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Abstract

Rapid simultaneous advances in machine vision and cognitive neuroimaging1

present an unparalleled opportunity to assess the current state of artificial models2

of the human visual system. Here, we perform a large-scale benchmarking analysis3

of 72 modern deep neural network models to characterize with robust statistical4

power how differences in architecture and training task contribute to the prediction5

of human fMRI activity across 16 distinct regions of the human visual system. We6

find: one, that even stark architectural differences (e.g. the absence of convolution7

in transformers and MLP-mixers) have very little consequence in emergent fits to8

brain data; two, that differences in task have clear effects–with categorization and9

self-supervised models showing relatively stronger brain predictivity across the10

board; three, that feature reweighting leads to substantial improvements in brain11

predictivity, without overfitting – yielding model-to-brain regression weights that12

generalize at the same level of predictivity to brain responses over 1000s of new13

images. Broadly, this work presents a lay-of-the-land for the emergent correspon-14

dences between the feature spaces of modern deep neural network models and the15

representational structure inherent to the human visual system.16

1 Introduction17

The pace of progress in computer vision poses a practical challenge for neuroscientists seeking to18

assess state-of-the-art models in their ability to explain visual representation and behavior. New high-19

performing models are released on a near-daily basis, and recent innovations (e.g. in self-supervised20

learning [1, 2]) have created myriad new opportunities for productive synergy between the fields of21

biological and machine vision. As such, methods for comparing the brain-predictivity of artificial22

models using a predefined analysis pipeline (“neural benchmarking”) are critical in helping discern23

the algorithmic innovations that may be meaningful with respect to the study of brain function.24

Existing public neural benchmarking datasets have been limited to mouse and primate neurophysi-25

ology (3, 4). Recent advances in the scale and quality of human neuroimaging datasets (5–7) now26

present an opportunity to rigorously assess the state of deep neural network modeling as applied to27

the human visual system.28

Here we present a large-scale benchmark of dozens of state-of-the-art deep neural network models29

in their prediction of human brain activity across the visual hierarchy. Aiming for coverage, our30

survey attempts to document the current trends in how well different kinds of models, varying in both31

task and architecture, learn features with brain-like response signatures. Our results complement32

prior work examining different model predictivities (8–10), but at a significantly larger scale, and33
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incorporating a set of more modern models not yet fully accounted for in the benchmarking literature34

(e.g. self-supervised models and vision transformers).35

2 Methods36

As the target of our neural benchmark, we use the Natural Scenes Dataset (NSD, [5]), a recent fMRI37

dataset representing the most extensive sampling of visual responses in individual participants to38

date (30,000 stimuli viewed per subject; 73,000 unique images total). Here we analyze only a small39

fraction of this dataset, focusing on responses to 1,000 COCO stimuli that were shown to 4 subjects40

at least 3 times, in a subset of ROIs along the visual hierarchy. We compare these responses with the41

responses of 72 modern DNNs that vary in task and architecture (see Appendix for details).42

We employ two methods for mapping the activations of model features within a layer to regions43

of the brain – classical representational similarity analysis (RSA, [11]) and voxelwise-encoding44

(re-weighted) RSA (12). Classical RSA considers all of the features from a given model layer equally45

in computing the image-wise representational dissimilarity matrix (RDM), which is directly compared46

with a given neural RDM. This method requires a fully-emergent match in population-level geometry47

between a neural ROI and the full set of units in a model layer.48

Voxelwise encoding RSA (veRSA), on the other hand, takes advantage of feature reweighting to49

identify different model subspaces that correspond to the variance in different brain regions (13). To50

implement voxel-wise encoding RSA, we use an efficient high-throughput model-fitting procedure,51

first applying leave-one-out cross-validated ridge regression to map between a given model feature52

space and the observed univariate activity pattern of each voxel; once we’ve collected a set of53

predictions for the patterns of activity for each voxel in a given ROI, we compute an RDM from54

these predictions and compare that RDM to the RDM in the brain. This re-weighted RSA procedure55

requires massive parallelization, and entails performing a total of around 5.17 billion regression56

fits (calculated by multiplying the total number of model layers we analyze by the total number of57

voxels under consideration from the brain dataset). To assuage concerns of overfitting, we validate58

the robustness of our fitted regressions by testing their generalizability to 1000 independent images59

entirely removed from the training procedure.60

3 Results61

3.1 Hierarchical Correspondence62

As a first step and sanity check, we ask: Does the seminal finding that the information processing63

hierarchies in deep nets recapitulate the information processing hierarchy in the human visual system64

(14–16) hold at scale and across a significantly diverse population of models? The answer is a65

resounding affirmative (Figure 1): Using a purely data-driven aggregation procedure, we show that66

the relative depth of the best-fitting model layer for each ROI seems to re-capitulate the human67

visual hierarchy (e.g. early visual areas, followed by category-selective regions). This hierarchical68

convergence holds even when breaking down the models by broad, divergent classes of architecture.69

3.2 Architecture Variation70

How do models with different architectures compare in their ability to predict the structure of human71

brain responses across the visual system? Our particular survey of models, chosen deliberately72

to reflect the diversity of modern object recognition (ImageNet-trained) architectures, allows for73

numerous subdivisions, but perhaps the most prominent is between convolutional architectures (e.g.74

VGG, ResNet, MobileNet, n = 24), vision transformers (e.g. Visformer, DeIT, n = 13) and MLP-75

mixers (e.g. ResMLP, gMixer, n = 5). The latter two of these are more recent advents of computer76

vision, and are defined by the lack of a convolutional inductive bias – once considered a cornerstone77

of the link between biological and machine vision. Comparisons between these architectures (across78

both classical RSA and voxel-encoding RSA) are shown in Figure 2.79
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Figure 1: (A) Visualization of selected regions-of-interest on a flattened hemisphere. (B) Emergent
hierarchical correspondence between the most predictive model layer and the hypothesized informa-
tion processing hierarchy of the visual system. Regions along the x-axis are ordered by the average
depth of the best predicting layer (across all models). Data are also broken down by the architectural
distinctions of ConvNets, MLP-Mixers, and Transformers. Each point is the best performing layer
from a given model, averaged over subjects.

To test for differences in predictivity, we use nonparametric ANOVAs. Without reweighting (clas-80

sical RSA), there is a significant difference across ConvNets, MLP-Mixers, and Transformers81

(�2
Kruskal-Walils (2) = 10:14; pHolm = 0:02; "̂2

ordinal = 0:27; CI95%[0:09; 0:49]) in early visual ar-82

eas, driven by a significant pairwise advantage of ConvNets over Transformers. With reweight-83

ing (veRSA), this difference disappears. Without reweighting, there is no significant difference84

between architectures in higher-level cortical areas. With reweighting, there is a difference85

(�2
Kruskal-Wallis (2) = 10:59; pHolm = 0:02; "̂2

ordinal = 0:26; CI95%[0:09; 0:56]), driven this time by86

the pairwise superiority of both ConvNets and MLP-Mixers over Transformers.87

Behind these apparently significant effects is the numerical reality that the raw effect sizes in88

both cases is effectively negligible – less than rPearson = 0:01 and rPearson = 0:02, respectively.89

As such, the most striking effect here is not that of architecture, but of mapping method, which90

substantially augments the predictive power of every model in our survey (with average gains of91

rPearson = 0:160; CI95%[0:152; 0:166] across model and ROI). In the most notable case, models92

in EBA experience average gains of rPearson = 0:265. These improvements dwarf any difference93

attributable to architecture, and underscore an important point: despite dramatic differences in the94

design and algorithmic inductive biases of ConvNets, MLP-Mixers, and Transformers, there is little95

consequence on the resulting brain predictivity (regardless of mapping method).96

3.3 Task Variation97

How does brain predictivity vary as a function of task? For a window into this question we consider98

the 24 models from the Taskonomy project (17). These models share the same base architecture99

(ResNet-50) and visual diet, but are trained on 1 of 24 popular computer vision tasks. These tasks100

are organized into 4 different categories (2D, 3D, Semantic and Geometric) according to what the101

authors of the Taskonomy project call the models’ ’transfer affinity’ – the degree to which a model102

trained on one task supports transfer learning to another. The prediction levels of these models for103

both classical and voxel-wise encoding RSA are shown in Figure 3.104

Without reweighting, there is considerable variability across ROI in the tasks that are most predictive105

of the brain, but the differences between the best task and the second-best task is minimal in most cases.106

In V2, for example, a 2D task (edge detection) is the most predictive of the tasks at rPearson = 0:226,107

but is closely followed by a 3D task (Keypoints) at rPearson = 0:220.108
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Figure 2: Architecture variations. Model fits are shown along the y-axis, for early visual areas (top
row) and category-selective areas (bottom row), for classical RSA (left) and voxel-wise encoding RSA
(right). The gray boxes indicate an intersubject reference point (the average pairwise correlation of
individual subject RDMs). Each dot is the best performing layer from a single model, with trained
models in large circular points, and untrained counterparts in small diamonds.

As in the case of architecture, feature reweighting (veRSA) leads to uniform improvement across109

models. Strikingly, however, object and scene classification gain disproportionately. The gains for110

object recognition are so substantial that it becomes the single most predictive task for all brain areas,111

often dominating by an impressively large margin, with a mean gain over the next best task (apart112

from scene classification) of rPearson = 0:127; CI95%[0:122; 0:131]) across all ROIs.113

While these results point strongly to an advantage of category supervision in the formation of neurally114

predictive representation (at least in the case of veRSA), the self-supervised models (absent from115

Taskonomy) in our survey allow us to delve more deeply into whether the classification objective is116

the key driver of neural predictivity, or whether category-supervised models derive their advantage117

from the set of invariances that they learn in service of classification.118

The predictive power of our self-supervised models strongly suggest the latter: regardless of mapping119

method, self-supervised models (especially recent contrastive ResNet-50 models such as SimCLR120

and BarlowTwins) tend to show a small but statistically significant advantage over a (recently121

revamped) category-supervised ResNet-50 [18]. For example, averaging across brain ROIs, SimCLR122

eeks out a mean gain of rPearson = 0:013; CI95%[0:0106; 0:0192] in weighted RSA and a gain of123

rPearson = 0:006; CI95%[0:002; 0:008] in classical RSA. While these results should not be interpreted124

as indicating superiority of self-supervision over category-supervision, they do indicate parity in125

prediction levels – a win for ethological plausibility (12, 19).126

3.4 Generalization Tests127

The sheer quantity of regression fits required to summarize the predictive performance of our model128

set, and the vast number of dimensions relative to data points, may raise concern: is this deep129

encoding pipeline massively overfitting, in spite of our cross-validation procedures? Or, are the130

estimates we derive truly a reasonable approximation (given the linking assumptions inherent in the131

analysis) of a given model’s brain predictivity?132
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Figure 3: Effect of task on model-brain predictivity. (A) 24 Taskonomy models with a ResNet-50
architecture, grouped into 4 categories (2D, 3D, Geometric, or Semantic). An untrained (randomly-
initialized) model, for comparison. The correlation between the model features and brain responses
for early visual areas (top) and category-selective regions (bottom) is plotted, using classical RSA in
(B) and reweighted RSA in (C). Gray box plots indicate the range of inter-subject RDM correlations
using classical RSA.

To address this concern, we conducted a separate generalization test for each model, in which we133

selected the best performing layer (according to the original LOOCV score from our regression134

procedure) per subject, per ROI. For these layers, we then use reweighted RSA to compare brain and135

model feature spaces using a set of 1000 entirely held-out test images per subject. These images were136

never referenced or incorporated during training, and prediction scores on these images thus provide137

a measure of "pure" generalization.138

Even with this more stringent test, we found little-to-no drop in accuracy in predicting brain represen-139

tation evoked by the 1000 unique test images per fMRI subject. When aggregating across subjects,140

models, and ROI, for example, the mean decrease in score on the unseen images was less than 1%141

(rPearson = 0:0095; CI95%[0:00422; 0:0153]). By adding a mere 103 million regression fits to our142

initial total of 5.17 billion, then, we can thus confirm definitively that our encoding models generalize143

to previously-unseen data. (A more detailed figure showing generalization across specific subjects144

and ROIs is shown in the Appendix.)145

4 Discussion146

So what can we learn about the human visual system from 5.17 billion regression fits? Broadly, it147

seems, there are two sets of answers, one more pessimistic, one more optimistic. On the side of148

pessimism, the lack of variation across architecture suggests that massive innovations in computer149

vision may often yield little to no change in our ability to predict the representational structure of150

biological vision, disrupting what was once prophesied to become a glorious feedback loop between151
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neuroscientific insight and engineering innovation. What’s more, the frequent variability in interpre-152

tation across mapping method seems a potential pitfall if not accounted for with greater vigilance153

and attention to theoretical commitment. On the side of optimism, it appears that more general,154

algorithmic correspondences between DNNs and brains (especially in terms of the information155

processing hierarchy) persist in spite of an increasingly rapid shift away from biological plausibility156

in engineering. In opposite direction of this shift is a promising move towards ethological plausibility157

– many cutting-edge models no longer rely on learning targets humans almost certainly do not share158

(e.g. full category supervision). Not coincidentally, these models appear to be competitive predictors159

of brain activity.160

Current models are still far from capturing the kaleidoscopic complexity of biological visual systems.161

Our goal in pursuing this large-scale benchmark is not to discern the "best" model of vision, but162

rather to clarify what kinds of things are and are not important for building next-generation perceptual163

models that will push our understanding of human vision further.164
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A Appendix297

A.1 Human Brain Data298

The Natural Scenes Dataset (NSD) is the largest effort to date to measure human brain responses with299

functional magneic resonance imaging (fMRI), re�ecting measurements of 73,000 unique stimuli300

from the Microsoft Common Objects in Context (COCO) dataset ([20]) at high resolution (7T �eld301

strength,1:33s TR, 1:8mm3 voxel size). In the present work, we analyze only a small fraction302

of this dataset, focusing on responses to images that enable direct comparison between data from303

different subjects. That is, we focus on the 1000 COCO stimuli that overlapped between subjects (the304

"shared1000" images), and limit analyses to the 4 subjects (subjs 01, 02, 05, 07) for whom all 3 image305

repetitions are available for the shared1000. For the generalization tests, we also select a random306

unique set of 1000 images for each subject; these were not included in the "shared1000." All responses307

were estimated using a custom GLM toolbox ("GLMsingle" [21]), which was applied during the308

preprocessing of NSD time-series data, featuring optimized denoising and regularization procedures,309

to accurately measure changes in neural activity in response to each experimental stimulus.310

We focus our analyses to voxels within a set of prede�ned functional ROIs that span the visual311

hierarchy (see [5] for details on the procedures used to de�ne the ROIs). Further, to maximize312

SNR of the target data, we implement a reliability-based voxel selection procedure [22] that isolates313

regions of the brain containing stable structure in their responses. To compute the split-half reli-314

ability a given voxel, we use 1,000 images from each subject (independent from the shared1000,315

and from all images included in our main analyses and generalization tests), and take the aver-316

age correlation in univariate response pro�les over each pair of available image repetitions (e.g.317

mean(r (rep1; rep2); r (rep2; rep3); r (rep1; rep3)). ROI voxels exceeding a reliability threshold of318

Pearsonr = 0 :1 were included in subsequent analyses. These procedures yield a matrix of dimension319

(images, voxels, repetitions) for each subject's ROI, and we average over the 3 repetitions to yield the320

�nal ROI data input into our neural benchmarking pipeline.321

A.2 Candidate Deep Neural Network Models322

In total, we survey a set of 72 distinct models (110 including the randomly-initialized versions of323

certain of these models). These models are sourced from four different repositories: the Torchvision324

(PyTorch) model zoo [23]; the pytorch-image-models (timm) library [24]; the VISSL (self-supervised)325

model zoo [25]; and the Taskonomy (visualpriors) project [17, 26, 27]. The �rst two of these326

repositories offer pretrained versions of a large number of object recognition models with varying327

architectures: including (classic and modern) convolutional networks, vision transformers, and MLP-328

mixers. For each of these 'ImageNet' (object recognition) models, we include one trained and one329

randomly initialized variant (using the initialization scheme the model authors recommended) so as to330

assess the impact of ImageNet training on brain prediction, and as a sanity check. The self-supervised331

models are mainly variants on a popular convolutional architecture (ResNet-50), though do include332

some transformers (the 'DINO' models). The Taskonomy models consist of a core encoder-decoder333

architecture trained on 24 different common computer vision tasks, ranging from autoencoding to334

edge detection. These models are engineered in such a way that only the architecture of the decoder335
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varies across task, allowing us to assess (after detaching the encoder) what effect different kinds of336

training has on predictive power, independent of model design.337

A.3 Benchmarking Pipeline338

Feature Extraction For each of our deep neural network models, we extract features in response to339

each of our probe stimuli at each distinct layer of the network. Importantly, we de�ne a layer here340

as a distinct computational (sub)operation. This means, for example, that we treat convolution and341

the recti�ed nonlinearity that follows it as two distinct feature maps. This is especially relevant in342

the case of transformers, where the features inherent to the key - query - value computation of the343

attention maps often differ substantially. At the end of our feature extraction procedure, we have for344

each model and each model layer, a matrix of features of the dimensionsnumber of images x number345

of �attened features from a given layer.346

Classical RSA (cRSA)As a �rst method of mapping deep neural network responses to voxel347

responses, we use classical RSA, a nonparametric mapping method that quanti�es theemergent348

similarity of the 'representational geometry' between two feature spaces, regardless of origin. To349

compute this metric, we construct representational dissimilarity matrices (RDMs) using the pairwise350

correlation distance (1 - Pearson'sr) between the responses of a given neural ROI (image by voxel) or351

a given model layer (image by unit) for all images being considered. We then compare these RDMs352

by taking a second-order correlation (Pearson'sr) between the �attened upper-triangular portion353

of each. This ultimately yields a matrix of correlation scores of dimension: (number of subjects x354

number of ROIs x number of model layers x number of models). Classical RSA re�ects the extent to355

which the representational structure in each model layer naturally recapitulates the representational356

structure in a visual cortical ROI, without alteration or feature reweighting.357

Voxelwise Encoding RSAThe following procedure yields the billions of regression �ts we reference358

in the title. The pipeline works as follows: �rst, we �t a regression foreach voxelas a weighted359

combination of model layer features. Given that the number of features in a layer sometimes number360

in the millions, we employ sparse random projection [28] as a dimensionality-reduction procedure,361

and then use ridge regression as a linear model to relate the model feature space to each voxel's tuning362

function. Then, we use the voxel-encoding models to generate predicted activation pro�les to the363

complete set of held-out images, and correlate the subsequent predicted representational similarity364

structure to that of the brain. For additional detail, see Section A.4.365

We emphasize that this method contrasts with popular practices in primate and mouse benchmarking,366

which treat predictivity of unit-level univariate response pro�les as the key measure. However, fMRI367

affords more systematic spatial sampling over the cortex. Thus, for the present analysis, rather368

than taking the aggregate of single voxel �ts as our key measure, we choose to treat the population369

representational geometry over each ROI as our critical target for prediction. This multi-voxel370

similarity structure provides different kinds of information about the format of population-level371

coding than do individual units. (29).372

Noise Ceilings and Reference Metrics373

While powerful in the quantity and diversity of its images, the number of repetitions in image374

presentation (3 per image) in the NSD dataset leaves little room to estimate a noise ceiling per voxel375

with standard split-half reliability methods. Thus, as a reference metric for how well our models376

are doing overall, we use inter-subject predictivity: a measure of how well the brain of one human377

predicts the brain of another. Here, we took the average pairwise correlation of the individual subject378

RDMs in a given ROI. For a more in-depth discussion of ceilings and reference points, as well as379

experimental alternatives, see Section A.5.380

A.4 Voxelwise Encoding RSA In-Depth381

To predict the activity pro�le of each voxel, we �rst use Sparse Random Projection (SRP) [28] to382

project the model features generated in response to our 1000 probe images into a lower-dimensional383
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space. We use a dimensionality of 5960 projections–a number we chosea priori using the Johnson-384

Lindenstrauss lemma, which mathematically guarantees the preservation of pairwise distances in a385

given space of operations (with a minimal distortion de�ned by a hyperparameter epsilon, which we386

leave in all cases at the scikit-learn default of 0.1). We then perform a leave-one-out cross-validated387

(LOOCV) ridge regression (cross-validating over images) to map these projections to the responses388

of our voxels, obtaining a vector of predicted voxel responses that we then correlate with the true389

voxel responses to obtain a score per voxel per model layer.1
390

This leave-one-out cross-validation is performed in a single matrix operation often referred to as391

generalized cross-validation, and is numerically equivalent to iterative leave-one-out, but is effectively392

instantaneous. We iterate this regression procedure until we have a score for all voxels and all model393

layers. No hyperparameter selection was performed over the course of the benchmarking, apart from394

a minimal, exploratory grid search for a lambda parameter (of values:1e1,1e2,1e3,1e4,1e5,1e6,1e7)395

on an AlexNet model (which we subsequently excluded from the main analysis). Thus, all feature396

spaces were projected to 5960 sparse random projections, and all regressions were run with a lambda397

penalty of1e5.398

Rather than taking single-voxel �ts as our key measure, we consider the geometry of the population399

across the larger region of interest as a critical target for prediction. To do so, we use the predicted400

responses from our voxel-wise encoding method to generate predicted representational dissimilarity401

matrices. The logic behind this procedure is effectively to dispense with or otherwise transform402

irrelevant features from the network via reweighting, such that new images are cast into a weighted403

subspace of the original feature space. The representational geometry of this subspace serves as the404

comparison to the brain. At the end of this procedure, we obtain a matrix of correlation scores of405

dimension (number of subjects x number of ROIs x number of model layers x number of models).406

A.5 Intersubject Predictivity and the Noise Ceiling407

In general, the purpose of a noise ceiling is to estimate (at the level of an individual unit of prediction)408

how reliable the response in that unit is across time. This metric allows us to then quantify how well409

our response data at one point predicts our response data at another. One example such measure410

relevant to fMRI is the Spearman-Brown-corrected split-half reliability of a voxel response over411

sequential presentations of the same stimuli. However, this method tends to underestimate true voxel412

reliability in regimes with few presentations.413

The alternative we have provided here – the pairwise inter-subject representational similarity ref-414

erence – is straightforward in its calculation, and computationally equivalent to the procedure for415

benchmarking the models with classical RSA (which is to say, that subject RDMs and model RDMs416

were computed in the exact same way, and compared using the same correlation metric).417

As a reference point for weighted RSA, however, this threshold is perhaps a bit misleading – since418

only the models bene�t from the reweighting. One possible alternative, similar to work done recently419

in the neural network modeling of mouse visual cortex [30], is to directly incorporate the neural420

activity of human brains into a regression procedure wherein the regressand is the neural activity of a421

target subject and the regressors are the neural activities of other subjects. This procedure has the422

advantage of equating the set of computational (sub)operations that map model feature spaces to the423

brain, and of providing similarly intuitive targets that undergird inferences over how much of the424

variance in a target biological system we can capture with a system that is decidedly not biological.425

As a preliminary test ofreweightedinter-subject predictivity, we consider another version of the426

pairwise metric above, predicting single subjects using data from other single subjects. For each pair427

of subjects, in which one is the target and the other is the contrast, we iterate over ROIs, gathering428

all voxels from the contrast's ROI to serve as regressors in the prediction of activity in each of the429

1Note that after the SRP procedure there is no longer an interpretable mapping between individual model
features and brain voxels; nonetheless, we have con�rmed empirically that SRP procedure yields similar brain
predictivity compared to a control analysis using AlexNet, a model whose feature map dimensionality is
suf�ciently low to run our encoding procedure without SRP.

11



Figure 4:Generalization scores across subject and ROI. Each point in red is the LOOCV score for a
given model over the 1000 training images; each point in blue is the generalization to 1000 unseen
images never incorporated into the training procedure.

target's ROI voxels. We repeat this procedure until we have predicted all voxels in a given target430

subject with all possible contrast subjects. The mapping procedure in this case is exactly the same as431

it was for the mapping of models, controlled even to the hyperparemeter: we project the ROI voxel432

activity from the contrast subject to 5960 sparse random projections, and regress these subjects to the433

target voxel with a ridge regression set to a lambda penalty of1e5.434

While this method equates each computational (sub)operation between model and human, the435

intersubject predictivity threshold it establishes is even lower than the version without reweighting.436

One reason for this may be that the brain activity from a single subject does not provide a suf�cient437

breadth of variance to bene�t from the reweighting. As a �rst pass at rectifying this issue, we devised438

a new measure, predicting each voxel from theconcatenatedactivity of all voxels from all other439

subjects in the target ROI, effectively creating a multi-human reference. While we are continuing440

to assess, conceptually, whether such a reference point may be useful, the estimates it produces441

for individual subjects are indeed far higher than the estimates of either the unweighted individual442

subject-to-subject comparison or the corresponding weighted comparison, and is in most cases far443

higher than the observed levels of model prediction. Figure 5 shows a comparison between the444

different kinds of human reference points we compute.445

A.6 Generalization Scores across Subject + ROI446

Figure 4 shows the generalization scores across individual subjects and individual ROIs.447

A.7 Compute Required448

We used a single machine with 8 Nvidia RTX 3090 GPUs, 755gb of RAM, and 96 CPUs. GPUs were449

used only for extracting model activations, and could (without major slowdown) be removed from450

the analytic pipeline. Dimensionality reduction and regression computations were CPU and RAM451

intensive. Replicating all of our results would take approximately two weeks on a similar machine.452
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