Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Kartik Sharma' Srijan Kumar' Rakshit S Trivedi >

Abstract

Diffusion models lend transformative capabilities
to the graph generation task, yet controlling the
properties of the generated graphs remains chal-
lenging. Recent approaches augment support for
controlling soft, differentiable properties but they
fail to handle user-specified hard constraints that
are non-differentiable. This often results in vague
control, unsuitable for applications like drug dis-
covery that demand satisfaction of precise con-
straints, e.g., the maximum number of bonds. To
address this, we formalize the problem of con-
trolled graph generation and introduce PRODIGY
(PROjected Dlffusion for controlled Graph Gen-
eration), an innovative plug-and-play approach
enabling the generation of graphs with precise
control, from any pre-trained diffusion model.
PRODIGY employs a novel operator to project the
samples at each diffusion step onto the specified
constrained space. For a large class of practical
constraints and a variety of graphs, our extensive
experiments demonstrate that PRODIGY empow-
ers state-of-the-art continuous and discrete diffu-
sion models to produce graphs meeting specific,
hard constraints. Our approach achieves up to
100% constraint satisfaction for non-attributed
and molecular graphs, under a variety of con-
straints, marking a significant step forward in
precise, interpretable graph generation. Code
is provided on the project webpage: https:
//prodigy—-diffusion.github.io.

1. Introduction

Deep generative models serve as an effective approach
to learn the underlying distribution of graph-structured
data (You et al., 2018; Jo et al., 2022; Martinkus et al., 2022;

!Georgia Institute of Technology, Atlanta, GA, USA
*Massachusetts Institute of Technology, Cambridge, MA, USA.
Correspondence to: Kartik Sharma <ksartik@gatech.edu>, Rak-
shit Trivedi <rstrivedi @csail.mit.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

(Original (unconditional) B
+ =1 Natoms Diffusion
. <12bonds Mode! (il
« 21 Natoms @
« <12bonds &
g No control on the generation at test time)
1 want a molecule with Conditional Y
. =1 Natoms
a G).., Non- differentiable control
« <12 bonds POIG)-.

« =1 Natoms

Diffusion [
.« <12bonds " Model
. "ap (G | y)~" Requires retraining

- Cannot handle user-defined hard constraints Y,
Drug (PRODIGY (ours) R
Designer Pre-trained RN
+ =1 Natoms Diffusion
+ <12bonds H:IC"(("V)_’ Mode! R
i rojection
Constraint C Operation . =1 Natoms
. <12bonds &

\Enables hard user-defined constraints on the generutionj

Figure 1. Comparison of the existing methods (unconditional and
conditional) with PRODIGY for the problem of plug-and-play
controllable graph generation. While unconditional models (Jo
et al., 2022; Vignac et al., 2022) do not allow test-time control on
generation, conditional models cannot handle hard constraints as
they either require retraining (Xu et al., 2023) or assume differ-
entiability (Vignac et al., 2022). PRODIGY enables controllable
graph generation from any pre-trained diffusion model.

Liu et al., 2019). Recently, diffusion-based models (Niu
et al., 2020; Vignac et al., 2022; Jo et al., 2022; 2023) have
shown impressive performance in generating graphs in an
efficient manner and achieving distributional realism that
outperforms most of its contemporary autoregressive and
adversarial learning frameworks. The ultimate objective of
the graph generation research field is to enable the simu-
lation of large-scale networks that can help make tangible
progress in domains such as network optimization (Xie et al.,
2019), social network analysis (Grover et al., 2019), and
drug design (Yang et al., 2022).

While demonstrating excellent performance in terms of
matching the data generating distribution on benchmark
graphs datasets, current diffusion-based approaches suffer
from a key limitation that keeps them away from use in
practice: inability to support meaningful, precise control
of properties of the generated graphs. This limits their
application in domains such as drug discovery and mate-

https://prodigy-diffusion.github.io
https://prodigy-diffusion.github.io

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

rial science. To achieve this ability, the generative models
should be designed such that they can generate graphs under
user-specified, hard constraints. The key challenge with this
approach is that such constraints are non-differentiable. A
naive solution to support such constraints would rely on cu-
rating additional labeled datasets that provide constrained
ground-truth graphs for each possible constraint and/or re-
training the entire generative model.

Existing methods (Hoogeboom et al., 2022; Xu et al., 2023;
Vignac et al., 2022) partly adopt this solution strategy in
the form of conditional generation of graphs by approximat-
ing the conditional probability distribution with the prop-
erty. However, these approaches require the property (or
its approximation) to be differentiable and it influences the
sampling process in an obscure and uninterpretable manner.
This limitation severely restricts the applicability of these
methods in graph-related applications where there are sev-
eral structural properties that need to be precisely controlled
when generating from the pre-trained models.

In this work, we fill this gap by investigating the problem of
controllable graph generation to generate graphs that satisfy
certain user-defined hard constraints on their structure and
derived properties. This paper introduces PRODIGY (PRO-
jected DIffusion for generating constrained Graphs), a plug-
and-play controllable graph generation method inspired by
theoretical works on Projected Langevin sampling (Bubeck
et al., 2018). Specifically, we propose a novel sampling pro-
cess that, given any pre-trained diffusion model, augments
the denoising step with a (weighted) projection step onto
the given constrained space. To exemplify the recipe of
using PRODIGY for generating desired graphs, we present
a novel framework to devise various graph constraints and
find efficient projection operators for them.

Figure 1 summarizes the motivation of our approach.
Through extensive experiments on 5 non-attributed and 2
molecular graph datasets, we showcase the superior per-
formance of PRODIGY in controlling the properties of
generated graphs, while preserving the distribution learned
by the underlying pre-trained diffusion model. PRODIGY
achieves up to 100% constraint satisfaction for constraints
on a variety of properties such as edge count, atom counts,
etc. on these datasets across 4 different diffusion models.
This performance is also observed in 3D molecule genera-
tion, thereby demonstrating the ability of our approach to
effectively handle complex structures. We further qualita-
tively demonstrate the versatile applicability of PRODIGY
through efficiency, sensitivity, and visual analysis.

2. Background & Related Work

Suppose G = (X, A) denotes an undirected graph with
attribute matrix X € R™*¥ and adjacency matrix A €

R™*™ where n = |V] is the number of nodes. A 3D
structure, on the other hand, can be defined as a point cloud
G = (X, S) with S € R™*3 denoting the positions of each
node in the 3-dimensional space. Let G denote the set of
all possible graphs for the structural cases and the set of all
point clouds for the 3D case. All vectors and matrices are
represented using bold lowercase and uppercase characters.
We also use 1 and 0 to denote an all-ones and an all-zeros
vector with the appropriate size for the usage, e.g., in A1, 1
denotes a n-dimensional vector.

Diffusion Models For Graphs. Denoising diffusion models
have demonstrated significant success in generating graphs
for various purposes (Niu et al., 2020; Jo et al., 2022; Yan
et al., 2023; Jo et al., 2023; Vignac et al., 2022; Chen et al.,
2023). They are based on the idea of learning to denoise
multiple noise-diffused versions of a given data to better
approximate an unknown target distribution. This allows
us to effectively generate novel graphs from the underlying
distribution by simply removing the noise from a fixed prior
distribution pp. In particular, given a graph Gg ~ pg (po
is not known), they transform it to a completely random
graph G ~ pr = N(u,X) or Ula, b] by following the
“forward” step for 7" times as

Gi11 < Forward(Gy, t,e(t)), (D

where () denotes a pre-defined noise at time ¢, e.g., £(t) =
w(t) € G would be a standard Wiener process on the graphs.
The noisy graphs {G;} are maintained to be discrete at all
time steps in the discrete diffusion models (Vignac et al.,
2022), while they are relaxed to the continuous space in the
continuous models (Niu et al., 2020; Jo et al., 2022).

To generate samples from the unknown data distribution py,
the forward process is reversed so that samples from the
prior distribution can be converted to the target distribution.
This is done by learning a parameterized neural network
so(G,t) = Vglogp:(G) in the continuous models and
so(G,t) =~ p:(G) in the discrete models. While a score-
matching objective (Song et al., 2020) is used to train the
former, one can simply use a cross-entropy loss to train the
sg for the discrete case. Then, they follow the “reverse”
step for T' time steps to generate a graph sample that likely
belongs to py, starting from a graph G ~ pr.

Gt—l — Reverse(Gt, SO(Gt7 t)a é(t)v t)? (2)

where £(t) denotes a pre-defined reverse-time noise at time
t,e.g., e(t) = w(t) € G would be a standard reverse-time
Wiener process on the graphs.

Appendix A provide a more detailed discussion on both
continuous and discrete diffusion models.

Conditional Generation of Graphs. Recent advance-
ments in diffusion models for graphs augment support for

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

conditioning the output of the generated graphs. They
operate by approximating a conditional probability dis-
tribution p(Gle) = p(Gle(G,y)). Typically, the con-
dition ¢(G,y) = 1{y.(G) = y}, ie., ¢(G,y) = 1if
y¥.(G) = y and 0 otherwise. Note that this does not
guarantee that ¢(G,y) will hold for the sampled output
G since it forms a cyclical Markov chain. To the best
of our knowledge, there have been sporadic attempts to
support control with diffusion models of graph generation,
and all existing works in this space fall under this cate-
gory of soft control. Conditional denoising models (Hooge-
boom et al., 2022; Xu et al., 2023) learn a conditional score
function sy (G, ¢) = V log p(G|c) and classifier-free guid-
ance (Ho & Salimans, 2022; Ninniri et al., 2023) learns
a joint model for both conditional and unconditional sam-
pling for a given control condition. Thus, each condition
type demands a unique model and cannot be used in a plug-
and-play manner for an unconditional model as it requires
retraining the model for a new control. On the other hand,
guidance-based diffusion methods (Vignac et al., 2022;
Graikos et al., 2022; Lee et al., 2023; Li et al., 2022; Song
et al., 2023) infer p(G/|c) from p(c|G) by using the fact that
Viogp(Gle) = s9(G) + Vlogp(c|G). This allows for
plug-and-play conditional control on pre-trained diffusion
models s¢(G) as long as we can approximate V log p(c|G).
When ¢(-) is not known, it is approximated by a classifier
Y. while when it is known, the property c is assumed to
be a differentiable function of G and y. Classifier-based
guidance requires labeled data along with capabilities to
train a classifier for every new control.

One can view the above approaches as providing soft con-
trol over the generated outputs. In real-world settings, it is
often crucial for practitioners to have precise control over
the properties of the generated graph, e.g., constraining the
number of Nitrogen atoms. This is an open and challeng-
ing problem where it is impossible to directly apply the
above-discussed approaches due to their requirements of
retraining, condition labels, and differentiability.

Controllable Generation of Graphs. Precise control on
the generated output can be formulated in terms of specific
well-defined constraints. A user-defined constraint function
¢(+) is characterized by its feasible set C such that ¢(G) = 1
if G € C and 0 otherwise. Thus, ¢(G) is non-differentiable.
One can view this as requiring a hard control over the gen-
erated outputs. To the best of our knowledge, no prior work
exists that can support graph generation under arbitrary hard
constraints from pre-trained diffusion models. Recently,
controllable generation of images have garnered attention
but the approaches there are not directly applicable to do-
main of graphs. Mirror diffusion models learn specialized
diffusion models to generate images under certain convex
constraint sets, particularly for watermark generation (Liu
et al., 2023). However, this does not provide plug-and-play

control for these constraints at test time. On the other hand,
Bar-Tal et al. (2023) enabled constraint-based control in im-
age diffusion models, but limit their focus to specific image
constraints such as panorama, aspect ratio, and spatial guid-
ing, by solving a specific optimization problem to match the
pre-trained sampling process in the constrained space.

Projected Sampling. In the literature, the theoretical ability
of projected/mirrored Langevin sampling to enable con-
strained sampling from underlying distribution has been
explored (Bubeck et al., 2018; Hsieh et al., 2018). However,
its effectiveness for deep learning-based diffusion models is
still unknown as the underlying distribution is approximated
from the training data, which would render sampling infea-
sible in uncertain domains. Furthermore, diffusion models
employ additional reverse-SDE dynamics on top of the sim-
ple Langevin sampling. Finally, efficient projections for
many graph-level constraints need to be derived for appli-
cation in this framework. In this work, we address all these
challenges by studying newly proposed variants of projected
sampling in the realm of modern diffusion models under a
set of practically-motivated graph constraints.

3. Problem Setup: Plug-and-Play Control

Given a set of training graphs G;,, C G (G is the set of all
possible graphs), the problem of graph generation involves
learning the underlying distribution pg of G, and sampling
from the learned distribution py to generate new graphs
{G} such that they mimic the training distribution py. In
this work, we consider the problem of controllable graph
generation, where the objective is to control the generative
process within a specified constraint’s feasible set, while
preserving the distribution py learned by the underlying dif-
fusion model. Concretely, we solve the following problem:

Problem 1. (Plug-and-Play Controllable Graph Gener-
ation) Given a constraint feasible set C C G and a pre-
trained unconditional graph generation model M trained
on some training set Gy, generate new graphs {G} ~ p§
such that p§ ~ po and]58 has support C.

Key Assumption: Model M may not be available for fur-
ther training nor do we assume access to training set Gy, or
the model parameters @ (M) as these are often not released
due to proprietary reasons (Ramesh et al., 2021; OpenAl,
2023). Thus, the proposed method is required to be flexible
to the choice of the the constraints, training graphs and the
underlying model (plug-and-play approach). Next, we dis-
cuss general class of constraints supported by our approach
and outline the particular instances studied in this work.

3.1. Constraints

We consider a wide range of arbitrary constraints with a fo-
cus on interpretability and minimal restrictions. Concretely,

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

our approach is able to handle any constraint of the form
C={G:h1(G) <0,ha(G) <0, ,h(G) <0}, with
efficient solutions of simultaneous equality.

As such, a practitioner may be interested in controlling the
generation with a variety of constraints on the structure and
the derived properties of the graph, depending on the down-
stream applications. To this end, we motivate our approach
by instantiating a set of constraints based on well-studied
graph properties in both non-attributed graphs (with appli-
cations to network design and efficiency) and molecules
(with applications to drug design). Below we discuss the set
of constraints' that we instantiate to provide the recipe of
our approach and further discuss extensions towards more
complex properties in Appendix C and E.2.

Non-attributed Graphs. A user may want to control the
number of different substructures in the graph (Tabourier
et al., 2011; Ying & Wu, 2009) since these represent differ-
ent aspects of real-world network design (Farahani et al.,
2013). We consider three such constraints outlined in Ta-
ble 1. Here, E, A denotes the edge set and the adjacency
matrix and tr(-) finds the trace of the given matrix. The
constants B, T, §; form the constraint parameters that can
be varied. In network design problems, Edge Count reflects
a budget on the total (unweighted) cost of roads, degree
measures network efficiency for the load on a node, and
triangle count measures the local clustering.

Table 1. Constraints studied for non-attributed graphs.

Edge | Number of edges |[E| = 117A1
Count < B for a given constant 5 > 0

Triangle | Number of triangles Ftr(A®)
Count < T for a given constant 7" > 0
Degree Degree of each node is bounded
g by a constant 04, i.e., Al < §41

Molecular graphs. Assume X denotes the one-hot encod-
ing of each node being a certain atom € {1,2,--- , F}. It
is often desired that the generated molecule is valid (Vignac
et al., 2022; Jo et al., 2022) and has some desired proper-
ties. Chemical descriptors (Todeschini & Consonni, 2008)
link molecular structure to its properties. At a base level,
a molecular structure is comprised of atoms X, their con-
nections A and 3D positions S € R™*3. Assuming hidden
Hydrogen atoms (Jo et al., 2022), Table 2 outlines three
such constraints of interest based on molecular structures.
Variables v, c, W, &y, & form the constraint parameters for
these and can be varied accordingly.

"'We note that this list comprises a representative and practical
set of constraints but not an exhaustive one — PRODIGY can handle
arbitrary constraints and we consider the current instantiations to
provide an extensive proof of concept of our approach.

Table 2. Constraints studied for molecular graphs.

Valency Given valencies v, degree is
at most valency, i.e., Al < Xv
Atom Number of atoms of each type is
Count bounded, i.e., XT1 < ¢, for counts ¢
Molecular | Total weight is bounded by W, i.e.,
Weight 17Xm < W, for atomic weights m
. Norm of the vector sum of the
Dipole . . .
Moment atomic chqrges Q is bounded, i.e.,
[STXQ|l2 € [€0,&1]

Existing sampling (Uncontrollable)

Denoise

T N N
'Grﬁl%(;f—-..., Q

Girain ~ Do ——> *=+

Figure 2. Comparison of existing and proposed projected diffu-
sion sampling methods for generating graphs under the given
constrained set C (e.g., number of edges is at most 12).

4. Proposed Method: PRODIGY

We propose PROjected DIffusion for controllable Graph
generation (PRODIGY), a plug-and-play sampling approach
that enables any (discrete or continuous), pre-trained
diffusion models for graph generation to generate graphs
that satisfy hard, interpretable constraints specified by
the user. Figure 2 provides an illustrative view of how
PRODIGY operates. One simple instantiation of our method
can be made by extending theoretical works in Mirrored
Langevin Dynamics (Bubeck et al., 2018; Hsieh et al., 2018)
to modern diffusion models by doing alternate denoising
and projection, i.e.,

~ 3
Gi_1 «— e(Gy—1),)

{ ét,l + Reverse(Gy, sg(Gy, t), &, t)
where Reverse the reverse process defined in Equation 2
with a pre-trained score function sy and the projection op-
erator Il¢, Ilc(G) = argmin, .||z — G||3. Figure 3 visu-
alizes the sampling process of PRODIGY (red) on GDSS
as compared to the original model (blue). Our approach en-
ables the baseline model to sample within the constrained ¢
ball while preserving the distribution learned by that model.

However, this simple solution is not optimal since a com-
plete projection to an arbitrary constraint feasible set during
sampling can destroy the smoothness of the learned reverse
process. This is because the denoised sample can be far
from the feasible set and the projection step can lead the
dynamics into a region of high uncertainty. To account for

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Table 3. Projection Operators for different constraints, given as Il¢(G) =

he(ou(G)) = 0. See Appendix B for proofs and extensions.

vo(Q) if he(po(G)) < 0 otherwise ¢, (G) such that

2D structure G = (X, A). X € [0,1], A € [0,1] or € [0,3], AT = A, Diag(A) =0
X

Constraint (C) Function (h¢) on oir
Edge Count %1TA1 -B X Ppo,1j(A — p117 /2 +1/2)
Triangle Count su(A%) —-T X 0,1](A — nA?/2)
Degree Al —441 X Pio,1)(A — %(ulT + 1puT) + Diag(p))
Valency A1 - Xv P,y (X) Proaj(A — 5(u1T 4 1p7) + Diag(p))
Atom Count XT1-c¢c Ppo1j(X —1p7) Ppo3(A)
Molecular Weight 1"Xm - W Ppo1)(X — p1mT) Ppo 3 (A)
3D structure G = (X, S). Attributes X € [0, 1], Positions S € R"*3
Constraint (C) Function (h¢) o o5
Dipole Moment & < [|STXQ]l2 < & X uS/|ISTXQ||2

@t=T/10 ()t=T/2 (©t=3T/4 (t=T

Figure 3. Sampling process of PRODIGY (red) versus existing
methods (GDSS (Jo et al., 2022), blue) at different diffusion
timesteps (¢) to generate points inside an /2 centered ball at the
origin and a radius of 0.1.

this, we propose to take a partial y; step from G,_1 towards

the feasible set. In particular, we consider PRODIGY(p) as
CN-‘rt,l « Reverse(Gy, sg(Gy, t), &, t) @
Gi1 (1 =) Gy + 9 e (Gi1),

where we consider two variants of +;. The first variant is
based on the distance, i.e., 7 = exp(—fdc(Gi—1)) :=
exp(—B||Gi—1 — e (Gy_1)]|2) for some B > 0, which
means we distort the original sampling process for constraint
satisfaction more if its distance to the feasible set is less and
vice versa. The second variant is based on the diffusion
timestep, i.e., 7+ = (1 — v)(t/T)? + 7o, giving more
preference to projection at the later timesteps.

Note that G;_1, thus obtained, has a graph structure with
continuous edge weights. For discrete models, we add a
rounding step G;_1 < Round(G;_1) to obtain a discrete
graph close to the feasible set after following the steps in
Equation 4. For the continuous models, we follow existing
works and round only at time 0. Rounding involves | A, j] |
for each element ¢, j to obtain the discrete adjacency matrix
and arg max; X[i] for the attribute of each node 1.

How do we get the projection operators, [1-? The pro-
jection operators I (G) efficiently transform a given graph
G to its closest counterpart that satisfies a given constraint
from the set of constraints discussed in Section 3.1.

4.1. Projection Operators

Consider a constraint of the form C = {Z = (Zx,Z4) €
G : he(Z) < 0} on the set of graphs. Then, the projection
operator is given as:

argmin 1| Zx—X[2+1|1Zsa—A3,)

(Zx,Z4)eg
he(Zx,Z4)<0

such that Zyxy € [Xm;)(]\/[]7 Z, € [Am,AA{], ZZ; =
Z,,Diag(Z4) = 0. This can be solved using the La-
grangian method, £(Zx,Za,he, A\, p) = 3[|Zx — X||3 +
31Za — All3 + po - he(Zx,Za) + p1 - (Zx — Xon) +
Mo (Xpr —Zx)+pz-(Za—Ap) +ps- (A —Za) +
Y isj Nij(Zali, j] = Zalj, i]) + 32, AiZ ali]. We apply the
Karush—Kuhn—Tucker (KKT) conditions (Kuhn & Tucker,
2013) and find closed-form solutions for Z x and Z 4. For
3D structures, we consider the positions S instead of A with
no additional constraints on Zg.

Table 3 lists the projection operators for different constraint
functions. Please refer to Appendix B for the complete
derivation of each case along with the computational com-
plexity. We note that for several constraints, he and p
are scalars. Thus, we solve for p in he(p,(G)) = 0 us-
ing the bisection method (Boyd et al., 2004). When h¢
(and thus, w) are vectors (as in the Degree, Valency, and
Atom Count constraints), we split h¢ into independent func-
tions hg) and solve for p; such that h(cz)(gom(G)) =0
using the bisection method. The split is done such that
if B (0, (G)) = 0 forall i € [1,M], then for p =
(1, p2, -+ i), he (o (G)) < 0. Thus, the obtained so-
lution would satisfy the constraint. For each constraint, ¢,,
involves matrix multiplication operations that can be effi-
ciently done by exploiting data batching and parallelization
of Pytorch (Paszke et al., 2019). Finding p is also efficient
as the bisection method converges in a logarithmic number
of steps and can exploit data batching strategies, thereby
making the entire approach highly efficient.

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

5. Experiments

To test the efficacy of our method, we ask and investigate
the following questions — (1) Can PRODIGY effectively
constrain the generation of non-attributed graphs from ex-
isting diffusion models? (2) Can PRODIGY constrain 2D
molecular graph generation from existing diffusion mod-
els? (3) How does PRODIGY compare against conditional
denoising models for complex 3D molecular properties?
(4) How does the PRODIGY sampling process affect the
distributional properties learned by the original model? (5)
How sensitive is our approach to its hyperparameters and
the given constraint’s parameters? (6) Can the generated
graphs be visually explained under different constraints? (7)
How time-efficient is the PRODIGY sampling process?

5.1. Setup

We briefly outline the experimental setup here and defer
more details to Appendix D.

Datasets. We consider five non-attributed graph datasets
including three real-world graphs: Community-small, Ego-
small, Enzymes (Jo et al., 2022), and two synthetic graphs:
SBM, Planar (Martinkus et al., 2022). We also use two
standard molecular datasets: QM9 (Ramakrishnan et al.,
2014), ZINC250k (Irwin et al., 2012).

Constraints. As noted in Section 3.1, we consider the
constraints of edge count, triangle count, and degree for
non-attributed graphs, while for molecular graphs, we use
the constraints of valency, atom count, and molecular weight.
Each constraint consists of an extrinsic constraint parameter
that we vary to take different values from the test set.

Diffusion models. We consider five state-of-art represen-
tative diffusion models for graph generation to show how
PRODIGY enables them to perform controlled graph gener-
ation: (1) Continuous model: EDP-GNN (Niu et al., 2020),
GDSS (Jo et al., 2022), DruM (Jo et al., 2023), (2) Discrete
model’>: DiGress (Vignac et al., 2022) and (3) 3D graph
generation model: GeoLDM (Xu et al., 2023).

Metrics. We assess the performance of our method to-
wards satisfying the given constraint and also report var-
ious distributional metrics. For the former, we consider
the proportion of generated graphs that satisfy the con-
straint, i.e., VAL¢(G) = % Y ,cn L[G; € C], where
we generate N different graphs {G;}. To evaluate the
distributional preservation under our approach, we find
how close the PRODIGY-generated graphs are to the test
graphs Gy as compared to the originally generated sam-
ples. In particular, we measure the closeness of graph
samples using the maximum mean discrepancy (MMD)

2We have omitted EDGE (Chen et al., 2023) due to unavailabil-
ity of the checkpoints on our datasets.

Table 4. Constrained graph generation of real-world datasets using
PRODIGY for different diffusion models and constraints. Hyper-
parameter values and raw MMDs are provided in Table 5.

. EDP-GNN GDSS DruM

Dataset Constraint
AMMD VAL AMMD VAL AMMD VAL¢
Communit Edge Count 0.07 0.52 —0.02 1.00 0.11 0.55
small ¥ Triangle Count —0.01 0.83 0.04 0.90 0.01 0.30
Degree 0.02 0.66 0.01 1.00 0.02 0.25
Eeo Edge Count 0.22 0.64 0.22 0.63 0.29 0.65
) &‘ll Triangle Count 0.02 0.98 —0.04 0.83 0.03 0.62
sma Degree 009 073 004 065 015 055
Edge Count —0.01 0.95 —0.32 0.82 0.04 0.77
Enzymes Triangle Count —0.32 1.00 0.03 0.96 0.03 1.00
Degree 0.00 1.00 0.23 1.00 0.08 0.80

metric between the two distributions (You et al., 2018).
We use the average of the MMD of degree, clustering co-
efficient, and orbit count between the graph sets. Then,
we find the distributional preservation as the difference
in MMD, AMMD := MMD(G/||G7) — MMD(G},|1GT),
where Gy, G}, denotes the generated graphs by the orig-
inal sampling and PRODIGY respectively. Furthermore,
for synthetic graphs, we also measure the V.U.N. metric
that quantifies the proportion of unique and novel gener-
ated graphs that are valid based on the underlying graph’s
property (Martinkus et al., 2022). For molecules, we use
the Fréchet ChemNet Distance (FCD) (Preuer et al., 2018)
instead of the average MMD and use A FCD as a measure
of distributional preservation, in addition to the molecular
validity and novelty metrics. Note that to measure the dis-
tributional metrics (i.e., A MMD and A FCD), we only
consider constraint-feasible test graphs since we want to
approximate the probability distribution with support C. All
the metrics are averaged over 3 random seeds with standard
deviations of < 0.05 in MMD and < 0.01 for the VAL.

Hyperparameters. We tune the hyperparameters to search
for the optimal ~; in Equation 4 to minimize the trade-off
between constraint satisfaction and distributional preser-
vation. In particular, we searched for the variables in-
volved in these two functional forms, particularly, 8 €
[0.1,1.0,10.0,100.0],v € [0,0.1],p € [0, 1, 5].

5.2. Constrained Non-Attributed Graph Generation

We first test the effectiveness of PRODIGY in sampling
constrained graphs from non-attributed real-world graph
distributions as trained by the three continuous diffusion
models: EDP-GNN, GDSS, and DruM. To this end, we con-
sider Edge Count, Triangle Count, and Degree constraints
and choose the constraint parameters (8,7, §4) such that
the constraint is satisfied by only 10% of the test graphs.
This means that the expected number of generated graphs
from a perfect unconditional generative model that satisfies
such constraints is only 0.1. Table 4 shows that PRODIGY
enables the pre-trained models to satisfy these hard con-

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

o
v
&

<

(a) Community-small (|E| < 21)

(b) Planar (|E| < 177)

(c) SBM (|E| < 700)

Figure 4. Visualization of different graph datasets under the Edge Count constraint using DruM as the base diffusion model. We can note
that the graphs are much sparser than those in the train dataset due to the constraint enforcement using PRODIGY.

Table 5. Raw average MMD scores and hyperparameters for the results on non-attributed real-world graph datasets. We also include the
results for the graphs generated by base diffusion models to note any bias towards the constraint in the learned distribution. “+PRODIGY”
indicates the diffusion model sampled using PRODIGY sampling. Note that poly(a, b) = (1 — b)t* + b.

Community-small Ego-small Enzymes

k7 Avg.l VALc T Vt Avg.l VALc T Y Avg.] VALc T

EDP-GNN 0.18 043 023 023 0.08 056
+PRODIGY exp(—de) 026 0.52 exp(—de) 002 0.64 0.01 0.08 095

Edge "~ Gpgs 0.19 030 027 018 021 005
Count ,pRODIGY exp(—dc) 0.21 1.00 exp(—de) 0.05 0.62 poly(0,1) 054 0.82
DruM 042 025 040 0.10 0.16 029
+PRODIGY exp(—dc) 0.31 0.55 exp(—dc) 0.11 0.65 exp(—de) 0.19 0.77
EDP-GNN 0.18 070 0.05 0.66 0.08 0.64
+PRODIGY exp(—100d¢) 020 0.83 exp(—10de) 0.03 098 0.01 0.39 1.00
Tga“gle GDSS 019 070 002 0580 016 003
ount |pRODIGY exp(—0.1de) 0.14 0.90 exp(—de) 006 082 poly(0.1,5 0.3 0.96
DruM 042 030 0.12 048 0.02 1.00
+PRODIGY exp(—dc) 040 030 exp(—10dc) 008 062 exp(—de) 006 1.00
EDP-GNN 0.18 055 012 036 0.08 052
+PRODIGY exp(—100dc) 0.16 0.66 exp(—de) 003 073 0.01 0.08 1.00

Degree GDSS 0.19 0.0 013 032 0.14 040
+PRODIGY exp(—d¢) 017 1.00 exp(—de) 009 065 poly(0,1) 036 1.00

DruM 042 025 023 020 0.16 021
+PRODIGY exp(—dc) 0.40 0.25 exp(—10dc) 0.08 0.55 exp(—de) 0.07 0.80

straints across different datasets by achieving constraint
validity of up to 100% in the generated graphs and over
50% in all but 2 cases. Notably, this is achieved without
deviating from the learned distributional properties, as A
MMD either improves (+ve values in the table for A MMD)
or remains similar, only decreasing slightly in some cases.
We also provide a comparison of the raw metrics in Table 5
between the original and PRODIGY sampling along with
the ~; parameters used for each case.

Next, we study the effect of PRODIGY to constrain the
generation in non-attributed synthetic datasets. Since EDP-
GNN and GDSS show almost zero V.U.N. numbers on these
datasets (Jo et al., 2023), we use more recent models, such
as DruM and the discrete DiGress model for this experi-
ment. Using a similar setup as above, Table 6 shows that
PRODIGY enables the validity of different constraints (at
least 70%) in these datasets while generating graphs that
have a V.U.N. of over 50%. We observe a significant en-
hancement in the Planar dataset as we not only obtain high
constraint validity but this happens with minimal change
in the MMDs and a V.U.N. of up to 98%. Further, results
on DiGress show that PRODIGY can be effectively used to

Table 6. Constrained graph generation of synthetic datasets using
PRODIGY for difterent diffusion models and constraints. Hyper-
parameter values and raw MMDs are provided in Appendix E.1.

Dataset Constraint DruM DiGress
AMMD V.UN. VaLe AMMD V.UN. VAL
Edge Count —0.28 0.38 1.00 0.01 0.60 0.65
SBM Triangle Count ~ —0.29 0.58 1.00 0.00 0.62 0.85
Degree —0.09 0.43 0.90 0.00 0.65 0.58
Edge Count —0.08 0.80 1.00 0.00 0.88 0.75
Planar ~ Triangle Count ~ —0.00 0.98 1.00 —0.00 0.75 1.00
Degree —0.02 0.92 0.70 0.00 0.70 0.75

constrain generation in discrete models.

We also evaluate the constrained graphs qualitatively un-
der the Edge Count constraint on DruM. As the number
of edges is bounded, the graphs are likely to be sparse
and smaller. Figure 4 shows this is indeed the case for
Community-small, Planar, and SBM. We provide visualiza-
tions on other datasets and constraints in Appendix E.3.

5.3. Constrained 2D Molecular Graph Generation

In this section, we test PRODIGY’s effectiveness in con-
straining 2D molecular graphs from existing diffusion mod-

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Table 7. Constrained 2D molecule generation using PRODIGY for different diffusion models and constraints. OOTM denotes that model
checkpoints for these datasets were not provided in the original paper and we ran into out-of-memory error while training them from
scratch. * The original models give low novelty on these datasets as well. For more details, see Appendix E.1.

" EDP-GNN GDSS DruM DiGress
Dataset Constraint

Val.% Novel% AFCD VALe Val.% Novel% AFCD VaLe Val% Novel%* AFCD VaLe Val% Novel%* AFCD VALc

Valency 96.29 76.68 —0.08 0.96 99.83 82.74 —0.35 0.99 100.00 22.6 —2.65 0.99 99.66 26.94 5.90 1.00

QM9 Atom Count 98.06 54.36 2.97 1.00 95.02 67.67 5.68 1.00 100.00 15.9 7.32 1.00 99.84 30.05 0.94 0.65

Mol. Weight 28.91 70.05 13.28 0.17 99.95 81.14 12.92 0.53 100.00 23.6 -3.71 0.65 99.84 34.90 —0.06 0.33
Valency OOTM OOTM OOTM OOTM 99.88 100.00 —-15.75 0.99 100.00 100.00 —5.62 098 OOTM OO0TM OOTM OOTM
ZINC250k Atom Count OOTM OOTM OOTM OOTM 96.90 100.00 3.77 0.99 99.97 99.99 22.91 1.00 OOTM OO0T™M OOTM OOTM
Mol. Weight OOTM OOTM OOTM OOTM 97.66 100.00 —1.00 0.63 100.00 99.60 0.19 0.26 OOTM OOT™M OOTM OOTM

> 4
e -

(a) QM9

)

/j (
Rela

(b) ZINC250k

;

Figure 5. 2D molecules generated under the Atom-Count con-
straint that allows only Carbon and Oxygen atoms from the DruM
diffusion model. We pick the molecules based on the maximum
Tanimoto similarity (Tanimoto, 1958) with the test set.

els. We consider all four diffusion models and constraints
of valency, atom count, and molecular weight. For the va-
lency constraint, we consider the valencies C4N502F; in
QM9 and C4N305F;P5S5ClBr1; in ZINC250k. For the
Atom Count, we constrained the generated molecule to only
contain C and O for both QM9 and ZINC250k. Lastly, we
constrain the molecular weight of the generated molecules
to be within the lower 10-percentile range of the test set.

Table 7 shows PRODIGY’s impact on the generation of
these molecules under different constraints and diffusion
models. PRODIGY provides a high constraint validity in
all the cases except for molecular weight in some models.
Furthermore, this is achieved with minimal change in the
distributional metric of FCD, which we improve in many
cases. Figure 5 visualizes the generated molecules under the
Atom Count constraint and we find that they only contain
C and O. We further also investigated the failure cases in
molecular weight by first noting that the hyperplane pro-
jection in this constraint tends to a solution with negative
values in the X. We find that adding a trivial lower bound
helps to achieve a higher validity in all cases than 0.1, as
expected by a perfect unconditional model. But the numbers
are still lower than what we achieve for the other constraints
and we leave further improvement as future directions.

5.4. 3D Molecule Generation for Complex Properties

Here, we evaluate if PRODIGY is effective in generating 3D
molecules under constraints on their dipole moment (as for-

Table 8. Comparison of PRODIGY against specially-trained con-
ditional denoising models for 3D molecule generation with con-
straints on dipole moment j4,,. Atom. and Mol. Stability (%)

denotes atomic and molecular stability.
Atom. Stability (%) T Mol. Stability (%) T MAE piam 4

EDM (}t4y,-conditional) 98.7 82.0 1.11 (0.04)
GeoL.DM (f14y,-conditional) 98.9 89.4 1.10 (0.04)
GeoLDM (unconditional) + PRODIGY 98.9 89.4 0.00 (1.15)

mulated in Sections 3.1, 4.1). We consider a 3D latent diffu-
sion model, GeoLDM, that learns a diffusion process in the
latent space of node types L§°“PM and positions LEgLPM,
Here, instead of projecting in the graph space, we directly
project these embedded values to the constrained space in-
stead of extracting the X and S from them respectively.
Here, we had assumed that if the constraint is satisfied in
the latent space, it will also be satisfied in the original space.
Since it is hard to find a dipole moment from just the struc-
ture, we first formulate a simple proxy for it and constrain
this estimation in the latent space. In particular, we assume
that the induced charge for a particular atom type is fixed
and does not depend on the surrounding structure. Then, the
dipole moment is given as i, = ||S(i)TX(7)Q*||2. We
consider the charges as learnable parameters that are found
by minimizing the ¢; loss between the actual p4,,, and fig,
on the training set.

We then use PRODIGY on a 3D unconditional Ge-
oLDM (Xu et al., 2023) for QM9 while constraining the
estimated dipole moment. Following existing works on con-
ditional denoising models (Hoogeboom et al., 2022), we
chose the constraint parameters [y, ;] such that the esti-
mated dipole moment lies within one standard deviation
from the mean of the 2nd half of the training set. Table 8
shows the MAE of the generated molecules = (1 — VAL¢)
along with the bias of the predicted model, i.e. MAE (y,
[lam), in the parentheses. We note that even though our sim-
ple approximation of the dipole moment is highly biased,
our effective constraint satisfaction during sampling enables
unconditional models to give competitive errors to models
that are specifically trained for the dipole moment. Thus, we
can match the performance of state-of-the-art conditional
models without requiring retraining of the diffusion models.

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

—8— v, =exp(-1.0 d¢) v =exp(-0.1 d¢)

—m— , =exp(-10 d¢) —#— v, =exp(-100 d¢)

ry 1.00 0.04 %, 1.00 A+ 0.04 1.00 %
0.00 /+\ | %
o———iNe# 09 0.02{¢ 0.05] oon 0.99
_00s{ 7 Nk . R
g - / L o 0.98 g 0.00 ‘)" ™ o g o\ o 0.98
z s T H ri 3 0.90 Z 000 \ s ®
4-010 ~ 097 —0-02 oo a " = 097
o -
+/ 0.96 —0.04 0.85 ~0.02 \ 5l oos
~0.151{% o0 +-+ ¢,<
0.951# - 0.80 {4 -0.04 +| 095 ‘
20 30 40 50 60 20 30 40 50 60 50 100 150 50 100 150 6 8 10 6 8 10
Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter
(a) Edge Count (b) Triangle Count (c) Degree
—— y=t"1 7 =t"5 —a— 7,=0.9t71+0.1 —— 7 =09t"5+0.1
1.0 e —_— 1.0 — e
0.10 ek ’x'?‘/.i/ Attt LR e % X ,'\7t'
005 //‘§ 0.9 * ¥ 0.025 A7N 0951 ¥ 0.050 M 0 [\¥
000 +/ % osle 0000 0,901 0.025 ot /
g \+=g:+ s \' + 2 -0.025 so8s] | o oovofeck +/./ Zon
: -0.05 //‘ VA 0.7 \ 2 om0 S 080 2 oo : & g o
-0.10 H : : -
o 0.6 —0.075 0.75 ~0.050 \2~e-¢)
-015 0.5 ~0.100 0.70 1+ -0.075 \ U 05
—0.2012 + -0125 0.65 -0.100 L1 041 +
20 30 40 50 60 20 30 40 50 60 50 100 150 50 100 150 6 8 10 6 8 10
Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter Constraint Parameter
(d) Edge Count (e) Triangle Count (f) Degree

Figure 6. Comparison of PRODIGY at different hyperparameters and constraint parameters in generating Community-small graphs for
different constraints. The upper row compares distance-based scheduling of v, while the lower row compares time-based scheduling.
Note that the lack of a data point is when sampling leads to a trivial solution of zero edges or an empty graph.

5.5. Flexibility of PRODIGY

Our method allows for an arbitrary constraint satisfaction
(i.e. for any constraint parameter) and an interpretable tun-
ing hyperparameter ;. Figure 6 compares PRODIGY with
different hyperparameters for a range of constraint parame-
ters belonging to the test set. This shows that our method
can support a wide range of constraint parameters with ap-
propriate tuning of the y; values. As mentioned in Section 4,
v¢ can control the tradeoff between preserving the distri-
butional statistics and the validity of the given constraint.
For example, giving more weight to smaller distances can
be effective in more constrained settings (i.e., smaller con-
straint parameter value), while a higher weight may be more
effective in less constrained settings. Similarly, a slowly
growing 7, may be more effective in preserving the statistics
but comes at the cost of low constraint validity.

5.6. Running Time

We show that the PRODIGY sampling time is similar to the
original sampling time for different constraints and datasets
for GDSS while noting similar trends in other diffusion
models. In particular, Table 9 reports the sampling time
taken per diffusion timestep. This shows that the projection
step doesn’t change the scale of the diffusion sampling
and the time taken is mostly minimal as compared to the
denoising step. This is expected from the linear/logarithmic
time complexity of these projection operators that were
proved in Table 3 and Appendix B.

Table 9. Time taken (in seconds) per diffusion timestep. * denotes
the time taken by the original (unconstrained) GDSS sampling.

Original®* Edge Count Triangle Count Degree
Community-small 0.47 0.58 0.51 0.57
Ego-small 0.04 0.13 0.07 0.13
Enzymes 0.07 0.41 0.11 0.22

6. Discussion and Conclusion

We proposed PRODIGY, the first plug-and-play approach
to controllable graph generation with diffusion models. Our
work enables precise control of the graph generation pro-
cess under arbitrary well-specified and hard constraints,
thereby making it applicable to a wide range of real-world
applications including network design and drug discovery.
PRODIGY supports hard, non-differentiable constraints,
does not require model retraining, and does not depend
on additional labeled curated datasets. We hope that this
opens future research avenues for enabling interpretable
control in the generative models across different domains.
Future directions include extending our method to enable
control of more complex non-linear properties of the graphs,
e.g. GNN-based molecular property prediction, and we dis-
cuss some first steps in more detail in Appendix C. Finally,
we also believe there is a lot of scope for future works to
provide controlled generation for precise control in latent
diffusion models. Since the constraints will be provided in
the graph space, it is not clear how should one constrain the
corresponding latent variables to ensure their satisfaction.

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

This work is supported in part by NSF grants CNS-2154118,
11S-2027689, ITE-2137724, ITE-2230692, CNS-2239879,
Defense Advanced Research Projects Agency (DARPA)
under Agreement No. HR00112290102 (subcontract No.
PO70745), and funding from Microsoft, Google, and The
Home Depot. We also appreciate the valuable feedback of
the anonymous reviewers which has helped us to improve
the quality of our exposition.

References

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313—
326, 1982.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981-17993, 2021.

Bar-Tal, O., Yariv, L., Lipman, Y., and Dekel, T. Multi-
diffusion: Fusing diffusion paths for controlled image
generation. arXiv preprint arXiv:2302.08113, 2, 2023.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Bubeck, S., Eldan, R., and Lehec, J. Sampling from a
log-concave distribution with projected langevin monte
carlo. Discrete & Computational Geometry, 59(4):757—
783, 2018.

Chen, X., He, J., Han, X., and Liu, L.-P. Efficient and degree-
guided graph generation via discrete diffusion modeling.
arXiv preprint arXiv:2305.04111, 2023.

Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., and Rashidi,
H. A review of urban transportation network design

problems. European journal of operational research, 229
(2):281-302, 2013.

Graikos, A., Malkin, N., Jojic, N., and Samaras, D. Diffu-
sion models as plug-and-play priors. Advances in Neural
Information Processing Systems, 35:14715-14728, 2022.

Grover, A., Zweig, A., and Ermon, S. Graphite: Iterative
generative modeling of graphs. In International confer-
ence on machine learning, pp. 2434-2444. PMLR, 2019.

10

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In

International conference on machine learning, pp. 8867—
8887. PMLR, 2022.

Hsieh, Y.-P., Kavis, A., Rolland, P., and Cevher, V. Mirrored
langevin dynamics. Advances in Neural Information
Processing Systems, 31, 2018.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757-1768, 2012.

Jo,J., Lee, S., and Hwang, S. J. Score-based generative mod-
eling of graphs via the system of stochastic differential
equations. arXiv preprint arXiv:2202.02514, 2022.

Jo, J., Kim, D., and Hwang, S. J. Graph generation with
destination-driven diffusion mixture. arXiv preprint
arXiv:2302.03596, 2023.

Kuhn, H. W. and Tucker, A. W. Nonlinear programming.
In Traces and emergence of nonlinear programming, pp.
247-258. Springer, 2013.

Lee, S., Jo, J., and Hwang, S. J. Exploring chemical space
with score-based out-of-distribution generation. In Infer-
national Conference on Machine Learning, pp. 18872—

18892. PMLR, 2023.

Li, X., Thickstun, J., Gulrajani, 1., Liang, P. S., and
Hashimoto, T. B. Diffusion-Im improves controllable
text generation. Advances in Neural Information Process-
ing Systems, 35:4328-4343, 2022.

Liu, G.-H., Chen, T., Theodorou, E. A., and Tao, M. Mir-
ror diffusion models for constrained and watermarked
generation. arXiv preprint arXiv:2310.01236, 2023.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning, pp. 15159—

15179. PMLR, 2022.

Ninniri, M., Podda, M., and Bacciu, D. Classifier-free graph
diffusion for molecular property targeting. arXiv preprint
arXiv:2312.17397, 2023.

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474-4484. PMLR,
2020.

OpenAl. Gpt-4 technical report, 2023.

Parikh, N., Boyd, S., et al. Proximal algorithms. Founda-
tions and trends® in Optimization, 1(3):127-239, 2014.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736—
1741, 2018.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
0. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-
to-image generation. In International Conference on
Machine Learning, pp. 8821-8831. PMLR, 2021.

Schomburg, 1., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments. Nucleic
acids research, 32(suppl_1):D431-D433, 2004.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 29(3):93-93, 2008.

Song, J., Zhang, Q., Yin, H., Mardani, M., Liu, M.-Y.,
Kautz, J., Chen, Y., and Vahdat, A. Loss-guided diffu-
sion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp.
32483-32498. PMLR, 2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

11

Tabourier, L., Roth, C., and Cointet, J.-P. Generating con-
strained random graphs using multiple edge switches.
Journal of Experimental Algorithmics (JEA), 16:1-1,
2011.

Tanimoto, T. T. Elementary mathematical theory of classifi-
cation and prediction. 1958.

Todeschini, R. and Consonni, V. Handbook of molecular
descriptors. John Wiley & Sons, 2008.

Vignac, C., Krawczuk, 1., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wu, F, Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861—
6871. PMLR, 2019.

Xie, S., Kirillov, A., Girshick, R., and He, K. Exploring
randomly wired neural networks for image recognition. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1284-1293, 2019.

Xu, M., Powers, A. S., Dror, R. O., Ermon, S., and Leskovec,
J. Geometric latent diffusion models for 3d molecule gen-
eration. In International Conference on Machine Learn-
ing, pp. 38592-38610. PMLR, 2023.

Yan, Q., Liang, Z., Song, Y., Liao, R., and Wang, L.
Swingnn: Rethinking permutation invariance in dif-
fusion models for graph generation. arXiv preprint
arXiv:2307.01646, 2023.

Yang, N., Wu, H., Yan, J., Pan, X., Yuan, Y., and Song, L.
Molecule generation for drug design: a graph learning
perspective. arXiv preprint arXiv:2202.09212, 2022.

Ying, X. and Wu, X. Graph generation with prescribed
feature constraints. In Proceedings of the 2009 SIAM
International Conference on Data Mining, pp. 966-977.
SIAM, 2009.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708-5717. PMLR, 2018.

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Appendix
A. Diffusion Models

A.1. Continuous Diffusion

Continuous-time diffusion models have demonstrated significant success in generating graphs for various purposes (Niu
et al., 2020; Jo et al., 2022; 2023). These models are based on the idea of smoothly diffusing an unknown target distribution
towards a fixed noise distribution (typically Gaussian) so that one can reverse it back to sample true data from noise.
Given a graph G(0) ~ pg, the method follows a ‘forward SDE’ to gradually convert the graph into Gaussian noise, i.e.,
G(T) ~ pr = N(p,X), for a fixed p, X.

dG = f(G, t)dt + g(t)dw, (6)

where f : G x t — G is the drift coefficient, g : R — R is the diffusion coefficient, and w(t) € G is a standard Wiener
process. In order to generate samples from the unknown data distribution p, the forward process is reversed so that samples
from the prior distribution can be converted to the target distribution. (Anderson, 1982) shows that the reverse process can
be given as:

dG = [f(G,t) — g(t)*V g log pi(G)]dt + g(t)dw, (7)

where w is a reverse-time standard Wiener process and p; denotes the marginal distribution of G; at time-step ¢.
Ve log p:(G) is called the score function at time ¢.

Since the time-conditional score function is not available for an unknown distribution pg, one estimates it with a parameterized
neural network so(G, t) = Vg log p:(G) by minimizing a score-matching objective across multiple time steps and training
samples. EDP-GNN (Niu et al., 2020) ignores the diffusion process of X and samples directly from the prior distribution
of X. GDSS (Jo et al., 2022) considers a system of SDEs to efficiently estimate score functions for X and A separately.
DruM (Jo et al., 2023) models the graph topology by conditioning the process on the destination data distribution using a
mixture of Ornstein-Uhlenbeck processes. These models have also been proposed to predict structures in the 3-dimensional
space by generating the positions S and types of each node in the 3D space (Hoogeboom et al., 2022; Xu et al., 2023).

A.2. Discrete Diffusion

Discrete-diffusion models have been recently proposed to model discrete structures such as graphs directly by diffusing
with a discrete noise (Austin et al., 2021; Vignac et al., 2022). Each node and edge of a graph is assumed to have a fixed
number of states and the model learns a categorical probability distribution for each node and edge. For example, node
states can denote different atom types in a molecule, while edge states can denote whether a connection is a single, double,
or triple bond. In particular, we consider the graph G = (X, E) to be a multivariate random variable that has a categorical
probability distribution in each variable.

The ‘forward step’ here corresponds to adding a pre-defined multivariate categorical noise to a given graph G followed by
sampling from the updated probability distribution. This maintains that the noisy graph obtained at each step is a discrete
graph structure. We repeat for 7' steps until we obtain a uniform distribution over these categories. The ‘reverse step’
then corresponds to retrieving the original graph after multiple rounds of denoising, starting from a random graph that is
uniformly distributed over the categories. DiGress (Vignac et al., 2022) assumes an independent distribution of each node
and edge at each step and learns it using a Graph Transformer. Then, it uses this distribution to find the posterior distribution
given the graph in the previous time step.

B. Projection Operators

In this section, we discuss projection operators for the constraints mentioned in Table 3. We first solve for <p;:‘ = 7% and
@, = Z%. Then, we propose a way to solve h¢ (¢, (G)) = 0. Further, we replace 1o with g in the Lagrangian without
loss of generality.

KKT conditions. The optimal solution Z* for the problem must satisfy the following conditions:

1. Stationarity. VzL|z+ =0 = Z% — X + pwoVz, he(Z%,Z%) + p1 — p2 = 0 such that Z%, € [X,,, X /] and
Z* — A + poVz, he(Z%, Z%) + s — pa + A = 0 such that Z%, € [A,,, Ay and Afi,] = \;j if i > j, A; if

12

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

i = j, and —\;; otherwise. It is hard to solve this system of equations simultaneously as Vh¢ can be non-linear so we
assume either Vz , he(Z%,Z%) = 0 or Vz, he(Z%,Z%) = 0 depending on the form of h¢e (X, A).

2. Primal and Dual feasibility. o, pt1, o, i3, e > 0, he(Z%,Z%) < 0, Z% € X, Xum], Z% € [An, Ap),
(ZE)T =177, Diag(Zjﬁ‘) =0.

3. Complementary Slackness (CS). pohc(Z*) = 0, p1(Z% — X)) = 0, po(Xpr — Z%) = 0, p3(Z% — A,,) = 0,
pa(Ay —7Z%) =0.

First, we note that pohe(Z*) = 0, po > 0, and he(Z*) < 0 imply that if he (Z*(po = 0)) < 0 then g = 0 otherwise
we find pp > 0 such that he(Z*(pg)) = 0.

We also note that p1; » can be replaced by a clamp operation P, that clamps Z% within [X,,,, X/]. This is because if a
certain entry of Z% is within the range, then, the corresponding 1 = 0 (due to CS), and if not, we add/subtract a ;x > 0 such
that Z% = X,,, or X7 (CS). Similarly, we also note that p¢3 4 can be replaced by a clamp operation that clamps Z7 within
[A, Ayl

Thus, we can find Z% and Z7% as II¢(G) = ¢o(G) if he(po(G)) < 0, otherwise ¢, (G) such that he (¢, (G)) = 0. Here,
ou = (5, ©1,) can be found for the following two cases:

1. Vz,he(Z%,Z%) = 0: We get Z* = Pla, a,,](A — A) such that (Z%)" = Z%, Diag(Z?) = 0. We assume that the
input A is undirected and has no self-loops, then, A = 0 would be feasible. Thus, we get Z% = /1 (G) = Pla,, a,,(A).
We can find <pff by solving for Z% in the equation Z% + poVz, he(Z%, Z%) = X and then, clamping it within [X,,,, Xa].

2. Vg, he(Z%,Z%) = 0: We get Z% = ¢\ (G) = Pix,, x,,](X). We can find @ﬁ by solving for Z% in the equation
Z% + moVz, he(Z%,Z%) + A = A and then, clamping it within [A,,, A /], while satisfying (Z*)7 = Z* and
Diag(Z%) = 0.

B.1. Edge Count ([E| < B)

Find ©,,. We have he(Zx,Z4) = he(Za) = 317241 — B, Z4 € [0,1],Diag(Z4) = 0,Z% = Z 4. Then, we can
note that Vz, he = 0. Thus, we solve for Z*% in Z% + uVz,he(Z%) + A = A. Since Vz,he = 5117, we get
Z3 = A — £117 — A, Satisfying Diag(Z%) = 0, (Z’A)T = Z% (given these conditions hold for A) implies A;; = —1/2
and A;; = Aj; = 0. In other words, A = I/2. Thus, Z* = A — /2117 + 11/21 followed by clamping between [0, 1].
Find p. To find p, we can do a bisection method between max{0,2(min(A) — 1)} and 2max(A). This is because
117 P 41(A — (min(A) — 1)117 + (min(A) — 1))1 = (V1) > Band 117 P (A — max(A)117 + max(A)I)1 =
11701 =0< B.

Complexity. The bisection method finishes in O(log(max(A) — max{0, (min(A) — 1)})/¢) = O(log(%)) for a tolerance

level &, since A € [0, 1]. Finding Z* involves only matrix operations (addition) that have been highly optimized in Pytorch
with the worst-case time complexity of O(n?). Thus, we get the time complexity of the projection operator as O(n? log(%)).

B.2. Triangle Count (|A| = tr(A3) < T)

Find ¢, We have he(Zx,Z4) = he(Za) = te(Z3) — T, Z4 € [0,1],Diag(Z4) = 0,Z% = Z 4. Then, we can
note that Vz, he = 0. Thus, we solve for Z* in Z% + uVz,hc(Z%) + A = A. Since Vz,he = 1Z2, we get
7% + 5(2%)* + A = A. Satisfying Diag(Z%) = 0, (Z*)" = Z* (given these hold for A) implies A = 0. Thus,
7y + %(ZZ)Z = A. Let us assume Z* ~ A?, i.e., the squared values do not change a lot after projection. Then, we get
Z, ~A—LA2

Find p. We will find for ;1 using the bisection method here as well. But it is non-trivial to obtain two points for which
+tr(Pio.1)((A — £A?)3) — T have opposite signs. Thus, we assume that one such point is 11 = 0 and search for the first
point > 0 with an opposite sign using a linear search from g with a fixed step size s. Then, we apply the bisection method
between 0 and the new point ; found using the linear search.

Complexity. Linear search computes Z* for (u; —0)/s times to compare with value at ¢ = 0. The bisection method finishes
in O(log(p1/€)) time. Again, finding Z* involves only matrix operations (addition) that have been highly optimized in

13

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Pytorch with the worst-case time complexity of O(n?). Thus, we get the time complexity of the projection operator as

O(n?(p1/s 4 log(p1 /€))).

B.3. Degree (dpax = Al < 641)

Find ¢,,. Wehavehe(Zx,Z) = Za1—-041,Z 4 € [0,1],Diag(Z4) =0, Z% = Z 4. Then, we can note that Vz, he = 0
and we solve for Z* in Z* +p-Vz ,he(Z%)+A = A. Inother words, for each row i, we get Z% [i,:] = Ali,:]—pu;1—AJi, ;]
since VzAhg) = 1. Due to symmetricity, we obtain A[i, j] — u; — Af¢, j] = A[j,] — p; — A[j,] for all ¢, j, which gives
us p; + Al j] = p; + A[j,4]. We can thus let A[i,j] = 1(u; — ;) for all i # j. For the diagonal entries, we want
Ali,i] = —p; so that Z* has no non-zero diagonal entries. Thus, we get Z% = A — 1(p1” + 1) + Diag(p) followed
by clamping between [0, 1].

Find p. Since he is a vector function, we cannot find its root using the bisection method. Instead, we divide he(¢,,) =0
into multiple equations Eél) (¢u,) = 0 that we can solve independently such that the root fi obtained by concatenating these
fi;s satisfies he(¢p) < 0.

In particular, we can just solve each row p;’s equation separately and add it later to satisfy the symmetricity. Thus, we have to
solve for fi; > 0 such that 17 Pjg 17(A[i,:] — fi;1) = &4. Thus, we solve for fi; for all i and use it to find fz using the bisection
method between max{0, 2(min(A[z,:]) — 1)} and 2max(A[i, :]) (due to the same logic as for Edge Count constraint). Note
that if 17 Pyg 1)(A[i, :] — f1;1) = 64, then 17 Pjg 17(A[i,:] — (fi; + €)1) < d4, for all € > 0, because (fi; + €) > fi; and it is
a decreasing function. We have ¢; to be fi; for different columns j. Thus, Py (A — (17 + 147) + 2Diag(f))1 < d,41.

Complexity. We solve n different equations using the bisection method in time O(log(%)) as A € [0, 1]. Note that this can
be done in a parallel manner by using the Pytorch functionalities. Again, finding Z* involves only matrix addition that has
been highly optimized in Pytorch with the worst-case time complexity of O(n?). Thus, we get the time complexity of the
projection operator as O(n? - nlog(1/£)) = O(n?log(1/£)).

B.4. Valency (A1 < Xv)

Here, we fix X and let Xv = u denote the weighted valency of each node in the graph. Then, the constraint becomes
similar to the Max Degree constraint and we follow the same steps to find Z* = A — 1(p17 + 1) + Diag(p) except
now, we clamp within [0, 3] since it’s a molecular graph and clamp X within [0, 1] as well.

B.5. Atom Count (X1 — ¢)

Find p,,.. We have h¢(Zx,Z4) = Z%1 < c,Zx € [0,1]. Then, we can note that Vz h¢(Zx,Z4) = 0 and for each
column or atom type in X, we get Z%[:, j] = X[;, j] — ;17 since Vz, he = 1. Thus, we get Z% = Pjo 1)(X — 1p7).
Find p. Since h is a vector-valued function, we cannot obtain its root w.r.t. p directly using the bisection method. However,
we make another observation that allows us to do that. In particular, h¢(¢,) = 0 can be divided into F' independent
equations such that k. satisfies the jth column (Z%:,j] — p;17)1 = ¢;. This can be solved independently for each j
using the bisection method between [max {0, min; (X;;) — 1}, max;(X;;)] as Y, Pjo,1)(Xi; — max;(X;;)) = 0 < ¢; and
22 Po,1 (Xij — ming (Xij) +1) = [V = ¢;.

Complexity. We solve F different equations using bisection method with log(%) steps each, as X € [0, 1]. Further, <pff only

involves a matrix addition that is almost constant in Pytorch with worst-case complexity of O(n?). The total complexity
thus, becomes O(n?F log(%)).

B.6. Molecular Weight (17 Xm <)
Find ¢,. We have he(Zx,Zs) = he(Zx,Zs) = 1T"Zxm < W, Zx € [0,1]. Then, Vz,hc = 0 and
Vzyhe(Zx,Z4) = 1mT, which gives us Z% = X — 1u’ followed by clamping within [0, 1].

Find p. 1t is non-trivial to find two end-points between which we can conduct the bisection method for 1TP[0’1] (X -
1T)m = W. Thus, we assume that one such point is ¢ = 0 and search for the first point > 0 with an opposite sign using a
linear search from p with a fixed step size s. Then, we apply the bisection method between 0 and the new point i, found
using the linear search.

14

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Complexity. Linear search finds goff for py /s different values of p. This is followed by a bisection method that finishes in
O(log(u1/£)) steps. Computing gal)f involves just matrix addition that has been highly optimized in Pytorch with worst-case
complexity of O(n?). Thus, the total time-complexity of the projection operator can be given as O(n?(u1/s + log(p1 /€))).

B.7. Dipole Moment (||S”XQ]2 € [£0,&1))

A 3D molecular structure can be described as (X, S), where S € R™*3 denotes the positions of each atom in the 3-
dimensional space from the center-of-mass origin. In addition to this structure, one also requires other quantitative
measures such as atomic charges to calculate molecular properties. Let the charges in a molecule be given by a vector
Q € R”, then the dipole moment vector can be written as p4,, = S”XQ € R3. We consider a constraint on its norm as
llamll2 = 1ISTXQ||2 € [€o,&1]. We assume no projection with respect to X and project S using the projection vector of
the ¢3-norm (Parikh et al., 2014) simply as Z% = S if |STXQ||2 € [¢0, &1] otherwise S/||STXQ|2 - & if |STXQ]l2 < &
and S/[STXQ|z - & if [STXQ|> > &.

However, note that the charges on each atom are unknown and depend upon the given molecular structure. As an approxima-

tion, we learn the charges for each atom Q from the dataset by minimizing the ¢1 loss Y-, p | am (i) — [|S(i)T X (i) Q||2|
over the trainable parameters Q € R,

C. Extensions

In this section, we discuss several extensions and the corresponding recipes to support more complex constraints and
properties including, box constraints and linear and non-linear properties.

C.1. Non-differentiable graph property

While we have focused on the common graph properties that are mostly non-differentiable, we note that our framework can
theoretically support non-differentiable graph properties as long as the number of non-differentiabilities is finite. Suppose we
want to constrain a non-differentiable property hy p(G) < 0 of a graph G. In our framework, we consider a constraint space
of the form C = {G : h1(G) < 0,h2(G) <0,---,hx(G) < 0}, where each h; is assumed to be differentiable to have a
closed-form projection operator. Thus, to constrain hxp(-), we can simply divide the constraint on the non-differentiable

function h v p at its finite non-differentiable points and consider hg\%() <0, hE\Q,)D() <0,---, hg\l[)D(-) < 0, where each
1) is differentiable.

C.2. Box Constraint

We note that our formulation allows us to solve a box constraint from the projection operator for the upper bound constraint.
In particular, a box constraint can be defined as C = {G : 000y < (G) < dypp}. This is equivalent to considering
he : [ht, h2], such that B (G) = 600 — b(G) and h3(G) = b(G) — ypp- Given that §jpy < dupp, We can note that both
h&(G) > 0 and h3(G) > 0 cannot hold. Thus, we get

©o(G) 1hé(vo(G)) < 0,hE(¢0(G)) <0
Ie(G) = S @u(G) 5hi(po(G)) < 0,hE(0o(G)) > 0,h(pu(G)) =0 ®)
-u(G) 1hE(po(G)) <0, (po(G)) > 0,he(p-u(G)) =0

C.3. Linear Property Approximators (17 A*X© < p)

Ak
Find ©,,. We have he(Zx,Z) = he(Zx,Z4) = 17Z4 Zx® — p, Zx € [0,1]. We fix A and thus, assume
Z s = Pog(A). Let 1—:’[073] (A) denote the normalized adjacency matrix corresponding to Py 3j(A). Then, Vz,hc =0
and Vg, he(Zx,Za) = (Po3(A)*)T10T, which gives us Z = X — 11(Pjo 31(A)F)T1O7 followed by clamping
within [0, 1].
Find p. 1t is non-trivial to find two end-points between which we can conduct the bisection method for which there is

equality on h¢. Thus, we assume that one such point is ;4 = 0 and search for the first point > 0 with an opposite sign using
a linear search from p with a fixed step size s. Then, we apply the bisection method between 0 and the new point ;7 found

15

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

using the linear search.

Complexity. Linear search finds @f for 4 /s different values of p. This is followed by a bisection method that finishes

in O(log(u1/€)) steps. Computing gpff involves just matrix multiplication that has been highly optimized in Pytorch with
worst-case complexity of O(n?). Thus, the total time-complexity of the projection operator can be given as O(n> (/s +

log(p1/¢)))-

C.4. Non-Linear Property Approximators

Many graph properties are estimated using neural networks with non-linear activation functions. Constraining these
properties implies constraining the output of these networks. Let us consider a typical single-layer neural network
prediction, whose output can be written as wl ReLU(W7¥u + by) + by. The corresponding constraint would then look
like he(u) = wiReLU(W7Zu + by) + by — ¢ < 0 for some trained parameters W1, wo, by, by. We want to find
2, such that ||z, — ul|3 is minimized such that this constraint is satisfied. The Lagrangian is given as £(z,,\) =
11zw — ul3 + A(WIReLU(WTu+ by) + by — €) and applying the KKT conditions give us (z}, — u) + Aw] 1{W7z} +
b; > 0} © Wil = 0,\ > 0,wlReLU(WTz! +b;) + by — ¢ < 0, \(wiReLU(WTz* + by) + by —¢) = 0.
If wIReLU(WTu + by) + by — € < 0, then z* = u (since A\ = 0 otherwise we find a A > 0 and z}, such that
wlReLU(W¥z* + b)) + by — e = 0and (z — u) + \WwI1{WTz* +b; >0} ®WT1 = 0. Solving such a system
of equations is hard since the first equation gives us w2 ReLU(W7z* + by) = € — by, which can have infinitely many
solutions for ReLU(W7 z* + by) and consequently 1{W7z* + b; > 0} and z, which can not be directly substituted in
the second equation. Therefore, we do not consider non-linear approximators of graph properties and leave it for future
works to find efficient projections for these general functions.

D. Additional Experiment Details
D.1. Datasets

We consider the following 4 generic graph datasets:

—_

. Ego-small contains 200 small ego graphs from larger Citeseer network (Sen et al., 2008).

2. Community-small consists of 100 randomly generated community graphs.

3. Enzymes has 587 protein graphs of the enzymes from the BRENDA database (Schomburg et al., 2004).

4. SBM is a synthetic dataset of stochastic block model graphs with 20-40 nodes per community and 2-5 communities.

5. Planar is a synthetic dataset of planar graphs of 64 nodes.
We also consider these 2 molecular graph datasets:

1. QM9 consists of 133k small molecules with 1-9 atoms as Carbon (C), Nitrogen (N), Oxygen (O), and Fluorine (F).

2. ZINC250k consists of 250k molecules with 6-38 atoms as Carbon (C), Nitrogen (N), Oxygen (O), Fluorine (F),
Phosphorus (P), Chlorine (CI), Bromine (Br), and Iodine (I).

E. Additional Results
E.1. Raw MMD values and hyperparameters

Table 10 shows the raw average MMD and VUN (wherever applicable) numbers along with the best -, that gives the best
performance in different constraints and models on synthetic datasets. Table 11 shows the raw scores obtained for 2D
molecular graphs with different diffusion models under different constraints. One can note that different v, might be suitable
in different scenarios. In these tables, we also include the results for the generated graphs by base diffusion models using the
original sampling. Note that the original model’s samples are agnostic of the given constraint and any constraint validity is
merely an indication of the bias learned by the model towards the constrained set. The expected constraint validity of these
constraints for a perfectly matching distribution should be only around 0.1.

16

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Table 10. Raw average MMD scores and hyperparameters for the results on non-attributed synthetic graph datasets. We also include the
results for the graphs generated by base diffusion models to note any bias towards the constraint in the learned distribution. “+PRODIGY”
indicates the diffusion model sampled using PRODIGY sampling. Note that poly(a, b) = (1 — b)t* + b.

SBM Planar

e Avg. MMD| V.UN.} VALc 1 Yt Avg. MMD] V.UN.? VaLc $

DruM 0.04 0.78 0.50 0.0 0.95 0.12

Edge +PRODIGY poly(0,5) 0.32 0.38 100 exp(—1000dc) 0.09 0.80 1.00
Count " piGress 0.04 0.65 0.48 0.01 0.68 0.55
+PRODIGY poly(0,5) 0.03 0.60 0.65 exp(—10dc) 0.01 0.75 1.00

DruM 0.01 0.78 0.78 0.00 0.95 1.00
Triangle +PRODIGY poly(0,5) 0.31 0.57 1.00 exp(—dc) 0.00 0.98 1.00
Count " pyiGress 0.04 0.65 0.88 0.01 0.68 1.00
+PRODIGY poly(0,1) 0.03 0.62 0.85 exp(—dc) 0.02 0.75 1.00

DruM 0.21 0.78 0.15 0.00 0.95 0.22

Degree +PRODIGY poly(0,5) 0.31 0.42 0.90 exp(—dc) 0.02 0.92 0.70
DiGress 0.04 0.65 0.45 0.01 0.68 0.55
+PRODIGY poly(0,5) 0.03 0.65 0.57 exp(—10dc) 0.01 0.70 0.75

E.2. How does PRODIGY compare to state-of-art guidance-based generation approaches?

To answer this question, we compare our results with that of DiGress (Vignac et al., 2022), which considers a soft constraint
on the molecular properties that our approach also supports (but with the ability to apply hard interpretable constraints).

Molecular Property. Here, we use PRODIGY to generate

molecules with a specified molecular property. We follow the frame- Table 12. MAE of dipole moment constrained generation.

work of DiGress (Vignac et al., 2022) and constrain the dipole H HOMO

moment (1) and the highest occupied molecular orbit (HOMO) of DiGress (Unconditional) 1.71+.04 0.93+.01
the generated molecules to be close to a certain set of values. These DiGress+Guidance 0.814+.04 0.56+.01
properties cannot be written easily in terms of the molecular graph GDSS (Unconditional) ~ 2.09+.01 0.30 .02
(X, A)’ as required by our framework. GDSS+PRODIGY 1.094£.02 0.29+.10

Hence, we train a simple graph convolutional network (Wu et al., 2019), as described in Section 3.1, to act as a proxy for
the molecular property. We then constrain the predicted property to lie within a range of the given value. Following the
conditional generation of Digress, we consider minimizing the mean absolute error (MAE) between the generated molecules
and the first hundred molecules of QM9. We thus use the median of these values to constrain the predicted property. Table 12
shows the performance of our sampling technique (on top of a pre-trained GDSS) model against the DiGress baseline. We
can see that even after using a simple linear model for property estimation, we can generate molecules with competitive p
and HOMO as DiGress that employs a Graph Transformer as the proxy.

E.3. Visualizations

DruM. Here, we provide additional visualizations of PRODIGY using the DruM diffusion model. Figures 7, 8, 9, 10, and
11 provide the visualization of different constraints in Community-small, Ego-small, Enzymes, SBM, and Planar. We can
observe that the generated graphs can satisfy the given constraints while being close to the original distribution.

GeoLLDM (3D molecules). Figure 12 shows some sample molecules that were generated with predicted dipole moment

within the specified range. This shows that we can generate molecules with a large variety of atom types as we see Oxygen
and Nitrogen across different ranges.

17

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

Table 11. Raw scores and hyperparameters for the results on molecular graph datasets. We also include the results for the graphs generated
by base diffusion models to note any bias towards the constraint in the learned distribution. “+PRODIGY” indicates the diffusion model
sampled using PRODIGY sampling. Note that poly(a,b) = (1 — b)t* 4 b.

QM9 ZINC250k

Ye Val. (%) 1 Novel. (%) FCD| VALc¢ 1 Ye Val. (%)1 Novel. (%)t FCD] VaLc 1

EDP-GNN 96.95 76.74 6.15 0.97 00TM 00TM 00TM 0OOTM OOTM
+PRODIGY 0.01 96.29 76.68 6.23 0.96 00TM 00TM 00TM OOTM OOTM

GDSS 95.72 81.04 247 0.88 97.01 100.00 1404 094

Valency ~ +PRODIGY poly(0,5) 99.83 82.74 2.82 0.99 poly(0,5) 99.88 100.00 2979 0.99
DruM 100.00 25.17 0.11 0.99 100.00 99.97 3.34 0.84
+PRODIGY exp(—100dc) 100.00 23.80 2.76 099 exp(—100dc) 100.00 100.00 8.96 0.98

DiGress 99.76 35.82 6.23 1.00 00TM 00TM 00TM OOTM OOTM
+PRODIGY poly(0,1) 99.76 26.94 5.90 1.00 00TM 00TM 00TM OOTM OOTM
EDP-GNN 96.95 76.74 8.63 0.37 00TM 0O0TM 00TM OOTM OOTM
+PRODIGY 0.01 98.06 54.36 5.66 1.00 00TM 00TM 00TM 0OOTM OOTM

A GDSS 95.72 81.04 7.28 0.33 97.01 100.00 1601 0.13
Cé"?& +PRODIGY poly(0.5) 95.02 67.67 1.60 1.00 poly(0,5) 96.90 100.00 1224 099

U]

DruM 100.00 25.17 7.54 0.37 100.00 99.97 2752 001
+PRODIGY exp(—100de) 100.00 15.90 0.22 0.99 poly(0,5) 100.00 99.99 4.61 1.00

DiGress 99.76 35.82 5.54 0.54 00TM 00TM 00TM 0OOTM OOTM
+PRODIGY poly(0.1,1) 99.76 30.05 4.60 0.65 00TM 0O0TM 00TM OOTM OOTM
EDP-GNN 96.95 76.74 1686 0.00 00TM 00TM 00TM OOTM OOTM
+PRODIGY 1.00 28.91 70.05 3.80 0.17 00TM 00TM 00TM OOTM OOTM

Molecular PSS 95.72 81.04 17.08 0.00 97.01 100.00 115 0.62
‘;’Je,c‘l‘lt‘“ +PRODIGY poly(0.1,1) 99.92 81.14 4.16 0.53 poly(0,5) 97.66 100.00 12.15 0.63

eigl

DruM 100.00 25.17 1.04 0.23 100.00 99.97 7.44 0.18
+PRODIGY poly(0,1) 100.00 23.60 4.76 0.65 poly(0,1) 100.00 99.96 7.25 0.26

DiGress 99.76 35.82 6.14 0.34 00TM 00TM 00TM OOTM OOTM
+PRODIGY poly(0.1,1) 99.76 34.90 6.20 0.33 00TM 00TM 00TM OOTM OOTM

18

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

= ¢ A e B g -N- ' sy N
@ 4 X AN \27"‘%{ » -7 ¢ s f s ¢ ¥ ow B
<= # = RS S R - o .
DN 4 l W W e & X » = "
=y e - - ~ S b . e -4
‘&(‘42 RS «f-f ’ = - e e \J‘?~ - P \% \ T
P - = = ‘ o i /f
w & v e ‘2« %\w A ¢ ™ = A s 7 ® k4
(a) No constraint (b) Edge-Count < 21 (c) Triangle-Count < 30 (d) Max-Degree < 6

Figure 7. Some generated graphs from DruM using PRODIGY for different constraints on Community-small.

_ R L
N\ P s ~N
" .
\
y RGN
/z,{i‘\ !Y
(a) No constraint (b) Edge-Count < 3 (c) Triangle-Count < 3 (d) Max-Degree < 3

Figure 8. Some generated graphs from DruM using PRODIGY for different constraints on Ego-small.

- PR . - — e e
e . L~ 7 G X (7o ==
L s ANl t R
& - p< 7%) - N
- L L T TN Sl S AN

e 4 e > . _A ’ < :

/ VAR] : e ~r) Ch— ‘} P,
(a) No constraint (b) Edge-Count < 49.7 (c) Triangle-Count < 45 (d) Max-Degree < 5

Figure 9. Some generated graphs from DruM using PRODIGY for different constraints on Enzymes.

VAR T S & -k f qr.u - N J', I ,417 'k‘;f

x & - . - M)‘ Bt
oo W”" ‘\]) '%.;;ﬁ:_ %\% : { g’\w‘ e
. - ‘\ \ : N P 4;«’ i . 5 B & !-:_’ o i
* e ‘\.) N w z > e %4%‘
age—nh & e _— R, e)" p 4 o Z-
W e : & W am “omse ﬁfﬁ‘t & -

(a) No constraint (b) Edge-Count < 700.12 (c) Triangle-Count < 682.2 (d) Max-Degree < 14

Figure 10. Some generated graphs from DruM using PRODIGY for different constraints on SBM.

B 5 L

A& f
e}..,»&.
(a) No constraint (b) Edge-Count < 177 (c) Triangle-Count < 342 (d) Max-Degree < 8

Figure 11. Some generated graphs from DruM using PRODIGY for different constraints on Planar.

19

Diffuse, Sample, Project: Plug-And-Play Controllable Graph Generation

() pam < 0.96

(b) 0.96 < pram < 1.68

(d) pam > 2.40

Figure 12. 3D GeoLDM+PRODIGY generations for Dipole Moment constraint for a range of values.

20

