requirements described in Section 1. Therefore, the research question
is how to design a structurally identifiable non-linear SEM with flexible history-dependent noise.

3 RHINO: RELATIONSHIP LEARNING WITH HISTORY DEPENDENT NOISE

This section introduces Rhino: Section 3.1 describes the novel functional form for Rhino SEMs,
allowing for history-dependent noise. Section 3.2 details the associated variational inference frame-
work for causal discovery.

3.1 MODEL FORMULATION

For a multivariate stationary time series {Xt}Tt=0, we assume that their causal relations follow a
temporal adjacency matrix G0:K with maximum lag K where Gτ∈[1,K] specifies the lagged effects
between Xt−τ and Xt, G0 specifies the instantaneous parents. We define Gτ,ij = 1 if Xi

t−τ → Xj
t

and 0 otherwise. 1 We propose a novel functional form for Rhino’s SEM that incorporates non-linear
relations, instantaneous effects, and flexible history-dependent noise:

Xi
t = fi(Pai

G(< t),Pai
G(t)) + gi(Pai

G(< t), ϵit) (6)
where fi is a general differentiable non-linear function, and gi is a differentiable transform s.t.
the transformed noise has a proper density. Despite of an additive structure, our formulation of-
fers much more flexibility in both functional relations and noise distributions compared to previous
works (Pamfil et al., 2020; Peters et al., 2013). By placing few restrictions on fi, gi, it can capture
functional non-linearity through fi and transform ϵit through a flexible function gi, depending on
Pai

G(< t), to capture the history dependency of the additive noise.

Next, we propose flexible functional designs for fi, gi, which must respect the relations encapsulated
in G. Namely, if Xj

t−τ /∈ Pai
G(< t)∪Pai

G(t), then ∂fi/∂X
j
t−τ = 0 and similarly for gi. We design

fi(Pai
G(< t),Pai

G(t)) = ζi

 K∑
τ=0

D∑
j=1

Gτ,jiℓτj

(
Xj

t−τ

) (7)

1In the following, we interchange the usage of the notation G and G0:K for brevity.
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where ζi and ℓτi (i ∈ [1, D] and τ ∈ [0,K]) are neural networks. For efficient computation, we use
weight sharing across nodes and lags: ζi(·) = ζ(·,u0,i) and ℓτj(·) = ℓ(·,uτ,j), where uτ,i is the
trainable embedding for node i at time t− τ .

The design of gi needs to properly balance the flexibility and tractability of the transformed noise
density. We choose a conditional normalizing flow, called conditional spline flow (Trippe & Turner,
2018; Durkan et al., 2019; Pawlowski et al., 2020), with a fixed Gaussian noise ϵit for all t, i. The
spline parameters are predicted using a hyper-network with a similar form to Eq. (7) to incorporate
history dependency. The only difference is now τ is summed over [1,K] to remove the instantaneous
parents. Due to the invertibility of gi, the noise likelihood conditioned on lagged parents is

pgi(gi(ϵ
i
t)|Pai

G(< t)) = pϵ(ϵ
i
t)

∣∣∣∣∂g−1
i

∂ϵit

∣∣∣∣ . (8)

3.2 VARIATIONAL INFERENCE FOR CAUSAL DISCOVERY

Rhino adopts a Bayesian view of causal discovery (Heckerman et al., 2006), which aims to learn a
graph posterior distribution instead of inferring a single graph. For N observed multivariate time
series X(1)

0:T , . . . ,X
(N)
0:T , the joint likelihood with model parameter θ is

p(X
(1)
0:T , . . . ,X

(N)
0:T ,G) = p(G)

N∏
n=1

pθ(X
(n)
0:T |G). (9)

Graph Prior When designing the graph prior, we combine three components: (1) DAG con-
straint; (2) graph sparseness prior; (3) domain-specific prior knowledge (optional). Inspired by the
NOTEARS (Zheng et al., 2018; Geffner et al., 2022; Morales-Alvarez et al., 2021), we propose the
following unnormalised prior

p(G) ∝ exp
(
−λs∥G0:K∥2F − ρh2(G0)− αh(G0)− λp∥G0:K −Gp

0:K∥2F
)

(10)

where h(G) = tr(eG⊙G) −D is the DAG penalty proposed in (Zheng et al., 2018) and is 0 if and
only if G is a DAG; ⊙ is the Hadamard product; Gp is an optional domain-specific prior graph,
which can be used when partial domain knowledge is available; λs, λp specify the strength of the
graph sparseness and domain-specific prior terms respectively; α, ρ characterize the strength of the
DAG penalty. Since the lagged connections specified in G1:K can only follow the direction of time,
only the instantaneous part, G0, can contain cycles. Thus, the DAG penalty is only applied to G0.

Variational Objective Unfortunately, the exact graph posterior p(G|X(1)
0:T , . . . ,X

(N)
0:T ) is in-

tractable due to the large combinatorial space of DAGs. To overcome this challenge, we adopt
variational inference (Blei et al., 2017; Zhang et al., 2018), which uses a variational distribution
qϕ(G) to approximate the true posterior. We choose qϕ(G) to be a product of independent Bernoulli
distributions (refer to Appendix E for details). The corresponding evidence lower bound (ELBO) is

log pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T

)
≥ Eqϕ(G)

[
N∑

n=1

log pθ(X
(n)
0:T |G) + log p(G)

]
+H(qϕ(G))︸ ︷︷ ︸

ELBO(θ,ϕ)

(11)

where H(qϕ(G)) is the entropy of qϕ(G). From the causal Markov assumption and auto-regressive
nature, we can further simplify

log pθ(X
(n)
0:T |G) =

T∑
t=0

D∑
i=1

log pθ(X
i,(n)
t |Pai

G(< t),Pai
G(t)) (12)

and from Rhino’s functional form (Eq. (6)) proposed in Section 3.1

log pθ(X
i,(n)
t |Pai

G(< t),PaiG(t)) = log pgi

(
z
i,(n)
t |Pai

G(< t)
)

(13)

where zi,(n)t = X
i,(n)
t −fi(Pai

G(< t),Pai
G(t)) and pgi is defined in Eq. (8) (Appendix A for details).

The parameters θ, ϕ are learned by maximizing the ELBO, where the Gumbel-softmax gradient
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estimator is used (Jang et al., 2016; Maddison et al., 2016). We also leverage augmented Lagrangian
training (Hestenes, 1969; Andreani et al., 2008), similar as Geffner et al. (2022), to anneal α, ρ to
make sure Rhino only produces DAGs (refer to Appendix B.1 in Geffner et al. (2022)). Once Rhino
is trained, the temporal causal graph can be inferred by G ∼ qϕ(G).

Treatment effect estimation As Rhino learns the causal graph and the functional relationship
simultaneously, it can be extended for causal inference tasks such as treatment effect estimation
(Geffner et al., 2022). See Appendix D for details.

4 THEORETICAL CONSIDERATIONS

Here, we show the theoretical guarantees of Rhino including (1) the structural identifiability of Rhino
SEMs and (2) soundness of the proposed variational inference framework. Together, they guarantee
the validity of Rhino as a causal discovery method. In the end, we clarify relations to existing works.

4.1 STRUCTURAL IDENTIFIABILITY

One of the key challenges for causal discovery with a flexible functional relationship is to show the
structural identifiability. Namely, we cannot find two different graphs that induce the same joint
likelihood from the proposed functional causal model. In the following, we present a theorem for
Rhino SEMs that summarizes our main theoretical contribution.
Theorem 1 (Identifiability of Rhino SEMs). Assuming Rhino SEMs satisfy the causal Markov
property, minimality, sufficiency, DAGness and the induced joint likelihood has a proper density (see
Appendix B for details), and (1) all functions and induced distributions are third-order differentiable;
(2) function fi is non-linear and not invertible w.r.t. any nodes in PaiG(t); (3) the double derivative
(log pgi(gi(ϵ

i
t)|Pai

G(< t)))′′ w.r.t ϵit is zero at most at some discrete points, then the SEM with the
form defined in Eq. (6) is structural identifiable for both bivariate and multivariate case.

Sketch of proof. This theorem is a summary of a collection of theorems proved in Appendix B.
The strategy is instead of directly proving the identifiability of the model, we provide identifiability
conditions for a general temporal SEMs, followed by showing a generalization of Rhino SEMs
satisfies these conditions. The identifiability of Rhino SEMs directly follows from it.

Prove bivariate identifiability conditions for general temporal SEMs The first step is to prove
the bivariate identifiability conditions that a general temporal SEMs (Eq. (2)) should satisfy (refer
to Theorem 3 in Appendix B.1). Inspired by the techniques from Peters et al. (2013), we proved
that temporal SEMs are bivariate identifiable if (1) the model for initial conditions is identifiable;
(2) the model is identifiable w.r.t. instantaneous parents. Compared to Peters et al. (2013), we
relaxed the identifiable model class condition so that it can be applied to history-dependent noise. In
particular, (2) implies we only need to pay attention to instantaneous parents, rather than the entire
parents (Peters et al., 2013), and opens the door for flexible lagged dependency.

Identifiability of history-dependent post non-linear model Next, we propose a novel gener-
alization of Rhino SEMs, called history-dependent PNL. Theorem 4 and Corollary 4.1 in Ap-
pendix B.2 prove it is bivariate identifiable w.r.t. instantaneous parents (i.e. satisfy the conditions
in Theorem 3) with additional assumptions (1), (2) and (3) in Theorem 1. The functional form of
history-dependent PNL is defined as

Xi
t = νit

(
fit

(
Pai

G(< t),Pai
G(t)

)
+ git

(
Pai

G(< t), ϵit
)
,PaiG(< t)

)
,

where ν is invertible w.r.t. the first argument. Due to its similarity to PNL (Zhang & Hyvarinen,
2012) and ANM (Hoyer et al., 2008), we combine their techniques to prove our results. The bivariate
identifiability of Rhino SEMs directly follows from this with ν being the identity mapping.

Generalization to multivariate case In the end, we prove the above bivariate identifiability can
be generalized to the multivariate case by adapting the techniques from Peters et al. (2012) and
combining it with the proof strategy from step 1. Refer to Theorem 5 in Appendix B.3 for details.
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4.2 VALIDITY OF VARIATIONAL OBJECTIVE AND RELATIONS TO OTHER METHODS

Next, we show the validity of the variational objective (Eq. (11)) in the sense that optimizing it
can lead to the ground truth graph. Theorem 1 in Geffner et al. (2022) justifies the validity of the
variational objective under the same set of assumptions as Rhino.
Theorem 2 (Validity of variational objective (Geffner et al., 2022)). Assuming the conditions in
Theorem 1 are satisfied, and further assume no model misspecification (see Definition B.1), then
the solution (θ′, q′ϕ(G)) from optimizing Eq. (11) with infinite data satisfies q′ϕ(G) = δ(G = G′),
where G′ is a unique graph. In particular, G′ = G∗ and pθ′(X0:T ;G

′) = p(X0:T ;G
∗), where G∗

is the ground truth graph and p(X0:T ;G
∗) is the true data generating distribution.

We emphasize that Theorem 2 guarantees the correctness with the global optimum, rather than
characterizing the convergence during optimizing Eq. (11). We assume the Rhino only searches in
the DAG space. In practice, with augmented Lagrangian (Wei et al., 2020; Ng et al., 2022), we can
only obtain an approximate posterior over DAGs, converging to a local optimum.

Relation to other methods Many previous works of using functional causal model for causal time
series discovery (Hyvärinen et al., 2010; Pamfil et al., 2020; Tank et al., 2018; Peters et al., 2013)
are closely related to Rhino. Since Rhino SEMs incorporate history-dependent noise with flexible
function non-linearity, it is the most flexible member of this family. Refer to Appendix C for details.

5 RELATED WORK

Assaad et al. (2022) provides a comprehensive overview of causal discovery method for time series.
The first is Granger causality, which can be further split into (1) vector auto-regression (Wu et al.,
2020; Shojaie & Michailidis, 2010; Siggiridou & Kugiumtzis, 2015; Amornbunchornvej et al., 2019)
and (2) deep learning (Löwe et al., 2022; Tank et al., 2018; Bussmann et al., 2021; Dang et al.,
2018; Xu et al., 2019). Granger causality methods cannot handle instantaneous effects, which can
be observed in a slow-sampling system. Additionally, they also assume a fixed noise distribution.

Using funcitonal causal models can mitigate the aforementioned two problems. VARLiNGaM
(Hyvärinen et al., 2010) extends the identifiability theory of linear non-Gaussian ANM (Shimizu
et al., 2006) to vector auto-regression for modelling time series data. DYNOTEARS (Pamfil et al.,
2020) leverages the recently proposed NOTEARS framework (Zheng et al., 2018) to continuously
relax the DAG constraints for fully differentiable DAG structure learning. However, the above ap-
proach is still limited to linear functional forms. TiMINo (Peters et al., 2013) provides a general
theoretical framework for temporal causal discovery with functional causal models. Our theory
leverages some of their proof techniques. Unfortunately, all the aforementioned methods assume
no history dependency for the noise. On the other hand, Rhino can model (1) non-linear function
relations; (2) instantaneous effect; (3) and history-dependent noise at the same time.

The third category is constraint-based approaches. Due to its non-parametric nature, it can handle
history-dependent noise. PCMCI (Runge et al., 2019) combines PC (Spirtes et al., 2000) and con-
ditional independence test for discovery from time series. PCMCI+ (Runge, 2018; 2020) further
extends PCMCI to infer both lagged and instantaneous effects. CD-NOD (Huang et al., 2020) has
recently been proposed to handle non-stationary heterogeneous data, where the data distribution can
shift across time. Despite their generality, they can only infer MECs; cannot learn the explicit func-
tional forms between variables; and require a stronger assumption than minimality (i.e. faithfulness).

6 EXPERIMENTS

We release the code of Rhino for reproducing the following experiments.2.

6.1 SYNTHETIC DATA

We evaluate our method on a large set of synthetically generated datasets with known causal graphs.
We use the main body of this paper to present the overall performance of our method compared to rel-

2https://github.com/microsoft/causica/tree/v0.0.0
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evant baselines and one ablation study on the robustness to lag mismatch. In Appendix F.3, we con-
duct extensive analysis, including (1) on different graph type; (2) ablation on history-dependency;
(3) ablation study on instantaneous effect. This set of datasets are generated by various settings
(e.g. type of graphs, instantaneous/no instantaneous effect, etc.). 5 datasets are generated for each
combination of settings with different seeds, yielding 160 datasets in total. In order to compre-
hensively test Rhino’s robustness, we deliberately generated 75% of the datasets that mismatch the
Rhino configurations. Details of the data generation can be found in Appendix F.1.

We compare Rhino to a wide range of baselines, including VARLiNGaM (Hyvärinen et al., 2010),
PCMCI+(Runge, 2020) and DYNOTEARS (Pamfil et al., 2020). PCMCI only outputs Markov
equivalence classes (MECs). We resolve this by enumerating all DAGs in the MEC. For details
on the methods, see Appendix F.2. Additionally, we include two variants of Rhino: (1) Rhino+g,
where an independent Gaussian noise is used; (2) Rhino+s, where Gaussian ϵi is transformed by an
independent spline.

Figure 1 presents the F1 score of the lagged, instantaneous and temporal adjacency matrix of all
methods aggregated over all datasets3, denoted as ’Lag’, ’Inst.’ and ’Temporal’, respectively. Rhino
achieves overall competitive or the best performance in terms of the full temporal adjacency matrix
across all possible datasets, especially for lower dimensions. Comparing Rhino’s lagged discovery
to its two variants, the better score indicates the history-dependent noise is useful to the lagged graph
discovery, contributing to the better overall F1 performance (Appendix F.3 for ablation).

Despite of the strong performance from PCMCI+, it can only identify the graph up to MECs without
explicit functional relations. Computationally, PCMCI+ exceeds the maximum training time of 1
week on 40 nodes (see Appendix F.3), suggesting its computation bottleneck in high dimensions.

DYNOTEARS achieves inferior results in general due to limited modelling power from the linear
nature. This is much clearer in high dimensions due to the increasing difficulty of the problem.

0.0

0.5

1.0

F1

Dim = 5 Dim = 10

Inst. Lag Temporal
0.0

0.5

1.0

F1

Dim = 20

Inst. Lag Temporal

Dim = 40

Model Name
Rhino (L=2)
Rhino+g (L=2)
Rhino+s (L=2)
DYNOTEARS
VAR-LiNGaM
PCMCI+

Figure 1: F1-scores of Rhino (light yellow) compared to all baseline methods. The different subplots
show the performance for dataset with different number of nodes. ‘L=2’ refers to models with lag 2.

We explore the behaviour of Rhino with different lag parameters other than the ground truth lag 2.
From Table 1, worse training log-likelihoods suggest that Rhino with insufficient history (lag = 1)
is unable to correctly model the data and this leads to a decrease in F1 scores. Interestingly, Rhino
is also robust with longer lags. Despite of the slightly better likelihood (lag = 3), it achieves
comparable performance to the model with the correct lag. Also, from their similar F1 Lag score, it
suggests the extra adjacency matrix is nearly empty.

6.2 DREAM3 GENE NETWORK

In this section, we evaluate Rhino performance with a real-world biology benchmark called
DREAM3 (Prill et al., 2010; Marbach et al., 2009). These datasets are often used to evaluate Granger
causality (Khanna & Tan, 2019; Tank et al., 2018; Nauta et al., 2019; Bussmann et al., 2021) but

3We note that we run each method on 40 different dataset settings for all possible numbers of nodes.
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Dim Rhino (L=1) Rhino (L=2) Rhino (L=3)

5 F1 Inst. 0.11± 0.17 0.20± 0.22 0.21± 0.23
F1 Lag 0.28± 0.13 0.59± 0.22 0.57± 0.24
F1 Temporal 0.34± 0.12 0.59± 0.20 0.56± 0.22
LL −4.14± 1.63 −3.83± 1.62 −3.75± 1.64

10 F1 Inst. 0.13± 0.17 0.19± 0.23 0.19± 0.22
F1 Lag 0.26± 0.08 0.51± 0.17 0.48± 0.19
F1 Temporal 0.28± 0.11 0.49± 0.18 0.45± 0.20
LL −7.97± 2.09 −7.21± 2.22 −7.01± 1.91

20 F1 Inst. 0.15± 0.16 0.16± 0.17 0.18± 0.19
F1 Lag 0.24± 0.12 0.42± 0.22 0.40± 0.21
F1 Temporal 0.25± 0.13 0.39± 0.22 0.37± 0.21
LL −15.62± 3.16 −14.70± 2.87 −14.72± 2.82

40 F1 Inst. 0.13± 0.16 0.22± 0.23 0.18± 0.21
F1 Lag 0.20± 0.18 0.40± 0.31 0.34± 0.30
F1 Temporal 0.20± 0.18 0.37± 0.30 0.32± 0.29
LL −31.44± 5.16 −30.10± 4.71 −30.20± 4.74

Table 1: Comparison of the causal discovery performance of Rhino with different lag-parameters
(L ∈ [1, 3]). Apart from the 3 F1 scores, LL shows the log-likelihood of the training data.

recently adopted for SEM-based method (Pamfil et al., 2020). The dataset consists in silico mea-
surements of gene expression levels for 5 different networks. Each network contains d = 100 genes.
Each time series represents a perturbation trajectory with time length T = 21. For each network,
46 perturbation trajectories are recorded. The goal is to infer the causal structure of each network.
We use the area under the ROC curve (AUROC) as the performance metric. We consider the same
baselines as in the synthetic experiments (i.e. DYNOTEARS and PCMCI+) without VARLiNGaM
since its default implementation fails when the number of variables (d = 100) is greater than the
series length (T = 21). Additionally, we also consider relevant Granger causality methods, includ-
ing cMLP, cLSTM (Tank et al., 2018); TCDF(Nauta et al., 2019); SRU and eSRU (Khanna & Tan,
2019)). Their corresponding results are directly cited from Khanna & Tan (2019). Appendix G.1
specifies Rhino hyperparameters. Since the ground truth graph is a summary graph (see Defini-
tion G.1 in Appendix G.2), Appendix G.2 details about the post-processing step on aggregating
temporal graph to summary graph for Rhino, DYNOTEARS and PCMCI+.

Method E.Coli 1 E.Coli 2 Yeast 1 Yeast 2 Yeast 3

cMLP 0.644 0.568 0.585 0.506 0.528
cLSTM 0.629 0.609 0.579 0.519 0.555
TCDF 0.614 0.647 0.581 0.556 0.557
SRU 0.657 0.666 0.617 0.575 0.55
eSRU 0.66 0.629 0.627 0.557 0.55
DYNO. 0.590 0.547 0.527 0.526 0.510
PCMCI+ 0.530± 0.002 0.519± 0.002 0.530± 0.003 0.510± 0.001 0.512± 0
Rhino+g 0.673±0.013 0.665±0.009 0.659±0.005 0.598±0.004 0.588±0.005
Rhino 0.685±0.003 0.680±0.007 0.664±0.006 0.585±0.004 0.567±0.003

Table 2: The AUROC of the aggregated adjacency matrix for 5 DREAM3 datasets without self-
connections. DYNO. means DYNOTEARS. For Rhino and PCMCI+, the results are reported by
averaging over 5 runs. Khanna & Tan (2019) only reported the single-run results for baselines.

Table 2 demonstrates the AUROC of the summary graph inferred after training. It is clear that Rhino
and its variant outperform all other methods. Although Rhino is not formulated to solve the summary
graph discovery, it shows a clear advantage compared to the state-of-the-art Granger causality. Thus,
Rhino can be used to infer either temporal or summary graph depending on users’ needs.
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By inspecting the hyperparameters of Rhino in Appendix G.1, instantaneous effects seem to provide
no obvious help for in these datasets. It suggests the recording intervals are fast enough to avoid any
aggregation effect. This explains why the Granger causality can also perform reasonably well.

Unlike the strong performances of DYNOTEARS and PCMCI+ in synthetic experiments, they per-
form poorly in DREAM3. The linear nature of DYNOTEARS seems to harm its performance dras-
tically. PCMCI+ suffers from the low independence test power under small training data.

Another interesting ablation is to compare with Rhino+g, which performs on par with Rhino and
achieves better scores on 2 out of 5 datasets. Although we have no access to the true noise mech-
anism, we suspect that the added noise is not history-dependent and highly likely to be Gaussian.
Despite the model mismatch, Rhino is still one of the best methods for this problem. This further
strengthens our belief in the robustness of our model under different setups.

6.3 NETSIM BRAIN CONNECTIVITY

In this section, we evaluate Rhino using fMRI imaging data, which has also been used as a bench-
mark for temporal causal discovery (Löwe et al., 2022; Khanna & Tan, 2019; Assaad et al., 2022).
Each time series represents the signal simulated for a human subject, which describes d = 15 dif-
ferent regions in the brain with T = 200 timestamps. The goal is to infer the connectivity between
different brain regions. We assume that different human subjects share the same connectivity. We
only use the data from human subject 2− 6 in Sim-3.mat from https://www.fmrib.ox.ac.
uk/datasets/netsim/index.html with self-connections. We use the same set of baselines
as DREAM3 (Section 6.2) plus VARLiNGaM. Appendix G.4 describes hyperparameter settings.

Method AUROC

cMLP 0.93
cLSTM 0.83
TCDF 0.91
SRU 0.80
eSRU 0.88
DYNO. 0.90
PCMCI+ 0.83± 0
VARLiNGaM 0.84± 0

Rhino+g 0.974± 0.002
Rhino+NoInst. 0.93± 0.006
Rhino 0.99± 0.001

Table 3: AUROCs of the summary graph.
Rhino+NoInst is Rhino without instantaneous ef-
fects. For Rhino, VARLiNGaM, PCMCI+, results
are obtained by averaging over 5 different runs.

Table 3 shows the AUROCs for different meth-
ods. Remarkably, the proposed Rhino and its
variants achieve significantly better AUROC
compared to the baselines. Especially, Rhino
obtains nearly optimal AUROC, demonstrating
its robustness to the small dataset and good
balances between true and false positive rates
(see Appendix H). By comparing Rhino and
Rhino+NoInst., we conclude that modelling in-
stantaneous effects is important in real applica-
tion, indicating the sampling interval is not fre-
quent enough to explain everything as lagged
effects. This can be double confirmed by com-
paring Rhino+NoInst with Granger causality,
where it performs on par with the state-of-
the-art baseline when disabling the instanta-
neous effect. Last but not least, by compar-
ing Rhino+g with Rhino, we find that history-
dependent noise is also helpful in this dataset.

7 CONCLUSION

Inferring temporal causal graphs from observational time series is an important task in many sci-
entific fields. Especially, some applications (e.g. education, climate science, etc.) require the mod-
elling of non-linear relationships; instantaneous effects and history-dependent noise distributions at
the same time. Previous works fail to offer an appropriate solution for all three requirements. Mo-
tivated by this, we propose Rhino, which combines vector auto-regression with deep learning and
variational inference to perform causal temporal relationship learning with all three requirements.
Theoretically, we prove the structural identifiability of Rhino with flexible history-dependent noise,
and clarify its relations to existing works. Empirical evaluations demonstrate its superior perfor-
mance and robustness when Rhino is misspecified, and the advantages of history-dependent noise
mechanisms. This opens an exciting route of extending Rhino to handle non-stationary time-series
and unobserved confounders in future work.
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8 REPRODUCIBILITY STATEMENT

Theoretical Contributions The main theoretical contribution is summarized in Theorem 1. This
theorem is the result from a collection of theorems proved in Appendix B. In Appendix B, we de-
tailed the fundamental assumptions (Assumption 1-Assumption 5) required for the all theorems.
The theorem-specific assumptions are mentioned in the statement of the theorem. To ease the under-
standing of the proof, we also provide the skecth of proof in Theorem 1. Since Theorem 2 is directly
cited from (Geffner et al., 2022) without major modification, the proof can be found in Appendix A
in Geffner et al. (2022).

Empirical Evaluations For synthetic, DREAM3 and Netsim experiments, we listed the hyperpa-
rameters in Appendix F.2, Appendix G.1 and Appendix G.4, respectively. Appendix F.1 explains the
synthetic data generation. For DREAM3 and Netsim, the dataset can be found in the public github
repo https://github.com/sakhanna/SRU_for_GCI/tree/master/data. The post
processing steps for DREAM3 and Netsim evaluations are described in Appendix G.2.
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Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, and Kun Zhang. On
the convergence of continuous constrained optimization for structure learning. In International
Conference on Artificial Intelligence and Statistics, pp. 8176–8198. PMLR, 2022.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data.
In International Conference on Artificial Intelligence and Statistics, pp. 1595–1605. PMLR, 2020.

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for
tractable counterfactual inference. Advances in Neural Information Processing Systems, 33:857–
869, 2020.

11



Jonas Peters, Joris Mooij, Dominik Janzing, and Bernhard Schölkopf. Identifiability of causal graphs
using functional models. arXiv preprint arXiv:1202.3757, 2012.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using
restricted structural equation models. Advances in Neural Information Processing Systems, 26,
2013.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Robert J Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K Sorger, Leonidas G Alexopoulos, Xi-
aowei Xue, Neil D Clarke, Gregoire Altan-Bonnet, and Gustavo Stolovitzky. Towards a rigorous
assessment of systems biology models: the dream3 challenges. PloS one, 5(2):e9202, 2010.

Jakob Runge. Causal network reconstruction from time series: From theoretical assumptions to
practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310,
2018.

Jakob Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear
time series datasets. In Conference on Uncertainty in Artificial Intelligence, pp. 1388–1397.
PMLR, 2020.

Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science advances, 5
(11):eaau4996, 2019.

Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the gener-
alised covariance measure. The Annals of Statistics, 48(3):1514–1538, 2020.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Ali Shojaie and George Michailidis. Discovering graphical granger causality using the truncating
lasso penalty. Bioinformatics, 26(18):i517–i523, 2010.

Elsa Siggiridou and Dimitris Kugiumtzis. Granger causality in multivariate time series using a time-
ordered restricted vector autoregressive model. IEEE Transactions on Signal Processing, 64(7):
1759–1773, 2015.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily Fox. Neural granger causality for
nonlinear time series. stat, 1050:16, 2018.

Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian normalising
flows. arXiv preprint arXiv:1802.04908, 2018.

Dennis Wei, Tian Gao, and Yue Yu. Dags with no fears: A closer look at continuous optimization for
learning bayesian networks. Advances in Neural Information Processing Systems, 33:3895–3906,
2020.

Tailin Wu, Thomas Breuel, Michael Skuhersky, and Jan Kautz. Discovering nonlinear relations with
minimum predictive information regularization. arXiv preprint arXiv:2001.01885, 2020.

Chenxiao Xu, Hao Huang, and Shinjae Yoo. Scalable causal graph learning through a deep neural
network. In Proceedings of the 28th ACM international conference on information and knowledge
management, pp. 1853–1862, 2019.
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A ELBO AND LIKELIHOOD DERIVATION

The goal is to derive a lower bound for the joint likelihood pθ(X
(1)
0:T , . . . ,X

(N)
0:T ).

pθ(X
(1)
0:T , . . . ,X

(N)
0:T )

= log

∫
pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG

= log

∫
qϕ(G)

qϕ(G)
pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG

≥
∫

qϕ(G) log pθ

(
X

(1)
0:T , . . . ,X

(N)
0:T |G

)
p(G)dG+H(qϕ(G)) (14)

=Eqϕ(G)

[
N∑

n=1

log pθ(X
(n)
0:T |G) + log p(G)

]
+H(qϕ(G))

where Eq. (14) is obtained by using Jensen’s inequality.

We can further simplify the likelihood pθ(X
(n)
0:T |G):

log pθ(X
(n)
0:T |G) = log

T∏
t=0

pθ(X
(n)
t |X(n)

<t ,G)

=

T∑
t=0

log pθ

(
X

(n)
t |X(n)

<t ,G
)

=

T∑
t=0

D∑
i=1

log pθ

(
X

i,(n)
t |Pai

G(< t),Pai
G(t)

)
(15)

where Eq. (15) is obtained through Markov factorization (Lauritzen, 1996).

B STRUCTURAL IDENTIFIABILITY

In this section, we will focus on proving the structural identifiability of Rhino SEMs. Before diving
into the details, let us clarify the required assumptions.

Definition B.1 (Correctly specified model). For a true data generating mechanism Xi = f∗
i (Pai, ϵi)

for i = 1, . . . , D, we say a model with functional space F is correctly specified if there exists a
function fi ∈ F s.t. fi = f∗

i for all i = 1, . . . , D.

Here, we emphasize that the above definition of model specification does not require identifiability
in parameters space, but in function space instead. Namely, it allows multiple sets of parameters that
correspond to the same function. Our definition is more general than some of the previous work,
which enforces parameter identifiability (e.g. Def 2.1 in Ma & Zhang (2021))
Assumption 1 (Causal Stationarity (Runge, 2018)). The time series process Xt with a graph G is
called causally stationary over a time index set T if and only if for all links Xi

t−τ → Xj
t in the

graph
Xi

t−τ ̸⊥⊥ Xj
t |X<t\{Xi

t−τ} holds for all t ∈ T

This characterizes the nature of the time-series data generating mechanism, which validates the
choice of the auto-regressive model.
Assumption 2 (Causal Markov Property (Peters et al., 2017)). Given a DAG G and a joint distribu-
tion p, this distribution is said to satisfy causal Markov property w.r.t. the DAG G if each variable
is independent of its non-descendants given its parents.

This is a common assumptions for the distribution induced by an SEM. With this assumption, one
can deduce conditional independence between variables from the graph.
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Assumption 3 (Causal Minimality). Consider a distribution p and a DAG G, we say this distribution
satisfies causal minimality w.r.t. G if it is Markovian w.r.t. G but not to any proper subgraph of G.

Minimality is also a common assumption for SEMs (Hoyer et al., 2008; Zhang & Hyvarinen, 2012;
Peters et al., 2012), which can be regarded as a weaker version of faithfulness (Peters et al., 2017).

Assumption 4 (Causal Sufficiency). A set of observed variables V is causally sufficient for a pro-
cess Xt if and only if in the process every common cause of any two or more variables in V is in V
or has the same value for all units in the population.

This assumption implies there are no latent confounders present in the time-series data.

Assumption 5 (Well-defined Density). We assume the joint likelihood induced by the Rhino SEM
(Eq. (6)) is absolutely continuous w.r.t. a Lebesgue or counting measure and | log p(X0:T ;G)| < ∞
for all possible G.

This assumption is to make sure the induced distribution has a well-defined probability density
function. It is also required for the equivalence of the global, local Markov property and Markov
factorization property (Theorem 6.22 from Peters et al. (2017)).

Assumption 6 (Rhino in DAG space). We assume the Rhino framework can only return the so-
lutions from DAG space. Namely, the posterior distribution from Rhino can only put weights on
DAGs.

This assumption regularizes the search space of Rhino to be DAG space, which aligns with assump-
tion 2 and 3 on causal graphs.

In the following, we will structure the entire proof into three steps:

1. Prove a general conditions that the bivariate time series model needs to satisfy for structural
identifiability. This adapts from the theorem 1 in Peters et al. (2013).

2. Prove that a generalized form of SEM, modified from the post non-linear (PNL) model
(Zhang & Hyvarinen, 2012), satisfies the conditions mentioned in step 1. The proposed
Rhino (Eq. (6)) is a special case of the above SEM.

3. In the end, we generalize the above indentifiability to the multivariate case.

B.1 GENERAL IDENTIFIABILITY CONDITIONS

First, we derive the conditions required for identifiability for a general bivariate time series SEM,
defined as

Xi
t = fi,t

(
PaiG(< t),PaiG(t), ϵ

i
t

)
. (16)

We call the above SEM transition model, since it only defines the transition behavior rather than
the initial conditions. We also need to incorporate a source model, which characterizes the initial
conditions:

Xi
s = fi,s(Pai

G, ϵ
i
s) (17)

for s ∈ [0,S], where S is the length for the initial conditions and Pai
G contains the parents for node

i. We define ps(X0:S) as the induced joint distribution for the initial conditions.

Now, we prove the following theorem.

Theorem 3 (Identifiability conditions for bivariate time series). Assuming Assumption 1-5 are sat-
isfied, given a bivariate temporal process X0:T and Y0:T that are governed by the above SEM
(Eq. (16)) with source model (Eq. (17)), then the above SEM for the bivariate temporal process
is structural identifiable if the following conditions are true:

1. Source model fi,s is structural identifiable for all i = 1, . . . , D and s ∈ [0,S].

2. The transition model (Eq. (16)) is bivariate identifiable w.r.t the instantaneous parents.
Namely, if graph G induced conditional distributions p(Xt, Yt|PaX,Y

G (< t)), then ∄G′

such that G ̸= G′ and the induced conditional p̄(Xt, Yt|PaX,Y
G′ (< t)) = p for all t ∈

[S + 1, T ].
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where PaX,Y
G (< t) is the union of the lagged parents of Xt and Yt under G, and PaX,Y

G′ (< t) is the
union of parents under G′.

Proof. We prove this by contradiction. Assume we have an induced joint distribution p(X0:T ,Y0:T )
under G, and corresponding p̄ under G′. We further assume the above two conditions in the theorem
are met and p = p̄ but G ̸= G′.

Thus, we have DKL[p∥p̄] = 0. Due to the temporal nature of the model, we can further decompose
it as the following:

DKL[p∥p̄]

=

∫
p(X0:T ,Y0:T ) log

p(X0:T ,Y0:T )

p̄(X0:T ,Y0:T )
dX0:T dY0:T

=DKL[p(X0:S ,Y0:S)︸ ︷︷ ︸
ps

∥ p̄(X0:S ,Y0:S)︸ ︷︷ ︸
p̄s

] +

∫
p(X0:S ,Y0:S)DKL[p(XS+1:T ,YS+1:T |X0:S ,Y0:S)∥

p̄(XS+1:T ,YS+1:T |X0:S ,Y0:S)]dX0:SdY0:S

=DKL[ps∥p̄s] +
T∑

t=S+1

Ep(X0:t−1,Y0:t−1) [DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)]]

=0.

This means we have DKL[ps∥p̄s] = 0 and DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)] =
0 almost everywhere. Inspired by the strategy used in (Peters et al., 2013), We consider the following
three scenarios:

Disagree on initial conditions We assume G and G′ disagree on the initial conditions. From the
condition 1, we know the source model fi,s is identifiable. Namely, we cannot find G ̸= G′ with
disagreement on initial conditions such that DKL[ps∥p̄s] = 0. This is a contradiction, meaning that
G and G′ must agree on the connections between initial set of nodes.

Disagree on lagged parents only This means for all t ∈ [S+1, T ], the instantaneous connections
at t for G and G′ are the same, and ∃t ∈ [S + 1, T ] such that PaX,Y

G (< t) ̸= PaX,Y
G′ (< t). We

can use a similar argument as the theorem 1 in Peters et al. (2013). W.l.o.g., we assume under G,
we have Xt−τ → Yt and there is no connections between them under G′. Thus, from Markov
conditions, we have

Yt ⊥⊥ Xt−τ |X0:t−1 ∪ Y0:t−1 ∪ NDY
t \{Yt, Xt−τ}

under G′, where NDY
t are the non-descendants of node Yt at some time t. However, from the causal

minimality and proposition 6.16 in Peters et al. (2017), we have

Yt ̸⊥⊥ Xt−τ |X0:t−1 ∪ Y0:t−1 ∪ NDY
t \{Yt, Xt−τ}

under G. This means under this case, DKL [p(Xt, Yt|X0:t−1,Y0:t−1)∥p̄(Xt, Yt|X0:t−1,Y0:t−1)] ̸=
0, which is a contradiction.

Disagree also on instantaneous parents This scenarior means ∃t ∈ [S + 1, T ] such that they
disagree on instantaneous parents. W.l.o.g. we assume Xt → Yt under G and Yt → Xt under G′.

Let’s define X0:t−1 ∪ Y0:t−1 = h, hY
G ⊆ h contains the values of PaY

G(< t) under G, h̄Y
G′ ⊆

h contains the parent values under G′, and hX
G , h̄X

G′ accordingly. Thus, the induced conditional
distributions from SEM (Eq. (16)) with G, G′ are

p(Xt, Yt|hX
G ∪ hY

G) and p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)

From the Markov conditions, we have

p(Xt, Yt|X0:t−1,Y0:t−1) = p(Xt, Yt|PaX,Y
G (< t))
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Therefore, we have

DKL [p(Xt, Yt|h)∥p̄(Xt, Yt|h)]
=0

=DKL[p(Xt, Yt|hX
G ∪ hY

G)∥p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)]

for arbitrary h, which contradicts the strucutral identifiability w.r.t. the instantaneous parents.

In summary, with the two conditions, we cannot find G ̸= G′ such that the induced joint
p(X0:T ,Y0:T ) = p̄(X0:T ,Y0:T ), meaning that the SEMs defined as Eq. (16) and Eq. (17) are
identifiable w.r.t. bivariate time series.

Since one can use any identifiable static models to characterize the initial behavior of the time
series, we will focus on condition 2 for the transition model. In the following, we will show that a
generalization of PNL, called history-dependent PNL, satisfies condition 2 under assumptions.

B.2 IDENTIFIABILITY OF HISTORY-DEPENDENT PNL

First, we propose a generalization of PNL (Zhang & Hyvarinen, 2012) so that it can be history-
dependent. For a multivariate temporal process X0:T , we propose history-dependent PNL as

Xi
t = νit

(
fit

(
Pai

G(< t),Pai
G(t)

)
+ git

(
Pai

G(< t), ϵit
)
,Pai

G(< t)
)

(18)

where νit is an invertible transformation w.r.t. the first argument. The main differences of the above
SEM compared to typical PNL are (1) the invertible transformation νit can be history dependent;
(2) the inner noise distribution can also be history-dependent.

Next, we show the main theorem about its bivariate identifiability w.r.t. its instantaneous parents.

Theorem 4 (History-dependent PNL Bivariate Identifiability). Assume Assumption 1-5 are satis-
fied, all transformations in Eq. (18) and corresponding induced distributions are 3rd-order differen-
tiable. Given a bivariate temporal process X0:T , Y0:T , then the history-dependent PNL defined as
Eq. (18) is bivariate identifiable w.r.t its instantaneous parents (i.e. satisfy condition 2 in Theorem 3),
except for some special cases.

Proof. W.l.o.g. at time t ∈ [S + 1, T ], we assume Xt → Yt for instantaneous connection under G
and Yt → Xt under G′. We fix a value h for their entire history X0:t−1 ∪ Y0:t−1 = h. With h, we
further define their lagged parents as PaX

G (< t) = hX
G ⊆ h, PaY

G(< t) = hY
G ⊆ h under G and

PaX
G′(< t) = h̄X

G′ ⊆ h, PaYG′(< t) = h̄Y
G′ under G′.

Therefore, the SEM at time t can be written as

Yt = ν
(
f(hY

G, Xt) + g(hY
G, ϵY ),h

Y
G

)
(19)

and
Xt = ν̄

(
f̄(h̄X

G′ , Yt) + ḡ(h̄X
G′ , ϵX), h̄X

G′

)
(20)

under G and G′, respectively. Let’s assume that their induced conditional distributions at time t are
equal (i.e. violating the identifiable condition (2) in Theorem 3):

log p(Xt, Yt|hX
G ∪ hY

G)︸ ︷︷ ︸
under G

= log p̄(Xt, Yt|h̄X
G′ ∪ h̄Y

G′)︸ ︷︷ ︸
under G′

From the Markov properties, the above equation is equivalent to

log p(Xt, Yt|h) = log p̄(Xt, Yt|h)

with a fixed value h of the entire history.

Now, let’s define
αt = ν̄−1(Xt) and βt = ν−1(Yt)
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where we omits the dependence of ν̄−1 to h̄X
G′ and ν−1 to hY

G. It is easy to observe that we have an
invertible mapping between (Xt, Yt) and (αt, βt). Thus, from the change of variable formula, we
have

log p(Xt, Yt|h) = log pα,β(αt, βt|h) + log |J |
and

log p̄(Xt, Yt|h) = log p̄α,β(αt, βt|h) + log |J |
where J is the Jacobian matrix of the transformation. Thus, the equivalence of log p and log p̄ in the
(Xt, Yt) space can be translated to (αt, βt) space.

Thus, from Eq. (19), we have
βt = Φ(αt) + g(hY

G, ϵY ) (21)
under G. And from Eq. (20), we have

αt = Ψ(βt) + ḡ(h̄X
G′ , ϵX) (22)

under G′. This forms an additive noise model between αt, βt with history-dependent noise. Next,
we can use a similar proof techniques as in Hoyer et al. (2008). Here, Φ(·) = f(hY

G, ·) ◦ ν̄(h̄X
G′ , ·)

and Ψ(·) = f̄(h̄X
G′ , ·) ◦ ν(hY

G, ·). We further define
η1(αt) = log p(αt|h) η̄1(βt) = log p̄(βt|h)
η2(g(h

Y
G, ϵY )) = log pg(g(h

Y
G, ϵY )|h) η̄2(ḡ(h̄

X
G′ , ϵX)) = log p̄g(ḡ(h̄

X
G′ , ϵX)|h)

Thus, under G (i.e. Eq. (21)), we have
log p(αt, βt|h) = log p(βt|αt,h) + log p(αt|h)

=η2(βt − Φ(αt)) + η1(αt) (23)
Similarly, under G′ (i.e. Eq. (22)), we have

log p̄(αt, βt) = η̄2(αt −Ψ(βt)) + η̄1(βt) (24)

Based on Eq. (24), we have

∂2 log p̄

∂αt∂βt
= −η̄′′2Ψ

′ and
∂2 log p̄

∂αt
2

= η̄′′2

Thus, we have
∂

∂αt

(
∂2 log p̄/∂αt∂βt

∂2 log p̄/∂αt
2

)
= 0

Due to the equivalence of log p̄ and log p, we apply the above operations to Eq. (23). After some
algebraic manipulation, we obtained the following differential equations for η′′2Φ

′ ̸= 0:

η′′′1 − η′′1Φ
′′

Φ′ =

(
η′2η

′′′
2

η′′2
− 2η′′2

)
Φ′′Φ′ − η′′′2

η′′2
Φ′η′′1 + η′2

(
Φ′′′ − (Φ′′)2

Φ′

)
. (25)

Interestingly, this is exactly equivalent to Eq.(4) in Zhang & Hyvarinen (2012). The main difference
is the definition of variables and transformations in here are all history-dependent.

Further, we can also observe that
βt ⊥⊥ ḡ(hY

G, ϵY )|X0:t−1 ∪ Y0:t−1 = h.

Since βt = Φ(αt) + g(hY
G, ϵY ) and ḡ(h̄X

G′ , ϵX) = αt −Ψ(βt), it is trivial to show the determinant
of the Jacobian of the transformation (αt, g) to (βt, ḡ) is 1. Thus, by a similar argument in theorem
1 from Zhang & Hyvarinen (2012), we can derive

1

Ψ′ =
η′′1 + η′′2 (Φ

′)2 − η′2Φ
′′

η′′2Φ
′

for η′′2Φ
′ ̸= 0.

Thus, the above two differential equations has the same form as theorem 1 in Zhang & Hyvarinen
(2012) where the main difference is that all distributions and transformations involved in our case
depend on history h.

Therefore, we can directly cite the theorem 8 from Zhang & Hyvarinen (2012), which proves that
the above differential equations hold true only for 5 types of special cases. One can refer to Table 1
in Zhang & Hyvarinen (2012) for details.
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Corollary 10 from Zhang & Hyvarinen (2012) validates the choice of using nueral network for the
transformation f . For completeness, we include it here with slight modification:
Corollary 4.1 (Identifiability with neural netowrk f ). Assuming the assumptions in Theorem 4 are
true, and the double derivative (log pg(g(PaY

G(< t), ϵY )|X0:t−1 ∪Y0:t−1))
′′ w.r.t ϵY is zero at most

at some discrete points. If function f is not invertible w.r.t. the instantaneous parents, then, the
history-dependent PNL defined as Eq. (18) is bivariate identifiable w.r.t. the instantaneous parents
(i.e. satisfy condition 2 in Theorem 3).

It is clear to see that the form of Rhino SEMs (Eq. (6)) is a special case of the history-dependent
PNL (Eq. (18)), where the outer history-dependent invertible transformation ν is the identity map-
ping. Thus, we can directly leverage Theorem 3 together with Theorem 4 to show Rhino SEMs are
identifiable w.r.t bivariate time series, and Corollary 4.1 to validate our design choice (Eq. (7)).

B.3 GENERALIZING TO MULTIVARIATE TIME SERIES

Previously, we prove the identifiability conditions for bivariate time series. In this section, we will
generalize it to the multivariate case.
Theorem 5 (Generalization to multivariate time series). Assuming the assumptions in Theorem 4
are satisfied, we further assume that the multivariate SEM defined in Eq. (18) satisfies: for each pair
of node i, j ∈ V , the SEM

Xi
t = νit

fit

Pai
G(< t),Pai

G(t)\{X
j
t }, ·︸︷︷︸

Xj
t

+ git
(
Pai

G(< t), ϵit
)
,PaiG(< t)


is bivariate identifiable w.r.t. the input, and an identifiable source model is adopted. Then, the
history-dependent PNL is identifiable except for some special cases.

Proof. For this proof, we can follow the strategy used in Theorem 3 and Peters et al. (2013). We
categorize the difference of the graph G and G′ into three types. Following the same analysis of
the KL divergence of the two induced joint distributions, we can see that (1) DKL[ps∥p̄s] = 0 and
DKL[p(Xt|X0:t−1)∥p̄(Xt|X0:t−1)] = 0.

Disagree on initial conditions Since we assume that the source model is identifiable, this contra-
dicts DKL[ps∥p̄s] = 0.

Disagree on lagged parents only We notice that the analysis used in Theorem 3 for this disagree-
ment can be directly translated to multivariate case. The only difference is that the notation Yt, Xt

is changed accordingly.

Disagree also on instantaneous parents For this case, with a fixed history value h = X0:t−1,
the aim is to compare the conditionals DKL[p(Xt|X0:t−1 = h)∥p̄(Xt|X0:t−1 = h)]. Thus, the
problem becomes to how to generalize the bivariate identifiability for instantaneous parents to the
multivariate case. We leverage the theorem 2 from Peters et al. (2012), which proves the multivariate
identifiability for any models that belongs to IFMOC. It is easy to see that if the assumptions in
Theorem 5 are met, the history-dependent PNL belongs to IFMOC w.r.t. the instantaneous parents.
It should be noted that the entire history-dependent PNL DOES NOT belong to IFMOC, but this
does not affect our results since we only care about the instantaneous parents under this case.

C RELATION TO OTHER METHODS

VARLiNGaM (Hyvärinen et al., 2010) VARLiNGaM (Hyvärinen et al., 2010) is a causal dis-
covery method for time series data based on the linear vector auto-regression, which can model both
lagged and instantaneous effects. Its SEM is defined as Eq. (5), where the noise ϵit is an independent
non-Gaussian noise. It is easy to observe that this is a special case of Rhino (Eq. (6)) by setting
fi as the matrix multiplication of the weighted adjacency G0:K with the nodes, and gi as the iden-
tity mapping. For the training objective, VARLiNGaM adopted a two stage training to sidestep the
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difficulty of directly optimizing the log likelihood. From the Theorem 2 for Rhino, we note that
the solution from optimizing the variational objective is equivalent to maximizing the log likelihood
under infinite data limit. Therefore, by setting large enough DAGness penalty coefficient α, ρ, the
inferred graph from both methods should be equivalent.

DYNOTEARS (Pamfil et al., 2020) The formulation of DYNOTEARS is the same as VAR-
LiNGaM, which is based on linear vector auto-regression. The main novelty is the usage of the
DAGness penalty h(G), which continuously relaxes the DAG constraint. The training objective is
the mean square error with augmented Lagrange scheme for DAGness penalty. Thus, it is obvious
that DYNOTEARS is a special case of Rhino with linear transformations and identity gi. Similarly,
Theorem 2 shows the connections between the variational objective and maximum likelihood, which
is equivalent to mean square error if the noise distribution is Gaussian with equal variances.

cMLP cMLP (Tank et al., 2018) combines Granger causality with deep neural networks. The
model formulation is

Xi
t = fi(X

1
0:t−1, . . . ,X

D
0:t−1) + ϵit

where fi is a function based on MLP. Although the input is the entire history, the one that matters
is the node that has the connection to Xi

t (i.e. lagged parents). Therefore, it is easy to see they are
closely related to Rhino without instantaneous parents Pai

G(t) and history-dependent noise. Since
the training objective of cMLP is based on the mean square error with sparseness constraint, by the
same argument as before, the variational objective is equivalent to mean square error with equal
variance Gaussian noise and large training data.

TiMINo (Peters et al., 2013) TiMINo is most similar to our work among all the aforementioned
methods in terms of model formulation. TiMINo proposed a very general formulation based on IF-
MOC (Peters et al., 2012) and showed the conditions for structural identifiability. Rhino generalizes
the TiMINO in a way such that noise history dependency can be incorporated. Thus, Rhino only
belongs to IFMOC w.r.t. the instantaneous parents. Therefore, Rhino without the history-dependent
noise is a TiMINo model. The training objective of TiMINo is based on the dependence minimiza-
tion between the noise residuals and causes, and can only infer summary graph instead of temporal
causal graph. Zhang et al. (2015) proved the equivalence of the mutual information minimization to
maximum likelihood, which is equivalent to our variational objective under infinite data.

D TREATMENT EFFECT ESTIMATION

We now show how to leverage the fitted Rhino for estimating the conditional average treatment
effect (CATE). For simplicity, we only consider a special case of CATE defined as

CATE(a, b) = Eqϕ(G)

[
Ep(XY

t+τ |X<t,do(XI
t =a),G)[X

Y
t+τ ]− Ep(XY

t+τ |X<t,do(XI
t =b),G)[X

Y
t+τ ]

]
(26)

We assume the conditioning variable can only be X<t (i.e. the entire history before t), and the
intervention and target variable can only be either at current time t or sometime in the future t+τ . We
emphasize that this formulation is for simplicity, and Rhino can be easily generalized to more cases
as Geffner et al. (2022). Once fitted, the idea is to draw target samples XY

t+τ from the interventional
distribution p(XY

t+τ |X<t,do(X
I
t ),G) for each graph sample G ∼ qϕ(G). Then, unbiased Monte

Carlo estimation can be used to compute CATE. For sampling from the interventional distribution,
we can use the ”multilated” graph Gdo(XI

t )
to replace G, where all incoming edges to XI

t are
removed. The intervention samples can be obtained by simulating the Rhino with history X<t,
XI

t = a or b and Gdo(XI
t )

.

D.1 CAUSAL INFERENCE RESULTS

Here, we provide the preliminary results for CATE performance of Rhino by calculating the RM-
SEs of the estimated CATEs comparing to the true CATE from the interventional samples (lower is
better). We present boxplots of the performance in Fig. 2. All Rhino-based method perform sim-
ilarly. Surprisingly, the CATE performance seems to have little correlation to the causal discovery
performance and warrants further study in the future.
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Figure 2: Comparison of the RMSE of the average treatment effects (CATEs) of the different in-
stantiations of Rhino depending on the dimensionality. E[CATE] refers to RMSE of the expected
CATE over the posterior graph distribution (i.e. G ∼ qϕ(G)). ML ATE uses the most likely graph
to calculate the ATE. These results are obtained by averaging 160 datasets, similar to the discovery
setup.

E VARIATIONAL DISTRIBUTION FORMULATION

Here we provide the detailed formulation of the independent Bernoulli distribution qϕ(G). Since
this distribution is responsible for modelling the temporal adjacency matrix G0:K , we use Σk to
represents the edge probability in Gk. We further split the edge probability matrices into the instan-
taneous part Σ0 and lagged parts Σ1:K .

To avoid the constrained optimization of Σ1:K (i.e. the value needs to be within [0, 1]), we adopt the
following formulation:

σk,ij =
exp(uk,ij)

exp(uk,ij) + exp(vk,ij)
(27)

where uk,ij ∈ Uk, vk,ij ∈ Vk and Uk,Vk ∈ RD×D for all k = 1, . . . ,K. Since we do not require
lagged adjacency matrix to be a DAG, Uk,Vk has no constraints during optimization.

On the other hand, G0 needs to be a DAG for instantaneous effect. By smart formulation, we can get
rid of the length-1 cycles. The intuition is that for a pair of node i, j, only three mutually exclusive
possibilities can exist: (1) i → j; (2) j → i; (3) no edge between them. Thus, instead of using a
full probability matrix Σ0, we use three lower triangular matrices U0, V0 and E0 to characterise the
above three scenarios. For node i > j,

p(i → j) =
exp(uij)

exp(uij) + exp(vij) + exp(eij)

p(j → i) =
exp(vij)

exp(uij) + exp(vij) + exp(eij)

p(no edge) =
exp(eij)

exp(uij) + exp(vij) + exp(eij)
.

Thus, by this formulation, the corresponding instantaneous adjacency matrix will not contain length-
1 cycles.
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F SYNTHETIC EXPERIMENTS

F.1 DATA GENERATION

We create the synthetic datasets in a four step process: 1) generate random Erdös–Rényi (ER) or
scale-free (SF) graphs that specify the lagged and instantaneous causal relationships; 2) drawing
random MLPs for the functional relationships as well as a random conditional spline transformation
to modulate the scale of the Gaussian noise variables ϵ; 3) sample initial starting conditions and
follow Eq. (2) with the additive noise to simulate the temporal progression; 4) removing the burn-in
period and return stable timeseries. We consider four different axes of variation for the data genera-
tion: number of nodes Nnodes ∈ [5, 10, 20, 40]; ER or SF graphs; instantaneous or no instantaneous
effects; and history-dependent or history-independent noise (i.e. Gaussian noise). All combinations
are generated with 5 different seeds, yielding 160 different datasets. Datasets with instantaneous
effects have 4×Nnodes edges in the instantaneous adjacency matrix. All datasets have 2×Nnodes

connections in the lagged adjacency matrices. The MLPs for the functional relationships are fully-
connected with two hidden layers,64 units and ReLU activation. In case of history-independent
noise, we are using Gaussian as the base distribution. The history dependency is modelled as a
product of a scale variable obtained by the transformation of the averaged lagged parental values
through a random-sampled quadratic spline, and Gaussian noise variable.

The datasets with 40 nodes are generated with a series length of 400 steps, a burn-in period of 100
steps, and 100 training series. All other datasets are generated with a time-series length of 200, burn-
in period of 50 steps and 50 training series. We generate random interventions for all the datasets
by setting the treatment variable to 10 for intervention and -10 for reference. 5000 ground-truth
intervention samples are used to estimate the true treatment effect.

F.2 METHODS

All benchmarks for the synthetic experiments are run by using publicly available libraries:
VARLiNGaM Hyvärinen et al. (2010) is implemenented in the lingam4 python package.
PCMCI+(Runge, 2020) is implemented in Tigramite5. We use the implementation in
causalnex6 to run DYNOTEARS(Pamfil et al., 2020). We use the default parameters for all
these baselines. For PCMCI+, we enumerate all graphs in the Markov equivalence class to evaluate
the causal discovery performance (see Appendix G.2 for details).

For Rhino and its variants, we use the same set of hyper-parameters for all 160 datasets to demon-
strates our robustness. By default, we allow Rhino and its variants to model instantaneous effect; set
the model lag to be the ground truth 2 except for ablation study; the qϕ(G) is initialized to favour
sparse graphs (edge probability< 0.5); quadratic spline flow is used to for history-dependent noise.
For the model formulation, we use 2 layer fully connected MLPs with 64 (5 and 10 nodes), 80 (10
nodes) and 160 (40 nodes) for all neural networks in Rhino-based methods. We also apply layer
normalization and residual connections to each layer of the MLPs. For the gradient estimator, we
use the Gumbel softmax method with a hard forward pass and a soft backward pass with tempera-
ture of 0.25. All spline flows uses 8 bins. The embedding sizes for transformation (i.e. Eq. (7) and
conditional spline flow) is equal to the node number.

For the sparseness penalty λs in Eq. (10), we use 9 for Rhino and Rhino+s, and 5 for Rhino+g. We
set ρ = 1 and α = 0 for all Rhino-based methods. For optimization, we use Adam (Kingma & Ba,
2014) with learning rate 0.01. The training procedure follows from Appendix B.1 in Geffner et al.
(2022).

F.3 ADDITIONAL CAUSAL DISCOVERY RESULTS

Ablation: different type of graphs The first study is to test our model robustness to different
types of graphs. Fig. 3 shows the discovery performance over ER or SF graph averaged over all other
possible data setting combinations. Most methods perform better on ER graphs than on SF graphs,

4see https://lingam.readthedocs.io
5see https://jakobrunge.github.io/tigramite/
6see https://causalnex.readthedocs.io/en/latest/
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Figure 3: Comparison of the F1 score of the different baseline methods as well as Rhino (light
yellow) depending on the dimensionality and the graph type. Inst. refers to the performance on the
instantaneous adjacency matrix, Lag refers to the lagged adjancency matrices and temporal considers
the full temporal matrix.

with only DYNOTEARS (Pamfil et al., 2020) as an exception. We note that the PCMCI+ runs
on SF graphs with 40 nodes exceed our maximum run time of 1 week, showing its computational
limitation in high dimensions. Nevertheless, Rhino achieves consistent performance throughout all
graph settings.

Ablation: history dependency Figure 4 explores the performance difference of all methods on
data generated with/without history-dependent noise. Interestingly, most methods perform better
on the history-dependent datasets than the history-independent ones. The possible reasons are (1)
the difficulty of the discovery also depends on the randomly sampled functions; (2) the default
hyperparameters of all methods are initially chosen to favor the datasets with history-dependent
noise and instantaneous effects. We find that PCMCI+ is the most robust across both settings,
followed by Rhino and DYNOTEARS. On the other hand, the two variants of Rhino seems to be
less robust. When the Rhino is correctly specified, it achieves the best performance. In summary,
Rhino demonstrates reasonable robustness to history-dependency mismatch and achieves the best
when correctly specified.

Ablation: instantaneous effect We investigate the impact of instantaneous effects in the data.
Figure 5 shows the F1 score averaged over all possible setting combinations other than instantaneous
effect. All methods seem to be robust across both settings with PCMCI+ and Rhino performing the
best. The score of the instantaneous adjacency matrix when instantaneous effects are disabled is not
defined and therefore not plotted.
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Figure 4: Comparison of the F1 score of the different baseline methods as well as Rhino (light
yellow) depending on the dimensionality and whether the data is generated with history-depence or
not. Inst. refers to the performance on the instantaneous adjacency matrix, Lag refers to the lagged
adjancency matrices and temporal considers the full temporal matrix.

G REAL-WORLD EXPERIMENT DETAILS

G.1 DREAM3 HYPERPARAMETER SETTING

For tuning the hyper-parameters of Rhino, its variants and DYNOTEARS, we split each of the 5
datasets into 80%/20% training/validation. We tune Rhino and its variants based on the validation
likelihoods, and DYNOTEARS based on the validation RMSE error. For PCMCI+, we use the de-
fault settings recommended in the Tigramite package (https://github.com/jakobrunge/
tigramite). For other Granger causality baselines, refer to Table 7-11 in Khanna & Tan (2019).

Other than the hyper-parameters reported in Table 4, we use 1-layer MLPs with 10 hidden units for
both ℓτ,j , ζi in Eq. (7) and the hyper-network for conditional spline flow (8 bins). All the MLPs use
residual connections and layer-norm at every hidden layer. We use linear conditional spline flow
(Dolatabadi et al., 2020) instead of the original quadratic version (Durkan et al., 2019) for better
training stability. We also initialise the Bernoulli probability qϕ(G) to favour dense graphs (i.e.
edge probability > 0.5). For prior p(G), we set the initial value ρ = 1 and α = 0. For the gradient
estimator, we use the Gumbel softmax method with a hard forward pass and a soft backward pass
with temperature of 0.25. We use batch size 64, learning rate 0.001 with Adam optimizer (Kingma
& Ba, 2014). The training procedure follows from Appendix B.1 in Geffner et al. (2022).

Table 5 contains the hyper-parameters setup for DYNOTEARS. We set the maximum training iter-
ations to be 1000 with DAGness tolerance 10−8. The threshold value for the weighted adjacency
matrix is 0.05. For PCMCI+, the maximum lag is set to 2. The conditional independence test is set
to parcorr, which is based on linear ordinary least square (OLS). A more powerful choice can be
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Figure 5: Comparison of the F1 score of the different baseline methods as well as Rhino (light yel-
low) depending on the dimensionality and whether the data is generated with instantaneous effects
or not. Inst. refers to the performance on the instantaneous adjacency matrix, Lag refers to the
lagged adjancency matrices and temporal considers the full temporal matrix.

Hyperparams Node Embedding Instantaneous eff. Node Embed. (flow) lag λs Auglag

Rhino (Ecoli1) 16 False 16 2 19 30
Rhino (Ecoli2) 16 False 100 2 25 80
Rhino (Yeast1) 32 False 100 2 25 10
Rhino (Yeast2) 32 False 100 2 25 80
Rhino (Yeast3) 32 False 16 2 25 5
Rhino+g (Ecoli1) 100 False N/A 2 15 60
Rhino+g (Ecoli2) 100 False N/A 2 25 25
Rhino+g (Yeast1) 100 False N/A 2 15 5
Rhino+g (Yeast2) 100 False N/A 2 19 125
Rhino+g (Yeast3) 100 False N/A 2 9 10

Table 4: The hyperparameter setup for Rhino. Node embedding is the dimensionality of uτ,i be-
low Eq. (7); Instantaneous eff. specifies whether it models the instantaneous effect or not;
Node Embed. (flow) represents the dimensionality of the node embedding for the hyper-
network used for conditional spline flow gi since the hyper-network shares the similar structure as
Eq. (7); lag defines the model lag order; and λs is the sparseness penalty in the prior (Eq. (10));
Auglag is the number of augmented Lagrangian steps, each step consists of 2000 training itera-
tions.

a nonlinear independence test based on GP, called GPDC. However, PCMCI+ with GPDC is too
slow to finish the training.
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Hyperparams lag λa λw

Ecoli1 2 0.01 0.5
Ecoli2 2 0.1 0.01
Yeast1 2 0.005 0.1
Yeast2 3 0.01 0.01
Yeast3 2 0.01 0.005

Table 5: The hyperparameter setup for DYNOTEARS.

Metrics Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
Rhino 0.183± 0.012 0.214± 0.009 0.261± 0.006 0.136± 0.005 0.113± 0.005
Rhino+g 0.169± 0.010 0.211±0.010 0.254± 0.006 0.148± 0.007 0.126± 0.003
Dynotears 0.120 0.066 0.059 0.092 0.045
PCMCI 0.051±0.006 0.049± 0.003 0.068±0.005 0.046± 0.002 0.060±0

Table 6: Orientation F1 score of DREAM3 datasets.

G.2 POST-PROCESSING TEMPORAL ADJACENCY MATRIX

The ground truth graphs for DREAM3 and Netsim datasets are summary graph, which is essentially
the temporal graph aggregated over time. We provide a formal definition of summary graph:

Definition G.1 (Causal summary graph (Assaad et al., 2022)). Let Xt be a multivariate temporal
process, and G = (V ,E) be a summary graph. The edge p → q exists if and only if there exists
some time t and some lag τ such that Xp

t−τ causes Xq
t at time t with a lag 0 ≤ i for p ̸= q and with

a time lag of 0 < i for p = q.

Unlike the some of the Granger causality baselines, Rhino (and its variants), DYNOTEARS, VAR-
LiNGaM produces the temporal adjacency matrix after training. For DREAM3 and Netsim datasets,
this creates the incompatibility during evaluation. Thus, we need to aggregate the temporal graph
into a summary graph before comparing to the ground truth. For binary adjacency matrix, we sum
over the time steps followed by a step function, i.e. step(

∑
k Gk). Thus, there will be an edge i → j

in summary graph as long as there is a connection from i to j at any timestamp. For the Bernoulli
probability matrix from Rhino and its variants, we take a max(·) over the timestamp to generate the
probability matrix for the summary graph.

An exception is PCMCI+, which can only produce MECs for the instantaneous adjacency matrix. In
such case, we will enumerate up to 10000 possible instantaneous DAGs from the MECs. Together
with the lagged adjacency matrix, we will perform the above post-processing step to generate the
corresponding aggregated adjacency matrix. We also estimate the corresponding edge probabilities
by taking the average over all possible DAGs.

For DREAM3 experiments, we ignore the self-connections by setting the diagonal of the aggregated
adjacency matrix to be 0.

For Netsim, self-connections are not ignored, following the same settings as Khanna & Tan (2019).

G.3 ADDITIONAL DREAM3 RESULTS

Here, Fig. 6 shows the additional ROC curve plots for all 5 datasets in DREAM3. For the visual-
ization purpose, we only select a single run for Rhino and this will not affect the curve much due to
small standard error in Table 2.

In addition, we provides the additional metrics (Orientation F1 and SHD) for DREAM3 datasets in
Table 6 and Table 7. These results are obtained by using the same hyperparameters mentioned in
Appendix G.1. In particular, we tune the threshold for rounding the continuous-valued adjacency
matrix to binary adjacency matrix for both Rhino and baselines. It can be observed that the F1
and SHD agree with the trend of AUROC, where Rhino and Rhino+g achieve the best performance
compared to baselines. This further supports the advantages of our proposed methods.
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Figure 6: The ROC curve plots of Rhino and other baselines for DREAM3 datasets. For illustration
purpose, we only select a single run of Rhino, Rhino+g, DYNOTEARS and PCMCI+ to plot ROC
curve. Since the standard error reported in Table 2 is relatively small, the plot should not vary much
for other runs. The ROC curve of other baselines are directly taken from figure 7 in Khanna & Tan
(2019).
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Metrics Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
Rhino 157.8±3.23 120.4± 1.19 161.8±1.86 399.8±6.77 627.6±5.47
Rhino+g 162.8±3.13 122±2.87 182.4±1.43 401.4±3.85 760.6±6.18
Dynotears 372 422 397 630 838
PCMCI 266.6±2.01 273.2±1.48 288.6±2.24 507.4±0.92 704±0

Table 7: SHD of DREAM3 datasets.

G.4 NETSIM HYPERPARAMETER SETTING

For the Netsim experiment, we extract subject 2-6 in Sim-3.mat to form the training data and use
subject 7-8 as validation dataset. Following the same settings as DREAM3 (Appendix G.1), we tune
the hyperparameters of Rhino and its variants based on the validation log likelihood; DYNOTEARS
with MSE on validation dataset; and use default settings of PCMCI+ from Tigramite package.

It is worth noting that unlike DREAM3 experiment, where the results and hyperparameters of
Granger causality baselines can be directly taken from Khanna & Tan (2019). Their setup of Netsim
experiment is different from ours, where they train the baselines using a single subject and compute
the corresponding AUROC, followed by averaging over subjects 2-6. Our setup is to train all meth-
ods using the entire data from subject 2-6 before computing AUROC. Thus, the hyperparameters
for Granger causality are slightly different, and the AUROC increases for the baselines compared to
those reported in Khanna & Tan (2019).

Rhino The hyperparameters are the same as DREAM3, except for the following: we initialise the
Bernoulli probability of qϕ(G) to have no preference (i.e. edge probability= 0.5); the λs = 25;
we use 2 layer MLPs with 64 hidden units for both functional model (Eq. (7)) and hyper-network
with embedding size 15; the augmented Lagrangian step is 5. For Rhino variants, we use the above
settings as well.

DYNOTEARS, PCMCI+ and VARLiNGaM For DYNOTEARS, we set lag to be 2, λa = 0.5
and λw = 0.5. For PCMCI+, we use parcorr independence test with lag 3. For VARLiNGaM,
we use lag 2 with default settings as https://lingam.readthedocs.io/en/latest/.

Granger Causality For computing AUROC, we follow the same method as Khanna & Tan (2019);
Tank et al. (2018) by sweeping through a range of hyperparameters. Specifically, we use the same
hyperparameters for SRU and eSRU as (Khanna & Tan, 2019). For cMLP, we choose the ridge
penalty as 0.43 and sweep through the group sparse penalty in range [0.1, 1]. For cLSTM, we set the
ridge penalty to be 0.045, and sweep the group sparse penalty in range [0.1, 1].For TCDF, we sweep
through the threshold in range [−1, 2] for the attention scores. Other than the above hyperparameters,
everything else follows the setup as in Khanna & Tan (2019).

G.5 ADDITIONAL NETSIM RESULTS

Figure 7 shows the ROC curve plot for Rhino and other baselines. It is clear that Rhino achieves
significantly better TPR-FPR trade-offs compared to others. Table 8 shows additional discovery
metrics of Rhino and baselines for Netsim dataset. We can observe that F1 score and SHD in general
agree with AUROC reported in Table 3, where Rhino-based methods outperform the baselines, apart
from Rhino+NoInst. This again confirms the necessity of modelling instantaneous effect for real-
world challenges. Rhino outperforms Rhino+g on two out of three metrics (including AUROC),
which shows the advantage of history-dependent noise.

H AUROC METRIC

AUROC metric is a one of the standard metrics for evaluating the causal discovery, which measures
the trade-off between the true positive rate (TPR) and false positive rate (FPR). However, during
the experiments, we found out that AUROC does not necessarily correlate well with other discovery
metrics. From Fig. 8, it is clear that the F1 score continues to increase whereas AUROC and vali-
dation likelihood starts to decrease after few steps. Since the dataset of Netsim is relatively small,
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Method Ori. F1 SHD
DYNO. 0.341 17
PCMCI+ 0.41 18
VarLiNGaM 0.44 18
Rhino+g 0.539 ± 0.036 10.4 ± 1.08
Rhino+NoInst 0.212 ± 0.014 29 ± 1.5
Rhino 0.551 ± 0.048 13.8 ± 1.5

Table 8: Orientation F1 and SHD of Rhino and baselines for Netsim dataset.
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Figure 7: The ROC curve plots of Rhino and other baselines for Netsim dataset. Similar to Fig. 6,
we only select 1 run out of 5 for Rhino, Rhino+g, DYNOTEARS, PCMCI+ for illustration purpose.
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Figure 8: The curves of orientation F1, AUROC and validation likelihood during training. Each
curve is obtained by averaging over 5 random seeds. The validation curve agrees well with the
AUROC curve, but shows an opposite trends as F1 curve. This potentially indicates model overfitting
in the later stage of training.

this indicates the possible overfitting. This disagreement originates from the different aspects these
metrics care about. For AUROC, it cares about the trade-off between TPR and FPR with various
decision thresholds, and it penalizes the wrong decisions with certainty harshly. On the other hand,
F1 score cares about the final inferred binary adjacency matrix with a fixed decision threshold. For
example, if we multiply the Bernoulli probability matrix by a small factor (e.g. 10−5), the AUROC
score will remain the same but the F1 score will tends to 0 with the default decision threshold 0.5.

Thus, model overfitting tends to drive the edge probabilities towards 1 or 0, which may help the F1

score but these extreme decisions can result in a large decrease in the AUROC score. Thus, for small
dataset, we believe AUROC is a better metric than F1, which also agrees with validation likelihood.

In addition, the Bayesian setup of Rhino may also help with better AUROC for small dataset. From
the same figure, even the large decrease of validation likelihood suggests potential model overfitting,
the AUROC still maintains a reasonable value. This may be due to the Bayesian view of the causal
graph, where the posterior edge probability does not converge to extreme values.
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