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Abstract

High-dimensional, low-sample-size (HDLSS) classification is a persistent chal-
lenge in microarray genomics and related domains, where limited samples, noisy
features, and unreliable high-dimensional geometry confound standard methods.
We propose MGPD, a meta-learning approach that learns compact embeddings,
constructs and fuses multiple complementary graph representations with learned
weights, and combines prototype-based global reasoning with local neighbor ev-
idence via APPNP diffusion on strictly inductive soft-kNN graphs. Our hybrid
readout incorporates balanced priors to handle class imbalance. On six microarray
benchmarks, MGPD attains balanced accuracy on par with state-of-the-art general-
purpose methods (RealMLP, TabPFN v2, TabICL) while achieving superior average
AUPRC, demonstrating that compact, inductive graph-based architectures can com-
pete with heavily pretrained tabular models on HDLSS tasks.

1 Introduction

HDLSS regimes, preeminent in microarray gene expression, strain both estimation and representation
learning. When n < p, variance dominates, distances concentrate, and spurious nearest neighbors
proliferate [16]. Traditional approaches offer mixed success in this setting. While gradient-boosted
decision trees (GBDTs) such as XGBoost [7] and CatBoost [[6]] remain formidable on tabular data
and recent work has clarified why tree ensembles often excel on typical tabular distributions [[10]
- they too struggle with extreme dimensionality. Modern neural baselines such as RealMLP [11],
alongside pretrained and in-context approaches like TabPFN [12]] and TabICL [15]], have raised
the bar for small-sample regimes through heavy pretraining, though they were designed for more
moderate feature spaces. We ask whether a small, strictly inductive graph learner tailored to HDLSS
can match these general methods on microarrays. We introduce MGPD (Meta—Graph Prototypical
Diffusion with Multi—Graph Fusion), which learns what similarity means by fusing multiple stan-
dardized affinity functions [9]], and how far to propagate by APPNP diffusion [1]], before combining
global prototypes [14] and local neighbor evidence with balanced priors [3]]. The result is a simple,
end—to—end pipeline designed for few—shot training and strictly inductive test—time inference.

Contributions. (1) A few—shot, end—to—end inductive meta—graph classifier that learns a convex fu-
sion over standardized kernels and diffuses with APPNP. (2) A prototype/neighbor readout calibrated
by balanced priors to stabilize minority classes. (3) A head—to—head evaluation on six microarray
datasets against RealMLP [[L1]], TabPFN v2 [12], TabICL, XGBoost [7], and CatBoost [6], with
classical and Bayesian statistical comparisons.

The paper is structured as follows. We describe the proposed method in Section 2] followed by the
experimental setup in Section [3]and results in Sectiond] Limitations are discussed in Appendix D,
and related work is presented in Appendix C.
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2 Method

At a high level, MGPD-MF consists of three stages: (i) a small MLP maps high-dimensional inputs
to compact embeddings; (ii) a bank of heterogeneous similarity graphs is constructed on these
embeddings and fused into a single inductive soft-kNN graph; (iii) APPNP diffusion produces
context-aware representations that are read out by a prototype/neighbor classifier calibrated with class
priors. We detail each stage below.

Formal definition. Let {(x;,y;)}7; withx; € RP and y; € {1,...,C}. MGPD begins by learning
a compact embedding ¢ : R? —R? (d < p) via a small MLP with batch normalization and dropout,
giving z; = ¢(x;) and Z = [z1,...,2,|" € R"* % To capture complementary inductive biases, we
compute a bank of similarity matrices {S(")}M_, on Z: cosine; correlation-like via row centering
and unit normalization; RBF kernels with v € {0.25,0.5, 1.0} applied to dimension—normalized
squared distances; a shrinkage—Mahalanobis score using covariance fit on supports; and a learned
bilinear form
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and learn fusion logits § € R whose softmax gives weights w = softmax(#) for a fused similarity

M
Sfused = Z Wm S(m) (3)
m=1

From each row of Syysq We select the top—k entries (excluding self) and apply a row—softmax to obtain
a row—stochastic soft—kNN adjacency A. During training episodes we mask the query—to—query
block of A to respect strict inductivity. We then diffuse with APPNP [1]}: with H(®) = Z and teleport
ae(0,1],
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logits/probabilities
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Additional details on the model components and loss functions can be found in Appendices A and B.

Training objective and episodes. Training proceeds via few—shot episodes: per class we sample
supports and queries, fit the Mahalanobis covariance on supports, compute/standardize/fuse kernels,
build A with the query—mask, diffuse via (@), and evaluate (5) on queries. We minimize a composite
objective

L= ACEECE + ASupCon£SupCon + )\edgeﬁedge + )\lapﬁlap + )\mimeixa

with precise definitions and roles detailed in Appendix [A] At test time, each query connects only to
training nodes, reusing cached train—train diffusion (strictly inductive inference). The model surfaces
kernel weights and the prototype/neighbor decomposition for light—touch inspection.

3 Experimental setup

Datasets. Six scikit—featureﬂ microarray datasets: ALLAML, Prostate_GE, SMK_CAN_187, TOX_171,
colon, leukemia. We perform 3 times repeated 5-fold CV per dataset. More details are provided
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in Appendix E. Unless otherwise stated, we report balanced accuracy (Bal. Acc), area under the
precision—recall curve (AUPRC), and area under the ROC curve (AUROC).

Compared models. MGPD (ours) versus RealMLP [11], TabPFN v2 [12], TabICL, and XG-
Boost/CatBoost [7, 16]. Implementations for XGBoost/CatBoost/RealMLP follow the codebase [[11];
TabICL and TabPFN v2 use authors’ public implementations.

Hyperparameters (MGPD). Embedding dimension d=32, MLP depth 3 (hidden 128, dropout 0.3),
k=5, APPNP K=3, a=0.1, SupCon temperature 0.07; loss weights: CE 1.0, SupCon 0.6, edge
0.12, Laplacian 0.05, mix—entropy 0.01; RBF v € {0.25, 0.5, 1.0}; Mahalanobis shrinkage 0.1; 50
episodes/epoch, 200 epochs; per—class supports in [2, 5].

4 Results and Discussion

On balanced accuracy (Table EI), TabPFN v2 attains the best overall mean, with MGPD a close second
(average gap ~0.005) and the strongest result on colon. On AUPRC (Table[2), MGPD achieves the
best mean and best mean rank, consistent with our design that aggregates local neighbor evidence
with global prototypes and calibrates logits by class priors. Following a conservative protocol that
forced a nonparametric omnibus test, the Friedman test [8] across six populations (six datasets, 15
paired scores each) yielded p=0.111; a Nemenyi post-hoc with CD=3.078 found no mean-rank gaps
exceeding the critical distance. A complementary hierarchical Bayesian comparison [2] (balanced
accuracy; ROPE= 0.01) between MGPD and TabPFN v2 estimated p(MGPD < TabPFN)=0.2308,
p(JA] <ROPE)=0.2010, and p(MGPD > TabPFN)=0.5682, indicating practical parity with a slight
posterior advantage for MGPD.

Table 1: Balanced accuracy (mean =+ std over 15 runs). Best per—row in bold.

Dataset catboost_td MGPD realmlp_td tabicl tabpfnv2 xgb_td
ALLAML 0.9007 £0.0889  0.9556 +0.0540  0.9733 +0.0458  0.9356 4 0.0996  0.9567 £ 0.0495  0.9226 + 0.1004
Prostate_GE 0.9018 £0.0728  0.8964 +0.0751  0.8961 +0.0778  0.9055 £ 0.0544 0.9445 £ 0.0446  0.9348 + 0.0536
SMK_CAN_187 0.6734 £0.0814  0.7068 &+ 0.0745  0.6914 £+ 0.0602  0.6886 &+ 0.0632 0.7217 +0.0831 0.6926 + 0.0716
TOX_171 0.7404 £0.0772  0.9581 +0.0375  0.9259 £0.0275  0.8904 +0.0616 0.9593 +0.0367 0.8311 £ 0.0893
colon 0.7258 £0.1118 0.8458 £0.0741 0.7783 £0.1244  0.8192 £ 0.0751  0.8025 £+ 0.0865  0.7708 & 0.1191
leukemia 0.9522 £0.0565  0.9407 +0.0847  0.9733 +0.0594 0.9067 £ 0.0863  0.9489 £ 0.0829  0.9496 + 0.0655
Average 0.8157 0.8839 0.8731 0.8577 0.8889 0.8503
Mean rank 5.00 3.00 3.17 4.00 2.00 3.83
Table 2: AUPRC (mean = std over 15 runs). Best per—row in bold.

Dataset catboost_td MGPD realmlp_td tabicl tabpfnv2 xgb_td
ALLAML 0.4818 £0.0230  0.5009 £ 0.0531  0.4732+£0.0127  0.4776 +0.0205 0.4710 £ 0.0103  0.4790 £ 0.0329
Prostate_GE 0.3340 £0.0122  0.3489 4+ 0.0204 0.3322+0.0123  0.3329£0.0138  0.3270 +0.0099  0.3319 + 0.0138
SMK_CAN_187 0.3893 £ 0.0355  0.3850 & 0.0390  0.4017 £+ 0.0540 0.3889 +0.0384  0.3557 +£0.0296  0.3886 + 0.0474
TOX_171 0.8597 £0.0650  0.9718 +0.0287  0.9793 £0.0338  0.9687 4 0.0222 0.9893 +0.0138  0.9124 £ 0.0631
colon 0.7769 £0.1319  0.8209 £0.1169  0.7631 £0.1467  0.8311 £0.1539 0.8449 £0.1242 0.7824 £ 0.1542
leukemia 0.9726 £0.0542  0.9803 +0.0413  0.9836 £ 0.0350  0.9806 & 0.0366 0.9929 + 0.0202 0.9917 £ 0.0179
Average 0.6357 0.6680 0.6555 0.6633 0.6635 0.6477
Mean rank 3.83 3.00 3.50 3.33 3.50 3.83

4.1 Ablation study

To assess the contributions of MGPD’s components, we conduct an ablation study on ALLAML.

Loss components.

Removing supervised contrastive loss yields the largest drop in balanced

accuracy (A =—0.0248), while slightly increasing AUPRC (4+0.0062). APPNP diffusion is most
critical for AUPRC (—0.0235) and also harms Bal. Acc (—0.0215). Laplacian regularization
modestly supports Bal. Acc (—0.0148) with negligible AUPRC change (4-0.0026). Edge supervision
and mix entropy have small effects (Bal. Acc drops 0.0096 and 0.0074; AUPRC drops 0.0065 and
0.0133), suggesting potential simplification. See Table 3]

Prototype vs. neighbor readout. Using neighbors only markedly improves AUPRC to 0.6078

(4+0.1122 over full) but reduces Bal. Acc to 0.9452 (—0.0074) and AUROC to 0.9445 (—0.0269).
Prototypes only similarly lower AUPRC (0.4810) and Bal. Acc (0.9452) but yield higher AUROC



(0.9837). The learned gate [3 in the full model blends both signals and achieves the best Bal. Acc
(0.9526). See Table[3]

Kernel fusion. Among single—kernel additions to the learned bilinear form, RBF with v =1.0
gives the highest Bal. Acc (0.9667). Bilinear only is competitive on AUPRC (0.4919). The fused
model (all seven kernels) attains the best overall AUPRC (0.4956) while maintaining strong Bal. Acc
(0.9526), trading a small amount of Bal. Acc for improved precision-recall. See Table ]

Training regime. On ALLAML, graph—only (frozen embeddings) and end—to—end training perform
equivalently (Bal. Acc 0.9526, AUPRC 0.4956), indicating that most signal is captured by the graph
module; graph—only inference may suffice when efficiency is prioritized.

Bal. Acc is primarily supported by supervised contrastive learning and APPNP, while neighbor
evidence is especially valuable for minority—class precision-recall. Kernel fusion offers robustness:
RBF improves class separation, and full fusion yields the best AUPRC with competitive Bal. Acc.

Table 3: Prediction strategy ablation on ALLAML (3 rep x 5 folds). Prototype—only uses 8 = 1;
neighbor—only uses S =0; full model learns 3.

Readout strategy Bal. Acc A Bal.Acc AUPRC A AUPRC
Full model (learned 5)  0.9526 - 0.4956 -
Prototype-only (5=1)  0.9452 —0.0074 0.4810 —0.0146
Neighbor-only (3=0)  0.9452 —0.0074 0.6078 +0.1122

Table 4: Kernel combination ablation on ALLAML (3 rep x 5 folds). All configurations use the learned
bilinear kernel plus the specified additional kernel(s). The full model fuses all seven kernels.

Kernel configuration Bal. Acc AUPRC AUROC
Bilinear only 0.9563 0.4919 0.9844
Bilinear + Cosine 0.9374 0.4898 0.9543
Bilinear + Correlation 0.9389 0.4851 0.9733
Bilinear + RBF (y=0.25) 0.9630 0.4858 0.9777
Bilinear + RBF (y=0.5) 0.9489 0.4881 0.9700
Bilinear + RBF (y=1.0) 0.9667 0.4776 0.9853
Bilinear + Mahalanobis 0.9552 0.4878 0.9733

Full model (all kernels fused)  0.9526 0.4956 09714

Table 5: Loss component ablation on ALLAML (3 rep x 5 folds). Each row shows performance when
the specified component is removed and the model is retrained. Negative drops indicate improvement.

Component removed Bal. Acc A Bal. Acc AUPRC A AUPRC

(Full model) 0.9526 - 0.4956 -
Supervised contrastive 0.9278 0.0248 0.5018 —0.0062
APPNP diffusion 0.9311 0.0215 0.4721 0.0235
Laplacian regularization ~ 0.9378 0.0148 0.4982 —0.0026
Edge supervision 0.9430 0.0096 0.4891 0.0065
Mix entropy 0.9452 0.0074 0.4823 0.0133

5 Conclusion

We presented MGPD, a small, strictly inductive meta-graph learner for HDLSS classification. By
fusing heterogeneous similarities after off-diagonal standardization, diffusing with APPNP, and
balancing prototype with neighbor evidence under class priors, MGPD matches TabPFN v2 on
balanced accuracy and leads on AUPRC across six microarray datasets, despite clear disparity in
parameter count and pre-training. Under conservative nonparametric testing, we observe no significant
differences; Bayesian analysis suggests practical parity. Ablations confirm that performance hinges
on supervised contrastive learning and APPNP diffusion, while the hybrid prototype-neighbor readout
achieves the best balanced accuracy by blending global and local evidence, further supporting the
necessity of the two distinct information streams.
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A Appendix A: Graph components and operators
Embedding. ¢(x) = Wro(BN(---o(BN(W;x))---)) € R% collect Z = [z, ...,2,] .

Cosine. With z; = z,/||z;

cos _ 5145
LS5 = 2,z

corr __ iTi]

Correlation-like. Row-centering and unit-norm: 2; = (z; — 2;)/|z; — z[, S} :

RBF (multi-scale). With D? = 12" g™ — i (—yD2), v € {0.25,0.5,1.0}.

ij

Shrinkage Mahalanobis. Center Z,, 3 = —1-ZZ. Shrink ¥ = (1 - \)X + )\@I + €I, then
Szg;}aha = —%(Zi — Zj)TE_l(Zi — Zj).

Learned bilinear. S = —- 2/ Wz; with learnable W and temperature 7.

Off-diagonal standardization and fusion. Apply (2) per score matrix; fuse by (@) with w =
softmax(#).

Soft—kNN (row-stochastic). For row i, let Ny (i) be top—k indices of Sgyseq ;: (excluding 7). Define

exp(Stused.ij . ,
p( fusedgj) 3 GN]C(Z),
Aij = Zj’ef\fk(i) eXp( fused,ij’)
0, otherwise.

During training episodes, set A[Q, Q] = 0.

APPNP diffusion. H(® =Z H*D = (1 — o)AH® + oH®; H = HX [1].

Appendix B: Losses - definitions and roles

Below, Inputs list the tensors each term consumes, and Role explains its function within MGPD. The
composite objective is

L= )‘CEECE + /\SupConESupCon + )\cdgcﬁodgc + Alapﬁlap + )\mimeix-

Balanced cross—entropy (Lcg). Definition. For query set Q, logits 4. in (3)), and probabilities

e'e

Pe = S e

1
Lcgy = “10] Z log py, -
qeQ

Equivalently, add log 7. to pre—softmax logits (“balanced softmax”) [5]]. Inputs. Query logits from
prototype/neighbor fusion (3), class priors w. Role. Calibrates decision boundaries under class
imbalance; reduces bias toward frequent classes.
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Supervised contrastive loss (Lsypcon) [13]. Definition. Let normalized embeddings izi =
iti (1) ={j #i: y; =y} Then

Loucon = Z Z log exp(h; h,/T)
R SHI O] |P )| Saziexp(h] ha/T)

i peP(i

Inputs. Diffused representations H (supports and queries), labels. Role. Tightens class clusters and
enlarges inter—class margins in the representation used by graph construction and prototypes.

Edge supervision (L.qgc). Definition. On supports S, with fused scores Z;; = Shused,i; and targets
Yi; =Wy, = y;] for i # j, use BCE with positive weight w:

Ledge = {(i,) € 82 i # j} ; —wY; 1Og0 ) (1- Yij)IOg(l _U(Zij))]'

Inputs. Fused score matrix on supports; labels. Role. Encourages same—class pairs to score higher
than different—class pairs, guiding the kernel fusion toward class—aware neighborhoods.

Laplacian regularization (L,,,). Definition. With the symmetrized Laplacian L = D— % (A+AT)
and pre—diffusion embeddings Z,

1
Liap = ﬁtr(ZTLZ).

Inputs. Row—stochastic adjacency A; embeddings Z. Role. Promotes local smoothness of representa-
tions along the learned graph, reducing variance in HDLSS.

Fusion entropy (Rix). Definition. For mixture weights w = softmax(#) over kernels,

le - Z W, 10g W -

Inputs. Fusion weights w. Role. Discourages collapse onto a single kernel; encourages the model to
leverage multiple, complementary similarity notions [9].

Composite fusion. Inputs. The five terms above; hyperparameters \,. Role. The composite blends
label—driven discrimination (CE, SupCon), graph shaping (edge, Laplacian), and kernel diversity
(entropy) to produce robust, class—aware neighborhoods and stable diffusion in few—shot HDLSS
settings.

Appendix C: Related work

GBDTs such as XGBoost [[7] and CatBoost [6] remain strong on tabular data due to additive
modeling over decision rules, effective regularization (shrinkage, subsampling), and native handling
of heterogeneity. Recent analyses explain why tree-based models still outperform deep networks on
common tabular regimes [10]. Neural baselines like RealMLP [11] have narrowed this gap through
careful architectures and training recipes.

Pretrained and in-context approaches offer a different paradigm. TabPFN amortizes Bayesian
inference over synthetic tasks with a transformer [12]], while TabICL [15] employs a two-stage
architecture: column-then-row attention builds fixed-dimensional row embeddings, which a trans-
former then processes for efficient in-context classification. Both rely on extensive pretraining over
moderate-dimensional feature spaces.

MGPD complements these lines by targeting HDLSS directly. It combines multi-kernel fusion [9],
APPNP diffusion [1], and prototype-based few-shot reasoning [[14] in a compact, strictly inductive
graph learner specialized for extreme dimensionality.



Table 6: Dataset statistics (from the SCIKIT-FEATURE repository [[17]). n = number of samples, p =
number of features, C' = number of classes.

Dataset n P C
ALLAML 72 7129 2
Prostate_GE 102 5966 2
SMK_CAN_187 187 19993 2
TOX_171 171 5748 4
colon 62 2000 2
leukemia 72 7070 2

Appendix D: Limitations and Future Work

While MGPD achieves strong performance on microarray benchmarks, several limitations high-
light directions for future research. Our evaluation focuses on general-purpose tabular models
(RealMLP, TabPFN, TabICL, XGBoost, CatBoost) rather than HDLSS-specific methods. Comparing
MGPD with recent specialized architectures such as HorNets [3]] and ProtoGate [4] would clarify
its relative strengths and complementarities, particularly regarding higher-order feature modeling
and gating mechanisms. The multi-graph fusion process introduces computational overhead: con-
structing M similarity matrices scales as O(Mn?d), and the bilinear form adds O(d?) parameters.
Although APPNP diffusion mitigates oversmoothing, scalability may be limited for large n or d;
future work could explore sparse or low-rank approximations. MGPD also involves several hyperpa-
rameters—embedding dimension, neighborhood size, diffusion depth, teleport probability, and loss
weights—whose sensitivity remains underexplored. Automated or meta-learned tuning strategies
may enhance robustness across domains. Experiments are currently restricted to microarray data;
extending evaluation to other high-dimensional domains (e.g., text embeddings, finance, neuroimag-
ing) would test generalization and adaptability of graph construction strategies. Finally, the current
framework targets classification tasks. Extending MGPD to regression, multi-label, or survival
analysis could broaden its applicability in genomics and other scientific settings.

Appendix E: Datasets

We evaluate MGPD-MF on six benchmark microarray datasets from the SCIKIT-FEATURE repos-
itory [17]: ALLAML, Prostate_GE, SMK_CAN_187, TOX_171, colon, and leukemia. All of them
are high-dimensional, low-sample-size (HDLSS) gene expression datasets with binary or small
multi-class labels. Table@summarizes the number of samples n, features p, and classes C'.

These datasets lie firmly in the HDLSS regime with n in the [62, 187] range and p between 2,000 and
19,993 features. Following common practice for microarray benchmarks, we treat each dataset as a
separate supervised classification task and do not apply any task-specific feature selection prior to
training. Performance is reported using repeated cross-validation (3 repetitions of 5-fold CV, yielding
15 scores per dataset) to reduce variance in the small-sample setting.
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