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ABSTRACT

Object-Goal Navigation (ObjectNav) is a critical component toward deploying
mobile robots in everyday, uncontrolled environments such as homes, schools,
and workplaces. In this context, a robot must locate target objects in previously
unseen environments using only its onboard perception. Success requires the inte-
gration of semantic understanding, spatial reasoning, and long-horizon planning,
which is a combination that remains extremely challenging. While reinforcement
learning (RL) has become the dominant paradigm, progress has spanned a wide
range of design choices, yet the field still lacks a unifying analysis to determine
which components truly drive performance. In this work, we conduct a large-scale
empirical study of modular RL-based ObjectNav systems, decomposing them into
three key components: perception, policy, and test-time enhancement. Through
extensive controlled experiments, we isolate the contribution of each and uncover
clear trends: perception quality and test-time strategies are decisive drivers of per-
formance, whereas policy improvements with current methods yield only marginal
gains. Building on these insights, we propose practical design guidelines and
demonstrate an enhanced modular system that surpasses State-of-the-Art (SotA)
methods by 6.6% on SPL and by a 2.7% success rate. We also introduce a human
baseline under identical conditions, where experts achieve an average 98% suc-
cess, underscoring the gap between RL agents and human-level navigation. Our
study not only sets the SotA performance but also provides principled guidance
for future ObjectNav development and evaluation.

1 INTRODUCTION

Recent advances in computer vision and deep learning have inspired growing interest in interdisci-
plinary applications that bridge perception, reasoning, and control, especially in robotics. Among
these, vision-based navigation has emerged as a foundational capability for autonomous mobile
agents. A key benchmark in this domain is Object-Goal Navigation (ObjectNav), where a robot must
navigate to an instance of a specified object category in an unseen environment, relying solely on
its onboard sensors. This task is both practically important and technically challenging: it requires
semantic understanding, spatial reasoning, and long-horizon planning. Among many approaches,
Reinforcement Learning (RL) has become a dominant paradigm for ObjectNav, offering a struc-
tured framework to learn directly through trial-and-error and showing steady progress across vari-
ous benchmarks. While end-to-end RL policies are common, modular RL approaches have shown
greater robustness and improved generalization. By decomposing the system into interpretable and
tunable components, such as perception, mapping, policy, and action execution, these methods align
with the multi-faceted nature of ObjectNav and often achieve better sim-to-real transfer Gervet et al.
(2023). However, this modular design also increases overall system complexity, and the standalone
contribution of each component has not been systematically studied in recent literature. As a result,
current bottlenecks remain unclear, and the lack of a unified design guide makes it difficult to fairly
evaluate and advance modular RL systems.

In this work, we disentangle the components of modular RL-based ObjectNav and ask a fundamental
question: Which design choices truly matter for RL-based ObjectNav? We establish a principled
decomposition of modular ObjectNav systems into three essential parts—perception, policy, and
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Figure 1: Overview of our work. Our framework encompasses: (1) an empirical study analyzing
the impact of different modules, and (2) a unified framework with interchangeable components,
enabling users to customize their own object-goal navigation policies.

test-time enhancement. For each component, we categorize representative design choices from the
literature and, through extensive experiments, isolate the individual contribution of each.

Our key findings are as follows: (a) The capability of the perception module has a substantial im-
pact on overall navigation performance. (b) Test-time enhancement techniques are often overlooked;
however, they play a surprisingly significant role in boosting performance. (c) With well-designed
perception and test-time modules, further improvements must come from the policy module; how-
ever, we observe that with current learning approaches, such gains are limited or marginal.

Based on these findings, we offer practical recommendations for selecting and combining system
components, along with insights into the reasoning behind them. Following these guidelines, we
design an enhanced modular system that achieves state-of-the-art performance with 47.5% SPL
(success weighted by path length) and 85.3% success rate, surpassing the best prior methods by
6.6% in SPL and 2.7% in success rate. In addition, we introduce a human baseline comparison,
where expert participants operate under the same training setup, test environments, and observation
modalities as the agent, achieving an average of 98.0% success rate and 53.3% SPL. This contrast
reveals a clear gap between current RL-based systems and human-level navigation, emphasizing the
need for new algorithms that can enhance both performance and robustness in ObjectNav.

Instead of emphasizing our empirical gains, our primary goal is to highlight broader implications for
the vision-based navigation community from the design of future algorithms to the establishment of
fair evaluation protocols and the deployment of ObjectNav systems. We will publicly release our
code and evaluation tools to the community.

2 RELATED WORK

End-to-end Object-Goal Navigation. These approaches leverage reinforcement learning or imi-
tation learning to train a policy that directly maps visual observations to low-level actions. Early
work Ye et al. (2021); Ramrakhya et al. (2022; 2023) followed the architectural blueprint of DD-
PPO Wijmans et al. (2020), employing convolutional neural networks (CNNs) coupled with recur-
rent neural networks (RNNs). Subsequent methods Yadav et al. (2022); Khandelwal et al. (2022)
enhanced this framework by replacing the RGB encoder with more powerful self-supervised vision
models, leading to improved performance. More recent efforts Zeng et al. (2024); Ehsani et al.
(2024) have adopted transformer-based policy architectures to better capture long-term spatial de-
pendencies, achieving state-of-the-art results. To further enrich spatial reasoning, several works have
proposed integrating structured scene representations into the policy network. These methods Yang
etal. (2018); Qiu et al. (2020); Zhou et al. (2021); Guo et al. (2021); Zhang et al. (2021) build scene
graphs from RGB inputs, encode them with Graph Neural Networks (GNNs), and feed the features
into the policy. One major downside of end-to-end methods is that they require large-scale data and
struggle to generalize across the sim-to-real gap Gervet et al. (2023).
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Modular RL Methods for Object-Goal Navigation. These approaches integrate learning-based
components with classical map-based navigation to achieve improved data efficiency, lower compu-
tational overhead, and competitive performance. One representative approach is ANS Chaplot et al.
(2020b), which employs a reinforcement learning-based pipeline for navigation in 3D environments.
ANS consists of a mapping module that projects RGB-D observations into a top-down occupancy
map, along with a long-term goal policy trained via reinforcement learning to guide exploration.
Building on ANS, SemExp Chaplot et al. (2020a) introduces a semantic mapping module that aug-
ments the top-down map with object-level semantic annotations. Subsequent work largely follows
this modular reinforcement learning framework with various enhancements. For instance, FSE Yu
et al. (2023a) incorporates frontier detection into the mapping process and selects sub-goals based
on the centers of frontier regions. 3D-Aware Zhang et al. (2023) further utilizes 3D structural cues
to improve scene understanding and predicts corner-based sub-goals, inspired by heuristic strategies
like those in Luo et al. (2022). More recently, NaviFormer Xie et al. (2025) achieves state-of-the-art
performance by replacing traditional map encoders with a transformer-based architecture, enabling
richer spatial-semantic representation learning. While existing modular methods primarily focus on
designing more effective navigation policies, they often overlook a systematic analysis of how indi-
vidual components within each module affect overall system performance. In this work, we present
a comprehensive study of modular architectures, explicitly evaluating the role and contribution of
each component to the navigation pipeline.

3 STUDY DESIGN

Problem Formulation. In the context of ObjectGoal navigation, the agent is required to navigate
to an instance of a specified object category within an unseen environment. At each timestep ¢, the
agent receives an RGB-D observation o, € R***W 3 ooal category label g, and its current pose
p:. Based on these inputs, the agent generates actions to move towards the goal. We use Habitat Puig
et al. (2023) as a unified simulation testbed, which has a built-in low-level controller that outputs
one of four discrete actions: move forward, turn left, turn right, and stop.

System Overview. Figure | outlines the struc-
ture of our study and analysis. We follow the
natural pipeline of robot navigation and decom-
pose a typical RL-based approach into three
core modules: perception, policy, and test-time
enhancement. The perception module covers e e
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components, we survey a wide range of design
choices found in recent literature and conduct
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to isolate and quantify their individual contri- Figure 2: Unified Framework of our experimental set-
butions to the final navigation performance. ting. A. Perception: RGB-D and pose are fused into a
. . . . top-down semantic map. B. Policy: The map and aux-
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semantic map suitable for navigation.
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In our study, we focus on three widely adopted design choices for the perception module—object
detector, map augmentation, and map size, as these have been repeatedly emphasized in prior Ob-
jectNav systems Chaplot et al. (2020b;a); Yu et al. (2023a); Zhang et al. (2023); Xie et al. (2025). A
detailed description of these components is provided in Appendix A.6.

Policy Module Design Choices. With the top-down semantic map in place, the policy module
infers a goal location that guides the agent’s navigation. Typical RL-based policy for long-term goal
prediction and identification consists of four key design choices: the observation space, the action
space, the network architecture, and the reward design. Each of these components influences how
the agent interprets the semantic map and decides on navigation strategies. In our experiments, we
adopt the common setup established in prior work Chaplot et al. (2020b;a); Yu et al. (2023a); Xie
et al. (2025). We refer the readers to Appendix A.7 for the implementation details.

Test-time Enhancement Module Design Choices. Common failure modes found during evalua-
tions are categorized into: (a) trapping in narrow spaces, (b) object misidentification, (c) repeated
exploration, and (d) map overlap across floors due to undetected staircases (Figure 2). To mitigate
these issues, several strategies have been used in previous work, but were not formally documented.
We summarize them into three plug-and-play strategies: (i) an untrapping helper to prevent the agent
from getting stuck, (ii) dynamic goal selection to avoid redundant exploration, and (iii) a remapping
mask to handle multi-floor map overlap. We refer readers to Appendix A.8 for further details.

4 EXPERIMENTS, RESULTS, AND RECOMMENDATIONS

Following our definition of three main modules and different design choices for each one, we orga-
nize our experiments by analyzing the contribution of individual design choices to overall navigation
performance. For each experiment, we provide a detailed setup and report quantitative results, fol-
lowed by in-depth interpretation and analysis. Alongside our findings, we offer actionable insights
and practical recommendations, which can serve as a foundation for designing effective pipelines in
future research.

To evaluate the performance of the proposed methods, we consider two evaluation settings: Fixed
timestep and Dynamic timestep. In the fixed-timestep setting, the agent is allowed to interact with
the environment for up to 500 steps. In the dynamic timestep setting, the maximum number of steps
is set proportional to the number of steps required by an optimal planner to reach the goal. In both
cases, the task is considered successful if the agent is within 1 meter of the target object instance at
the end of the episode. Further details are provided in Appendix A.5.

We adopt three standard evaluation metrics Anderson et al. (2018): Success Rate (SR): the ratio of
successful episodes to the total number of episodes. Success weighted by Path Length (SPL): the
ratio between the shortest-path distance and the actual path length taken by the agent, averaged over
successful episodes. Distance to Success (DTS): the agent’s distance to the target object at the end
of an episode. In the Dynamic timestep setting, we report the corresponding variants: D-SR, D-SPL,
and D-DTS.

4.1 EFFECT OF PERCEPTION MODULE

To isolate the influence of the perception module itself, we implement two heuristic-based long-term
goal policies that use heuristic rules for navigation instead of a neural network policy conditioned
on the top-down semantic map. This allows us to evaluate the Perception Module independently of
long-term goal policy effects.

(i) Corner Goal Policy: This method adopts a similar action prediction strategy as Stubborn Luo
et al. (2022). However, instead of selecting goals in a deterministic or fixed pattern, we introduce
randomness into the action selection process. This enables more exploratory behavior in the envi-
ronment, allowing us to better evaluate the influence of components in the Perception Module under
varied navigation conditions.

(ii) Frontier-Based Policy: As there is currently no standard implementation of the Frontier-Based
Policy Yamauchi (1997), we adopt a similar setup to FSE Yu et al. (2023a), but replace the learned
policy with a random action policy. Since FSE already includes strong heuristic mechanisms for
frontier selection, randomly selecting a goal from the list of frontiers serves as a reasonable approx-
imation of the classical Frontier Exploration method.
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Table 1: Study results of perception module for Corner (C) and Frontier (F) goal policies. MRCNN denotes
Mask R-CNN with the default checkpoint, while FT-MRCNN denotes Mask R-CNN with the Gibson-finetuned
checkpoint.

Pol. Det. Size Aug. SR SPL DTS D-SR D-SPL D-DTS
(%) (%) (m) (%) (%) (m)
C MRCNN 480 v 777 409 1.047 616 38.6 1.641
C RedNet 480 v 809 439 0851 655 416 1.488
C FT-MRCNN 480 v  83.8 47.6 0800 69.5 453 1.425
C FT-MRCNN 240 v 787 452 1.135 648 43.1 1.658
C FT-MRCNN 480 X 833 442 0771 635 412 1.727
F MRCNN 480 v 712 385 1.428 49.1 335 2.086
F RedNet 480 v 750 409 1.114 53.1 35.7 1.876
F FT-MRCNN 480 v 799 458 0.892 572 397 1.714
F FT-MRCNN 240 v 79.6 43.6 1.033 61.0 40.1 1.742
F FI-MRCNN 480 X 78.0 425 1.000 534 363 1.791

4.1.1 OBJECT DETECTOR

Study description. The object detector takes an RGB or RGB-D image as input and outputs the se-
mantic segmentation of the image. It has a dominant impact on overall performance, as the semantic
map depends on its output and it directly serves as input to the policy module. We summarize all
the object detectors used in the prior works: Mask R-CNN with Default Checkpoint: This variant
uses the R50-FPN checkpoint from the Detectron2 model zoo Wu et al. (2019) without any domain-
specific fine-tuning. Mask R-CNN with Gibson-Finetuned Checkpoint: This checkpoint, originally
introduced in PONI Ramakrishnan et al. (2022), is fine-tuned on the Gibson dataset Xia et al. (2018)
to better adapt to the domain characteristics of indoor navigation environments. RedNet: A network
specifically designed for indoor RGB-D semantic segmentation. It is fine-tuned on 100K randomly
sampled views from the MP3D Chang et al. (2017) dataset. This model was first utilized in Stub-
born Luo et al. (2022).

Interpretation. From Table I, we observe that both the Corner Goal Policy and Frontier-
Based Policy experiments exhibit similar trends. A fine-tuned object detector consistently leads
to an obvious performance boost across all evaluation metrics. Specifically, for the Corner
Goal Policy, using a fine-tuned Mask R-CNN model results in a 6.8% increase in Success
Rate, a 6.7% improvement in Success weighted by Path Length, and a 0.247m reduction in
Distance to Success. Similar improvement occurs when using our Dynamic metrics. Addi-
tionally, although RedNet is not trained on Gibson, fine-tuning on indoor scenes also helps
reduce distribution errors. More detailed performance analysis can be found in Appendix A.10.

Recommendation. Unsurprisingly, improving the object detector yields significant gains in overall
navigation performance. For real-world use, it is crucial to choose a detector trained on data that
closely reflects the domain of your test scenes. When such alignment is not available out-of-the-
box, collecting representative data and fine-tuning an existing model can significantly improve both
detection accuracy and overall navigation robustness.

4.1.2 MAP SI1ZE

Study description. Map size defines the agent’s field of view. Larger maps reveal more of the
environment, but increase computational cost. To investigate its effect, we experiment with two
settings: 240 x 240 and 480 x 480. We focus on the local ego-centric map, as the global map is only
used to update the local map and is not directly used for navigation. Therefore, when we refer to the
top-down semantic map in this context, we mean the local top-down semantic map.

Interpretation. From Table 1, we observe that for the Corner Goal Policy, a larger top-down se-
mantic map generally yields better performance than a smaller one. However, this trend does not
hold for the Frontier-Based Policy. In this setting, the performance differences between the two map
sizes are minimal. In fact, for some Dynamic metrics such as D-SR and D-SPL, the smaller map
size slightly outperforms the larger one. We find that map size influences policies differently: larger
maps encourage the Corner Goal Policy to explore wider areas and thus improve performance, while
the Frontier-Based Policy is less sensitive to map size and can even degrade with higher-resolution
maps due to frontier extraction errors. Details are provided in Appendix A.10.
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Table 2: Study results of key architectural and training choices, including observation/action spaces, network
architectures, and reward design.

Observation Action Network Reward SR SPL DTS D-SR D-SPL D-DTS
Space Space Arch. Design (%) (%) (m) (%) (%) (m)

Standard Discrete  Transformer Type2 83.4 43.8 0.717 663 41.0 1.501
Compressed  Discrete  Transformer Type2 83.8 433 0.685 65.8 40.3 1.572
Compressed Continuous Transformer Type2 844 482 0.741 69.6 45.8 1.415
Compressed  Discrete CNN Type2 83.7 433 0.706 65.8  40.5 1.548
Compressed  Discrete  Transformer Typel 85.2 45.8 0.664 67.8 43.0 1.346

Recommendation. Map size should be chosen based on the policy type. For goal-based policies
like the Corner Goal Policy, larger maps encourage broader exploration and generally improve
performance. For frontier-based policies, map size has minimal impact and may even degrade
performance due to resolution artifacts. Smaller maps also reduce memory and computation,
making them preferable in resource-constrained settings.

4.1.3 MAP AUGMENTATION

Study description. Map augmentation typically refers to the techniques applied during the projec-
tion from 3D voxels to 2D maps Yu et al. (2023a;b); Xie et al. (2025). It often involves fine-grained
enhancements that aim to make the top-down map more accurately reflect the real-world scene. To
study its impact, we conduct two sets of experiments with and without doing augmentation.

Interpretation. As shown in Table 1, Under the standard evaluation setting, both the Cor-
ner Goal Policy and the Frontier-based Policy achieve slightly better or comparable perfor-
mance when map augmentation is applied. However, under our proposed evaluation frame-
work, map augmentation leads to a significant improvement in performance for both poli-
cies. ~We find that map augmentation mainly improves the quality of the constructed
maps, enabling richer and more accurate representations within the same number of steps.
This leads to clear gains under stricter evaluation, while the benefit diminishes under stan-
dard evaluation where agents have more time to explore (see Appendix A.10 for details).

Recommendation. Map augmentation generally leads to better performance compared to not
using it. However, it often depends on extensive engineering experience and is typically tailored
for fixed robotic settings. For more practical or time-sensitive applications, where quick adap-
tation and reliable perception are critical, applying map augmentation is strongly recommended.
Conversely, in generalized scenarios or applications that do not require rapid task completion,
operating without map augmentation can also be a reasonable and efficient choice.

4.2 EFFECT OF POLICY MODULE

The policy module plays a central role in predicting goals for the agent to reach, and its decision-
making process directly influences the agent’s ability to explore the environment effectively. To
better isolate the contribution of different components within the policy module, we fix the param-
eters of the perception module. Additionally, when analyzing the effect of a single component, we
keep all other factors constant.

4.2.1 OBSERVATION SPACE

Study description. To investigate the impact of different observation space choices on performance,
we consider two options: Top-down semantic map (standard): Following most prior work, this
setup uses multiple channels to store different types of information, including the exploration map,
obstacle map, frontier map, and semantic maps. Top-down semantic map (compressed): In this
setting, we propose to use a compressed version of the top-down semantic map. Specifically, we
compress the original 20 channel semantic map into a single 3-channel RGB image.

Interpretation. Table 2 shows that the performance differences between the standard and com-
pressed configurations are minimal: less than 0.5% in SR and D-SR, less than 0.7% in SPL and
D-SPL, and less than 0.1m in DTS and D-DTS. These negligible differences suggest that the com-
pressed top-down semantic map configuration retains sufficient spatial information for effective pol-
icy learning, while reducing the observation size by more than a factor of six.
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Recommendation. A compressed observation is clearly a more efficient and practical choice.

4.2.2 ACTION SPACE

Study description. The action space determines how the policy generates goals on the map. We
investigate the impact of different action space designs by considering the following two options:
Continuous Action Space: The policy predicts a goal location directly on the map. The goal can
be any coordinate within the map boundaries. Discrete Action Space: A set of possible goal loca-
tions—typically the four corners of the map—is predefined as candidate actions. The policy then
predicts the index of one of these predefined goal locations.

Interpretation. The 2nd and 3rd row of Table 2 shows that continuous action space outperforms the
discrete one. Compared with the continuous action space, the discrete action space is more akin to
predicting a direction for the agent rather than an exact goal. Given the scale of the map, the agent’s
movement range during local policy navigation is limited and often insufficient to directly reach
the final goal. As a result, the selected goal in the discrete setting effectively serves as a directional
signal, guiding the agent toward further exploration. Therefore, the discrete action space is coarser
compared to the continuous action space, as it provides less precise control over goal selection.

Recommendation. Without considering additional strategies to further enhance the discrete action
space, the continuous action space is a more favorable choice.

4.2.3 NETWORK ARCHITECTURE

Study description. Previous works commonly used CNNSs to process the observations, more recent
studies have shifted to using Transformers. Specifically, in our study, we choose: CNN: For the
CNN-based model, we adopt ResNet-18 He et al. (2015) as the policy backbone. Transformer: For
our transformer model, we adopt the ViT-Base architecture Wu et al. (2020) as the backbone for
map feature extraction.

Interpretation. The results in Table 2 indicate no significant difference in perfor-
mance between the two network architectures. These findings indicate that, when
keeping other modules unchanged, varying the network architecture for map fea-
ture extraction does not substantially affect the final outcomes. This also indicates
that the overall performance is sensitive to the policy network as other modules.
Recommendation. Since there is no significant difference in performance between CNN and
Transformer backbones, we suggest choosing the architecture based on practical constraints. For
real-world or resource-constrained settings, a lightweight CNN (e.g., ResNet-18) is a more efficient
and effective choice without compromising performance.

4.2.4 REWARD DESIGN

Study description. Reward design is always a critical challenge for reinforcement learning algo-
rithms. In this study, We consider two types of reward designs: r{ = Texploration + Tdistance to target> and

T2 = Texploration + Tsuccess + Tstep penalty -

Interpretation. Table 2 shows that the policy trained with r; outperforms that trained with r;,
yielding a 0.8% improvement in Success Rate and a 2.5% improvement in SPL. With r;, the agent
is rewarded for moving closer to the target object, with semantic information implicitly embedded
in the reward signal. In contrast, r; is designed solely for exploration, where only task success is
rewarded and additional steps are penalized; the agent receives no reward for approaching the target.
Recommendation. Based on the results, when designing the reward for policy training, adding a
reward for moving closer to the target object encourages the agent to make more efficient decisions,
not only for exploration but also for approaching the target.

4.3 EFFECT OF TEST-TIME ENHANCEMENT MODULE

To further improve the robustness and accuracy of the methods, several test-time strategies are com-
monly employed. These strategies are often overlooked in discussions, as they are considered more
of an engineering detail than a scientific contribution. In this section, we aim to clearly investigate
the impact of these strategies on overall performance.
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Table 3: Study results of test-time enhancement strategies, including untrapping helper, dynamic goal selection
and remapping mask.

Policy Untrapping Dynamic Goal Remapping SR SPL DTS D-SR D-SPL D-DTS
Helper Selection Mask (%) (%) (m) (%) (%) (m)

RL (Continuous) X v v 81.3 47.3 0.741 69.1 453 1.509
RL (Continuous) v 4 X 82.6 48.0 0.817 70.1 459 1384
RL (Continuous) v v v 84.4 482 0.741 69.6 45.8 1.415
RL (Discrete) v X 4 83.8 433 0.685 658 403 1572
RL (Discrete) v v v 85.3 475 0.632 69.8 449 1397

4.3.1 UNTRAPPING HELPER.

Study description. The untrapping helper uses predefined rules to help the agent escape from stuck
situations. To assess its impact, we compare our continuous-action RL policy with and without the
helper enabled.

Interpretation. As shown in Table 3, the use of the untrapping helper clearly improves
performance in both evaluation settings. The improvement is more obvious in the stan-
dard evaluation. Furthermore, we observe that the untrapping helper has a greater impact
on long-distance navigation. When the target goal is farther from the agent, the likelihood
of the agent getting trapped increases due to the extended navigation path. This explains
why the performance improvement is more pronounced in the standard evaluation setting.
Recommendation. The untrapping helper can be applied to various policies to enhance long-term
navigation performance.

4.3.2 DYNAMIC GOAL SELECTION

Study description. Dynamic goal selection is a strategy originally designed for heuristic discrete
policies to prevent the agent from engaging in redundant exploration. We further demonstrate that it
can also be incorporated into RL-based discrete action space policies to guide the local policy more
efficiently. To assess its impact, we compare the performance of our trained discrete policy with and
without this mechanism.

Interpretation. As shown in Table 3, the improvement provided by dynamic
goal selection is significant. In both evaluation settings, we observe substan-
tial performance gains. This is primarily because dynamic goal selection ef-

fectively reduces repeated exploration, thereby enhancing navigation efficiency.

Recommendation. In the discrete action space, incorporating dynamic goal selection proves to
be a beneficial enhancement, significantly improving both navigation performance and efficiency.
However, this dynamic goal selection technique relies on prior experience gained through multiple
trials. As a result, applying it to continuous or frontier-based action spaces requires more effort,
particularly in defining and tuning the relevant parameters to achieve comparable effectiveness.

4.3.3 REMAPPING MASK

Study description. The remapping mask assists the agent in regenerating the map when overlapping
issues occur during navigation. To evaluate the effectiveness of this mechanism, we perform an
ablation study using our trained continuous action space policy.

Interpretation. Similar to the effect of the untrapping helper, the remapping mask has a more signif-
icant impact in the standard evaluation setting, as shown in Table 3, compared to our more stringent
setting. This is because long distance navigation increases the likelihood of the agent encountering
map overlap issues, such as revisiting previously seen areas from different floors (e.g., via stairs).
In contrast, during short distance navigation tasks, if the agent can reach the target object within
just a few steps, it is unlikely to traverse into stair regions that could cause overlaps in the top-down
semantic map. As a result, the benefit of the remapping mask in these short scenarios is minimal.

Recommendation. The remapping mask can be considered a general-purpose enhancement that
can be integrated as a plug-in to improve the performance of various navigation policies.



Under review as a conference paper at ICLR 2026

4.4 COMPARISONS WITH THE STATE-OF-THE-ART AND HUMAN EXPERTS

After clearly understanding the impact of different components from various modules on over-
all performance, we selected four policies, each configured with the best-performing compo-
nents, to compare against prior work. Standard evaluation metrics were used for this comparison.
To enable comparison with state-
of-the-art methods, we design four

customized policies: (i) Corner Method SR(%) SPL(%) DTS(m)
Goal Policy, (ii) Frontier-Based SemExp Chaplot et al. (20202) 65.7 339 1.47
Policy, (iii) RL policy with a SemExp* Ram_akrishnzm et al. (3()22) 71.7 39.6 1.39
discrete action space, and (iv) I;SNI Rumzatll"“Shn?nlel(;:)'z(ﬁz)oz“) ;ig j;(l) }%g
. . . -aware ang et al. 3 . . .
?L policy Wllgh a 1010““{‘.“9”5 - BSE Yu et al. (2023a) 715 360 135
ton space.  bor all policles, We  gGM Zhang et al. (2024) 780  44.0 1.11
adopt the best-performing config- | 3MyN vu et al. (2023b) 768 388 1.0l
urations across all modules. From  NayiFormer Xie et al. (2025) 826 409 0.76
Table 4, we observe that after thor-  T-Diff Yu et al. (2024) 79.6 449 1.00
oughly analyzing the impact of HOZ++ Zhang et al. (2025) 78.2 44.9 1.13
different components, our config- "G oa Policy (Ours) 838 476 080
ured policy outperfo%‘ms PIEVIOUS  Erontier-based Policy (Ours) 79.9 45.8 0.89
state-of-the-art algorithms on the  pjscrete Action Policy (Ours) 853 475 0.63
Gibson benchmark.. Since mOd' Continuous Action Policy (Ours) 84.4 48.2 0.74
ular methods consist of multiple Fuman Experts 98.0 533 026

components that jointly contribute
to overall performance, it is es- Table 4: Comparisons with Prior Methods on Gibson. The metrics of
sential to understand the impact of  the two best-performing methods are highlighted in green and orange.
each component. Without a clear Our method, combined with the findings, demonstrates better perfor-
analysis of these components, fo- ~mance than all state-of-the-art approaches.

cusing solely on designing com-

plex policy networks is unlikely to achieve optimal performance. Moreover, complex policy designs
often introduce additional challenges, such as increased computational cost and reduced inference
speed. Hence, a clear understanding of modular components is essential and can provide valuable
insights for future research.

To better contextualize system performance, we introduce a human expert baseline under the same
training setup, test environments, and observation modalities as our agents. Five researchers with
robotics expertise (but no prior ObjectNav experience) were given practice on the training scenes
before evaluation. As shown in Table 4, they achieved near-perfect performance, with an average SR
of 98%, consistently outperforming all existing autonomous methods. This highlights the substantial
algorithmic gap between human and system performance, underscoring the need for more intelligent
perception, reasoning, and exploration strategies to approach human-level robustness.

5 CONCLUSION

In this work, we present the first large-scale empirical study that systematically disentangles and
evaluates the individual contributions of different components in RL-based Object-Goal Navigation
systems. By decomposing these systems into three key modules: perception, policy, and test-time
enhancement, we provide a clear and actionable understanding of what truly matters for perfor-
mance. Our analysis reveals that perception quality and test-time enhancements are the most critical
factors driving success, while improvements to the policy module alone yield marginal gains under
current learning approaches. We demonstrate that simple plug-and-play strategies, such as dynamic
goal selection and untrapping helpers, can significantly improve robustness without requiring re-
training. Based on these findings, we propose practical design recommendations and develop a
modular system that outperforms existing state-of-the-art methods on standard benchmarks. More-
over, our human baseline evaluation highlights the substantial performance gap between current
agents and human-level navigation, pointing to future opportunities in closing this gap. We hope our
study serves as a foundational reference for the community, guiding the design of more effective,
interpretable, and generalizable ObjectNav systems, and inspiring future work toward principled
benchmarking, modular learning, and real-world deployment.
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A APPENDIX

The Appendix contains the following content:

LLM usage of the work
Reproducibility Statement

Failure case analysis (AppendixA.3): In this section, we analyze failure cases across 1,000
test episodes to identify the primary error sources and their impact on object-goal naviga-
tion performance.

Training details(AppendixA.4): In this section, we provide details of the training setup
used in our experiments.

Dynamic evaluation metrics(AppendixA.5): In this section, we describe how the dynamic
evaluation metrics are computed.

Perception module details(AppendixA.6): In this section, we present the details of the
perception module, including its structure, implementation, and integration within the over-
all navigation framework.

Policy module details(AppendixA.7): In this section, we present the details of the policy
module, including the observation space, architecture, action space, and reward.

Test-time enhancement module details(AppendixA.8): In this section, we provide the
details of the test-time enhancement module, along with the pseudo-algorithm illustrating
how the strategy is applied during deployment.

Human expert baseline details(AppendixA.9): In this section, we describe the human
study conducted to evaluate RL agent performance against human experts.

Visualization of the perception module(AppendixA.10): In this section, we provide vi-
sualizations of the perception module in Habitat-Sim.
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A.1 LLM USAGE

Large Language Models (LLMs) were used to aid the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the grammar and language, improving the read-
ability of the manuscript.

A.2 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
codebase will be made publicly available to facilitate replication and verification.

A.3 FAILURE CASE ANALYSIS

859
Final Success.
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Collierville
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200 380 Mis-detection
‘Wiconisco 21
System Failure
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‘Assumed Success
[ 141
200 Failure
J— Not Found
‘120
200 Assumed Failure
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Trapped
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Found but Not Stopped
11

200

Wrong Floor
Markleeville 2

Map Error

Figure 3: Analysis of Test Navigation Scenarios. Sankey plots illustrate the distribution of success
and failure cases over 1,000 test episodes across five indoor scenes.

We analyze the test results over 1,000 episodes across five different test scenes, manually examining
each case to identify failure points, with 200 episodes evaluated for each policy. From Figure 3,
we identify 880 episodes as successful and 120 episodes as failures through manual inspection.
However, 21 episodes were labeled as successful by human evaluation but classified as failures by
the algorithm, due to the strict success criterion adopted in the Habitat simulator.

Among the remaining failure cases, 68 are attributed to mis-detections by the object detector, most
commonly when a bed is incorrectly detected as a sofa. Of the remaining failures, 15 cases are
caused by the agent not fully exploring the environment within the 500-step limit. 17 failures occur
when the agent becomes trapped in narrow areas during navigation. In 7 cases, the agent continues
exploring instead of stopping after locating the target object, typically due to inaccurate map projec-
tions in narrow spaces, which prevent the agent from reaching the target. 11 failures arise when the
agent navigates to the wrong floor and subsequently loses the target object. Finally, 2 failures are
attributed to map errors that prevent the agent from correctly localizing the target.

From the failure case analysis, we observe that most failures are caused by mis-detections, which
further supports the view that the perception module plays a crucial role in determining the overall
performance of object-goal navigation. Other failure cases, such as getting trapped during navigation
or moving to the wrong floor, are largely related to the absence of test-time enhancement strategies.
This also explains why such strategies play an important role in improving navigation performance.

A.4 TRAINING DETAILS

All experiments were conducted on multiple NVIDIA RTX 4090 GPUs. From the implementation
details of the baseline methods, we observe that most prior works Chaplot et al. (2020a); Yu et al.
(2023a); Zhang et al. (2023); Xie et al. (2025) were trained for between 0.1 million and 10 million
frames, with around 1 million frames typically yielding good performance. To balance performance
and training cost, we trained all experiments for 2 million frames.

14



Under review as a conference paper at ICLR 2026

A.5 DYNAMIC EVALUATION METRICS

Existing benchmarks for modular navigation methods often lack sufficient difficulty or fail to reflect
the complexities of real-world environments. To address these limitations, we introduce a new eval-
uation setup, Dynamic, to better capture performance under more constrained and realistic settings:

Here is how to calculate the Dynamic timestep. In the previous benchmark setting, the maximum
number of steps for one episode was fixed at 500, which means evaluation metrics were calculated
either when the agent successfully reached the target or when it exhausted all 500 steps.

Now, we aim to restrict this maximum step count to a more reasonable and dynamic value. From the
simulator, we can obtain the minimum distance from the agent’s initial position to the target object.
Based on this, we define the new maximum steps using the following formula:

D 360°
d 0

Max Dynamic Steps = « X ( 4+ —
where:
D: Initial distance to the target (in meters)
d: Agent movement distance per step (in meters)
0: Agent turning angle per step (in degrees)
a: Scaling factor

With the newly defined dynamic maximum steps, we calculate the dynamic evaluation metrics (D-
SR, D-SPL, and D-DTS). At the same time, we keep the maximum episode length fixed at 500
steps, under which we compute the standard metrics (SR, SPL, and DTS). In our setting, we choose
a = 5 to better distinguish the performance differences among various methods. If « is set too
small, the evaluation becomes less discriminative, and all methods tend to exhibit similar results.

A.6 PERCEPTION MODULE DETAILS

Input - }
. . _— ' ' + | |+
=3 N Object N =

Detector Exploration Map ~ Obstacle Map

Semantic Map

. Top-down Semantic Map Composition
RGB Image Semantic Image

Point Cloud Qe
————>—> Projection ——

Depth Image

Top-down Semantic map
Pose ———8M8 (KxMxM)

Overall Framework

Figure 4: Perception Module Overview. RGB images are processed by a pretrained object de-
tector for semantic labels, which are projected with depth-based point clouds to form a voxel map.
Summing across height levels yields a multi-layer top-down semantic map, where K is the channel
number and M the map size.

Object Detector The first step in the perception module is to extract semantic categories from the
input RGB images. For the ObjectGoal navigation task, an effective object detector must not only
be accurate but also capable of real-time inference. Although recent approaches such as the self-
supervised model SAM Kirillov et al. (2023); Ravi et al. (2024), and transformer-based models
like Mask2Former Cheng et al. (2022) and OneFormer Jain et al. (2023), have demonstrated strong
performance, CNN-based detectors remain the practical choice due to their efficiency on resource-
constrained robots. Widely used models include Mask R-CNN He et al. (2017), which processes
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only RGB inputs, and RedNet Jiang et al. (2018), which leverages both RGB and depth inputs to
improve accuracy.

Map Generation After obtaining the semantic segmentation image, semantic labels are projected
onto a normalized 3D point cloud discretized into a voxel grid. Each occupied voxel is assigned a
semantic category, resulting in a structured 3D semantic map.

To generate a 2D top-down map, voxel information is aggregated along the height axis. Summing
all height levels produces an exploration map, while summing around the agent’s height produces
an obstacle map. The final semantic map is represented as a K x M x M tensor, where K = C'+ 2:
one channel each for the obstacle and exploration maps, plus C' channels for object categories. The
map size M controls the trade-off between spatial coverage, memory usage, and computation.

A.7 PoLICY MODULE DESIGN DETAILS

Observation Space In the perception module, we generate a top-down semantic map that encodes
spatial and semantic information. Prior work such as SemExp Chaplot et al. (2020a) and its suc-
cessors Yu et al. (2023a); Xie et al. (2025) use a high-dimensional 24 x Map Size x Map Size
tensor as input, incorporating local/global maps and auxiliary features. However, this representation
is inefficient because semantic channels are often sparse. Stubborn Luo et al. (2022) showed that
shuffling semantic channels had little effect, suggesting underutilization of these features.

To address this, we propose a compressed representation: compressing the semantic map into an
RGB image, where obstacles, free space, and object categories are encoded via distinct colors. This
preserves essential cues while reducing dimensionality and GPU memory usage.

Action Space For long-term goal planning, the action space determines how the agent selects a
target position. Existing approaches generally fall into three categories: continuous Chaplot et al.
(2020b;a); Ramakrishnan et al. (2022); Zhai & Wang (2023); Zhang et al. (2024), discrete Zhang
et al. (2023); Luo et al. (2022); Xie et al. (2025), and frontier-based Yu et al. (2023a;b).

In the continuous setting, the policy outputs (ay,az) € [0,1]2, which are mapped to coordinates
(x,y). In the discrete setting, the agent selects a goal from a fixed set of candidates. In the frontier-
based setting, the action space consists of frontiers, i.e., the boundaries between explored and unex-
plored regions, which are discretized using heuristics. The details are illustrated in Figure 5.

5 .

~ ~

(:,
Continuous Action Discrete Action Frontier Action

Figure 5: Action Space. The current goal position is represented by a blue filled dot or line. For both
continuous and discrete action spaces, red unfilled dots indicate the possible next goal positions. As
shown in the map, in the continuous action space, the next goal can be located anywhere on the
map. In contrast, for the discrete action space, the next goal is selected only from a predefined list
of candidate positions. The yellow dashed line illustrates a potential navigation trajectory generated
by the local policy.

Network Architecture For image-like inputs, CNNs remain a strong baseline Chaplot et al. (2020a);
Yu et al. (2023a); Zhang et al. (2023), while transformer-based models such as NaviFormer Xie et al.
(2025) have shown improved performance by treating maps as sequential data. In our setting, we
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consider standard pretrained backbones such as ResNet and ViT. For RGB-style semantic maps,
the backbone is initialized with pretrained weights and fine-tuned during training. The detailed
architecture is illustrated in Figure 6.

\'% a
Actor Critic Head
|
| Pretrained ViT
Transformer Encoder
cls Patch Embeddings

| T e 7 W /

Figure 6: ViT based Policy Network. Our RL policy is adapted from a pretrained Vision Trans-
former (ViT). The compressed top-down semantic map is divided into 16 patches and passed through
the transformer encoder, where the [CLS] token output is used to predict both action and value.

Reward Design For the ObjectGoal navigation task, we consider four types of rewards: exploration,
distance-based, success bonus, and step penalty:

Texploration = Q1 * (Acurrent - Aprevious)

Tdistance to target — Q¢2 * (dprevious - dcurrent)

Tsuccess —

ag, if success
0, otherwise

T'step penalty = —Ql4,  €Very step

where A is the explored area, d is the distance to the target, and oy, s, a3, vy are scalar weights.

A.8 TEST-TIME ENHANCEMENT MODULE DETAILS

Untrapped Helper To address the issue of agents becoming trapped, previous work Luo et al. (2022)
introduced an untrapping helper strategy. During action execution, if repeated collisions exceed a
predefined threshold, the agent activates the untrapping helper, which generates alternating turn-left
and turn-right actions to escape the stuck situation. The details are provided in Algorithm I.
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Algorithm 1: Untrapping Helper

Input: Distance to obstacle d, collision threshold 7.y, block threshold 7yjock, previous action
At—1
Qutput: Next action a;
if d < 7., then
\ Increase blocked count by 1;
end
if blocked count > Ty, then
if a;_1 = Move Forward then
| a; < Untrapping Helper’s action (Turn Left or Turn Right);
end
else
| a;  Move Forward,
end
end

Dynamic Goal Selection Inspired by the performance of Stubborn Luo et al. (2022), we extracted
the dynamic goal selection heuristic from their algorithm and found that it can be effectively applied
to RL-based policies to mitigate repeated exploration. Without dynamic goal selection, the long-
term goal policy generates a new goal at a fixed frequency, which may cause premature abandonment
of the current goal. We therefore designed a goal collector that stores the predicted goals and only
switches to a new goal if the current goal is unreachable for an extended period or has been reached.
The details are provided in Algorithm 2.

Algorithm 2: Dynamic Goal Selection

Input: Goal update frequency fypdate, goal collector geoiicctor, distance to goal dgoqi,
unreachable threshold Tynreachable, reached threshold Treached
Output: Current goal geyrrent
while training do
if step % fupdate==0 then
| Geoltector = RL policy prediction
end
if dgoal > Tunreachable OF dgoal < Treached then
‘ Ycurrent = Yceollector
end
step + 1

end

Remapping Mask In the perception module, some prior work Yu et al. (2023a;b); Xie et al. (2025)
employs a map augmentation strategy to address the map-overlapping issue caused by staircases.
Specifically, a special region on the map, referred to as the remapping mask, is defined. When the
agent remains within this region for an extended number of steps—an indicator of ascending or
descending a staircase—the current semantic map is cleared. A new top-down semantic map is then
generated, preventing the accumulation of overlapping information across different floors.

A.9 HUMAN EXPERT BASELINE DETAILS

To evaluate the performance of the RL agent against humans, we conducted a human study. How-
ever, since humans can memorize indoor scenes, it is redundant for them to conduct 1000 test
episodes. After only a few trials within the same scene, humans are able to remember the locations
of all target objects. Thus, we sample a subset of the test dataset for human evaluation, ensuring that
the policy exhibits similar performance on this subset as on the overall dataset.

Similar to the training of reinforcement learning, we first allow the tester to practice navigating in
the same scene used to train the RL policy. After the tester becomes familiar with the rules and the
navigation process in the environment, we begin the evaluation.

18



Under review as a conference paper at ICLR 2026

A.10 VISUALIZATION OF THE PERCEPTION MODULE

Object detector. For the same set of trajectories, we compare the performance of different object
detector models within the Habitat simulator, as illustrated in Figure 7. The left column shows
the original RGB input images, the middle column displays the output of the Mask R-CNN model
without fine-tuning, and the right column presents the output of the Mask R-CNN model fine-tuned
on the Gibson dataset. Each row corresponds to the same time step of the same trajectory.

RGB Image Mask R-CNN Mask R-CNN
(Finetuned on Gibson)

Figure 7: Comparison of Different Object Detector Models in Habitat

As shown in the figure, the fine-tuned Mask R-CNN detects target objects more accurately than the
non-fine-tuned model under identical conditions. For example, in the first row, it correctly identifies
a chair even when only partially visible. In the second row, it successfully detects a toilet despite the
significant distance. In the third row, it reliably identifies a potted plant, even with severe background
distortion caused by simulator limitations.

Map size. To better understand the reasons behind the performance differences under varying map
sizes, we provide visualizations of the top-down semantic maps in Habitat in Figure 8. For the same
scene, a larger map corresponds to a larger spatial scale. Since the agent is reset to the center of
the map every few steps when a new goal is predicted, the spatial interpretation of goal locations is
affected by map size. In the case of the Corner Goal Policy, where the goal is always placed near
the corners of the map, a larger map effectively sets more distant goals. This encourages the agent
to explore a wider area, which can lead to improved navigation performance. This trend does not
hold for the Frontier-Based Policy, where actions target frontiers of the explored space and are less
sensitive to map size. In some cases, higher-resolution maps can degrade frontier extraction due to
scaling effects, leading to worse performance, which explains why smaller maps sometimes perform
better.
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Figure 8: Comparison of map sizes in Habitat. Top row shows maps of 240 x 240. Bottom row
shows 480 x 480.

Map augmentation. We also visualize the generated maps with and without augmentation under
similar agent trajectories. As detailed in Figure 9, the overall trajectories are similar with and with-
out map augmentation. However, the quality of the constructed maps differs noticeably. Without
augmentation, scene details are often missing or inaccurate, while augmentation enables the agent
to build richer and more complete maps within the same number of steps. This explains the perfor-
mance gains under stricter evaluation. Under standard evaluation, agents have more time to explore,
narrowing the performance gap. In the third column, we highlight a failure case: without augmen-
tation, the agent misinterprets the staircase and gets stuck due to poor map quality.
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Figure 9: Comparison of map augmentation in Habitat. Top row: augmented maps. Bottom row:
non-augmented. Blue dashed boxes highlight key differences.
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