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Abstract

As machine learning agents act more autonomously in the world, they will increas-
ingly interact with each other. Unfortunately, in many social dilemmas like the
one-shot Prisoner’s Dilemma, standard game theory predicts that ML agents will
fail to cooperate with each other. Prior work has shown that one way to enable
cooperative outcomes in the one-shot Prisoner’s Dilemma is to make the agents
mutually transparent to each other, i.e., to allow them to access one another’s source
code (Rubinstein, 1998; Tennenholtz, 2004) – or weights in the case of ML agents.
However, full transparency is often unrealistic, whereas partial transparency is com-
monplace. Moreover, it is challenging for agents to learn their way to cooperation
in the full transparency setting. In this paper, we introduce a more realistic setting
in which agents only observe a single number indicating how similar they are to
each other. We prove that this allows for the same set of cooperative outcomes as
the full transparency setting. We also demonstrate experimentally that cooperation
can be learned using simple ML methods.

1 Introduction
As AI systems start to autonomously interact with the world, they will also increasingly interact
with each other. We already see this in contexts such as trading agents (CFTC & SEC, 2010), but
the number of domains where separate AI agents interact with each other in the world is sure to
grow; for example, consider autonomous vehicles. In the language of game theory, AI systems will
play general-sum games with each other. For example, autonomous vehicles may find themselves in
Game-of-Chicken-like dynamics with each other (cf. Fox et al., 2018). In many of these interactions,
cooperative or even peaceful outcomes are not a given. For example, standard game theory famously
predicts and recommends defecting in the one-shot Prisoner’s Dilemma. Even when cooperative
equilibria exist, there are typically many equilibria, including uncooperative and asymmetric ones.
For instance, in the infinitely repeated Prisoner’s Dilemma, mutual cooperation is played in some
equilibria, but so is mutual defection, and so is the strategy profile in which one player cooperates
70% of the time while the other cooperates 100% of the time. Moreover, the strategies from different
equilibria typically do not cooperate with each other. A recent line of work at the intersection of
AI/(multi-agent) ML and game theory aims to increase AI/ML systems’ ability to cooperate with
each other (Stastny et al., 2021; Dafoe et al., 2020; Conitzer & Oesterheld, 2023).

Prior work has proposed to make AI agents mutually transparent to allow for cooperation in equi-
librium (McAfee 1984; Howard 1988; Rubinstein 1998, Section 10.4; Tennenholtz 2004; Barasz
et al. 2014; Critch 2019; Oesterheld 2019b). Roughly, this literature considers for any given 2-player
normal-form game Γ the following program meta game: Both players submit a computer program,
e.g., some neural net, to choose actions in Γ on their behalf. The computer program then receives as
input the computer program submitted by the other player. The aforecited works have shown that the
program meta game has cooperative equilibria in the Prisoner’s Dilemma.

Unfortunately, there are multiple obstacles to cooperation based on full mutual transparency. 1)
Settings of full transparency are rare in the real world. 2) Games played with full transparency in
37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Principal 1 Principal 2

Policy 1
π1 : R→ ∆(A1)

Policy 2
π2 : R→ ∆(A2)

diff : ∆(A1)
R ×∆(A2)

R → R2

(diff(π1, π2))1 (diff(π1, π2))2

Mixed strategy 1
σ1 ∈ ∆(A1)

Mixed strategy 2
σ2 ∈ ∆(A2)

Figure 1: A graphical representation of diff meta games (Definition 1). Nodes with two incoming
nodes are determined by applying one of the parent nodes to the other.

general have many equilibria, including ones that are much worse for some or all players than the
Nash equilibria of the underlying game (see the folk theorems given by Rubinstein 1998, Section 10.4,
and Tennenholtz 2004). In particular, full mutual transparency can make the problem of equilibrium
selection very difficult. 3) The full transparency setting poses challenges to modern ML methods.
In particular, it requires at least one of the models to receive as input a model that has at least as
many parameters as itself. Meanwhile, most modern successes of ML use models that are orders of
magnitudes larger than the input. Consequently, we are not aware of successful projects on learning
general-purpose models such as neural nets in the full transparency setting.

Contributions. In this paper we introduce a novel variant of program meta games called difference
(diff) meta games that enables cooperation in equilibrium while also addressing obstacles 1–3. As in
the program meta game, we imagine that two players each submit a program or policy to instruct an
agent to play a given game, such as the Prisoner’s Dilemma. The main idea is that before choosing an
action, the agents receive credible information about how similar the two players’ policies are to each
w.r.t. how they make the present decision. In the real world, we might imagine that this information
is provided by a mediator (cf. Monderer & Tennenholtz, 2009; Ivanov et al., 2023; Christoffersen
et al., 2023) who wants to enable cooperation. We may also imagine that this signal is obtained more
organically. For example, we might imagine that the agents can see that their policies were generated
using the same code base. We formally introduce this setup in Section 3. Because it requires a
much lower degree of mutual transparency, we find the diff meta game setup more realistic than the
full mutual transparency setting. Thus, it addresses Obstacle 1 to cooperation based on full mutual
transparency.

Diff meta games can still have cooperative equilibria when the underlying base game does not.
Specifically, in Prisoner’s Dilemma-like games, there are equilibria in which both players submit
policies that cooperate with similar policies and thus with each other. We call this phenomenon
similarity-based cooperation (SBC). For example, consider the Prisoner’s Dilemma as given in
Table 1 for G = 3. (We study such examples in more detail in Section 3.) Imagine that the players
can only submit threshold policies that are parameterized only by a single real-valued threshold θi
and cooperate if and only if the perceived difference to the opponent is at most θi. As a measure
of difference, the policies observe diff(θ1, θ2) = |θ1 − θ2|+ Z, where Z is sampled independently
for each player according to the uniform distribution over [0, 1]. For instance, if Player 1 submits
a threshold of 1/2 and Player 2 submits a threshold of 3/4, then the perceived difference is 1/4 + Z.
Hence, Player 1 cooperates with probability P (1/4 + Z ≤ 1/2) = 1/4 and Player 2 cooperates with
probability P (1/4 + Z ≤ 3/4) = 1/2. It turns out that (θ1 = 1, θ2 = 1), which leads to mutual
cooperation with probability 1, is a Nash equilibrium of the meta game. Intuitively, the only way for
either player to defect more is to lower their threshold. But then |θ1 − θ2| will increase, which will
cause the opponent to defect more (at a rate of 1/2). This outweighs the benefit of defecting more
oneself.

In Section 4, we prove a folk theorem for diff meta games. Roughly speaking, this result shows
that observing a diff value is sufficient for enabling all the cooperative outcomes that full mutual
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Player 2
Cooperate Defect

Player 1 Cooperate G,G 0, G+ 1

Defect G+ 1, 0 1, 1

Table 1: The Prisoner’s Dilemma, parameterized by some number G > 1.

transparency enables. Specifically, we show that for every individually rational strategy profile σ
(i.e., every strategy profile that is better for each player than their minimax payoff), there is a function
diff such that σ is played in an equilibrium of the resulting diff meta game.

Next, we address Obstacle 2 to full mutual transparency – the multiplicity of equilibria. First, note
that any given measure of similarity will typically only enable a specific set of equilibria, much
smaller than the set of individually rational strategy profiles. For instance, in the above example, all
equilibria are symmetric. In general, one would hope that similarity-based cooperation will result in
symmetric outcomes in symmetric games. After all, the new equilibria of the diff game are based on
submitting similar policies and if two policies play different strategies against each other, they cannot
be similar. In Section 5, we substantiate this intuition. Specifically, we prove, roughly speaking,
that in symmetric, additively decomposable games, the Pareto-optimal equilibrium of the meta game
is unique and gives both players the same utility, if the measure of difference between the agents
satisfies a few intuitive requirements (Section 5). For example, in the Prisoner’s Dilemma, the unique
Pareto-optimal equilibrium of the meta game must be one in which both players cooperate with the
same probability.

Finally we show that diff meta games address Obstacle 3: we demonstrate that in games with higher-
dimensional action spaces, we can find cooperative equilibria of diff meta games with ML methods.
In Section 6.4, we show that, if we initialize the two policies randomly and then let each of them learn
to be a best response to the other, they generally converge to the Defect-Defect equilibrium. This is
expected based on results in similar contexts, such as in the Iterated Prisoner’s Dilemma. However, in
Section 6.1, we introduce a novel, general pretraining method that trains policies to cooperate against
copies and defect (i.e., best respond) against randomly generated policies. Our experiments show
that policies pretrained in this way find partially cooperative equilibria of the diff game when trained
against each other via alternating best response training.

We discuss how the present paper relates to prior work in Section 7. We conclude in Section 8 with
some ideas for further work.

2 Background
Elementary game theory definitions. We assume familiarity with game theory. For an introduction,
see Osborne (2004). A (two-player, normal-form) game Γ = (A1, A2,u) consists of sets of actions
or pure strategies A1 and A2 for the two players and a utility function u : A1 ×A2 → R2. Table 1
gives the Prisoner’s Dilemma as a classic example of a game. A mixed strategy for Player i is
a distribution over Ai. We denote the set of such distributions by ∆(Ai). We can extend u to
mixed strategies by taking expectations, i.e., u(σ1, σ2) :=

∑
a1∈A1,a2∈A2

σ1(a1)σ2(a2)u(a1, a2).
For any player i, we use −i to denote the other player. We call σi a best response to a strategy
σ−i ∈ ∆(A−i), if supp(σi) ⊆ argmaxai∈Ai

ui(ai, σ−i), where supp denotes the support. A
strategy profile σ ∈ ∆(A1) × ∆(A2) is a vector of strategies, one for each player. We call a
strategy profile (σ1, σ2) a (strict) Nash equilibrium if σ1 is a (unique) best response to σ2 and vice
versa. As first noted by Nash (1950), each game has at least one Nash equilibrium. We say that a
strategy profile σ is individually rational if each player’s payoff is at least her minimax payoff, i.e.,
if ui(σ) ≥ minσ−i∈∆(A−i) maxai∈Ai

ui(ai, σ−i) for i = 1, 2. We say that σ is Pareto-optimal if
there exists no σ′ s.t. ui(σ

′) ≥ ui(σ) for i = 1, 2 and ui(σ
′) > ui(σ) for at least one i.

Symmetric games and additively decomposable games. We say that a game is (player) symmetric
if A1 = A2 and for all a1, a2 for i = 1, 2, we have that ui(a1, a2) = u−i(a2, a1). The Prisoner’s
Dilemma in Table 1 is symmetric. We say that a game additively decomposes into (ui,j : Aj →
R)i,j∈{1,2} if ui(a1, a2) = ui,1(a1) + ui,2(a2) for all i = {1, 2} and all a1 ∈ A1, a2 ∈ A2.
Intuitively, this means that each action aj of Player j generates some amount of utility ui,j(aj) for
Player i independently of what Player −j plays. For example, the Prisoner’s Dilemma in Table 1
is additively decomposable, where ui,i : Cooperate 7→ 0,Defect 7→ 1 and ui,−i : Cooperate 7→
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G,Defect 7→ 0 for i = 1, 2. Intuitively, Cooperate generates G for the opponent and 0 for oneself,
while Defect generates 1 for oneself and 0 for the opponent.

Alternating best response learning. The orthodox approach to learning in games is to learn to best
respond to the opponent, essentially ignoring that the opponent is also a learning agent. In this paper,
we specifically consider alternating best response (ABR) learning. In ABR, the players take turns. In
each turn, one of the two players updates the parameters θi of her strategy to optimize ui(θi,θ−i),
i.e., updates her model to be a best response to the opponent’s current model (Brown cf. 1951; Zhang
et al. 2022; Heinrich et al. 2023). Since learning an exact best response is generally intractable,
we will specifically consider the use of gradient ascent in each turn to optimize ui(θi,θ−i) over
θi. In continuous games if ABR with exact (locally) best response updates converges to (θ1,θ2),
then (θ1,θ2) is a (local) Nash equilibrium. Note, however, that ABR may fail to converge (e.g., in
the face of Rock–Paper–Scissors dynamics). Moreover, if the best response updates of θi are only
approximated, ABR may converge to non-equilibria (Mazumdar et al., 2020, Proposition 6).

3 Diff Meta Games
We now formally introduce diff meta games, the novel setup we consider throughout this paper.
Given some base game Γ, we consider a new meta game played by two players whom we will call
principals. Each principal i submits a policy. The two players’ policies each observe a real-valued
measure of how similar they are to each other. Based on this, the policies then output a (potentially
mixed) strategy for the base game. Finally, the utility is realized as per the base game. Below we
define this new game formally. This model is illustrated in Figure 1.

Definition 1. Let Γ = (A1, A2,u) be a game. A (diff-based) policy for Player i for Γ is a function
π : R→ ∆(Ai) mapping the perceived real-valued difference between the diff-based policies to a
mixed strategy of Γ. For i = 1, 2 let Ai ⊆ ∆(Ai)

R be a set of difference-based policies for Player i.
Then a policy difference (diff) function for (A1,A2) is a stochastic function diff : A1 ×A2 ⇝ R2.
For any two policies π1, π2 and difference function diff , we say that (π1, π2) plays the strategy profile
σ ∈ ∆(A1)×∆(A2) of Γ if σi = E [πi(diffi(π1, π2))] for i = 1, 2. For sets of policies A1,A2 and
difference function diff we then define the diff meta game (Γ,A1,A2,diff) to be the normal-form
game (A1,A2, V ), where V (π1, π2) := E [u((πi(diffi(π1, π2)))i=1,2)] for all π1 ∈ A1, π2 ∈ A2.

Note that Definition 1 does not put any restrictions on diff . For example, the above definition allows
(diff(πi, π−i))i to be a real number whose binary representation uniquely specifies π−i. This paper
is dedicated to situations in which diff specifically represents some intuitive notion of how different
the policies are, thus excluding such diff functions. Unfortunately, there are many different ways
in which one could formalize this constraint, especially in asymmetric games. In Section 5 we will
impose some restrictions along these lines, including symmetry. Our folk theorem (Theorem 3 in
Section 4) will similarly impose constraints on diff to avoid diff functions like the above.

The rest of this section will study concrete examples of Definition 1. First, we define a particularly
simple type of diff-based policy. Almost all of our theoretical analysis will be based on this class of
policies.

Definition 2. Let θ ∈ R ∪ {−∞,∞} and σ⩽
i , σ

>
i ∈ ∆(Ai) be strategies for Player i for i = 1, 2.

Then we define (σ⩽
i , θ, σ

>
i ) to be the policy π s.t. π(d) = σ⩽

i if d ≤ θ and π(d) = σ>
i otherwise. We

call policies of this form threshold policies. Let Āi denote the set of such threshold policies.

Throughout the rest of this section, we analyze the Prisoner’s Dilemma as a specific example.
We limit attention to threshold agents of the form (C, θ,D), i.e., policies that cooperate against
similar opponents (diff below threshold θ) and defect against dissimilar opponents. This is because
such policies can be used to form cooperative equilibria, while policies that always cooperate (say,
(C, 1, C)) or policies that are more cooperative against less similar opponent policies (e.g., (D, 1, C))
cannot be used to form cooperative equilibria in the PD with a natural diff function. Policies of the
form (C, θ,D) are uniquely specified by a single real number θ. A natural measure of the similarity
between two policies θ1, θ2 is then the absolute difference |θ1 − θ2|. We allow diff to be noisy,
however. We summarize this in the following.

Example 1. Let Γ be the Prisoner’s Dilemma as per Table 1. Then consider the (Γ, Â1, Â2,diff)

meta game where Âi = {(C, θi, D) | θi ∈ R} and diffi((C, θ1, D), (C, θ2, D))) = |θ1 − θ2|+ Zi

for i = 1, 2 where Zi is some real-valued random variable.

4



The only open parameters of Example 1 are G (the parameter used in our definition of the Prisoner’s
Dilemma) and the noise distribution. Nevertheless, Example 1 is a rich setting that allows for
nontrivial results. We leave a detailed analysis for Appendix B and only give two specific results
about equilibria here.

In the first result, we imagine that the noise Zi is distributed uniformly between 0 and ϵ > 0 and that
G is at least 2. Then, roughly, there are two kinds of equilibria. First, there are equilibria in which
both players always defect, because their threshold for cooperation is at most 0 (such that they defect
with probability 1 even against exact copies). Second, and more interestingly, there are equilibria in
which both players submit the same threshold strictly between 0 and ϵ. Note that this means that if
both players submit a threshold of ϵ, they both cooperate with probability 1.

Proposition 1. Consider Example 1 with Zi ∼ Uniform([0, ϵ]) i.i.d. for some ϵ > 0 and with G ≥ 2.
Then ((C, θ1, D), (C, θ2, D)) is a Nash equilibrium if and only if θ1, θ2 ≤ 0 or 0 < θ1 = θ2 ≤ ϵ. In
case of the latter, the equilibrium is strict if G > 2.

What happens if, instead of the uniform distribution, we let the Zi be, say, normally distributed?
It turns out that for all unimodal distributions (which includes the normal distribution) and G = 2,
we get an especially simple result: in equilibrium, both players submit the same threshold and that
threshold must be left of the mode.

Proposition 2. Consider Example 1 with G = 2. Assume Zi is i.i.d. for i = 1, 2 according some uni-
modal distribution with mode ν with positive measure on every interval. Then ((C, θ1, D), (C, θ2, D))
is a Nash equilibrium if and only if θ1 = θ2 ≤ ν.

4 A folk theorem for diff meta games
What are the Nash equilibria of a diff meta game on Γ? A first answer is that Nash equilibria of
Γ carry over to the diff meta game regardless of what diff function is used (assuming that at least
all constant policies are available); see Proposition 16 in Appendix C.1. Any other equilibria of
the diff meta game hinge on the use of the right diff function. In fact, if diff is constant and thus
uninformative, the Nash equilibria of the diff meta game are exactly the Nash equilibria of Γ; see
Proposition 17 in Appendix C.1. So the next question to ask is for what strategy profiles σ there
exists some diff function s.t. σ is played in an equilibrium of the resulting diff meta game. The
following result answers this question. In particular, a folk theorem similar to the folk theorems for
infinitely repeated games (e.g., Osborne 2004, Ch. 15) and for program equilibrium (see Section 7).

Theorem 3 (folk theorem for diff meta games). Let Γ be a game and σ be a strategy profile for Γ.
Let Ai ⊇ Āi for i = 1, 2. Then the following two statements are equivalent:

1. There is a diff function such that there is a Nash equilibrium (π1, π2) of the diff meta game
(Γ,diff,A1,A2) s.t. (π1, π2) play σ.

2. The strategy profile σ is individually rational (i.e., better than everyone’s minimax payoff).

The result continues to hold true if we restrict attention to deterministic diff functions with diff1 =
diff2 and diffi(π1, π2) ∈ {0, 1} for i = 1, 2.

We leave the full proof to Appendix C.2, but give a short sketch of the construction for 2⇒1 here.
For any σ, we construct the desired equilibrium from policies π∗

i = (σi, 1/2, σ̂i) for i = 1, 2,
where σ̂i is Player i’s minimax strategy against Player −i. We then take any diff function s.t.
diff(π∗

i , π−i) = (0, 0) if π−i = π∗
−i and diff(π∗

i , π−i) = (1, 1) otherwise.

5 A uniqueness theorem
Theorem 3 allows for highly asymmetric similarity-based cooperation. For example, in the PD with,
say, G = 2, Theorem 3 shows that with the right diff function, the strategy profile (C, 2/3∗C+1/3∗D)
is played in an equilibrium of the diff meta game of the PD. This seems odd, as one would expect SBC
to result in playing symmetric strategy profiles. Note that, for example, all equilibria of Propositions 1
and 2 are symmetric. In this section, we show that under some restrictions on diff and the base game
Γ, we can recover the symmetry intuition. This is good because in symmetric games the symmetric
outcomes are the fair and otherwise desirable ones (Harsanyi et al., 1988, Sect. 3.4) and because
SBC thus avoids equilibrium selection problems of other forms of cooperation (including cooperation
based on full mutual transparency and cooperation in the iterated Prisoner’s Dilemma).
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We first need a few definitions of properties of diff . Let Γ be a symmetric game. We say that diff is min-
imized by copies if for all policies π, π′, all y and i = 1, 2, P (diffi(π, π

′)<y) ≤ P (diffi(π, π)<y).
For example, the diff function in Example 1 is minimized by copies. The diff functions in the proof
of Theorem 3 are not in general minimized by copies when the given base game is symmetric. For
example, to achieve (C, 2/3 ∗C+ 1/3 ∗D) in equilibrium, the proof of Theorem 3 (as sketched above)
uses the policies π∗

1 = (C, 1/2, D) and π∗
2 = (2/3 ∗ C + 1/3 ∗ D, 1/2, D) and a diff function with

diff(π∗
1 , π

∗
2) = (0, 0) but diff(π∗

1 , π
∗
1) = (1, 1). If the base game is symmetric, we call diff symmetric

if for all π1, π2, diff(π1, π2) is distributed the same as diff(π2, π1) and (diff1(π1, π2),diff2(π1, π2))
is distributed the same as (diff2(π1, π2),diff1(π1, π2)).

Finally, we need a more complicated but nonetheless intuitive property of diff functions. In this
paper, we generally imagine that low values of diff are informative about the other player’s policy. In
contrast, we will her assume that high values of diff are uninformative. That is, for any σi and π−i,
we will assume that there is a policy πi that plays σi against π−i and triggers the above-threshold
policy of π−i with the highest-possible probability. Formally, let π−i = (σ⩽

−i, θ−i, σ
>
−i) be any

threshold policy. Let p be the supremum of numbers p′ for which there is πi s.t. in (πi, π−i), Player
−i plays (1 − p′)σ⩽

−i + p′σ>
−i. Let σmax

π−i
= (1 − p)σ⩽

−i + pσ>
−i. Intuitively, σmax

π−i
is the strategy

played by π−i against the most different opponent policies. For the examples of Section 3 we have
p = 1 and thus simply σmax

π−i
= σ>

−i. But if diff is bounded, then we might even have p = 0 or
anything in between.
Definition 3. We call diff : Ā1 × Ā2 ⇝ R2 high value uninformative if for each threshold policy
π−i, σi and ϵ > 0 there is a threshold policy πi such that in (πi, π−i), a strategy profile within ϵ of
(σi, σ

max
π−i

) is played.

We are now ready to state a uniqueness result for the Nash equilibria of diff meta games.
Theorem 4. Let Γ be a player-symmetric, additively decomposable game. Let diff be symmetric,
high-value uninformative, and minimized by copies. Then if (π1, π2) is a Nash equilibrium that is
not Pareto-dominated by another Nash equilibrium, we have that V1(π1, π2) = V2(π1, π2). Hence, if
there exists a Pareto-optimal Nash equilibrium, its payoffs are unique, Pareto-dominant among Nash
equilibria and equal across the two players.

We prove Theorem 4 in Appendix D.3. Roughly, we prove that under the given assumptions,
equilibrium policies are more beneficial to the opponent when observing a diff value below the
threshold than if they observe a diff value above the threshold. Second, we show that if in a given
strategy profile Principal i receives a lower utility than Principal −i, then Principal i can increase
her utility by submitting a copy of Principal −i’s policy. Appendix D.1 shows why the assumptions
(additive decomposability of the game and and high-value uninformativeness and symmetry of diff)
are necessary.

6 Machine learning for similarity-based cooperation in complex games
Our results so far demonstrate the theoretical viability of similarity-based cooperation, but leave open
questions regarding its practicality. In complex environments, where cooperating and defecting are
by themselves complex operations, can we find the cooperative equilibria for a given diff function
with machine learning methods?

6.1 A novel pretraining method for similarity-based cooperation

We now describe Cooperate against Copies and Defect against Random (CCDR), a simple ML
method to find cooperative equilibria in complex games. To use this method, we consider neural net
policies πθ parameterized by a real vector θ. First, for any given diff game, let V d : (Rm)(

Rn+1) ×
(Rm)(

Rn+1) → R2 be the utility of a version of the game in which diff is non-noisy. CCDR trains
a model πθi

to maximize V d(πθi
, πθi

) + V d(πθi
, πθ′

−i
) for randomly sampled θ′

−i. That is, each
player i pretrains their policy πθi

to do well in both of the following scenarios: principal −i copies
principal i’s model; and principal−i generates a random model. The method is named for its intended
effect in Prisoner’s Dilemma-like games. Note, however, that it is well-defined in all symmetric
games, not just Prisoner’s Dilemma-like games.

CCDR pretraining is motivated by two considerations. First, in games like the Prisoner’s Dilemma,
there exist cooperative equilibria of policies that cooperate at a diff value of 0 and defect as the

6



fC

fD

fi

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
fC

fD

fi

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: The figure illustrates how utilities are calculated in the HDPD. The function fi is an action
chosen by Player i. The area between the curves fi and fD determines, intuitively, how much the
agent defects; the area between the curves fi and fC determines how much it cooperates. The fi
shown in the figure is much closer to defecting than to cooperation.

perceived diff value increases. We give a toy model of this in Appendix E. CCDR puts in place the
rudimentary structure of these equilibria. Note, however, that CCDR does not directly optimize for
the model’s ability to form an equilibrium. Second, CCDR can be thought of as a form of curriculum
training. Before trying to play diff games against other (different but similar) learned agents, we
might first train a policy to solve two (conceptually and technically) easier related problems.

6.2 A high-dimensional one-shot Prisoner’s Dilemma

To study similarity-based cooperation in an ML context, we need a more complex version of the
Prisoner’s Dilemma. The complex Prisoner’s Dilemma-like games studied in the multi-agent learning
community generally offer other mechanisms that establish cooperative equilibria (e.g., playing a
game repeatedly). For our experiments, however, we specifically need SBC to be the only mechanism
to establish cooperation.

We therefore introduce a new game, the High-Dimensional (one-shot) Prisoner’s Dilemma (HDPD).
The goal is to give a variant of the one-shot Prisoner’s Dilemma that is conceptually simple but
introduces scalable complexity that makes finding, for example, exact best responses in the diff meta
game intractable. In addition to G, the HDPD is parameterized by two functions fC , fD : Rn → Rm

representing the two actions Cooperate and Defect, respectively, as well as a probability measure
µ over Rn. Each player’s action is also a function fi : Rn → Rm. This is illustrated in Figure 2
for the case of n = 1 and m = 1. For any pair of actions f1, f2, payoffs are then determined as
follows. First, we sample some x according to µ from Rn. Then to determine how much Player i
cooperates, we consider the distance d(fi(x), fC(x)) to determine, roughly speaking, how much
Player 1 cooperates. The larger the distance the less cooperative is fi. In the case of n = m = 1 and
µ uniform, the expected distance between fi(x) and fD(x) is simply the area between the curves of fi
and fD, as visualized in Figure 2. We analogously determine how much the players defect. Formally,
we define ui (f1, f2) = −Ex∼µ [d(fi(x), fD(x)) +Gd(f−i(x), fC(x))] /Ex∼µ[d(fC(x), fD(x))].
Thus, the action fi = fD corresponds to defecting and the action fC corresponds to cooperating,
e.g., u(fC , fC) = (−1,−1) and u(fD, fD) = (−G,−G). The unique equilibrium of this game is
(fD, fD). In our experiments, we specifically used G = 5.

We consider a diff meta game on the HDPD. Formally, a diff-based policy for the HDPD is a function
R→ (Rm)

(Rn). For notational convenience, we will instead write policies as functions Rn+1 → Rm.
We then define our diff function by diffi(π1, π2) = E(y,x)∼ν [d(π1(y,x), π2(y,x))] + Zi, where ν

is some probability distribution over Rn+1 and Zi is some real-valued noise.

6.3 Experiments

Experimental setup. We trained on the environment from Section 6.2. We selected a fixed set
of hyperparameters based on prior exploratory experiments and the theoretical considerations in
Appendix E. We then randomly initialized θ1 and θ2, CCDR-pretrained them (independently), and
then trained θ1 and θ2 against each other using ABR. We repeated the experiment with 28 random
seeds. As control, we also ran the experiment without CCDR on 26 seeds. We also ran experiments
with Learning with Opponent-Learning Awareness (LOLA) (Foerster et al., 2018), which we report
in Appendix G.

Results. First, we observe that in the runs without CCDR pretraining, the players generally converge
to mutual defection during alternating best response learning. In particular, in all 26 runs, at least one
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(a) (b)

Figure 3: (a) The behavior of a CCDR-pretrained policy. For each perceived value of diff to the
opponent y, the green line shows the expected distance of the learned policy’s choice to fC (smaller
means more cooperative) and the read line shows the expected distance to fD. (b) Losses of Player 1
in 10 runs through the ABR phase.

player’s utility was below −5. Only two runs had a utility above −5 for one of the players (−4.997
and −4.554). The average utility across the 26 runs and across the two players was −5.257 with
a standard deviation of 0.1978. Anecdotally, these results are robust – ABR without pretraining
practically never finds cooperative equilibria in the HDPD.

Second, we observe that in all 28 runs, CCDR pretraining qualitatively yields the desired policy
models, i.e., a policy that cooperates at low values of diff and gradually comes closer to defecting at
high values of diff. Figure 3a shows a representative example.

Our main positive experimental result is that after CCDR pretraining, the models converged in
alternating best response learning to a partially cooperative equilibrium in 26 out of 28 runs. Thus, the
cooperative equilibria postulated in general by Theorem 3 and in simplified examples by Propositions 1
and 2 (as well as Proposition 25), do indeed exist and can be found with simple methods. The
minimum utility of either player across the 26 successful runs was -4.854. The average utility
across all runs and the two players was about -2.77 and thus a little closer to u(fC , fC) = −1 than to
u(fD, fD) = −5. The standard deviation was about 1.19. Figure 3b shows the losses (i.e., the negated
utilities) across ABR learning. Generally, the policies also converge to receiving approximately the
same utility (cf. Section 5). The average of the absolute differences in utility between the two players
at the end of the 28 runs is about 0.04 with a standard deviation of 0.05. We see that in line with
Theorem 4, we tend to learn egalitarian equilibria in this symmetric, additively decomposable setting.
After alternating best response learning, the models generally have a similar structure as the model in
Figure 3a, though often they cooperate only a little at low diff values. Based on prior exploratory
experiments, CCDR’s success is moderately robust.

6.4 Discussion

Without pretraining, ABR learning unsurprisingly converges to mutual defection. This is due to a
bootstrapping problem. Submitting a policy of the form “cooperate with similar policies, defect
against different policies” is a unique best response against itself. If the opponent model π−i is not of
this form, then any policy πi that defects, i.e., that satisfies πi(diff(πi, π−i)) = fD, is a best response.
Because fC is complex, learning a model that cooperates at all is unlikely. (Even if fC was simple,
the appropriate use of the perceived diff value would still be specific and thus unlikely to be found by
chance.) Similar failures to find the more complicated cooperative equilibria by default have also
been observed in the iterated PD (Sandholm & Crites 1996; Foerster et al. 2018; Letcher et al. 2019)
and in the open-source PD (Hutter, 2020). Opponent shaping methods have been used successfully to
learn to cooperate both in the iterated Prisoner’s Dilemma (Foerster et al. 2018; Letcher et al. 2019)
and the open-source Prisoner’s Dilemma (Hutter, 2020). Our experiments in Appendix G show that
LOLA can also learn SBC, but unfortunately not as robustly as CCDR pretraining.

CCDR pretraining reliably finds models that cooperate with each other and that continue to partially
cooperate with each other throughout ABR training. This shows that when given some guidance, ABR
can find SBC equilibria – SBC equilibria have at least some “basin of attraction”. Our experiments
therefore suggest that SBC is a promising means of establishing cooperation between ML agents.
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That said, CCDR has many limitations that we hope can be addressed in future work. For one,
in many games the best response against a randomly generated opponents does poorly against a
rational opponent. Second, our experiments show that while the two policies almost fully cooperate
after CCDR pretraining, they quickly partially unlearn to cooperate in the ABR phase. We would
prefer a method that preserves closer to full cooperation throughout ABR-style training. Third,
while CCDR seems to often work, it can certainly fail in games in which SBC is possible. Learning
to distinguish randomly sampled opponent policies from copies will in many settings not prepare
an agent to distinguish cooperative/SBC opponents from uncooperative but trained (not randomly
sampled) opponents. Consequently, CCDR may sometimes result in insufficiently steep incentive
curves, cooperating with too dissimilar opponents. We suspect that to make progress on the latter
issues we need training procedures that more explicitly reason about incentives à la opponent shaping
(cf. our experiments with LOLA Appendix G).

7 Related work
We here relate our project to the two most closely related lines of work. In Appendix H we discuss
more distantly related lines of work.

Program equilibrium. We already discussed in Section 1 the literature on program meta games in
which players submit computer programs as policies and the programs fully observe each other’s
code (McAfee 1984; Howard 1988; Rubinstein 1998, Section 10.4; Tennenholtz 2004). Interestingly,
some constructions for equilibria in program meta games are similarity based. For example, the
earliest cooperative program equilibrium for the Prisoner’s Dilemma, described in all four of the
above-cited papers, is the program “Cooperate if the opponent’s program is equal to this program;
else Defect”. The program “cooperate if my cooperation implies cooperation from the opponent”
proposed by Critch et al. (2022) is also similarity-based. Other approaches to program equilibrium
cannot be interpreted as similarity based, however (see, e.g., Barasz et al., 2014; Critch, 2019;
Oesterheld, 2019b). To our knowledge, the only published work on ML in program equilibrium is
due to Hutter (2020). It assumes the programs to have the structure proposed by Oesterheld (2019b)
on simple normal-form games, thus leaving only a few parameters open. Similar to our experiments,
Hutter shows that best response learning fails to converge to the cooperative equilibria. In Hutter’s
experiments, the opponent shaping methods LOLA (Foerster et al., 2018) and SOS (Letcher et al.,
2019) converge to mutual cooperation.

Decision theory and Newcomb’s problem. Brams (1975) and Lewis (1979) have pointed out that
the Prisoner’s Dilemma against a similar opponent closely resembles Newcomb’s problem, a problem
first introduced to the decision-theoretical literature by Nozick (1969). Most of the literature on
Newcomb’s problem is about the normative, philosophical question of whether one should cooperate
or defect in a Prisoner’s Dilemma against an exact copy. Our work is inspired by the idea that in some
circumstances one should cooperate with similar opponents. However, this literature only informally
discusses the question of whether to also cooperate with agents other than exact copies (Hofstadter
e.g., 1983; Drescher 2006, Ch. 7; Ahmed 2014, Sect. 4.6.3). We address this question formally.

One idea behind the present project, as well as the program game literature, is to analyze a decision
situation from the perspective of (actual or hypothetical) principals who design policies. The
principals find themselves in an ordinary strategic situation. This is how our analysis avoids the
philosophical issues arising in the agent’s perspective. Similar changes in perspective have been
discussed in the literature on Newcomb’s problem (e.g., Gauthier 1989; Oesterheld & Conitzer 2022).

8 Conclusion and future work
We make a strong case for the promise of similarity-based cooperation as a means of improving
outcomes from interactions between ML agents. At the same time, there are many avenues for future
work. On the theoretical side, we would be especially interested in generalizations of Theorem 4,
that is, theorems that tell us what outcomes we should expect in diff meta games. Is it true more
generally that under reasonable assumptions about the diff function, we can expect SBC to result in
fairly specific, symmetric, Pareto-optimal outcomes? We are also interested in further experimental
investigations of SBC. We hope that future work can improve on our results in the HDPD in terms of
robustness and degree of cooperation. Besides that, we think a natural next step is to study settings in
which the agents observe their similarity to one another in a more realistic fashion. For example, we
conjecture that SBC can occur when the agents can determine that their policies were generated by
similar learning procedures.
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Figure 4: Visualization of outcomes as a function of the thresholds in Example 1 without noise
(Z1 = Z2 = 0). For each pair of thresholds (x and y axis), the graph shows whether both players
cooperate (yellow), both players defect (blue), or one player cooperates and the other defects (orange).

A Preliminary game theory results
We say that σ very weakly Pareto-dominates σ̂ if for all i, we have that ui(σ) ≥ ui(σ̂).
Proposition 5. Let Γ be a two-player additively decomposable normal-form game. Then Γ has a
Nash equilibrium that very weakly Pareto-dominates all other Nash equilibria. If Γ is furthermore
symmetric, then in the Pareto-dominant equilibrium, both players receive the same utility.

Proof. First note that for all σ−i, Player i’s best responses are given by

argmax
ai

ui(ai, σ−i) = argmax
ai

ui,i(ai) + ui,−i(σ−i) = argmax
ai

ui,i(ai).

Now among this set of universal best responses, let let a∗i be one that maximizes u−i,i(ai) for i = 1, 2.
Clearly a∗ is a Nash equilibrium.

Now let σ be any Nash equilibrium. Note that for i = 1, 2 the support of σi must be in the above
argmax. It follows that for i = 1, 2,

ui(a
∗) = ui,i(a

∗
i ) + ui,−i(a

∗
−i) = ui,i(σi) + ui,−i(a

∗
−i) ≥ ui,i(σi) + ui,−i(σ−i) = ui(σ).

B A detailed analysis of Example 1
Example 1 is already surprisingly rich. We here provide a detailed analysis.

Example 1. Let Γ be the Prisoner’s Dilemma as per Table 1. Then consider the (Γ, Â1, Â2,diff)

meta game where Âi = {(C, θi, D) | θi ∈ R} and diffi((C, θ1, D), (C, θ2, D))) = |θ1 − θ2|+ Zi

for i = 1, 2 where Zi is some real-valued random variable.

Figures 4, 5a and 5b illustrate Example 1. Specifically, Figure 4 considers the case without noise
(Zi = 0) and shows for each pair of thresholds θ1, θ2 whether both agents cooperate (yellow), only
one agent (the one with the lower threshold) cooperates (orange), or both defect (blue). Figure 5a and
Figure 5b consider the case Zi ∼ Uniform([0, 1]), i.e., the case where noise is drawn uniformly from
[0, 1]. Figure 5a shows for each pair of thresholds the minimum probability of cooperation across the
two players. For instance, if Player 1 submits 0.5 and Player 2 submits 1, then Player 1 cooperates
with probability 0 and and Player 2 cooperates with probability 1/2, so the plot in Figure 5a is 0 (blue)
at (0.5, 1) (and symmetrically at (1, 0.5)). Figure 5b shows the action of the agent whose threshold is
given by the x axis.

Because we here restrict attention to policies of type (C, θ,D), policies are uniquely specified by a
single real number θ. So we will denote them as such.

In addition to threshold policies that correspond to real numbers, we will here consider the agents
−∞ by which we mean the agent that always defects, and the agent∞, by which we mean the agent
that always cooperates.

14



(a) (b)

Figure 5: Visualization of the probabilities of cooperation as a function of the thresholds in Example 1
with uniform noise Z1, Z2 ∼ Uniform([0, 1]). For each pair of thresholds (x and y axis), the left
graph shows the minimum probability of cooperation across the two players. The right-hand graph
shows the probability of cooperation of the player corresponding to the x axis.

One might suspect that if there is too much noise, there can be no cooperative equilibria. But it’s easy
to see that the setting of Example 1 is scale-invariant.
Proposition 6 (Scale invariance of noise). Let (Γ,A1,A2,diff) be a diff-based meta game with
utility V , where diff(θ1, θ2) = |θ1 − θ2|+ Zi. Further, let (Γ,A1,A2,diff

′) be a diff-based meta
game with utility V ′, where diff ′(θ1, θ2) = |θ1 − θ2| + αZi for some α > 0. Then for all θ1, θ2,
V (θ1, θ2) = V ′(αθ1, αθ2). It follows that for all θ1, θ2, (θ1, θ2) is a Nash equilibrium in the diff
meta game if and only if (αθ1, αθ2) is a Nash equilibrium in the diff ′ meta game.

B.1 Best responses

In the regular Prisoner’s Dilemma, defecting strictly dominates cooperating. Similarly, in the diff
meta game of Example 1, always defecting strictly dominates always cooperating (without looking at
the difference to the opponent).
Definition 4. Let (A1, A2,u) be a normal-form game. Let a1, a′1 ∈ A1 be strategies for Player 1.
We say that a1 very weakly dominates a′1 if for all a2 ∈ A2 we have that u1(a1, a2) ≥ u1(a1, a2).
We further say that a1 weakly dominates a′1 if the inequality is strict for at least one a2 and that a1
strictly dominates a1 if the inequality is strict for all a2.
Proposition 7. The threshold policy −∞ strictly dominates the threshold policy∞.

Intuitively, in our model there is never a reason submit a policy that defects when it can be sure that it
faces an exact copy. If the noise is lower-bounded, this puts a lower bound on what kind of agent it
makes sense to submit, as we now show.
Proposition 8. Let Zi ≥ θi with certainty. Let θ′i < θi. Then θi very weakly dominates θ′i. If
P (Z = θi) > 0, θi weakly dominates θ′i.

The next result shows that if the player who submits the higher threshold decreases her threshold while
still staying above the other player’s threshold, she cooperates with the same probability. Conversely,
one cannot (in the setting of Example 1) decrease one’s probability of threshold by increasing one’s
threshold.
Lemma 9. Let θi, θ′i, θ−i ∈ R with θi ≥ θ′i ≥ θ−i. Then in (θi, θ−i), Player i cooperates with equal
probability as in (θ′i, θ−i).

Proof.

P (Pl. i C’s | θi, θ−i) = P (Zi + θi − θ−i ≤ θi)

= P (Z ≤ θ−i)

= P (Zi + θ′i − θ−i ≤ θ′i)

= P (Pl. i C’s | θ′i, θ−i)
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Theorem 10. Let θi, θ−i ∈ R with θi > θ−i. Then ui(θ−i, θ−i) ≥ ui(θi, θ−i). The inequality is
strict if and only if P (2θ−i − θi ≤ Z−i ≤ θ−i) > 0.

Intuitively, there’s never a reason to submit a higher threshold than the opponent.

Proof. With Lemma 9, we need only prove that by decreasing θi to θ−i the probability that Player 2
cooperates (weakly) increases. This is easy to see, though for the strictness condition, we need the
details:

P (Pl. −i C’s | θi, θ−i) = P (Z−i + θi − θ−i ≤ θ−i)

= P (Z−i ≤ 2θ−i − θi)

P (Pl. −i C’s | θ−i, θ−i) = P (Z−i ≤ θ−i)

Clearly, P (Z−i ≤ θ−i) ≥ P (Z−i ≤ 2θ−i − θi). Moreover, the inequality is strict if and only if
P (2θ−i − θi ≤ Z−i ≤ θ−i) > 0.

B.2 (Pure) Nash equilibria

We now give some results on the Nash equilibria of Example 1. We start with two simple results to
warm up.

Proposition 11. For all distributions of the noise:

1. (−∞,−∞) is a Nash equilibrium.

2. (∞,∞) is not a Nash equilibrium.

Proposition 12. If there is no upper bound to noise, then there is no fully cooperative equilibrium.

Proof. If there is no upper bound to noise, then the only policy profile with universal cooperation is
(∞,∞). But by Proposition 11.2, this is not a Nash equilibrium.

Next we use our results on best responses to show that to form a Nash equilibrium it is never necessary
for the two players to submit different thresholds.

Theorem 13. Let (θi, θ−i) be a Nash equilibrium with θi > θ−i. Then (θ−i, θ−i) is also a Nash
equilibrium.

Proof. WLOG assume i = 1 for notational clarity. Assume for contradiction that (θ2, θ2) is not a
Nash equilibrium. First, notice that by Theorem 10 and the assumption that θ1 is a best response for
Player 1 to θ2, it follows that for Player 1 θ2 is a best response to θ2. So if (θ2, θ2) is not a Nash
equilibrium, then it must be because for Player 2 θ2 is not a best response to θ2 as submitted by
Player 1. So there must be θ′2 such that u2(θ2, θ

′
2) > u2(θ2, θ2). By Theorem 10, θ′2 < θ2.

We now show that we would then also have that u2(θ1, θ
′
2) > u2(θ1, θ2) in contradiction with the

assumption that (θ1, θ2) is a Nash equilibrium. We do this via the following sequence of (in)equalities:

u2(θ1, θ
′
2) ≥

(1)
u2(θ2, θ

′
2) > u2(θ2, θ2) =

(2)
u2(θ1, θ2).

(1) By Lemma 9, Player 1 cooperates with equal probability in (θ1, θ
′
2) and (θ2, θ

′
2). It is easy to see

that Player 2’s probability of cooperating is weakly lower in (θ1, θ
′
2). It follows that u2(θ1, θ

′
2) ≥

u2(θ2, θ
′
2).

(2) (A) By Lemma 9, Player 1 cooperates with equal probability in (θ1, θ2) and (θ2, θ2). (B) From A
and the assumption that θ1 ∈ BR1(θ2) it follows that Player 2 cooperates with equal probability in
(θ1, θ2) and (θ2, θ2). (Because if this were not the case, then θ2 would be a strictly better response
for Player 1 to θ2.) From A and B it follows that the distributions over actions are the same in (θ1, θ2)
and (θ2, θ2) and thus that u2(θ2, θ2) = u2(θ1, θ2) as claimed.
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We are now ready to show the first of our two results about the main text.
Proposition 1. Consider Example 1 with Zi ∼ Uniform([0, ϵ]) i.i.d. for some ϵ > 0 and with G ≥ 2.
Then ((C, θ1, D), (C, θ2, D)) is a Nash equilibrium if and only if θ1, θ2 ≤ 0 or 0 < θ1 = θ2 ≤ ϵ. In
case of the latter, the equilibrium is strict if G > 2.

Proof. "⇐": First we show that the given strategy profiles really are equilibria.

1. θ1, θ2 ≤ 0 is just the like the earlier (−∞,−∞) equilibrium. If one player plays θ−i ≤ 0, then
clearly the unique best response is to also always defect.

2. By Theorem 10 we only need to consider whether one of the players, WLOG Player 1, can increase
her utility by decreasing their threshold. So for the following consider θ1 < θ2

P (Pl. 1 C’s | θ1, θ2) = P (θ2 − θ1 + Z1 < θ1)

= P (Z1 < 2θ1 − θ2).

This is equal to max(0, (2θ1 − θ2)/ϵ). Clearly, if Player 1 can profitably deviate to some θ1, then
she can profitably deviate to some θ1 s.t. (2θ1 − θ2)/ϵ is nonnegative. After all, Player 1 wants to
maximize Player 2’s probability of cooperation.

Similarly,

P (Pl. 2 C’s | θ1, θ2) = P (θ2 − θ1 + Z < θ2)

= P (Z < θ1)

= θ1/ϵ.

Now θ1 = θ2 is a best response to θ2 if and only if the rate at which P (Pl. 1 C’s | θ1, θ2) decreases is
at most G times as high as the rate at which P (Pl. 2 C’s | θ1, θ2) decreases. Now the rates of change
/ derivatives are 2/ϵ and 1/ϵ. So this condition is satisfied (for our payoff matrix).

"⇒": It is left to show that no other profile is a Nash equilibrium.

First, notice that for all θ−i > ϵ, the unique best response is θi = ϵ, which minimizes the probability
of i cooperating, while ensuring that Player −i cooperates with probability 1. For this, use part 2 of
"⇐". From this it follows directly that there is no equilibrium in which both players play > ϵ. By the
strictness part of⇐, all equilibria in which one player plays ≤ ϵ are as described in the result.

We now prove a lemma in preparation for proving our second result for the main text.
Lemma 14. Assume G = 2 and assume that the two players have the same noise distribution.
Then (θ, θ) is a Nash equilibrium if and only if for all ∆ > 0, P (θ − 2∆ < Z < θ −∆) ≤
P (θ −∆ < Z < θ). It is a strict Nash equilibrium if all of these inequalities are strict.

Proof. By Theorem 10 we only need to consider deviations to a lower threshold. So consider WLOG
the case where Player 1 deviates from θ to submit θ − ∆. First, we calculate the probabilities of
cooperation under (θ, θ) and (θ −∆, θ):

P (Pl. 1 C’s | θ, θ) = P (Z ≤ θ)

P (Pl. 1 C’s | θ −∆, θ) = P (Z +∆ ≤ θ −∆)

= P (Z ≤ θ − 2∆)

P (Pl. 2 C’s | θ, θ) = P (Z ≤ θ)

P (Pl. 2 C’s | θ −∆, θ) = P (Z +∆ ≤ θ)

= P (Z ≤ θ −∆)

Thus by Player 1 switching from θ to θ −∆, Player 1’s probability of cooperating decreases by

P (Z ≤ θ)− P (Z ≤ θ − 2∆) = P (θ − 2∆ ≤ Z ≤ θ).

Meanwhile, Player 2’s probability of cooperating decreases by

P (Z ≤ θ)− P (Z ≤ θ −∆) = P (θ −∆ ≤ Z ≤ θ).

Thus, for this switch to not be profitable for player 1, it needs to be the case that

P (θ − 2∆ ≤ Z ≤ θ) ≤ 2P (θ −∆ ≤ Z ≤ θ),
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or, equivalently,
P (θ − 2∆ ≤ Z ≤ θ −∆) ≤ P (θ −∆ ≤ Z ≤ θ)

as claimed.

Proposition 2. Consider Example 1 with G = 2. Assume Zi is i.i.d. for i = 1, 2 according some uni-
modal distribution with mode ν with positive measure on every interval. Then ((C, θ1, D), (C, θ2, D))
is a Nash equilibrium if and only if θ1 = θ2 ≤ ν.

Proof. By Theorem 10 and the assumption of positive measure on any interval, all Nash equilibria
have the form θ1 = θ2. The second part follows directly from Lemma 14 and the fact that the noise
distribution is unimodal with mode ν.

B.3 A different type of noise

Intuitively, we might expect that more noise is an obstacle to similarity-based cooperation. The above
results do not vindicate this intuition (see Proposition 6). We here give an alternative setup with a
different kind of noise in which more noise is an obstacle to cooperation.
Example 2. Consider a variant of Example 1 where for i = 1, 2 we have with probability pi that
diffi((C, θ1, D), (C, θ2, D))) = |θ1 − θ2|+ Zi with Zi ∼ Unif([0, ϵ]) for some ϵ > 0; and with the
remaining probability diffi((C, θ1, D), (C, θ2, D))) = 0.

Note that for p1 = p2 = 1 the setting is exactly the setting of Proposition 1.

Intuitively, this models a scenario in which each player can try to manipulate the diff value to 0
and the manipulation succeeds with probability 1 − pi. (It is further implicitly assumed, that if
manipulation fails, the other player never learns of the attempt to manipulate. Instead, the diff value
is observed normally if manipulation fails. That way we can assume that each player always attempts
to manipulate.)

We can generalize Proposition 1 to this new setting as follows:
Proposition 15. In Example 2, ((C, θ1, D), (C, θ2, D)) is a Nash equilibrium if and only if

• θ1, θ2 ≤ 0; or
• 0 < θ1 = θ2 ≤ ϵ and Gpi ≥ 0 for i = 1, 2.

The proof works the same as the proof of Proposition 1.

C Proofs for Section 4
C.1 Nash equilibria of the base game as Nash equilibria of the meta game

We first note two simple results. The first is that every Nash equilibrium of the base game is also a
Nash equilibrium of the diff meta game in which both players submit a policy that simply ignores the
diff value.
Proposition 16. Let Γ be a game and σ be a Nash equilibrium of Γ. For i = 1, 2, let Ai be any
set of policies that contains the policy πi : d 7→ σi. Then (π1, π2) is a Nash equilibrium of the
(Γ,diff,A1,A2) meta game.

If the diff function is uninformative, then the Nash equilibria are in fact the only Nash equilibria of
the diff meta game, as we now state.
Proposition 17. Let Γ be a game and (Γ,diff,A1,A2) be a meta game on Γ where diff(·, ·) = y
for some y2. Then (π1, π2) is a Nash equilibrium of the meta game if and only if (π1(y1), π2(y2)) is
a Nash equilibrium of Γ.

C.2 Proof of Theorem 3

Theorem 3 (folk theorem for diff meta games). Let Γ be a game and σ be a strategy profile for Γ.
Let Ai ⊇ Āi for i = 1, 2. Then the following two statements are equivalent:

1. There is a diff function such that there is a Nash equilibrium (π1, π2) of the diff meta game
(Γ,diff,A1,A2) s.t. (π1, π2) play σ.

2. The strategy profile σ is individually rational (i.e., better than everyone’s minimax payoff).
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Player 2
a0 a1 a2

Player 1
a0 0, 0 −2, 1 −5,−1
a1 1,−2 −1,−1 −4,−3
a2 −1,−5 −3,−4 −6,−6

Table 2: A game to show the need for assuming high-value uninformativeness in Theorem 4.

The result continues to hold true if we restrict attention to deterministic diff functions with diff1 =
diff2 and diffi(π1, π2) ∈ {0, 1} for i = 1, 2.

Proof. “1⇒2”: We show the contrapositive, i.e., that if σ is not individually rational, it is not
implemented by any equilibrium of any diff game. Let σ̂i be the strategy of Player i that guarantees
her her minimax utility. Then submitting (σ̂i, θ, σ̂i) for any threshold θ guarantees minimax utility
regardless of what diff function is used. Thus, anything that gives i less than threat point utility
cannot be an equilibrium.

“2⇒1”: Let σ̃i be Player i’s minimax strategy against Player −i. Then consider the strategy profile
(π1 = (σ̃1, 1/2, σ1), π2 = (σ̃2, 1/2, σ2)) and any diff function s.t. diff(π1, π2) = 0 and for i = 1, 2
and π′

−i ̸= π−i, diff(πi, π
′
−i) = 1. Clearly, in (π1, π2), the players play (σ1, σ2). Finally, (π1, π2)

is a Nash equilibrium of the resulting diff meta game, because if either player deviates they will
receive their minimax utility, which is by assumption no larger than their utility in σ and thus in
(π1, π2).

D On the uniqueness theorem
D.1 Examples to show the need for the assumptions of Theorem 4

D.1.1 Why the diff function must be high-value uninformative in Theorem 4

We now give an example for why we need diff to be high-value uninformative, both for Lemma 22
and for our uniqueness theorem below.

Proposition (Example) 18. Consider the game of Table 2. Note that the game is symmetric
and additively decomposable. Consider the diff function defined by diff((σ⩽

1 , ∗, σ>
1 )i=1,2) = 1

if supp(σ⩽
1 ) ∪ supp(σ>

1 ) and supp(σ⩽
2 ) ∪ supp(σ>

2 ) are disjoint and diff((σ⩽
1 , ∗, σ>

1 )i=1,2) = 0
otherwise. Then ((a2, 1/2, a1), (a0, ∗, a0)) is an equilibrium of the diff meta game.

Intuitively, the policy (a2, 1/2, a1) with the described diff function implements the following idea: “I
want to play a1 (which is good for me and moderately bad for you). I don’t want you to also play a1.
If you are similar to me (which you are if you give weight to the same action I give weight to), I’ll
play a2, which is very bad for you.” Assuming that Player 1 submits such a policy, Player 2 optimizes
her utility by always playing a0. Player 1 thus obtains her favorite outcome.

D.1.2 Why the game must be additively decomposable in Theorem 4

The following example shows why we need to restrict attention to additively decomposable games.
Intuitively, the game is a Prisoner’s Dilemma, except that if the players cooperate, they also play
a Game of Chicken for an additional payoff. Then (with a natural diff function) similarity-based
cooperation takes care of the cooperate versus defect part, but leaves open the Dare versus Swerve
part. In particular, there are multiple Pareto-optimal equilibria.

Proposition (Example) 19. Let Γ be the game of Table 3. Define diff(π1, π2) = 0 if a0 /∈
supp(πi(0)) for i = 1, 2 and diff(π1, π2) = 1 otherwise. Then for i = 1, 2,

(πi = (a1, 1/2, a0), π−i = (a2, 1/2, a0))

is a Pareto-optimal Nash equilibrium of the diff meta game on Γ.
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Player 2
a0 a1 a2

Player 1
a0 0, 0 5,−5 5,−5
a1 −5, 5 0, 0 3, 1

a2 −5, 5 1, 3 1, 1

Table 3: A game to show the need for the additive decomposability assumption in Theorem 4.

Player 2
C1 C2 D

Player 1
C1 3, 3 2, 3 0, 4

C2 3, 2 2, 2 0, 3

D 4, 0 3, 0 1, 1

Table 4: A game to show why we need diff to be policy-symmetric in Theorem 4.

D.1.3 Why diff must be observer-symmetric for Theorem 4

We here give an example to show why the diff function in Theorem 4 needs to have
(diff1(π1, π2),diff2(π1, π2)) and (diff2(π1, π2),diff1(π1, π2)) have the same distribution. One
might call this observer symmetry.
Proposition (Example) 20. Let Γ be the Prisoner’s Dilemma. Let diff1(π1, π2) = 0 if π1 = π2 and
diff1(π1, π2) = 1 otherwise. Let diff2(π1, π2) be defined in the same way, except that if π1 = π2,
then there is still an ϵ probability of diff2(π1, π2) = 1− ϵ. Note that this diff meta game satisfies the
other conditions of Theorem 4, i.e., Γ is symmetric and additively decomposable, diff(π1, π2) and
diff(π2, π1) are equally distributed for all π1, π2 and diff is high-value-uninformative and minimized
by copies. Then ((C, 1/2, D), (C, 1/2, D)) has asymmetric payoffs but is a Pareto-optimal Nash
equilibrium of the diff meta game on Γ.

In this example, the Pareto-optimal Nash equilibrium is still unique, but it is easy to come up with
examples in which there are multiple Pareto-optimal Nash equilibria.

Note also that in this example the player who has less information about the other does better in the
cooperative equilibria.

D.1.4 Why diff must be policy-symmetric for Theorem 4

Finally we give an example to show why the diff function in Theorem 4 needs to have diff(π1, π2)
and diff(π2, π1) have the same distribution. One might call this policy symmetry.
Proposition (Example) 21. Let Γ be the game of Table 4. Let diff(π1, π2) = (0, 0) if (π1, π2) equals
one of the following

((C2, 1/2, D), (C1, 1/2, D))

((C1, 1/2, D), (D, 1/2, D))

((C2, 1/2, D), (C2, 1/2, D))

((C1, 1/2, D), (C1, 1/2, D))

((D, 1/2, D), (D, 1/2, D))

and diff(π1, π2) = (1, 1) otherwise. Note that this diff meta game satisfies the other conditions
of Theorem 4, i.e., Γ is symmetric and additively decomposable, diff1(π1, π2) = diff2(π1, π2)
for all π1, π2 and diff is high-value-uninformative and minimized by copies. However, the only
Pareto-optimal (pure) Nash equilibrium of the diff meta game is ((C2, 1/2, D), (C1, 1/2, D)).

As in the previous example, the Pareto-optimal Nash equilibrium is still unique, but it is easy to come
up with examples in which there are multiple Pareto-optimal Nash equilibria.

D.2 Results on the structure of equilibria

We have various intuitions about similarity-based cooperation. For example, we have the intuition
that (C, θ,D) is a sensible policy but (D, θ, C) is not. In this section we prove results of this type
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under appropriate assumptions. We find these results interesting independently, but we also need all
results here to prove Theorem 4.

The following two lemmas capture the idea that under some assumptions it is rational to be more
cooperative if the opponent is similar, i.e., if the observed difference is below the threshold.

Lemma 22. Let (π1, π2) be a Nash equilibrium of the meta game and diff be high-value uninforma-
tive. Then maxσi

ui(σi, σ
max
π−i

) ≤ ui(π1, π2) for i = 1, 2.

Proof. Assume for contradiction that there is some strategy σ′
i s.t. ui(σ

′
i, σ

max
π−i

) > ui(π1, π2).
Because diff is high-value uninformative, there exists a policy π′

i s.t. (π′
i, π−i) resolves to a strategy

profile arbitrarily close to σ′
i, σ

max
π−i

. Hence, ui(π
′
i, π−i) > ui(π1, π2) and so (π1, π2) cannot be a

Nash equilibrium after all.

Lemma 23. Let Γ additively decompose into (ui,j : Ai → R)i,j∈{1,2} and let diff be high-value
uninformative. Let (σ⩽

i , θi, σ
>
i )i=1,2 be a Nash equilibrium. Then ui,−i(σ

>
−i) ≤ ui,−i(σ

⩽
−i) for

i = 1, 2.

Proof. Follows directly from Lemma 22.

Lemma 24. Let Γ be symmetric and additively decomposable. Let diff be symmetric, high-value
uninformative and minimized by copies. Let (πi = (σ⩽

i , ∗, σ>
i ))i=1,2 be a Nash equilibrium of

the diff meta game that induces strategies σ1, σ2. If σi = σ>
i for some i, then (σ1, σ2) is a Nash

equilibrium of Γ.

Proof. With high-value uninformativeness, it follows immediately that σ−i is a best response to σi.

The case that σ−i = σ>
−i is trivial, so we focus on the case where σ−i gives positive probability to

σ⩽
−i. It then follows that σ⩽

−i is a best response to σi. Because the game is additively decomposable,
this means that σ⩽

−i (independent of the opponent’s strategy) maximizes −i’s utility (i.e., σ−i ∈
argmaxσ′

−i∈∆(A−i) u−i,−i(σ
′
−i)). So in particular, σ−i is a best response to σi.

It is left to show that σi is a best response to σ−i. We will argue that if σi is not optimizing Player
i’s utility (i.e., if σi /∈ argmaxσ′

i∈∆(Ai) ui,i(σ
′
i)), then Player i could better-respond to π−i by also

playing π−i instead of πi. Let σ′
−i be the strategy induced for both players by (π−i, π−i). Because

diff is minimized by copies, σ′
−i gives weakly more weight to σ⩽

−i than σ−i. By Lemma 23, this
means that ui,−i(σ

′
−i) ≥ ui,−i(σ−i). Second, by the assumption that σi doesn’t optimize i’s utility

but σ−i and σ⩽
−i do, it follows that ui,i(σi) < ui,i(σ

′
−i).

Putting it all together we obtain that

ui(π−i, π−i) = ui(σ
′
−i, σ

′
−i)

= ui,i(σ
′
−i) + ui,−i(σ

′
−i)

> ui,i(σi) + ui,−i(σ−i)

= ui(σi, σ−i)

= ui(πi, π−i),

as claimed.

D.3 Proof of Theorem 4

Theorem 4. Let Γ be a player-symmetric, additively decomposable game. Let diff be symmetric,
high-value uninformative, and minimized by copies. Then if (π1, π2) is a Nash equilibrium that is
not Pareto-dominated by another Nash equilibrium, we have that V1(π1, π2) = V2(π1, π2). Hence, if
there exists a Pareto-optimal Nash equilibrium, its payoffs are unique, Pareto-dominant among Nash
equilibria and equal across the two players.

For the proof we define for additively decomposable games, uΣ,j := u1,j+u2,j : Aj → R. Intuitively,
uΣ,j denotes the utilitarian welfare generated by Player j’s actions. In symmetric games, uΣ,1 = uΣ,2
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so that we can simply write uΣ. For example, in the Prisoner’s Dilemma uΣ : Cooperate 7→
G,Defect 7→ 1.

Proof. We will prove that if (πi = (σ⩽
i , θi, σ

>
i )) is a Pareto-optimal equilibrium of the meta game,

then both players receive the same utility. The uniqueness of the Pareto-optimal equilibrium follows
immediately.

We prove this in turn by contradiction. So assume that (π1, π2) is a Pareto-optimal equilibrium of the
meta game and that the two players receive different utilities.

Assume WLOG that in (π1, π2) Player 1 receives higher utility. Let σ1, σ2 be the strategies played in
(π1, π2). Then we distinguish two cases:

A) Player 1 “takes” more than Player 2, i.e.,

u1,1(σ1) > u2,2(σ2). (1)

B) Player 1 does not take more but Player 2 “gives” more than Player 1, i.e.,

u1,1(σ1) ≤ u2,2(σ2) (2)

and
u2,1(σ1) < u1,2(σ2). (3)

It is easy to see that one of these cases must obtain.

A) We in turn distinguish two cases:

A.1) First consider the case where

uΣ(σ
>
1 ) ≥ uΣ(σ

⩽
1 ). (4)

We will show that in this case (π1, π2) cannot be a Nash equilibrium. Player 2 can better-respond
by playing the policy π̃1 that plays σ>

1 and maximizes (as per the high value uninformativeness
condition) Player 1’s probability of playing σ>

1 . This can be seen as follows:

u2(π1, π2) = u2(σ1, σ2)

<
Ineq. 1

u2(σ1, σ1)

≤
Ineq. 4

u2(σ
>
1 , σ

>
1 )

≤
Lemma 23

u2(σ
max
1 , σ>

1 )

= u2(π̃1, π2)

A.2) Now consider the case where

uΣ(σ
>
1 ) ≤ uΣ(σ

⩽
1 ). (5)

We will show that in this case Player 2 can better respond by also playing π1 instead of π2, such that
(π1, π2) (again) cannot be a Nash equilibrium.

Let σ′
1 be the strategy played by both players in (π1, π1). Note that because diff is minimized by

copies, σ′
1 gives at least as much weight to σ⩽

1 as σ1.

u2(π1, π1) = u2(σ
′
1, σ

′
1)

≥
Ineq. 5

u2(σ1, σ1)

>
Ineq. 1

u2(σ1, σ2)

= u2(π1, π2)

B) We again distinguish two cases.
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B.1) First consider the case where

uΣ(σ
>
2 ) ≤ uΣ(σ

⩽
2 ). (6)

We will show that in this case (π2, π2) is also a Nash equilibrium and that (π2, π2) Pareto-dominates
(π1, π2).

First, we show Pareto dominance. Let σ′
2 be the strategy played by both players in (π2, π2). Because

diff is minimized by copies, σ′
2 gives at least as much weight to σ⩽

2 as σ2. Then for Player 1 we have
that

u1(π1, π2) = u1(σ1, σ2) ≤
Ineq. 2

u1(σ2, σ2)

≤
Ineq. 6

u1(σ
′
2, σ

′
2) = u1(π2, π2).

(7)

Player 2’s utility is strictly higher in (π2, π2), which we can see as follows:

u2(π1, π2) = u2(σ1, σ2)

<
Ineq. 3

u2(σ2, σ2)

≤
Ineq. 6

u2(σ
′
2, σ

′
2)

= u2(π2, π2).

It is left to show that (π2, π2) is a Nash equilibrium. By assumption, π1 is a best response to π2. Line
7 therefore implies that π2 is also a best response to π2. Because of symmetry, this is true for both
players. We conclude that (π2, π2) is a Nash equilibrium.

B.2) Let
uΣ(σ

>
2 ) > uΣ(σ

⩽
2 ). (8)

We now must make one more distinction. Consider first the case where σ2 = σ>
2 . By Lemma 24,

(σ1, σ2) must be a Nash equilibrium of Γ. The contradiction follows immediately from Proposition 5.

Now consider the case where σ2 ̸= σ>
2 . With Ineq. 8 it follows that

u1(σ2, σ2) < u1(σ
>
2 , σ

>
2 ). (9)

We will show that (π1, π2) is not an equilibrium because Player 1 can better-respond by playing the
policy π̃1 that plays σ>

2 and maximizes as per the definition of high-value uninformativeness Player
2’s probability of playing σ>

2 . Then

u1(π1, π2) = u1(σ1, σ2)

≤
Ineq. 2

u1(σ2, σ2)

<
Ineq. 9

u1(σ
>
2 , σ

>
2 )

≤
Lemma 23

u1(σ
>
2 , σ

max
2 )

= u1(π̃1, π2).

E Theoretical analysis beyond threshold policies
We here analyze a meta game in which players can not only submit threshold policies but continuous
functions. The goal is to show an equilibrium based on linear functions, similar to the equilibria
found by CCDR pretraining.

A policy now is a function π : R≥0 → [0, 1], where π(x) denotes π’s probability of cooperation. For
differences x1, x2, the payoff of Player i is given by

(1− πi(xi)) +G · π−i(x−i).
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Figure 6: Visualization the continuous policy in Proposition 25 for a = 1. The probability of
cooperation is plotted against the perceived difference to the opponent.

It is left to specify the difference function. Let ϵ > 0 and K > ϵ. Then define the function difference

d(π1, π2) =
1

K

∫ K

0

|π1(x)− π2(x)|dx

Further, define the probabilistic difference mapping diff(π1, π2) = d(π1, π2)+Zi, where Zi is drawn
uniformly from [0, ϵ]. As the set of policies for each player consider the set of integrable functions.
Proposition 25. Let π(x) = max (1− x/a, 0) for some a > ϵ. Then (π, π) is a Nash equilibrium if
and only if 1 + aK/ϵ ≤ G.

Note that π decreases cooperation linearly in x down to 0 (which is hit at x = a). This function is
shown in Figure 6 for a = 1. Note that our policies look roughly like this after Step 2.

Proof. Consider (π, π) and imagine that, WLOG, Player 1 moves away from π by ∆, i.e., deviates
to play some π′ s.t. d(π, π′) = ∆. It is easy to see that it is enough to consider small deviations.
Specifically, we assume ∆ ≤ a− ϵ. First, if the difference between the policies increases by ∆, what
happens to Player 2’s expected amount of cooperation? It is easy to see that this decreases by ∆/a.

Next, we need to ask: by increasing the difference by ∆, how much can Player 1 increase her
probability of defection? We need to consider two effects. First, if the difference increases by ∆, then
automatically Player 1 defects more by the same effect as Player 2. So this gives Player 1 an extra
∆/a probability of defection. Moreover, Player 1 can decrease the probability of cooperation on the
relevant interval [∆,∆+ ϵ]. This decreases the probability of cooperation by (at most) K∆/ϵ.

Taking stock, Player 1 can increase her probability of defecting by ∆/a + K∆/ϵ at the cost of
Player 2 increasing her probability of defecting by ∆/a. This is good for Player 1 if and only if
1 + aK/ϵ > G.

F Details on our experiments
F.1 Software

We used pytorch for implementing CCDR and ABR and functorch for implementing LOLA.
We used floats with double precision (by running torch.set_default_dtype(torch.float64)),
because preliminary experiments had shown numerical issues as ABR converged. We used Weights
and Biases (wandb.ai) for tracking.

F.2 Game and meta game

We here give some details on the game and diff meta game we consider throughout our experiments.

Constructing fD, fC In our experiments fD, fC have input dimension 10 and output dimension 3.
(Thus, including one dimension for the similarity value, our policies have input dimension 11.) First
we generate sC,i and sD,i for i = 1, 2, 3 from {0, 1}10 uniformly at random. Then we define

fC(x) = (sin(sC,i · x))i=1,2,3 .

We define fD analogously based on sD.
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We chose this function because it is very simple to understand and implement and at the same time
requires using larger nets. The only other approach we tried in preliminary experiments is to generate
fC , fD by randomly generating neural nets. The problem is that large randomly generated fully
connected neural nets are close to constant functions.

Constructing µ Recall that for any pair of actions f1, f2, the payoffs of the HDPD are given by
ui (f1, f2) = −Ex∼µ [d(fi(x), fD(x)) +Gd(fi(x), fC(x))], where d is the Euclidean distance and
µ is some measure of R10. Thus, to construct a specific instance of the HDPD we need to also
construct µ. We do this by generating 50 vectors uniformly from [0, 1]10 and then taking the uniform
distribution over these 50 vectors.

Constructing the noisy diff mapping Recall that diffi(π1, π2) =
E(y,x)∼ν [d(π1(y,x), π2(y,x))] + Zi, where ν is some probability distribution over Rn+1

and Zi is some real-valued noise. We need to specify ν and the distribution Zi. For ν we first
generate 50 reals from [0, 0.1] uniformly at random as our test diffs. We increment each of these by a
random draw from the underlying noise distribution, i.e., by a number drawn uniformly at random
from [0, 0.1]. We then define ν to be the uniform distribution over 50 values that result from pairing
the support of µ with these 50 values.

For the noise we generate for each player 50 values uniformly from [0, 0.1] and then use the uniform
distribution over these 50 points.

Note that by using the uniform distribution over a finite support, we can compute expected utilities in
the meta game exactly.

F.3 Neural net policies

Throughout our experiments, our policies πθ are represented by neural networks with three fully
connected hidden layers of dimensions 100, 50 and 50 with biases and LeakyReLU activation
functions. Thus, these networks overall have 11+100+50+50+3+11·100+100·50+50·50+50·3 =
8964 parameters.

F.4 Methods as used in our experiments

CCDR pretraining We here describe in more detail the CCDR pretraining step in our results.
Recall that CCDR pretraining consists in maximizing V d(πθi , πθi) + V d(πθi , π

′
θ−i

) for randomly
generated opponents π′

θ−i
. Call −V d(πθi , πθi) + V d(πθi , π

′
θ−i

) the CCDR loss.

In our experiments, we maximized this by running Adam for 100 steps. In each step, the CCDR loss
is calculated by averaging over 100 randomly generated opponents. The learning rate is 0.02.

Alternating best response training We ran alternating best response training for T = 1000
turns. We need to specify how we updated θi to maximize V (θi, θ−i) (holding θ−i fixed) in each
turn. For this we run gradient descent for T ′ = 1000 steps. However, we only take gradient steps
that are successful, i.e., that in fact reduce loss. The learning rate γ′ is sampled uniformly from
[0, γ = 0.00003] in each step. Note that by randomly sampling the learning rate, the algorithms
avoids getting stuck when a gradient step is unsuccessful. We summarize this in Algorithm 1.

F.5 Convergence to spurious stable points?

In theory, alternating best response learning could converge to a “very local Nash equilibrium”, i.e., a
pair of models that are best responses only within a very small neighborhood of these models. One
might also worry about convergence to other stable points (Mazumdar et al., 2020).

However, as far as we can tell, the limit points of our learning procedure are not spurious. To confirm
this, we performed the following test (implemented by the function best_response_test of our
code). For a given pair of models, we pick either model and perturb each of its parameters a little.
We then see whether the perturbed model is a better response to the opponent model than the original
model. In an (approximate) local Nash equilibrium, this should almost never be the case.

In all but one of our successful runs (the ones converging to partial cooperation), none of 10,000
random perturbations of each of the models after alternating best response training led to a better
response to the opponent model. In one run, three perturbations of one of the models decreased loss.
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Algorithm 1 Alternating best response learning

Input: Initial model parameters θ1, θ2, T, T ′ ∈ N, learning rate γ
Output: New model parameters θ′1, θ

′
2

for t = 1, ..., T do
for i = 1, 2 do

for t′ = 1, ..., T ′ do
γ′ ∼ Uniform([0, γ])
θ′′i ← θ′i + γ′∇θ′

i
V (θ′i, θ

′
−i)

if V (θ′′i , θ
′
−i) ≥ V (θ′i, θ

′
−i) then

θ′i ← θ′′i
end if

end for
end for

end for
return θ′1, θ

′
2

When applying the test after CCDR pretraining but before alternating best response training, close to
half of random perturbations improve utility.

F.6 Compute costs

We here provide details on how computationally costly our experiments are. To do so, we ran the
experiment for a single random seed on an AMD Ryzen 7 PRO 4750U, a laptop CPU launched in
2020. (Note that we used the CPU not GPU (CUDA).) The CCDR pretraining took about 30 seconds
per model. The ABR phase took about 3h. (Note that we ran most of our experiments as reported in
the paper via remote computing on different hardware.)

G Experiments with LOLA
We have tried to learn SBC using Foerster et al.’s (2018) Learning with Opponent-Learning Awareness
(LOLA). We here specifically report on an experiment in which we tried a broad range of parameters.
The results are in line with prior exploratory experiments.

LOLA sometimes succeeds in learning SBC (without CCDR pretraining). It finds similar policies
as CCDR pretraining. Some of the SBC models found by LOLA remain cooperative throughout a
subsequent ABR phase.

Unfortunately, none of our LOLA results are nearly as robust as the CCDR results reported in the
main text and in Appendix F. Specifically, they are not even robust to changing the random seed. One
reason for this is that LOLA is capable of “unlearning” LOLA-learned SBC.

G.1 Experimental setup

We ran Foerster et al.’s (2018) Learning with Opponent-Learning Awareness (LOLA). We tried
every combination setting the learning rate and lookahead parameter in LOLA to values in 0.0003,
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1. For each combination we tested both exact and Taylor LOLA as
described by Willi et al. (2022, Sect. 3.2). We tested each of these 8 · 8 · 2 = 128 combinations with
5 different random seeds. In each of these experiments we initialized the nets randomly and then
ran LOLA for both agents for 30,000 steps. We then ran ABR training as described in Appendix F.4
for at most 500 steps, to test whether the resulting policies are in equilibrium. To save compute, we
generally aborted ABR when the loss hit the Defect–Defect utility of 5 or when it was clear that ABR
learning had converged.

We then labeled each individual run as a “weak LOLA success” if the loss after the LOLA phase was
smaller for both players than the loss of mutual defection and as a LOLA-ABR success if the loss
after the ABR phase was smaller for both players than the loss of mutual defection.

For each parameter configuration in which at least 3 out of 5 runs were a weak LOLA success we
ran another 20 runs (with different random seeds) without the ABR phase to determine how robust
the success is. Similarly, for each parameter configuration in which at least 3 out of 5 runs were a
LOLA-ABR success we ran another 20 runs with the ABR phase.
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Figure 7: Loss curve of a relatively successful run between two LOLA agents.

G.2 Qualitative analysis

We start with a qualitative discussion of our results, because the experiments with LOLA exhibit a
much wider range of complex phenomena than the CCDR-based results.

G.2.1 A few clear-cut successful runs

Out of all the runs in our experiment, a few are as clear-cut successes as most of the CCDR runs.
Figure 7 shows the learning curve of one of these runs across both the LOLA and at the end the ABR
phase. It uses a lookahead of 0.001, learning rate of 0.001 and exact LOLA. The players learn to
cooperate with each other in the LOLA phase. When the switch to ABR is made after 30k steps of
LOLA, cooperation deteriorates slightly, but ultimately the models converge in the ABR phase to
an outcome with a loss well below the loss of mutual defection. This shows that LOLA is to some
extent capable of solving the given problem.

Unfortunately, both in the present experiment and in preliminary experiments we have found that
these results are not even robust to changing the random seed. For example, the four other runs
with the same parameters as the run from Figure 7 (but different random seeds) all failed to produce
significant positive results. (One resulted in marginal cooperation at the end of the LOLA phase
(losses 4.986 and 4.928) that disappeared immediately when switching to ABR learning. Another
partially cooperated for some of the LOLA phase but failed to retain cooperation even until the end
of the LOLA phase.)

G.2.2 What models LOLA learns

Generally, when LOLA succeeds, it learns similar models as CCDR pretraining. The main difference
is that for high diff values, LOLA models typically do not exactly defect. (Of course, it also does not
cooperate. Instead if performs an action far from both fC and fD.) This is to be expected, since these
agents are not trained on randomly generated opponents. An example model after 30,000 steps of
LOLA is shown in Figure 8.

When LOLA does not succeeed, the learned models vary greatly. Some are clearly set up to impose
some incentives – others just constantly defect.

G.2.3 Instability in the LOLA phase

The learning in the LOLA phase is often highly unstable. That is, the during the learning phase, the
change in losses in a single learning step is often very large. This occurs even in successful runs.
As an example, consider the learning curve in Figure 9 (lookahead 0.003, learning rate 0.01, exact
LOLA). While it is unclear whether cooperation would have survived further ABR learning, this run
is relatively successful. However, the utilities vary by large amounts during the LOLA phase. In fact
for parts of the LOLA learning phase, both players’ losses are much higher than the loss of mutual
defection. Most successful runs with LOLA look like this. Of course, successes based on such runs
cannot be very robust: if we had ceased LOLA learning somewhat earlier, the run would not have
succeeded. It is unclear what would happen if the run had run for more than 30k LOLA steps.
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Figure 8: An example of a model found in a successful LOLA run.
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Figure 9: An example of the loss curve from a highly unstable LOLA run.

G.2.4 Cooperation in the LOLA phase versus cooperation in the ABR phase

While CCDR is explicitly a pretraining method, LOLA can also be used as a standalone learning
procedure. So for each run, we can ask both whether the players cooperate, say, at the end of the
LOLA phase and whether the players cooperate at the end of the ABR phase. It turns out that all four
combinations of answers are possible! In particular, there are runs in which LOLA versus LOLA
fails to converge to a pair of policies that give both players a higher utility than mutual defection; but
in which ABR then converges to an outcome that is marginally better for both players than mutual
defection.

G.3 Quantitative analysis

Bearing in mind the different qualitative phenomena, we here give a more quantitative analysis.

Table 5 lists the parameters in which at least three out of five runs exhibited weak LOLA success as
defined earlier. They also summarize the result of 20 further runs with these parameters. Specifically,
we categorized runs as stable successes if the loss was below the loss of mutual defection for both
players for the final 5,000 LOLA steps. We categorized them as unstable successes if the loss was
below the loss of mutual defection for both players for the final 50 but not the final 5,000 LOLA steps.
The fourth and fifth columns of Table 5 show the numbers of these different kinds of successes out of
20 runs. The sixth colum shows the average loss across both players and all successful runs. The final
column shows the standard deviation across the losses of the successful runs (also across players).

Table 6 lists the set of parameter configurations that achieved a LOLA–ABR success in at least three
out of five runs. They also summarize the result of 20 further runs with each of these parameter
configurations. Specifically, we categorized runs again as stable successes if the loss was below the
loss of mutual defection for both players for the final 5,000 LOLA steps and at the end of the ABR
phase. We labeled them as unstable successes if the loss was below the loss of mutual defection
for both players at the end of the ABR phase but not for the final 5,000 LOLA steps. Again, the
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LOLA LOLA Taylor Stable Unstable average SD
LA LR LOLA Successes Successes success loss

0.003 0.0003 false 5 1 4.518 0.2857
0.001 0.01 false 1 0 4.666 0.002601
0.001 0.003 false 5 7 3.579 0.6096
0.0003 0.003 true 3 7 4.299 0.1482
0.0003 0.003 false 4 3 4.506 0.07975
0.0003 0.001 true 4 1 4.344 0.2466

Table 5: Parameters for which at least three of five runs resulted in partial cooperation at the end of
the LOLA phase along with results of further 20 runs per parameter configuration..

LOLA LOLA Taylor Stable Unstable average SD
LA LR LOLA Successes Successes success loss

0.0003 0.003 true 1 12 4.279 0.2830
0.0003 0.003 false 3 9 4.344 0.2566

Table 6: Parameters for which at least three of five runs resulted in partial cooperation at the end of
the ABR phase along with results of further 20 runs per parameter configuration.

fourth and fifth columns of Table 6 show the numbers of these different kinds of successes out of 20
runs. The sixth column shows the average loss across both players and all successful runs. The final
column shows the standard deviation across the losses of the successful runs (also across players).

From these results we conclude that LOLA can succeed under various parameter configurations, but
none of the parameter configurations succeed nearly as reliably as CCDR pretraining.

G.4 Compute costs

We again provide details on how computationally costly our experiments are. To do so, we ran the
experiment for a single random seed on an AMD Ryzen 7 PRO 4750U. The LOLA phase took about
20 minutes. The ABR phase took about 1h and 30min. Note again we ran most of our experiments as
reported in the paper via remote computing on different hardware. Note also that we ran ABR for
half as many steps compared to the experiments for the main text (500 instead of 1000). So, the cost
per ABR step is roughly the same between the two experiments.

H Distantly related work
H.1 Learning in Newcomb-like decision problems

There is some existing work on learning in Newcomb-like environments that therefore also applies
to the Prisoner’s Dilemma against a copy. Whether cooperation against a copy is learned generally
depends on the learning scheme. Bell et al. (2021) show that Q-learning with a softmax policy
learns to defect. Regret minimization also learns to defect. Other learning schemes do converge to
cooperating against exact copies (Albert & Heiner, 2001; Mayer et al., 2016; Oesterheld, 2019a;
Oesterheld et al., 2023). All schemes in prior work differ from the present setup, however, and to our
knowledge none offer a model of cooperation between similar but non-equal agents.

H.2 Cooperation via iterated play, reputation, etc.

Perhaps the best-known way to achieve cooperation in the Prisoner’s Dilemma is to play the Prisoner’s
Dilemma repeatedly (e.g., Axelrod 1984; Osborne 2004, Ch. 14, 15). Clearly, the underlying
mechanism (repeated play) is very different from the mechanism underlying SBC, in which the game
is played one-shot. That said, our folk theorem (Theorem 3) is similar to the well-known folk theorem
for repeated games. (As noted in Section 7, the folk theorem for program equilibrium is also similar.)
A number of variants of iterated play have been considered to study, for example, reputation effects,
effects of allowing players to choose with whom to play based on reputation, and so on (e.g., Nowak
& Sigmund 1998).

While cooperation via repeated play is very different from similarity-based cooperation as studied in
this paper, some variants of the former are easy to confuse with the latter. As a simplistic example,
consider a variant of the infinitely repeated Prisoner’s Dilemma. Typically, it is imagined that players
observe the entire history of past play. But now imagine that instead the players in each round only
observe a single bit: 0 if they have taken the same action in each round so far and 1 otherwise.
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Then it is a (subgame-perfect) Nash equilibrium for both players to follow the following strategy:
cooperate upon observing 0 and defect upon observing 1. This is somewhat similar to similarity-based
cooperation, but the underlying mechanism is still the one of repeated play: the reason it is rational for
each of the players to cooperate is that if they defect, their opponent will then defect in all subsequent
rounds. In fact, the strategies played are equivalent to the grim trigger strategies for the iterated
Prisoner’s Dilemma.

As another example of cooperation via repeated play that can be confused with SBC, consider
assortative matchmaking as proposed by Wang et al. (2018, Sect. 2.4). Imagine that agents in a
large population are repeatedly paired up to play a Prisoner’s Dilemma. In each round, each agent is
matched up with a new opponent who is similarly cooperative as they are. Again, similarity plays
a role, but the underlying mechanism is very different from the ones studied in our paper. For one,
similarity is used by the environment (the matching procedure) not the agent itself. Second, the
reason why cooperation is rational is again its impact on rewards in subsequent rounds. For instance,
imagine that for some reason an agent has, e.g., by accident, defected in the first few rounds and is
now matched with uncooperative agents. Then it may be rational for the agent to cooperate in order
to be matched with more cooperative agents in the future, even if it knows that it will receive the
sucker’s payoff in the current round.

H.3 Tag-based cooperation

In the literature the evolution of cooperation and in particular population dynamics, researchers
have studied so-called tag-based cooperation Riolo et al. (2001); Cruciani et al. (2017); Traulsen
& Claussen (2004); Traulsen (2008), which has sometimes also been referred to as similarity-based
cooperation. The underlying mechanism is very different from similarity-based cooperation as studied
in the present paper, however.

In models of tag-based cooperation, an agent is defined not only by a policy but also by a tag that has
nothing to do with the policy. When choosing whether to cooperate with each other, agents can see
each other’s tags. Thus, the policies can choose based on the other agent’s tag. For example, one
policy could be to cooperate if and only if the two agents have the same tag. Notice that in tag-based
cooperation, only similarity of tags is considered. In contrast, our paper feeds the similarity of the
policies themselves as input to the policy.

Because the tag is not tied to the policy, tags are effectively cheap talk that have no impact on the
Nash equilibria of the game. For example, consider the following meta game on the Prisoner’s
dilemma. Each player i submits a tag τi ∈ {1, ..., 100} and a policy πi : {1, ..., 100}⇝ {C,D} that
stochastically maps opponent tags onto actions. Then actions are determined by ai = πi(τ−i) for
i = 1, 2. Each player i receives the utility ui(a1, a2). It is easy to see that in all Nash equilibria of this
game, both players submit a policy that always defects. So tag-based cooperation does not help with
achieving cooperative equilibrium in a two-player Nash equilibrium. In contrast, similarity-based
cooperation as studied in this paper does allow for cooperative equilibria in two-player games, as the
main text has shown.

So why might one study tag-based cooperation? Perhaps one would expect that any population of
evolving agents would converge to defecting in the above tag-based Prisoner’s Dilemma. Interestingly,
it turns out that this is not the case! As computational experiments conducted in the above works
show, evolving populations sometimes maintain some level of cooperation when they can observe
each others’ tags. Because cooperation is not an equilibrium, cooperation is maintained dynamically,
i.e., by a population whose distribution of tags and policies continually changed. Roughly, the reason
seems to be the following. By mere chance (from mutation) there will be tags whose individuals are
more cooperative toward each other than the individuals associated with other tags. The cooperative
tags and their associated cooperative policies will therefore become more prominent in the population.
Of course, this cannot be stable: once an agent is discovered that has the cooperative tag but defects,
this type of agent takes over within the cooperative population. But in the meantime a new cooperative
tag may have emerged. And so forth. This mechanism for achieving cooperation seems to have no
parallel at all in our model of similarity-based cooperation.1

1See also Nowak & May (1992) for another line of work that is even more different from the present paper,
but in which unstable cooperation survives dynamically by similar mechanisms.
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H.4 The green beard effect

The green beard effect (Hamilton 1964; Dawkins 1976, Ch. 6; Gardner & West 2010) refers to the
idea that there could be a gene G that causes individuals to be altruistic to people who also have the
gene G without relying on kinship to identify other people with the gene G. In particular, imagine a
gene G with the following three properties:

1. Gene G causes people with the gene to have some perceptible trait. For concreteness let the
trait consist in growing a green beard.

2. Gene G causes people to be altruistic toward people who have a green beard, e.g., to
cooperate with them in a one-shot Prisoner’s Dilemma.

3. People without gene G cannot develop a green beard.

Then such a gene could spread and be dominant in a population.

Hamilton and Dawkins discuss the green beard effect as a theoretical idea. To what extent the green
beard effect is a real biological phenomenon is subject to debate. Some candidates were pointed out
by Keller & Ross (1998), Queller et al. (2003), Smukalla et al. (2008) (cf. Sinervo et al., 2006).

On first sight, similarity-based cooperation as studied in this paper and the green beard effect might
seem similar. For example, if you observe a population of individuals, some of whom have the green
beard and some of whom do not, you will see cooperation between agents that are similar (in that
they both have the green beard). A connection between similarity-based cooperation and the green
beard effect has been noted before by Howard (1988), Štěpán Veselý (2011), and Martens (2019).

On second sight, however, we think that similarity-based cooperation as studied in our model is
very different from the the green beard effect as an evolutionary phenomenon. To understand why,
we take the gene-centered view of evolution (e.g. Dawkins, 1976): we view evolution as a process
that produces genes that take measures to spread themselves (as opposed to a process that creates
organism with particular properties). Now imagine that two individuals sharing the gene G play a
Prisoner’s Dilemma where they can either take 1 unit of a resource for themselves or give G > 1
units of the resource to the other player. Then from the perspective of trying to spread G, this is not a
Prisoner’s Dilemma at all! (This is assuming that both players can make similarly good use of the
resources.) From the gene’s perspective, it is a fully cooperative game wherein cooperation simply
dominates defecting. This is the essence of how the green-beard effect works. Our model of SBC has
no analogous mechanism or perspective.

As a result, the green beard effect allows for a very different set of outcomes than our folk theorem
(Theorem 3). For example, imagine that organisms 1 and 2 both share G, that organism 1 can either
take 1 unit of a resource for itself or give G > 1 units of the resource to organism 2, and that organism
faces no choice that concerns organism 1. Then G would still have the organism give, because doing
so increases the spread of the gene. Meanwhile, the unique outcome allowed by our folk theorem has
organism 1 not give. In other games, our folk theorem allows for many different equilibria of the
meta game. In contrast, in a game played by two organisms who share G, there will typically be a
unique outcome that best spreads G.

H.5 Studies of human psychology on similarity-based cooperation

In this section, we review empirical and theoretical work in psychology related to the phenomenon of
similarity-based cooperation.

Studies have shown that humans often cooperate in the one-shot Prisoner’s Dilemma, contrary to
what standard game theory recommends. Many explanations have been given for this phenomenon.
A few authors have proposed explanations based on Newcomb’s problem as discussed in Section 7.
That is, they have proposed that people cooperate in the Prisoner’s Dilemma because cooperating
gives them evidence that their opponent will defect (Krueger & Acevedo, 2005; Krueger et al., 2012).
To test this hypothesis, a few studies have tried to measure the correlation in subjects’ choice in
Newcomb’s problem and the Prisoner’s Dilemma. The results have been mixed. Goldberg et al. (2005,
Sect. 4.3), Tversky & Shafir (1992) have found strong correlations, while Toplak & Stanovich (2002)
and Goldberg et al. (2005, Sect. 4.2) have failed to find such correlations. Another prediction of the
Newcomb’s problem/SBC explanation for human cooperation in the one-shot Prisoner’s Dilemma is
that individuals are more likely to cooperate with similar than with dissimilar individuals. Indeed,
a number of studies have found this to be the case (e.g. Acevedo & Krueger, 2005; Fischer, 2009).
(Note that some other theories have been proposed for this phenomenon as well (e.g. Aksoy, 2015).)
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Another related idea in social psychology is homophily, which refers to the observed tendency of
humans to be more likely to engage in interactions with similar individuals. (Homophily cannot
always be cleanly differentiated from the tendency to be more altruistic/cooperative toward similar
individuals as discussed in the previous paragraph.) Homophily could also be explained by SBC,
because SBC allows for better outcomes (e.g., mutual cooperation over mutual defection) when
playing against similar individuals. We are not aware of any discussion connecting homophily with
Newcomb’s problem or the idea that it could be rational to cooperate in a Prisoner’s Dilemma against
a copy. The theory of the evolution of homophily seems to be that individuals with a similar cultural
background can more effectively communicate (and coordinate) (Fu et al., 2012). This is different
from SBC as studied in the present paper.
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