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Abstract

Rapid simultaneous advances in machine vision and cognitive neuroimaging
present an unparalleled opportunity to (re)assess the current state of artificial
models of the human visual system. Here, we perform a large-scale benchmarking
analysis of 85 modern deep neural network models (e.g. CLIP, BarlowTwins,
Mask-RCNN) to characterize with robust statistical power how differences in ar-
chitecture and training task contribute to the prediction of human fMRI activity
across 16 distinct regions of the human visual system. We find: one, that even
stark architectural differences (e.g. the absence of convolution in transformers
and MLP-mixers) have very little consequence in emergent fits to brain data; two,
that differences in task have clear effects—with categorization and self-supervised
models showing relatively stronger brain predictivity across the board; three, that
feature reweighting leads to substantial improvements in brain predictivity, without
overfitting — yielding model-to-brain regression weights that generalize at the same
level of predictivity to brain responses over 1000s of new images. Broadly, this
work presents a lay-of-the-land for the emergent correspondences between the
feature spaces of modern deep neural network models and the representational
structure inherent to the human visual system.

1 Introduction

The sheer pace of progress in computer vision poses a practical challenge for neuroscientists assessing
state-of-the-art models in their ability to explain visual representation and behavior. New high-
performing models are released on a near-daily basis, and recent innovations (e.g. in self-supervised
learning [Grill et al.| 20205 |Zbontar et al., 2021; He et al.,[2020; (Caron et al.,|2020,2021])) have created
myriad new opportunities for productive synergy between the fields of biological and machine vision.
As such, methods for comparing the brain-predictivity of artificial models using predefined pipelines
(“neural benchmarking”) could prove critical in helping discern the algorithmic innovations that may
be meaningful with respect to the study of brain function (Yamins et al., [2014} [Khaligh-Razavi &
Kriegeskorte, [2014; |Cadieu et al., 2014; Kriegeskorte), 2015} |Giicli & van Gerven, [2015; Cichy et al.,
2016; [Eickenberg et al.l 2017} [Schrimpf et al.l 2018 |Wen et al.l 2018};|Cadena et al.} 2019; Bashivan
et al.,[2019; [Serre, 2019; |Cadena et al., 2021 Marques et al., 2021} |Storrs et al., 2021).

Existing public neural benchmarking efforts have been limited to mouse and primate neurophysiology
(Schrimpf et al} 2018} |Conwell et al., 2021). Recent advances in the scale and quality of human
neuroimaging datasets (Chang et al.,2019; |Allen et al., 2021; |Contier et al., | 2021)) provide testbeds
for assessing the state of deep neural network modeling as applied to the human visual system.

Here we present a large-scale benchmark of dozens of state-of-the-art deep neural network models in
their prediction of human brain activity across the visual hierarchy. Aiming for coverage, our survey
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attempts to document the current trends in how well different kinds of models, varying in both task
and architecture, learn features with brain-like response signatures. Our results complement prior
work examining different model predictivities and different methods of neural mapping (Khaligh-
Razavi & Kriegeskorte, [2014; Khaligh-Razavi et al., 2017; |Wang et al., 2019; |Storrs et al., 2021)), but
at a significantly larger scale, and incorporating a set of more modern models not yet fully accounted
for in the benchmarking literature (e.g. self-supervised models, and vision transformers).

2 Methods

As the target of our neural benchmark, we use the Natural Scenes Dataset (NSD, [Allen et al.| 2021])),
a recent fMRI dataset representing the most extensive sampling of visual responses in individual
participants to date (30,000 stimuli viewed per subject; 73,000 unique images total). Here we analyze
only a small fraction of this dataset, focusing on responses to 1,000 COCO (Lin et al., 2014)) stimuli
that were shown to 4 subjects at least 3 times, in a subset of ROIs along the visual hierarchy. We
compare these responses with the responses of 83 modern DNNs that vary in task and architecture.

We employ two methods for mapping the activations of model features within a layer to regions
of the brain — classical representational similarity analysis (RSA, [Kriegeskorte et al.,2008a]) and
voxelwise-encoding (re-weighted) RSA (Konkle & Alvarez, 2021} Kaniuth & Hebart, 2021). Classical
RSA considers all of the features from a given model layer equally in computing the image-wise
representational dissimilarity matrix (RDM), which is directly compared with a target brain RDM.
This method requires a fully-emergent match in population-level geometry between a neural ROI and
the full set of units in a model layer.

Voxelwise encoding RSA (veRSA), on the other hand, takes advantage of feature reweighting to
identify different model subspaces that correspond to the variance in different brain regions. To
implement voxel-wise encoding RSA, we use an efficient high-throughput model-fitting procedure,
first applying leave-one-out cross-validated ridge regression to map between a given model feature
space and the observed univariate activity pattern of each voxel; once we’ve collected a set of
predictions for the patterns of activity for each voxel in a given ROI, we compute an RDM from
these predictions and compare that RDM to the RDM in the brain. This re-weighted RSA procedure
requires massive parallelization, and entails performing a total of around 5.17 billion regression
fits (calculated by multiplying the total number of model layers we analyze by the total number of
voxels under consideration from the brain dataset). To assuage concerns of overfitting, we validate
the robustness of our fitted regressions by testing their generalizability to 1000 independent images
(specific to each subject) entirely removed from the training procedure.

More detailed descriptions of the brain data[A.T] candidate model architectures[A.2] and mapping
procedures[A.3] may be found in the Appendix.

3 Results

3.1 Hierarchical Correspondence

As a first step and sanity check, we ask: Does the seminal finding that the information processing
hierarchies in deep nets recapitulate the information processing hierarchy in the human visual system
(Yamins et al., 2014} Giiclii & van Gerven, 2015} 2017) hold at scale and across a significantly diverse
population of models? The answer is a strong affirmative (Figure 1): Using a purely data-driven
aggregation procedure, we show that the relative depth of the best-fitting model layer for each ROI
seems to re-capitulate the human visual hierarchy (e.g. early visual areas, followed by category-
selective regions). This hierarchical convergence holds even when breaking down the models by
broad, divergent classes of architecture.

3.2 Architecture Variation

How do models with different architectures compare in their ability to predict the structure of human
brain responses across the visual system? Our particular survey of models, chosen deliberately
to reflect the diversity of modern object recognition (ImageNet-trained) architectures, allows for
numerous subdivisions, but perhaps the most prominent is between convolutional architectures (e.g.
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Figure 1: (A) Visualization of selected regions-of-interest on a flattened hemisphere. (B) Emergent
hierarchical correspondence between the most predictive model layer and the hypothesized informa-
tion processing hierarchy of the visual system. Regions along the x-axis are ordered by the average
depth of the best predicting layer (across all models). Data are also broken down by the architectural
distinctions of ConvNets, MLP-Mixers, and Transformers. Each point is the best performing layer
from a given model, averaged over subjects.

VGG, ResNet, MobileNet, n = 24), vision transformers (e.g. Visformer, DelT, n = 13) and MLP-
mixers (e.g. ResMLP, gMixer, n = 5). The latter two of these are more recent advents of computer
vision, and are defined by the lack of a convolutional inductive bias — once considered a cornerstone
of the link between biological and machine vision. Comparisons between these architectures (across
both classical RSA and voxel-encoding RSA) are shown in Figure[2]

To test for differences in predictivity, we use nonparametric ANOVAs. Without reweighting (clas-
sical RSA), there is a significant difference across ConvNets, MLP-Mixers, and Transformers
X ruskarwaiis (2) = 10.14, pgotm = 0.02,82 4. = 0.27, Clg5%,[0.09,0.49]) in early visual ar-
eas, driven by a significant pairwise advantage of ConvNets over Transformers. With reweight-
ing (veRSA), this difference disappears. Without reweighting, there is no significant difference
between architectures in higher-level cortical areas. With reweighting, there is a difference
(X rusiarwattis (2) = 10.59, poim = 0.02,82 4.1 = 0.26, CIg5%[0.09,0.56]), driven this time by

the pairwise superiority of both ConvNets and MLP-Mixers over Transformers.

Behind these apparently significant effects is the numerical reality that the raw effect sizes in
both cases is effectively negligible — less than rpegrson = 0.01 and 7pearson = 0.02, respectively.
As such, the most striking effect here is not that of architecture, but of mapping method, which
substantially augments the predictive power of every model in our survey (with average gains of
Tpearson = 0.160, C'Tg5%[0.152,0.166] across model and ROI). In the most notable case, models
in EBA experience average gains of rpearson = 0.265. These improvements dwarf any difference
attributable to architecture, and underscore an important point: despite dramatic differences in the
design and algorithmic inductive biases of ConvNets, MLP-Mixers, and Transformers, there is little
consequence on the resulting brain predictivity (regardless of mapping method).

3.3 Task Variation

How does brain predictivity vary as a function of task? To answer this empirically, we consider
the 24 models from the Taskonomy project (Zamir et al., 2018]). These models share the same base
architecture (ResNet-50) and training data (visual diet), but are trained on 1 of 24 popular computer
vision tasks. These tasks are organized into 4 different categories (2D, 3D, Semantic and Geometric)
according to what the authors of the Taskonomy project call the models’ ’transfer affinity’ — the
degree to which a model trained on one task supports transfer learning to another. The predictivity
scores of these models for both classical and voxel-wise encoding RSA are shown in Figure[3]
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Figure 2: Architecture variations. Model fits are shown along the y-axis, for early visual areas (top
row) and category-selective areas (bottom row), for classical RSA (left) and voxel-wise encoding RSA
(right). The gray boxes indicate an intersubject reference point (the average pairwise correlation of
individual subject RDMs (for details, see[A.3). Each dot is the best performing layer from a single
model, with trained models in large circular points, and untrained counterparts in small diamonds.

Without reweighting, there is considerable variability across ROI in the tasks that are most predictive
of the brain, but the differences between the best task and the second-best task is minimal in most cases.
In V2, for example, a 2D task (edge detection) is the most predictive of the tasks at 7pearson = 0.226,
but is closely followed by a 3D task (Keypoints) at 7pearson = 0.220.

As in the case of architecture, feature reweighting (veRSA) leads to uniform improvement across
models. Strikingly, however, object and scene classification gain disproportionately. The gains for
object recognition are so substantial that it becomes the single most predictive task for all brain areas,
often dominating by an impressively large margin, with a mean gain over the next best task (apart
from scene classification) of rpeyson = 0.127, Clg59[0.122,0.131])) across all ROIs.

While these results point strongly to an advantage of category supervision in the formation of neurally
predictive representation (at least in the case of veRSA), the self-supervised models (absent from
Taskonomy) in our survey allow us to delve more deeply into whether the classification objective is
the key driver of neural predictivity, or whether category-supervised models derive their advantage
from the set of invariances that they learn in service of classification.

The predictive power of our self-supervised models strongly suggest the latter: regardless of mapping
method, self-supervised models (especially recent contrastive ResNet-50 models such as SimCLR and
BarlowTwins) tend to show a small but statistically significant advantage over a (recently revamped)
category-supervised ResNet-50 (Wightman et al., [2021]). For example, averaging across brain ROIs,
SimCLR eeks out a mean gain of rpeyrson = 0.013, C'Ig59[0.0106,0.0192] in weighted RSA and a
gain of rpearson = 0.006, C'Ig56,[0.002, 0.008] in classical RSA. The CLIP models (ResNet and ViT
variants trained via contrastive learning on millions of image-text pairs scraped from the internet)
were consistently, although by a narrow margin (mean rpeyson = 0.0048, C'Ig5%,[0.001, 0.009]),
the best performing model with weighted RSA in category-selective visual areas — achieving the
best score of any model tested in 10 / 12 ROIs. While these results should not be interpreted as
indicating superiority of self-supervision over category-supervision, they do begin to indicate parity
in prediction levels — a win for ethological plausibility (Konkle & Alvarez, 2021;|Zhuang et al., 2021).
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Figure 3: Effect of task on model-brain predictivity. (A) 24 Taskonomy models with a ResNet50
architecture, grouped into 4 categories (2D, 3D, Geometric, or Semantic) and an untrained (randomly-
initialized) model, for comparison. The correlation between the model features and brain responses
for early visual areas (top) and category-selective regions (bottom) is plotted, using classical RSA in
(B) and reweighted RSA in (C). Gray box plots indicate the range of inter-subject RDM correlations
using classical RSA (for further details on this "reference point’ estimate, see[A.)).

3.4 Input Variation

While the models in our survey do not allow for a fully-controlled comparison of brain predictivity
across varying kinds of input or visual diet — at least, not while also holding architecture and task
constant — there is some evidence of its effect implicit in a number of our findings. Foremost among
these is the raw numerical difference in predictivity scores between models trained on the ImageNet
dataset (i.e. all models discussed in Section [3.2)) and the Taskonomy models (3-3). Taskonomy
models are trained on a custom image set that consists of a camera moving smoothly through a
number of indoor scenes (Zamir et al., 2018). (Taskonomy describes this dataset as consisting of
4.5 million scenes across 600 buildings, at a resolution of 1024x1024 per scene). The average
score of ImageNet-trained models across all ROIs is 7pearson = 0.240, C'Ig59,[0.234, 0.246] for
classic RSA and 7pearson = 0.411, C'Ig59[0.406,0.415] for weighted RSA. The average score of
Taskonomy models is substantially lower, at rpeyson = 0.106, C'Ig50,[0.094,0.118] for classical
RSA and rpeyson = 0.181, Clg5%[0.163,0.199] for weighted RSA. Scrutinizing object classification
alone, ResNet50 trained on ImageNet attains mean scores of pearson = 0.244 and 7pearson = 0.415
on classic and weighted RSA, respectively; ResNet50 trained on the Taskonomy dataset attains
TPearson = 0.139 and 7pearson = 0.301. This means that despite being trained on approximately 3x
the quantity of images in ImageNet, the models of Taskonomy suffer significantly from the lack of
variation)”|in training as it pertains to downstream brain predictivity. Overall, these observations leave
open a clear target for a better understanding of which factors in a dataset are relevant (size, diversity,
naturalism, number of categories), and why.

? Analysis by the Taskonomy authors suggests that only 100 of the 1000 imagenet classes are present across
the ’scenes’ of the Taskonomy dataset — suggesting the difference in object recognition scores may be at least
partially attributable to impoverished category variation.



3.5 Additional Generalization Tests

The sheer quantity of regression fits required to summarize the predictive performance of our model
set, and the vast number of dimensions relative to data points, may raise concern: is this deep
encoding pipeline massively overfitting, in spite of our generalized cross-validation procedures? Or,
are the estimates we derive truly a reasonable approximation (given the linking assumptions inherent
in the analysis) of a given model’s brain predictivity?

To address this concern, we conducted a separate generalization test for each model, in which we
selected the best performing layer (according to the original LOOCYV score from our regression
procedure) per subject, per ROI. For these layers, we then use reweighted RSA to compare brain and
model feature spaces using a set of 1000 entirely held-out test images per subject. These images were
never referenced or incorporated during training, and prediction scores on these images thus provide
a measure of "pure" generalization.

Even with this more stringent test, we found little-to-no drop in accuracy in predicting brain represen-
tation evoked by the 1000 unique test images per fMRI subject. When aggregating across subjects,
models, and ROIs, for example, the mean decrease in score on the unseen images was less than 1%
(rpearson = 0.0095, C'Ig50,[0.00422,0.0153]). By adding a mere 103 million regression fits to our
initial total of 5.17 billion, then, we can thus confirm definitively that our encoding models generalize
to previously-unseen data. (A more detailed figure showing generalization across specific subjects
and ROIs is shown in Section [A.6|of the Appendix.)

4 Discussion

So what can we learn about the human visual system from 5.17 billion regression fits (not to
mention many thousands of correlations)? Broadly, it seems, there are two sets of answers, one more
pessimistic, one more optimistic. On the side of pessimism, the lack of variation across architecture
suggests that groundbreaking innovations in computer vision may often yield little to no change in
our ability to predict the representational structure of biological vision, disrupting what was once
prophesied to become a glorious feedback loop between neuroscientific insight and engineering
innovation. What’s more, the frequent variability in interpretation across mapping method seems a
potential pitfall if not accounted for with greater vigilance and attention to theoretical commitment.
On the side of optimism, it does appear that more general, algorithmic correspondences between
DNNSs and brains (especially in terms of the information processing hierarchy) persist in spite of an
increasingly rapid shift away from biological plausibility in computer vision. In opposite direction of
this shift is a promising move fowards ethological plausibility: Many cutting-edge models no longer
rely on learning targets humans almost certainly do not share (e.g. full category supervision). Not
coincidentally, these models appear to be competitive predictors of brain activity.

Abstracting away for a moment from specific findings, one overarching question that we hope our
analysis could address is: what is the real value and ideal format of neural benchmarking analyses?
Our thesis in some sense is that pure benchmarking analyses are ideally supplemented by in-depth
analyses of the critical design choices a modeler might make if their end goal is predicting the brain.
To this end, we designed this benchmarking analysis specifically with certain kinds of contrasts in
mind — namely, architecture and task variation (and to some extent, albeit implicitly, input variation).
Our goal in this benchmarking effort was not, therefore, to ‘discover’ the single best model of the
human visual system, but to open the door for further inspection of what kinds of models do well in
different parts of the visual system and why. It seems unlikely that models optimized for computer
visual tasks alone will cover all the biological visual system’s idiosyncrasies; but it seems equally
unlikely that models optimized to predict biological vision will remain in sync with the kinds of
engineering advances that could approximate critical biological processes in silico. The goal of our
benchmarking, then, is to arbitrate what kinds of engineering advances seem to matter and which
don’t — something we can only (pending theoretical advances) determine empirically.

Current models are still far from capturing the kaleidoscopic complexity of biological visual systems
assayed at scale. To build next-generation perceptual models will almost certainly require a tighter
linking of neuroscience and engineering, with benchmarks that assess not only raw neural predictivity,
but behavioral (psychophysical) and organizational (topographic) similarity, all for a fuller picture of
what makes the biology so capable in so many divergent domains.
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A Appendix

A.1 Human Brain Data

The Natural Scenes Dataset (NSD) is the largest effort to date to measure human brain responses with
functional magneic resonance imaging (fMRI), reflecting measurements of 73,000 unique stimuli
from the Microsoft Common Objects in Context (COCO) dataset ((Lin et al.,|2014)) at high resolution
(7T field strength, 1.33s TR, 1.8mm? voxel size). In the present work, we analyze only a small
fraction of this dataset, focusing on responses to images that enable direct comparison between data
from different subjects. That is, we focus on the 1000 COCO stimuli that overlapped between subjects
(the "shared1000" images), and limit analyses to the 4 subjects (subjects 01, 02, 05, 07) for whom all
3 image repetitions are available for the shared1000. For the generalization tests, we also select a
random unique set of 1000 images for each subject; these were not included in the "shared1000."
All responses were estimated using a custom GLM toolbox ("GLMsingle" (Prince et al., [2021)),
which was applied during the preprocessing of NSD time-series data, featuring optimized denoising
and regularization procedures, to accurately measure changes in brain activity in response to each
experimental stimulus.

We focus our analyses to voxels within a set of predefined functional ROIs that span the visual
hierarchy (see (Allen et al., 2021)) for details on the procedures used to define the ROIs). Further,
to maximize SNR of the target data, we implement a reliability-based voxel selection procedure
(Tarhan & Konkle, [2020) that isolates regions of the brain containing stable structure in their
responses. To compute the split-half reliability a given voxel, we use 1,000 images from each
subject (independent from the shared1000, and from all images included in our main analyses and
generalization tests), and take the average correlation in univariate response profiles over each pair
of available image repetitions (e.g. mean(r(repl,rep2), r(rep2, rep3), r(repl, rep3)). ROI voxels
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exceeding a reliability threshold of 7peyrson = 0.1 were included in subsequent analyses. These
procedures yield a matrix of dimension images x voxels x repetitions for each subject’s ROI, and we
average over the 3 repetitions to yield the final ROI data input into our neural benchmarking pipeline.

A.2 Candidate Deep Neural Network Models

In total, we survey a set of 85 distinct models (123 total, when also including the randomly-initialized
models). These models are sourced from six different repositories: the Torchvision (PyTorch) model
zoo (Paszke et al., 2019); the pytorch-image-models (timm) library (Wightman|, 2019); the VISSL
(self-supervised) model zoo (Goyal et al., 2021); the CLIP collection (Radford et al., [2021); the
Taskonomy (visualpriors) project (Zamir et al., [2018}; |Sax et al.| |2018],|2019); and the Detectron2
model zoo (Wu et al.|[2019)). The first two of these repositories offer pretrained versions of a large
number of object recognition models with varying architectures: including (classic and modern)
convolutional networks, vision transformers, and MLP-mixers. For each of these 'ImageNet’ (object
recognition) models, we include one trained and one randomly initialized variant (using whatever
initialization scheme the model authors recommend) so as to assess the impact of ImageNet training
on brain prediction, and as a sanity check. The self-supervised models are mainly variants on a
popular convolutional architecture (ResNet-50), though do include some transformers (the DINO and
CLIP ViT models). The Taskonomy models consist of a core encoder-decoder architecture trained on
24 different common computer vision tasks, ranging from autoencoding to edge detection. These
models are engineered in such a way that only the architecture of the decoder varies across task,
allowing us to assess (after detaching the encoder) what effect different kinds of training has on brain
predictivity, independent of model design.

A.3 Benchmarking Pipeline

Feature Extraction For each of our deep neural network models, we extract features in response to
each of our probe stimuli at each distinct layer of the network. Importantly, we define a layer here
as a distinct computational (sub)operation. This means, for example, that we treat convolution and
the rectified nonlinearity that follows it as two distinct feature maps. This is especially relevant in
the case of transformers, where the features inherent to the key - query - value computation of the
attention maps often differ substantially. At the end of our feature extraction procedure, we have (for
each model and each model layer) a matrix of features of the dimensions number of images x number
of flattened features from the target layer.

Classical RSA (cRSA) As a first method of mapping deep neural network responses to voxel
responses, we use classical RSA, a nonparametric mapping method that quantifies the emergent
similarity of the 'representational geometry’ between two feature spaces, regardless of origin. To
compute this metric, we construct representational dissimilarity matrices (RDMSs) using the pairwise
correlation distance (1 - Pearson’s r) between the responses of a given brain ROI (image by voxel) or
a given model layer (image by unit) for all images being considered. We then compare these RDMs
by taking a second-order correlation (Pearson’s r) between the flattened upper-triangular portion
of each. This ultimately yields a matrix of correlation scores of dimensions number of subjects x
number of ROIs x number of model layers x number of models. Classical RSA reflects the extent to
which the representational structure in each model layer naturally recapitulates the representational
structure in a visual cortical ROI, without alteration or feature reweighting.

Voxelwise Encoding RSA The following procedure yields the billions of regression fits we reference
in the title. The pipeline works as follows: first, we fit a regression for each voxel as a weighted
combination of model layer features. Given that the number of features in a layer sometimes number
in the millions, we employ sparse random projection (Li et al.;[2006) as a dimensionality-reduction
procedure, and then use ridge regression as a linear model to relate the model feature space to each
voxel’s tuning function. Then, we use the voxel-encoding models to generate predicted activation
profiles to the complete set of held-out images, and correlate the subsequent predicted representational
similarity structure to that of the brain. For additional detail, see Section [A.4]

We emphasize that this method contrasts with popular practices in primate and mouse benchmarking,
which treat predictivity of unit-level univariate response profiles as the key measure. However, fMRI
affords more systematic spatial sampling over the cortex. Thus, for the present analysis, rather
than taking the aggregate of single voxel fits as our key measure, we choose to treat the population
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representational geometry over each ROI as our critical target for prediction. This multi-voxel
similarity structure provides different kinds of information about the format of population-level
coding than do individual units (Kriegeskorte et al., 2008b).

Noise Ceilings and Reference Metrics

While powerful in the quantity and diversity of its images, the number of repetitions in image
presentation (3 per image) in the NSD dataset leaves little room to estimate a noise ceiling per voxel
with standard split-half reliability methods. Thus, as a reference metric for how well our models
are doing overall, we use inter-subject predictivity: a measure of how well the brain of one human
predicts the brain of another. Here, we took the average pairwise correlation of the individual subject
RDMs in a given ROI. For a more in-depth discussion of ceilings and reference points, as well as
experimental alternatives, see Section[A.5]

A.4 Voxelwise Encoding RSA In-Depth

To predict the activity profile of each voxel, we first use Sparse Random Projection (SRP) (Li et al.,
2006) to project the model features generated in response to our 1000 probe images into a lower-
dimensional space. We use a dimensionality of 5960 projections—a number we chose a priori using
the Johnson-Lindenstrauss lemma, which mathematically guarantees the preservation of pairwise
distances in a given space of operations (with a minimal distortion defined by a hyperparameter
epsilon, which we leave in all cases at the scikit-learn default of 0.1). We then perform a leave-one-out
cross-validated (LOOCYV) ridge regression (cross-validating over images) to map these projections to
the responses of our voxels, obtaining a vector of predicted voxel responses that we then correlate
with the true voxel responses to obtain a score per voxel per model layelﬂ

This leave-one-out cross-validation is performed in a single matrix operation often referred to as
generalized cross-validation, and is numerically equivalent to iterative leave-one-out, but is effectively
instantaneous. We iterate this regression procedure until we have a score for all voxels and all model
layers. No hyperparameter selection was performed over the course of the benchmarking, apart from
a minimal, exploratory grid search for a lambda parameter (of values: lel,1e2,1e3,1e4,1e5,1e6,1e7)
on an AlexNet model that we subsequently excluded from the main analysis. Thus, all feature spaces
were projected to 5960 sparse random projections, and all regressions were run with a lambda penalty
of 1e5. The generalized (leave-one-out) cross-validation procedure in this case was used exclusively
for evaluating model performance.

Rather than taking single-voxel fits as our key measure, we consider the geometry of the population
across the larger region of interest as a critical target for prediction. To do so, we use the predicted
responses from our voxel-wise encoding method to generate predicted representational dissimilarity
matrices. The logic behind this procedure is effectively to dispense with or otherwise transform
irrelevant features from the network via reweighting, such that new images are cast into a weighted
subspace of the original feature space. The representational geometry of this subspace serves as the
comparison to the brain. At the end of this procedure, we obtain a matrix of correlation scores of
dimension number of subjects x number of ROIs x number of model layers x number of models.

A.5 Intersubject Predictivity and the Noise Ceiling

In general, the purpose of a noise ceiling is to estimate (at the level of an individual unit of prediction)
how reliable the response in that unit is across time. This metric allows us to then quantify how
well our response data at one point predicts our response data at another. One example of such a
measure relevant to fMRI is the Spearman-Brown-corrected split-half reliability of a voxel response
over sequential presentations of the same stimuli. However, this method tends to underestimate true
voxel reliability in regimes with few presentations.

The alternative we have provided here — the pairwise inter-subject representational similarity ref-
erence — is straightforward in its calculation, and computationally equivalent to the procedure for

3Note that after the SRP procedure there is no longer an interpretable mapping between individual model
features and brain voxels; nonetheless, we have confirmed empirically that SRP procedure yields similar brain
predictivity compared to a control analysis using AlexNet, a model whose feature map dimensionality is
sufficiently low to run our encoding procedure without SRP.
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benchmarking the models with classical RSA (which is to say, that subject RDMs and model RDMs
were computed in the exact same way, and compared using the same correlation metric).

As a reference point for weighted RSA, however, this threshold is a bit misleading — since only the
models benefit from the reweighting. One possible alternative, similar to work done recently in the
neural network modeling of mouse visual cortex (Nayebi et al.,|2021)), is to directly incorporate the
activity of other human brains into a regression procedure wherein the regressand is the brain activity
of a target subject and the regressors are the brain activities of other subjects. This procedure has the
advantage of equating each step in the analytic pipeline that maps model feature spaces to the brain,
and of providing similarly intuitive targets that undergird inferences over how much of the variance
in a target biological system we can capture with a system that is not biological.

As a preliminary test of this reweighted inter-subject predictivity, we consider another version of the
pairwise metric above, predicting single subjects using data from other single subjects. For each pair
of subjects, in which one is the target and the other is the contrast, we iterate over ROIs, gathering
all voxels from the contrast’s ROI to serve as regressors in the prediction of activity in each of the
target’s ROI voxels. We repeat this procedure until we have predicted all voxels in a given target
subject with all possible contrast subjects. The mapping procedure in this case is exactly the same as
it was for the mapping of models, controlled even to the hyperparemeter: we project the ROI voxel
activity from the contrast subject to 5960 sparse random projections, and regress these subjects to the
target voxel with a ridge regression set to a lambda penalty of 1e5.

While this method equates each step in the mapping between model and human, the intersubject
predictivity threshold it establishes is even lower than the version without reweighting. One reason
for this may be that the brain activity from a single subject does not provide a sufficient breadth
of variance to benefit from the reweighting. As a first pass at rectifying this issue, we devised a
new measure, predicting each voxel from the concatenated activity of all voxels from all other
subjects in the target ROI, effectively creating a multi-human reference. While we are continuing to
assess, conceptually, whether such a reference point is useful, the estimates it produces for individual
subjects are indeed far higher than the estimates of either the unweighted individual subject-to-subject
comparison or the corresponding weighted comparison, and is in most cases far higher than the
observed levels of model prediction. Figure [5|shows a comparison between the different kinds of
human reference points we compute.

A.6 Generalization Scores across Subject + ROI

Figure ] shows the generalization scores across individual subjects and individual ROIs.

A.7 Compute Required

We used a single machine with 8 Nvidia RTX 3090 GPUs, 755gb of RAM, and 96 CPUs. GPUs were
used only for extracting model activations, and could (without major slowdown) be removed from
the analytic pipeline. Dimensionality reduction and regression computations were CPU and RAM
intensive. Replicating all of our results would take approximately two weeks on a similar machine.
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Figure 4: Generalization scores across subject and ROI. Each point in red is the LOOCV score for a
given model over the 1000 training images, each point in blue is the generalization to 1000 unseen
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Figure 5: A plot demonstrating different kinds of human reference points. Points in black are model
scores from the voxelwise-encoding RSA method (a method that involves reweighting). The colored
bands are the 95% confidence interval on a given reference metric. Reweighting the neural activity of
multiple subjects to predict a single target subject (in blue) is the one reference point that reweighted
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models do not consistently outperform.
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