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Abstract
In this paper, we describe the machine learning problem of identifying different types of
tumors based on digital pathology images. Given a set of Hematoxylin and Eosin (H&E)
stained images of thyroid tumors, we train deep learning models to detect two known
molecular oncogenic drivers: BRAF mutations and NTRK gene fusions. We implement an
attention-based multiple instance learning (MIL) classifier and we assess its generalization
within and across three independent cohorts. We find that the model can detect both
oncogenic drivers with the MIL approach, however the problem remains challenging: our
exhaustive evaluation scenarios exemplify unknown data drifts and batch effects in digital
pathology as the model performance decreases when processing images from an unseen
cohort. These findings highlight the necessity of rich and diverse datasets for training and
evaluation as well as methods for domain-agnostic learning.

Keywords: digital pathology, deep learning, domain transfer, BRAF, NTRK, onco-
genic driver detection, WSI classification, attention multiple instance learning, histology,
histopathology, H&E slide

1. Introduction

The timely identification of targetable gene mutations remains a roadblock for precision
oncology. In view of the recent revolutionizing advances in oncogene-targeted therapies,
advanced companion diagnostic technologies are of key importance. Current optimal clini-
cal practice relies at large on immunohistochemistry (IHC) or Next Generation Sequencing
(NGS) to identify gene alterations which determines the eligibility of a patient for such
targeted treatments, cf. (Malone et al., 2020). Since the access to IHC and NGS strongly
depends on the clinical center, many patients are deprived from the opportunity to ben-
efit from the newly available targeted cancer treatments. Hence, the search for low-cost
and highly available alternative methods has attracted the interest of different research
communities. A promising direction of research are computational methods that reliably
detect oncogenic drivers based on H&E image morphology. These approaches build upon
the successes of machine learning and computer vision methods which pushed the bound-
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aries for many problems in computational pathology, such as tumor detection, classification
or grading, cell detection and counting, image segmentation or the extraction of human
interpretable features, cf. (Laak et al., 2021).

In the study put forward by Fu et al. (2020), transfer learning with deep neural networks
pretrained on classic computer vision tasks was employed to quantify histopathological pat-
terns in whole slide images (WSI). Analyzing H&E images from within the TCGA database,
it was shown that image-base features not only allow to classify different tissue types, but
also correlate with various genetic alterations. In particular, mutations in the BRAF gene
could be predicted thyroid tumors with high patch-level accuracy. In Anand et al. (2020)
a multi-stage image classification pipeline is proposed for detecting an over-expression of
the human epidermal growth factor receptor 2 (HER2) mutation in breast cancer based
on H&E-stained images. The performance of the end-to-end pipeline was evaluated on a
testset containing 26 cases from the same data source which resulted in an AUC of 0.82.
In order to assess the generalizability of their approach on independent multi-site data, a
testset comprising 45 cases from the TCGA-BRCA cohort was curated. The performance of
the algorithm on this external data degraded and a patient-level AUC of 0.76 was obtained.

The phenomenon of computational pathology algorithms performing well within a data
domain, i.e. test and training data originate from the same source, while exhibiting a signif-
icant degradation in performance when tested on data from another source is well-known,
cf. (Campanella et al., 2019). Laak et al. (2021) point out that the validation strategies and
data sets used in recent research papers are not representative of the type of data that is
encountered in clinical practice. As key steps towards a better assessment of the diagnostic
value of novel data-driven methods, they consider the aggregation of data sets that reflect
data heterogeneity. Moreover, extended validation standards are proposed that cover data
from multiple sources with a prospective study for final validation.

The study at hand serves different purposes. We present comprehensive experimen-
tal results concerning the detectability of BRAF mutations on thyroid tumors based on
H&E-stained WSI by the means of multiple instance learning using weak labels (i.e. no
annotations). We show that the proposed method can also be applied for the detection
of NTRK fusions as oncogenic driver of thyroid tumors, although NTRK gene fusions are
very rare. To that end a total of 802 H&E-stained WSI from three different sources were
aggregated comprising 421 WSIs from tumors with BRAF mutations (i.e. V600E and other
known mutations) and 23 WSIs from tumors with NTRK fusions (e.g. ETV6–NTRK3 or
IRF2BP2–NTRK1). This data covers various sources of variation such as different sites
from different countries, multiple scanners and staining protocols. The validation of our
algorithms focuses on the effect of multi-domain data and in particular the generalizability
of the models across different cohorts and data sources. While BRAF mutation is the most
frequent oncogenic driver in thyroid cancer in around half of all cases (Agrawal et al., 2014;
Brose et al., 2014), NTRK gene fusion is a rare genetic abnormality with frequency for thy-
roid cancer ranging from 2.3% to 3.4% in predominantly adult cohorts, cf. (Solomon et al.,
2020; Lee et al., 2020; Pekova et al., 2021). Consequently, the development of a machine
learning classifier that predicts the NTRK status is considerably more challenging since the
model can only be trained on a very small number of samples with NTRK fusions. In order
to quantify the differences in independent cohorts, we study several evaluation scenarios and
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Table 1: Dataset overview. Data from each cohort was acquired and processed indepen-
dently.

Cohort Access Site
Distribution

#WSI
total

#WSI
NTRK+

#WSI
BRAF+

#Patches per WSI
𝜇(±𝜎); min, max

TCGA public data 11 sites across USA 482 12 294 9538(±4737);
355, 29215

DEC private data from
internal study

material from multi-
ple international sites

224 4 58 9939(±4372);
286, 22400

ACQ private data, ac-
quired from biobank

material from several
sites across USA

100 7 69 2873(±901);
1139, 5607

assess the model performance in various configurations using different cohorts for training,
testing and holdout.

2. Cohorts

This study incorporates histology data from three different cohorts: TCGA, DEC and ACQ.
Each cohort is treated as independent dataset which comprises H&E-stained whole slide
images with tumor tissue from patients with thyroid cancer indication. The experimental
protocol for H&E staining was different for each cohort and the images were processed in
different labs and with different scanners. All images were scanned with 40× magnification
and each image went through a manual quality check by a qualified pathologist. Slides were
excluded if either the pathologist rated the image quality to be below the clinical standards,
or if the molecular status with respect to BRAF and NTRK could not be clarified. The
rights of the data and sample donors of the cohorts were respected by e.g. checking the
informed consent used. Further details of the three cohorts are described in Appendix A
and in Table 1.

2.1 Data Split

Each cohort was split into training set (∼ 50%), validation set (∼ 20%) and test set (∼ 30%)
as described in Table 2. Within a pseudorandom process it was ensured that the splits are
well balanced with respect to label distribution, sites, image size and gender. For ACQ, it
was ensured that the images from the same patient were allocated to the same split. The
other cohorts contained exactly one image per patient. The same data splits were used for
the experiments on NTRK and BRAF.

3. Method

3.1 Preprocessing

WSI images were processed into non-overlapping patches of size 224 × 224 pixels covering
an area of 156.8× 156.8µm, see Figure 1. Patches containing less than 20% tissue material
were excluded by a rule-based filtering. Table 1 shows the number of patches for each cohort
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Figure 1: Thumbnail (A) of a whole slide image with thyroid cancer and the patch resolution
(B). The Attention Multiple Instance Learning model with its shapes of the input,
intermediate feature representations and output is depicted in (C).

after applying the data preprocessing. Color correction and image normalization was not
performed.

3.2 Model

Multiple instance learning (MIL) algorithms are commonly applied for whole slide image
classification problems with the underlying assumption that at least one small region of the
slide contains morphological structure that correlates with the class label (Yao et al., 2020;
Campanella et al., 2018; Ilse et al., 2020; Hashimoto et al., 2020). In analogy to Ilse et al.
(2020) and Lu et al. (2021) we implemented a simple, yet effective attention-based deep
multiple instance learning classifier (Ilse et al., 2018) with a DenseNet121 encoder (Huang
et al., 2017). Hence, a classifier decision was provided for a bag of 𝑆 = 30 randomly selected
patches from one WSI. The architecture of the model and the shape of its intermediate fea-
ture representations are described in Figure 1C. The model has 7.3M trainable parameters,
while 7.0M parameters of the DenseNet-121 encoder are initiated with ImageNet pretrain-
ing. Attention-weighted average pooling was applied on the patch embeddings in analogy to
the implementation of Dippel et al. (2021): the model computes an attention weight 𝑎𝑖 for
each patch 𝑖 ∈ {1, ..., 𝑆}. Therefore, three consecutive convolution blocks (1D-convolution,
batch norm, ReLU activation) are applied with decreasing number of filters (256, 128, 64),
followed by a final convolution with one filter and a sigmoid activation function. The entire
attention module is trainable with the end-to-end model. To obtain a slide-level prediction
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for one whole slide image 𝒬, the average classifier decision across 𝐵 = 90 bags was com-
puted. Thus, in total 𝐵 × 𝑆 = 2700 randomly selected patches were processed to obtain a
slide-level prediction for 𝒬.

3.3 Implementation details

Binary cross-entropy loss and an Adam optimizer with a learning rate of 0.001 were used to
train the model. During the first 20 epochs the ImageNet-pretrained DenseNet-121 encoder
was frozen and only the attention network as well as the classification head were trained.
Afterwards all weights were unfrozen and jointly fine-tuned for 15 epochs with a reduced
learning rate (factor 6). The model was evaluated after each epoch and the best-performing
checkpoint was selected based on the AUC on the validation data. We used a batch size of
6, such that 180 (6×30) image tiles were processed in one training step. One epoch consists
of 300 training steps. Lightweight data augmentation was performed during model training:
patches were randomly flipped along the x-axis and y-axis and a random zoom factor (range
±5%) was applied to each patch. To account for class imbalances, importance sampling was
performed on the training and validation data such that the rare class occurs in at least
25% of the samples. To reduce variance in the validation score and to improve the model
selection process, the validation data was fixed during one experiment such that the model
was evaluated on the same patches after each epoch.

4. Experiments

The problems of hidden batch effects and the lack of model generalization on external
datasets have been widely discussed within the domain of digital pathology, cf. (Laak et al.,
2021). Our experiments were designed to demonstrate and quantify the model performance
for both, within-cohort and across-cohort evaluation scenarios. Table 2 describes the pro-
tocols (i.e. configuration of training, validation, test and holdout data) for six evaluation
scenarios. For each of these scenarios we trained the binary classification models to de-
tect the oncogenic driver. Thus, we trained models to detect the BRAF status (BRAF+

vs. BRAF−) and we independently trained models to detect the NTRK status (NTRK+

vs. NTRK−)1. Note that there are tumors that have no alterations in BRAF and NTRK,
thus BRAF− and NTRK−. Patients with alternations in both genes were not present within
the three cohorts. We explicitly did not combine the two problems into a multi-class classifi-
cation problem to ensure a streamlined evaluation pipeline and an easy interpretation of the
results, as BRAF+ and NTRK+ have substantially different prevalence in thyroid tumors.

The within-cohort generalization can be assessed through the model performance on the
test set, while the across-cohort generalization can be assessed through the model perfor-
mance on the holdout set. Note that testset results on scenario (1) and (2) were trained and
evaluated solely on public TCGA data. This allows a direct comparison to literature and
the results can be replicated without access to ACQ and DEC.

1. In the remainder of this article, BRAF+ and NTRK+ refers to a patient that has a mutation or fusion
in the BRAF and NTRK gene respectively
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When facing an extreme class imbalance and very low number samples, it can be ad-
vantageous to use the entire available data for training and to not perform model selection.
This was done for scenarios referred to as "(train*)".

5. Results

Figure 3 reveals that BRAF can be detected as oncogenic driver consistently with an AUC
of approx. 0.84 across all evaluation scenarios, if the model is evaluated on images from the
same cohort that was used for training. Comparing the results obtained on the testset to
the results on the holdout data, the AUC drops by approx. 0.1. Thus, the BRAF status
can be determined with an AUC of ≥ 0.75 for each holdout cohort. Note that all reported
results are based on slide-level predictions, which is different to other studies that report
patch-level or bag-level metrics (Campanella et al., 2019; Hashimoto et al., 2020).

The NTRK status can be assessed by the model with an AUC of more than 0.8 for
each evaluation scenario if the model is evaluated on images from the same cohort that
was used for training. However, the model performance drops significantly when evaluating
on a holdout cohort. The model generalization even drops (close) to chance level for all
scenarios except scenario (4) if the model is trained on the 50% train data split - see the
orange bars. The results of the NTRK -detection problem reveal a clear pattern of "the
more data used for training, the better the generalization on the external holdout data".
The comparison between results for holdout(train*) and "holdout" reveals that the model
performs significantly more accurate when model selection is skipped and all available images
are used for training. Interestingly, this pattern was not observed for BRAF models, which
indicates that a data driven model selection is beneficial if sufficient data is available from
all classes.

Moreover, the TSNE visualizations in Figure 2 (right) illustrate the within-cohort sim-
ilarities in the latent feature representation. Embeddings of the training and test data do
not segregate from each other, which exemplifies that there is no substantial overfit to the
training data, see Figure 2 (left).

The patient stratification plots in Figure 4 depict more details on the experimental results
for scenario (4) for a real-world stratification use case. The differences in class distribution
become more apparent with BRAF+ being rather frequent and NTRK+ very scarce.

6. Discussion

Oncogenic driver detection on H&E slides is possible, even if the model has only access to
weak labels and no annotation. While Fu et al. (2020) described that BRAF can be detected
in H&E images within the TCGA cohort, we confirm this finding using two external datasets
as holdout cohorts. We show that NTRK gene fusions can be detected by a model, but the
model performance is lower given the small number of NTRK+ cases that are available in this
study. However, our findings exemplify that also rare diseases can be detected and we see a
great potential for further improvements. Given the three independent cohorts at hand, we
were able to run exhaustive evaluation scenarios to study model generalization in a within-
cohort and across-cohort setting. As expected, we find that the oncogenic driver detection is
consistently more accurate on a testset which is from the same cohort that was used during
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TSNE visualization for bag representations (256-dim)
 BRAF scenario (4)
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Figure 2: Domain shift in feature representations. Note that both plots show the same data
with different marker labels.
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Figure 3: Domain-transfer results for different evaluation scenarios. Results on the testset
assess within-cohort generalization, results on the holdout data quantify across-
cohort model generalization. Further details for each scenario are provided in
Table 2. The "holdout" and "holdout(train*)" results were generated on the
same holdout dataset, but the "holdout(train*)" models were trained on the entire
training data available. Model trainings for "holdout(train*)" were replicated 3
times with different seeds and the whiskers mark the observed standard deviation.

training. As it is widely discussed in literature (Laak et al., 2021; Lu et al., 2021), there
are numerous hidden batch effects and site-specific characteristics that can be learnt by the
model, which may not generalize to other cohorts. Interestingly, the (within-cohort) testset
metric is not representative for the generalization capability on external holdout data: for
the BRAF detection problem, the testset AUC is consistently approx. 0.85 for all evaluation
scenarios, while across-cohort holdout AUC ranges between 0.75 and 0.80. Also, for the
NTRK detection problem, the testset AUC is greater than 0.80 for each evaluation scenario
and we observe a large variety for the AUC on the across-cohort holdout data (0.55− 0.73).
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Figure 4: Patient stratification results for scenario (4). Plots show results for prediction of
BRAF (left) and NTRK (right). For each stratification plot, the patients were
ordered based on their model prediction and the color marks the molecular status.
A perfect classifier would provide a plot with all yellow bars to the left and all red
bars to the right.

7. Outlook

We plan to extend our analysis upon model generalization to additional data sources and
cohorts. Furthermore, our algorithmic approach can be refined in various ways, e.g. by
reflecting the mutual exclusivity of BRAF+ and NRTK+ in a common model, integrating
methods to better cope with the NTRK low-label regime or incorporating prior knowledge
obtained from semantic segmentations of the WSI. A deeper investigation of approaches
covering multiple indications simultaneously could improve the overall model performance.
Another future direction of research could aim at mitigating the effects of domain and
concept shifts in data and labels across different sources. Next to methods for stain normal-
ization (Janowczyk et al., 2017), a plurality of methods including techniques from metric
learning, domain agnostic learning, transfer learning or continual learning have been pro-
posed to tackle such problems in medical imaging, cf. (Lenga et al., 2020; Chen et al., 2019).
We consider tailoring these methods to the task at hand or other computational pathology
problems as fruitful starting point for further investigations.
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Appendix A. Appendix A: Details on datasets

• TCGA is the largest dataset which was generated by downloading all thyroid cancer
from the publicly available The Cancer Genome Atlas (TCGA) database2. Samples
in this cohort were acquired and processed at multiple sites. Slicing and HE staining
was done centrally following one published SOP3. The molecular annotation, i.e. iden-
tification of BRAF and NTRK positives was done with NGS techniques. (Agrawal
et al., 2014).

• DEC is an inhouse dataset from the 256-patient tumor genetic population of the global
III trial4 on the drug Sorafenib in thyroid cancer, cf. (Brose et al., 2014). BRAF status
was determined using the Sequenom OncoCarta 1.0 panel, whereas NTRK gene fusions
were detected via RNAseq (Capdevila et al., 2020). HE staining of the DEC samples
was done centrally at a clinical research organization.

• ACQ is an in-house dataset which is based on tissue blocks and associated, limited
clinical data obtained from a biotech biobank. The material was sourced from several
sites throughout the USA and samples were processed centrally – slicing, staining,
and scanning was done in an in-house lab facility. Molecular annotations for BRAF
mutations and NTRK gene fusions were obtained using the FusionPlex Lung NGS
panel (ArcherDx, Inc, Boulder, Colorado, USA). Note, that ACQ is the only dataset
in which several images may originate from the same tumor: the 100 slides originate
from 94 tumors, each tumor from a distinct patient.

Table 2: Details on the evaluation scenarios that were considered. Each row specifies the
exact number of whole slides images which were used for one evaluation scenario
and their distribution across the train, validation, (internal) test and (external)
holdout dataset. Note that for scenario (6), all datasets were used for training, val-
idation and testing such that there is no holdout set. Scenarios marked with train*
used all available slides for training. Hence, model selection was not performed
and the models were evaluated on the holdout dataset only.

scenario train set validation set test set holdout set∑︀
TCGA DEC ACQ

∑︀
TCGA DEC ACQ

∑︀
TCGA DEC ACQ TCGA DEC ACQ

(1) 239 239 94 94 149 149 100
(2) 239 239 94 94 149 149 224
(3) 341 239 102 154 94 60 211 149 62 100
(4) 287 239 48 124 94 30 171 149 22 224
(5) 150 102 48 90 60 30 84 62 22 482
(6) 389 239 102 48 184 94 60 30 223 149 62 22

(1) train* 482 482 100
(2) train* 482 482 224
(3) train* 706 482 224 100
(4) train* 582 482 100 224
(5) train* 324 224 100 482

2. https://portal.gdc.cancer.gov/
3. https://brd.nci.nih.gov/brd/sop/download-pdf/1421
4. for details see https://clinicaltrials.gov/ct2/show/NCT00984282
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