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Abstract

Tracing the source of research papers is a fun-
damental yet challenging task for researchers.
The billion-scale citation relations between pa-
pers can hinder researchers from understand-
ing the evolution of science. To date, there is
still a lack of an accurate dataset constructed
by professional researchers to identify the di-
rect source of their studied papers, based on
which automatic algorithms can be developed
to expand the evolutionary knowledge of sci-
ence. In this paper, we study the problem of
paper source tracing (PST) and construct a high-
quality and ever-increasing benchmark dataset
PST-Bench in computer science. Based on PST-
Bench, we also reveal several intriguing discov-
eries, such as the difference in the life force
of papers in different areas (e.g., Al and HPC).
An exploration of various methods validates the
hardness of PST-Bench, pinpointing potential
directions on this topic. The dataset and codes
have been available'.

1 Introduction

The pace of scientific evolution has accelerated
like never before. For instance, since the launch of
ChatGPT?2 on November 30, 2022, Google Scholar
has indexed around 43,000 papers about ChatGPT
in less than a year, in the sense that ChatGPT has
inspired a significant amount of research works.
However, some research works can be traced back
to much earlier origins. In distributed systems,
Raft (Ongaro and Ousterhout, 2014) is an alterna-
tive consensus algorithm proposed for better sim-
plicity and understandability based on Paxos (Lam-
port, 2001). In computer architecture, temporal
prefetcher (Wenisch et al., 2009), conceptually orig-
inated from Markov prefetcher (Joseph and Grun-
wald, 1997), was successfully applied to Arm N2
processor (Pellegrini, 2021) until recently.
lh'ctps://anonymous.4open.science/r/

paper-source-trace-3598
2https://chat.openai.com/

2023 +

2021 +

2019 +

2017 +

Figure 1: A subgraph of paper source tracing graph.

Tracing the source of research works is a chal-
lenging issue that has not been thoroughly studied.
Valenzuela et al. (2015) classify citing relationships
into incidental and important citations and propose
a feature-engineering approach to predict important
citations. However, their dataset only contains 450
annotated citing pairs. Algorithm Roadmap (Zha
et al., 2019) aims to sketch the dynamics and
development of algorithms automatically. It ap-
plies weak supervision in the citation contexts to
generate datasets and proposes a cross-sentence
attention-based model to extract comparative algo-
rithms from texts. Further, MRT (Yin et al., 2023)
is an unsupervised framework designed to generate
fine-grained annotated evolution roadmaps for spe-
cific publications by utilizing text embeddings and
node embeddings on citation graphs. MRT evalu-
ates the generated important scores between papers
and references based on user clicks on the gener-
ated roadmap, which may suffer from the sparsity
and bias of user clicks.

Until now, to grasp the ins and outs of technolog-
ical development from vast literature, it becomes
indispensable to trace the source of papers. Other-
wise, researchers may find themselves inundated
with a multitude of papers and a vast array of ref-
erences. However, this problem presents the fol-
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lowing challenges: (1) How to formally define the
source of a paper? (2) How to construct a high-
quality and ever-increasing dataset for paper source
tracing? (3) What are the underlying patterns be-
hind the paper source tracing graph? (4) Is it feasi-
ble to automatically trace the source of papers?

Present Work. For this purpose, in this study, we
formally define the problem of paper source tracing
(PST) and present PST-Bench, a professionally-
annotated PST dataset comprising 1,120 computer
science papers and 49,367 associated references.
Each target paper within this dataset has been metic-
ulously annotated with its source papers. More-
over, we conduct a comprehensive analysis of this
dataset, uncovering several interesting patterns.
Lastly, we investigate the potential for automati-
cally tracing the source of papers. To summarize,
our contributions are as follows.

¢ We establish an accurate, diverse, and continu-
ally expanding paper source tracing dataset PST-
Bench. To achieve this, we devise reward and
punishment mechanisms to encourage graduate
students to annotate the source of papers accu-
rately and regularly.

* We perform an in-depth analysis of the PST graph
based on PST-Bench, with an illustrative sub-
graph provided in Figure 1. For instance, our
analysis uncovers the existence of the Matthew
effect within the PST problem, indicating that a
small number of source papers can significantly
influence a vast array of subsequent works. Inter-
estingly, the temporal gap between a paper and
its source papers highlights differences among
various subfields within computer science. For
example, papers in high performance computing
tend to draw inspiration from older papers, while
the case is reverse for Al papers.

* We explore a range of approaches to automati-
cally trace the source of papers, including statis-
tical methods, graph-based methods, pre-trained
content-based methods, and ensemble methods.
Experimental results indicate that pre-trained lan-
guage models (PLMs) exhibit the potential for
addressing the PST problem. However, the best
result of automatic methods is still far from satis-
factory, leaving much room for future research,
including long text understanding, the integration
of PLMs and graph-based methods, and so forth.

2 Related Work

Paper source tracing is closely related to citation
intention analysis, trend analysis, and citation im-
pact evaluation, among others. The creation of a
scalable benchmark dataset that quantifies and an-
notates the semantics of citation links presents a
significant challenge. Tang et al. (2009) conduct a
study on citation semantic analysis, defining three
categories for each citation link: drill down, similar,
and others. They construct a dataset comprising
approximately 1,000 citation pairs in computer sci-
ence. Hereafter, Valenzuela et al. (2015) propose a
new dataset of 450 citation pairs designed to clas-
sify incidental and important citations. Jurgens
et al. (2018) introduce a larger dataset of nearly
2,000 citation pairs in the NLP area, classifying
citation intentions into categories such as back-
ground, uses, motivation, and comparison. Most
of these datasets involve meticulous annotation of
each paper, comparing one target paper with each
reference, thus making them hard to scale up.

Some endeavors have been made to automati-
cally identify the importance of references. Early
attempts define hand-crafted features and then em-
ploy classifiers to determine the significance of ref-
erences. Pride and Knoth (2017) argue that abstract
similarity is one of the most predictive features.
Hassan et al. (2017) incorporate several new fea-
tures, such as context-based and cue words-based
features, and utilize Random Forest to assess the
importance of references. He et al. (2009) adapt the
LDA (Blei et al., 2003) model to citation networks
and develop a new inheritance topic model to de-
pict the topic evolution. Firber et al. (2018) present
a convolutional recurrent neural network based
method to classify potential citation contexts. Jiang
and Chen (2023) propose contextualized represen-
tation models based on SciBERT (Beltagy et al.,
2019) to classify citation intentions. The predic-
tive performance is optimistic on certain datasets,
achieving over 90% AUC.

Paper source tracing has numerous practical ap-
plications, including understanding the evolution
of a subfield (Shao et al., 2022) and assessing
scholarly impact. Several online systems, such
as MRT (Yin et al., 2023) and IdeaReader (Li et al.,
2022), have been developed to assist researchers in
better understanding the evolution of ideas or con-
cepts. Characterizing important references enables
a better evaluation of scholarly impact. Manchanda
and Karypis (2021) propose CCI, a content-aware



citation impact measure, to quantify the scholarly
impact of a publication.

In this study, we build an accurate and scalable
benchmark PST-Bench for paper source tracing
and investigate a variety of methods for automatic
source tracing. Extensive experiments underscore
the complexity of the task, which deserves more
in-depth exploration in the future.

3 Problem Definition

In this section, we formally define the problem of
paper source tracing (PST).

Problem 1 Paper Source Tracing (PST). Given
a target paper p along with its full text, the ob-
Jjective is to identify the most important references,
termed as “ref-sources”, that have significantly
contributed to the ideas or methods presented in
the paper. For each reference within the paper p,
an important score ranging from 0 to 1 should be
assigned, indicating the degree of influence each
reference has exerted on the paper. For each paper
D, the predictive output is denoted as S,.

Note that a paper may draw inspiration from
one or more “ref-sources”. The determination of
whether a reference qualifies as a “ref-source” is
based on one of the following criteria:

* Does the main idea of paper p draw inspiration
from the reference?

* Is the fundamental methodology of paper p de-
rived from the reference?

Namely, is the reference indispensable to pa-
per p? Without the contributions of the reference,
would the completion of paper p be impossible?
It’s vital to clarify that if paper p, cites both papers
e and py, with p, serving as a ref-source for py
and py in turn serving as a ref-source for p.. In this
case, p, does not become a ref-source for p., even
if p. cites p,. Our focus is solely on identifying
ref-sources that directly inspire paper p.

4 Building the PST-Bench

Considering the specialized knowledge necessary
for tracing the sources of academic papers, we en-
gaged dozens of computer science graduate stu-
dents to identify the sources of English papers
within their respective fields of expertise.

Our data collection methodology is bifurcated
into two approaches. The first approach involves

A Filling Example

Title: Masked Autoencoders Are Scalable Vision Learners \
Venue: CVPR 2022

Reading notes: This paper introduces an asymmetric encoder-decoder
structure to reconstruct the original image by masking a significant
portion of input image patches (e.g., 75%).

Ref-sources: BERT: Pre-training of deep bidirectional transformers for
language understanding###An image is worth 16x16 words:
Transformers for image recognition at scale

First Author: Kaiming He

Affiliation: Meta

Paper Field: computer vision

Keywords: image classification###self-supervised learning

Your Name: ZZ7Z

Date filled in: 20230606

Figure 2: A filling example. Multiple items are sepa-
rated by “###” in the fields of ref-sources and keywords.

each student marking the papers they had previ-
ously read, averaging around 20 papers per individ-
ual. To ensure a consistent influx of high-quality
labeled data, the second approach requires each
student to read and mark two new papers every
week. This is conducted in the format of an online
WeChat paper reading group, where students iden-
tify the source papers of the ones they read recently.
A data collection example is shown in Figure 2.
More specifics about data collection can be found
in Section A.

After gathering and preprocessing the data, we
obtain a total of 1,120 labeled computer science
papers. The dataset is then partitioned based on
their publication year, with 560 papers allocated
for training, 280 for validation, and the remaining
280 set aside for testing.

Quantity control & quality control. We devise
several strategies to ensure a steady and quality
growth of the dataset. First, each student only needs
to read and mark two new papers every week, avoid-
ing the attacks of perfunctory annotations to some
extent. Second, we provide additional accumulated
rewards to students once they have read and marked
a certain number of papers (e.g., 20), and remove
students who have not marked any papers for a long
time, thereby improving long-term user retention.
Third, we conduct both automatic and manual qual-
ity control on the labeled data, including verifying
the existence of citation relationships between ref-
sources and target papers and manually checking
the rationality of the annotations.

Human evaluation. Senior researchers double-
checked 100 papers in the test set and tried to iden-
tify those papers that were clearly annotated incor-
rectly. The sampled correct rate is 94%.
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Figure 3: Positive and passive student patterns.

#Papers Added

Figure 4: New papers added per month in the paper
reading group.

5 Preliminary Study

5.1 Student Behavior Patterns

The paper reading group was established in March
2022, running for around one year and a half until
now. We track the number of new papers added
to the dataset each month, as depicted in Figure 4.
Several observations can be made below. (1) Stu-
dents were actively reading and sharing papers
when the group was just created, particularly in
March and April 2022. After this initial period, the
number of papers added in most months was less
than those added in March/April 2022. (2) The
number of newly added papers peaked in Novem-
ber and December 2022. The reason is two-fold.
On the one hand, we additionally rewarded the stu-
dents who had shared at least 20 papers in Novem-
ber 2022, which likely motivated more paper shar-
ing among some students. On the other hand, we
publicized our paper reading group in October 2022
and removed inactive students in November 2022.
One needed to read and share new papers to prevent
being removed. (3) The number of newly added
papers tended to decrease during major holidays,
such as the Chinese New Year in February 2023
and the National Day in October 2022.

We also conduct an individual analysis for stu-
dents in the paper reading group. Figure 3 illus-
trates the patterns of positive and passive students.
For positive students who regularly shared and read
papers, Figure 3(a) depicts a student who steadily
shared new papers with slight variance, while the

Topics
DB and DM
Al
HPC
Software Engineering
Graphics and MM
HCI
Computer Networks
Others

Figure 5: Paper topic distribution. DB and DM: Database
and Data Mining, Al: Artificial Intelligence and Pattern Recog-
nition, HPC: High Performance Computing, Graphics and
MM: Computer Graphics and Multimedia, HCI: Human Com-
puter Interaction and Pervasive Computing.

positive student in Figure 3(b) shared the most pa-
pers in December 2022, potentially motivated by
the accumulated reward mechanism. Figure 3(c)
and Figure 3(d) represent two passive students. The
student in Figure 3(c) actively shared papers for a
short period but lost interest subsequently. Figure
3(d) presents an interesting pattern. This student
shared papers only occasionally. Instead, we ob-
served that (s)he gave red packets to group mem-
bers proactively and commonly when not reading
papers. It implies that (s)he viewed the paper read-
ing group as an incentive mechanism to motivate
one’s reading habit.

5.2 Paper Statistics and Patterns

Paper topic distribution. Figure 5 visualizes the
topic distribution of the collected papers, which are
categorized into 8 subtopics®. This figure reveals
that the majority of papers fall within the Al field,
followed by high performance computing (HPC)
and database and data mining. This distribution is
largely due to the fact that our paper reading group
initially expanded from students in the HPC and
Al groups. Collected papers cover diverse fields
but are short of areas of network and information
security, theoretical computer science, and system
software and software engineering.

Paper source tracing graph (PST Graph). The

3https: //numbda.cs.tsinghua.edu.cn/~yuwj/
TH-CPL . pdf
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Figure 6: Analysis of the distribution of ref-sources.

1: BERT: Pre-training of Deep Bidirectional Trafisformers for Language Understanding.
2: Attention Is All You Need. )

3: Semi-Supervised Classification with Graph Lonvolutional Networks.

4: Deep Residual Learning for Image Recognition

5: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Figure 7: Paper source tracing graph. Papers with more
than 100 citations are plotted. The edges represent the
relations between papers and their ref-sources. The five
nodes with the largest degree are enlarged.

PST graph, denoted as Gpss = {P, £}, consists of
a paper set P and edge set £. Each edge e € &
represents the relations between one paper and its
ref-sources. For better visualization, we plot the
largest connected component of the PST graph,
including paper nodes with over 100 citations, in
Figure 7. We discover that papers are scattered in
several “communities”, each containing a “super
node”. This figure vividly illustrates the research
threads of several fields in computer science. For
instance, on the right, Transformers (Vaswani et al.,
2017) and BERT (Devlin et al., 2019) inspired a
significant body of pre-training works, including
ViT (Dosovitskiy et al., 2020). ViT, in turn, in-
spired numerous research works in computer vi-
sion. On the left, graph convolutional networks
(GCN) (Kipf and Welling, 2017) and ResNet (He
et al., 2016) are two pioneering works that inspired
a lot of studies in graph mining and deep learning.

Ref-sources per paper. Figure 6(a) presents the
histogram of the number of ref-sources per paper. It

demonstrates that most annotated papers have only
one ref-source, with about 10% of papers having
more than three ref-sources. This could reflect the
actual distribution of ref-sources per paper to some
extent, but may also be caused by the annotation
bias among students, who may be more inclined to
annotate papers with fewer ref-sources.

Matthew effect of ref-sources. Figure 6(b) and
Figure 6(c) display the frequency of a paper be-
ing considered as a ref-source and the cumulative
distribution between ref-sources and target papers,
respectively. We observe that the majority of pa-
pers are regarded as ref-sources only once in our
dataset, while only a few dozen papers are regarded
as ref-sources more than 10 times. In Figure 6(c),
the rate of ref-sources is sorted by the times of a
paper being treated as a ref-source. We observe
that the top 20% of papers inspire more than 40%
of other papers, and the top 40% of papers inspire
about 60% of papers. Papers ranked in the bottom
20% largely maintain a one-to-one mapping with
their ref-sources, demonstrating the diversity of
related research as well as our datasets.

How soon will one ref-source inspire subsequent
works? We examine the year gap between a paper
and its ref-sources across different fields. Figure 8
shows the distribution of the year gap in four fields
with the most papers. We have the following in-
triguing observations. (1) Across all studied fields,
most papers are inspired by ref-sources published
within the past 5 years. Papers are less likely to
be influenced by older publications. (2) There ex-
ist clear differences between fields in terms of the
distribution of the year gap. For example, in HPC
and computer graphics, roughly the same order of
magnitude of papers are inspired by papers from
0-2 years ago and papers from 3-5 years ago. How-
ever, in Al and database and data mining, almost

(c) Cumulative distribution between ref-
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Figure 9: Influence between computer science venues.

half of papers are inspired by papers from 0-2 years
ago. Some HPC papers are even inspired by papers
published more than 30 years ago, a phenomenon
rarely seen in other fields. It reveals that some ar-
eas, such as Al, are developing rapidly, while for
fields such as HPC, papers in these fields tend to
have a relatively longer life force.

Influence between computer science venues. For
target venues in each subtopic, we study ref-sources
in which source venues are more likely to inspire
papers in target venues. We count pairwise influ-
ence relationships between venues, selecting the
subtopics with the most annotated papers, includ-
ing Al, database and data mining, and HPC. For
each subtopic, we select the top-5 target venues
with the most papers and top-5 source venues that
inspired most papers in target venues. Figure 9 dis-
plays the heatmaps of pairwise venue influence on
these subtopics. We highlight several observations
below. (1) Al venues are mostly influenced by Al
venues. NLP conferences (e.g., ACL and EMNLP)
can be influenced by ML conferences (e.g., ICML),
but the reverse is not the case. (2) In addition to
being affected by data mining (DM) conferences,
DM conferences are also influenced by Al con-
ferences (e.g., ICML). (3) HPC conferences are
primarily influenced by HPC conferences. These
figures clearly demonstrate the cross-influence be-
tween different fields in computer science.

6 PST Approach

With the vast proliferation of research papers, man-
ually annotating the source of each paper is imprac-
tical. Can we automatically identify the ref-sources
of a paper? In this section, we explore various
approaches to address the PST problem. PST ap-
proaches can be broadly categorized into the fol-
lowing classes: (1) statistical methods, (2) graph-
based methods, (3) pre-trained content-based meth-
ods, and (4) ensemble methods.

6.1 Statistical Methods

Rule. An intuitive method to discover ref-sources
is the rule-based method, which extracts references
that appear near signal words like “motivated by’
or “inspired by”. Nevertheless, a limitation of this
method is that not all ref-sources are explicitly men-
tioned in proximity to these signal words.

Random Forest (RF). Alternatively, we can define
statistical features related to each reference to indi-
cate its importance. Following (Valenzuela et al.,
2015), we define features including citing count,
citing position, author overlap, text similarity, etc.
We then employ RF to classify the importance of
each reference. RF is adopted due to its effective-
ness in filtering out unrelated features.



6.2 Graph-based Methods

The paper citation graph can also deliver the struc-
tural importance or structural similarity of each
reference to the target paper. For instance, an ex-
tension paper p. and its original paper p proba-
bly share many references. Thus, their structural
similarity should be high. To this end, we ex-
tract the paper citation graph in computer science*
and learn paper embeddings with network embed-
ding methods, such as LINE (Tang et al., 2015),
ProNE (Zhang et al., 2019), NetSMF (Qiu et al.,
2019). We adopt these methods owing to their ef-
fectiveness and efficiency in handling large-scale
graphs. Next, we measure the importance of refer-
ences to the target paper by calculating the cosine
similarity between the paper representation and the
reference representation.

6.3 Pre-trained Content-based Methods

Imagine how researchers judge whether a refer-
ence is a ref-source. They may read the context
where the reference appears in the full text of the
paper and then decide whether the reference is a
ref-source based on content comprehension. Re-
cently, pre-trained language models (PLMs) have
achieved great success in various natural language
understanding tasks. Hence, we can extract the
contextual texts where each reference appears in
the full text and then encode these texts with the
pre-trained models, which are then followed by an
MLP classifier for binary prediction. We use the an-
notation results in the training set as supervision in-
formation to fine-tune the parameters of pre-trained
models and the classifier layers. Then, fine-tuned
models are used to predict the ref-sources of pa-
pers in the test set. The considered PLMs include
BERT (Devlin et al., 2019), SciBERT (Beltagy
et al., 2019), and GLM (Du et al., 2022). For com-
parison, we also evaluate these pre-trained models
without any fine-tuning.

6.4 Ensemble Methods

To leverage the strengths of each category of meth-
ods, we employ an ensemble method to combine
the predictions of different methods. Specifically,
we select the best performer from each category of
methods and average their predictions as the final
prediction. We opt for average instead of voting to
avoid specifying thresholds for each method.

4h’ctps ://www.aminer.cn/citation

Table 1: Accuracy results of paper source tracing.

Method MAP

Stat Rule 0.0565
RF 0.1268
LINE 0.1140

Graph ProNE 0.1273
NetSMF 0.1364

BERT-base 0.1418
SciBERT 0.1220

PLM GLM-2B 0.0961
GLM-10B 0.0754

BERT-base 0.1294

SciBERT 0.2634

PLM-ET GLM-2B 0.1465
GLM-10B 0.1558

RF + NetSMF

Ensemble + SGiBERT-FT 0.2709

Stat: statistical methods, PLM: pre-trained language
models, PLM-FT: fine-tuned PLM.

7 Experiments

7.1 Experimental Setup

For the full texts of papers, we use the GROBID?
API to convert PDF to XML format for convenient
processing of citation contexts. We employ regular
expression to identify the contexts of each refer-
ence. For graph-based methods, the node embed-
ding size is set to 128. We utilize the CogDL (Cen
et al., 2023) framework to implement graph-based
methods. For pre-trained content-based methods,
the context length is set to 200. More implementa-
tion details can be found in Section B.

Evaluation Metrics. We adopt mean average
precision (MAP) to evaluate the prediction results.
Concretely, for each paper p in the test set,

AP(p) = — > " Prec,(k)1, (1)

where I}, is the number of ref-sources of paper p,
M, is the number of references of paper p, Prec,, (k)
is the precision at cut-off %k in the ranked output
list S, (k), and 1 is the actual annotation, with the
values O or 1.

MAP = AP(p), (2)

‘ PteSt | peptest

where P is the paper set in the testing set.

Shttps://grobid.readthedocs.io/en/latest/
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Table 2: The feature contribution analysis for RF.

Feature description Weight
citation number of the reference 0.48
reciprocal of the number of references  0.26

number of paper citations / all citations’ 0.17
appearing near signal words? 0.02
author overlap® 0.02

! This feature computes the number of direct citation
instances for the cited paper over all the direct citation
instances in the citing work.

2 Signal words include “inspired by” and “motivated by”.

3 Set to true if the citing and the cited works share at least
one common author.

7.2 Main Results

Table 1 presents the results of paper source tracing.
Among all the methods evaluated, Random Forest
(RF) surpasses the Rule method, emphasizing the
efficacy of feature engineering. NetSMF outper-
forms LINE and ProNE, likely due to its ability to
capture higher-order proximity of nodes via sparse
matrix factorization. The Rule-based approach un-
derperforms, likely due to the absence of signal
words such as “inspired by” around many crucial
references, leading to a low recall rate. Notably,
NetSMF performs comparably to several fine-tuned
pre-trained models without utilizing supervision
information, underscoring the importance of the
citation network structure. Fine-tuned SciBERT
significantly surpasses other single models, demon-
strating the effectiveness of pre-training on domain-
specific data. Fine-tuning BERT impairs the perfor-
mance, possibly owing to the mismatch between
pre-trained models and the target tasks. The ensem-
ble method achieves the best performance, indicat-
ing that each category of methods has its unique
advantages for this problem. However, the current
methods’ results are not yet optimal, suggesting sig-
nificant potential for further research in this field.

7.3 Feature Analysis

We conduct a feature importance analysis for ran-
dom forest, with the most significant features
shown in Table 2. We observe that the most impor-
tant feature is the citation number of the reference,
aligning with our previous analysis. In addition,
the number of direct citations of a reference also
matters, which makes sense as the more times a
reference is cited, the more important it might be.
Surprisingly, the feature of appearing near signal
words is not that important, possibly due to the
sparsity of this feature. Author overlap is weakly
positively correlated with being a ref-source, which

Target Paper 1: ProteinBERT: A universal deep-learning model of
protein sequence and function

Ref-source 1: Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences

Contexts: ... loss continues to improve on the training set (i.e., does not
saturate), even after multiple epochs (Fig. 2), in accordance with other
studies [20].

Target Paper 2: PeCo: Perceptual Codebook for BERT Pre-training of
Vision Transformers

Ref-source 2: The unreasonable effectiveness of deep features as a
perceptual metric.

Contexts: It has been shown in [71] that the internal activations of a
network trained for classification task surprisingly coincide with human
judgment.

Target Paper 3: xMoCo: Cross Momentum Contrastive Learning for
Open-Domain Question Answering

Ref-source 3: Momentum contrast for unsupervised visual representation
learning

Contexts: Momentum contrastive learning (MoCo) is originally
proposed by He et al. (2020). He et al. (2020) learns ...

Figure 10: Predictive error analysis.

is intuitive since some authors are likely to extend
the ideas or methods from their previous works.

7.4 Error Analysis

We conduct a case study of the prediction errors
made by our best-performing model, with several
examples shown in Figure 10. We list each tar-
get paper with its ref-source and the corresponding
contexts. We have the following observations. For
target paper 1, the relationship between the target
paper and its ref-source is weak, as indicated by
the signal words “in accordance with”, making it
hard to identify the ref-source based on the context.
For target paper 2, the ref-source appears as a back-
ground explanation of the target paper, resulting
in a loose semantic correlation between them. For
target paper 3, the ref-source is introduced in the
related work section and is not explicitly associated
with the target paper. However, familiar researchers
can easily identify the ref-source based on the ti-
tle similarity of the two papers. Thus, the general
understanding of main ideas of papers might be
omitted in the current contextual methods.

8 Conclusion

In this paper, we present PST-Bench, a novel,
professionally-annotated, and ever-growing bench-
mark for paper source tracing. PST-Bench enables
further analysis of the evolution of science and a
deep understanding of the crux of research works,
and so on. Through extensive experiments, we
highlight that the PST-Bench presents significant
challenges for existing machine learning methods,
pointing out potential directions of lengthy text
understanding and citation graph structure mining.



9 Ethical Considerations

For online publications, PST-Bench provides pub-
licly available metadata and very few parsed full-
texts of open-access papers for research purposes.
For data annotation, all annotators gave their in-
formed consent for inclusion before they partici-
pated in this study.

10 Limitations

While PST-Bench provides an accurate and scal-
able benchmark for paper source tracing, its current
format has the following limitations. First, the top-
ics covered in PST-Bench are not even, with most
topics related to Al, data mining, and high perfor-
mance computing. Second, annotating the source
of papers is subjective to some degree. Different
readers may hold different views on selecting ref-
sources for the same paper. This might be allevi-
ated by cross-checking from different readers, but
sometimes identifying the source of a paper may be
an open question with no standard answer. Third,
annotators might tend to annotate fewer ref-sources
than actual ones, which is deferred to future work
by cross-checking from multiple annotators.

11 Broader Impact

PST-Bench can be used by various communities,
such as NLP, graph mining, science of science,
etc. One can use them to discover the evolution
of science or develop automatic methods to trace
the source of papers. However, since there may be
no standard answer for the sources of some papers,
users can leverage PST-Bench dialectically.
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A Data Collection

The detailed paper reading group rules are shown
in Figure 11. Currently, each paper is annotated
by one student. We periodically hold paper read-
ing groups on WeChat every week and publicize
the reading group on the public forums of several
universities and familar labs. The recruited stu-
dents usually read papers even without the reading
group. Thus, their workload is primarily to anno-
tate the source of papers they have read and fill in
the form we provide. In this case, the payment is
relatively reasonable. We don’t know many demo-
graphics of volunteering students, but most of them
are from China, studying in universities or research
institutes, including Tsinghua University, Chinese
Academy of Sciences, Harbin Institute of Technol-
ogy, Southeast University, Nankai University, etc.



Table 3: Parameters and running time of main methods.

Method #Parameters Running hours

RF 12 0.05
LINE 1.47B 14
ProNE 1.47B 10
NetSMF 1.47B 16
BERT-base 110M 2
SciBERT 110M 2
GLM-2B 2B 5
GLM-10B 10B 18

B Implementation Details

The parameters and running time of the main meth-
ods are listed in Table 3. All experiments are con-
ducted on a Linux server with 56 Intel(R) Xeon(R)
Platinum 8336C CPU, 1.88T RAM, and 8 NVIDIA
A100 GPUs, each with 80GB memory.

For each fine-tuned pre-trained model, we
search for the best learning rate in the range of
{1e75,3e7%,1e7%,3e~*}, and the best learning
rate is set to e~ according to the performance
on the validation set. For LINE in CogDL, we
set the walk_length and walk_num to 5 and 5, re-
spectively. For NetSMF in CogDL, we set the
window_size and num_round to 5 and 5, respec-
tively. For ProNE in CogDL, we use its default
parameters. For graph-based methods, the con-
structed citation graph includes 11,478,633 nodes
and 167,161,322 edges. For supervised methods,
we keep all positive instances and sample negative
instances randomly, keeping their ratio at 1 : 10.
For the ensemble model, we use MinMax normal-
ization to scale the outputs of different methods.
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C Responsible NLP Checklist

C ¥ Did you run computational experiments?

L. In Section 7.
A For every submission

¥ C1. Did you report the number of parame-
ters in the models used, the foral computa-
tional budget (e.g., GPU hours), and com-
puting infrastructure used?

In Section B.

¥ C2. Did you discuss the experimental setup,
including hyperparameter search and best-
found hyperparameter values?

In Section B.

C3. Did you report descriptive statistics

about your results (e.g., error bars around
results, summary statistics from sets of ex-
periments), and is it transparent whether you
are reporting the max, mean, etc. or just a
single run?
Since the fine-tuning process and net-
work embedding training process are time-
consuming, we perform a single run for each
method. Meanwhile, our focus is not to de-
velop a best-performing method but to ex-
plore the potential of different methods for
the PST problem.

v c4. 1f you used existing packages (e.g., for
preprocessing, for normalization, or for eval-
uation), did you report the implementation,
model, and parameter settings used (e.g.,
NLTK, Spacy, ROUGE, etc.)?

In Section 7.1 and Section B.

¥ Al. Did you discuss the limitations of your
work?
In Section 10.

A2. Did you discuss any potential risks of
your work?
Work doesn’t have immediate ethical risk.

¥ A3. Do the abstract and introduction sum-
marize the paper’s main claims?
Section I and Abstract.

B ¥ Did you use or create scientific artifacts?
In Section 4.

B1. Did you cite the creators of artifacts you
used?
N/A.

¥ B2. Did you discuss the license or terms for
use and/or distribution of any artifacts?
Yes, we discussed the distribution of our
dataset, which has been made public under
ODC-BY.

¥/ B3. Did you discuss if your use of exist-
ing artifact(s) was consistent with their in-
tended use, provided that it was specified?
For the artifacts you create, do you specify
intended use and whether that is compati-
ble with the original access conditions (in
particular, derivatives of data accessed for
research purposes should not be used outside
of research contexts)?
The created dataset and original data is used
for research purposes only.

¥ B4. Did you discuss the steps taken to check
whether the data that was collected/used
contains any information that names or
uniquely identifies individual people or offen-
sive content, and the steps taken to protect /
anonymize it?
We anonymize the annotators’ information.

D ¥ Did you use human annotators (e.g., crowd-
workers) or research with human subjects?
In Section 4.

¥ DI1. Did you report the full text of instruc-
tions given to participants, including e.g.,
screenshots, disclaimers of any risks to par-
ticipants or annotators, etc.?
In Section 4 and Section A.

¥ D2. Did you report information about how
you recruited (e.g., crowdsourcing platform,
students) and paid participants, and discuss
if such payment is adequate given the par-
ticipants’ demographic (e.g., country of resi-
dence)?
In Section A.

¥ D3. Did you discuss whether and how con-
sent was obtained from people whose data

¥/ B5. Did you provide documentation of the
artifacts, e.g., coverage of domains, lan-
guages, and linguistic phenomena, demo-
graphic groups represented, etc.?
In Section 4 and Section 5.

¥ B6. Did you report relevant statistics like the

number of examples, details of train/test/dev
splits, etc. for the data that you used/created?
In Section 4.
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you’re using/curating (e.g., did your instruc-
tions explain how the data would be used)?
In Section A.



D4. Was the data collection protocol ap-
proved (or determined exempt) by an ethics
review board?

N/A.

¥ D5. Did you report the basic demographic
and geographic characteristics of the annota-
tor population that is the source of the data?
In Section A.

E X Did you use Al assistants (e.g., ChatGPT,
Copilot) in your research, coding, or writing?
Left blank.
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