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ABSTRACT

While collaborative filtering delivers predictive accuracy and efficiency, and Large
Language Models (LLMs) enable expressive and generalizable reasoning, modern
recommendation systems must bring these strengths together. Growing user ex-
pectations, such as natural-language queries and transparent explanations, further
highlight the need for a unified approach. However, doing so is nontrivial. Col-
laborative signals are often token-efficient but semantically opaque, while LLMs
are semantically rich but struggle to model implicit user preferences when trained
only on textual inputs. This paper introduces Item-ID + Natural-language Mixture-
of-Experts Language Model (IDIOMoE), which treats item interaction histories
as a native dialect within the language space, enabling collaborative signals to be
understood in the same way as natural language. By splitting the Feed Forward
Network of each block of a pretrained LLM into a separate text expert and an item
expert with token-type gating, our method avoids destructive interference between
text and catalog modalities. IDIOMoE demonstrates strong recommendation per-
formance across both public and proprietary datasets, while preserving the text
understanding of the pretrained model.

1 INTRODUCTION

Recommendation systems shape what people read, watch, buy, learn, and play. As Al shifts from static
predictors to reasoning agents capable of following instructions, recommendation is also evolving
from ranking fixed lists to assisting users in exploring, planning, and deciding. This trend is visible in
practice: Amazon’s Rufus provides LLM-powered conversational shopping (Amazon, [2024); Meta’s
Llama-3 assistant is embedded in WhatsApp, Instagram, and Facebook for task planning (Metal
2024); and Netflix is adopting foundation-model approaches for personalization and LL.M-based
conversational retrieval (Netflix| 2025} |Zhu et al., 2025)). These examples motivate bringing LLM
knowledge and instruction-following into recommenders while preserving the collaborative patterns
that make them accurate at scale.

Conventional recommenders like collaborative filtering (CF)(Koren et al., [2009), content-based
(CB)(Lops et al.,[2011)), and sequential models (Kang & McAuleyl, 2018} [Sun et al.,|2019; Zhai et al.,
2024])) perform well within their scope when data are abundant, but they depend heavily on the quality
of logs and item attributes. They remain vulnerable to popularity bias (Abdollahpouri et al., [2019)),
struggle to integrate heterogeneous signals (text, behavior, and context), and cannot support natural
language queries.

Pre-trained LLMs offer complementary strengths: they bring broad world knowledge, can follow
natural-language instructions, and can reason about multi-objective trade-offs. Yet a fundamental gap
remains. LLM pretraining centers on semantic understanding, whereas recommendation requires
modeling collaborative preference patterns. The key challenge is leveraging LLMs for preference
understanding without disrupting their semantic competence.

Recent work has tried to bridge this gap by extending LLM vocabularies with item IDs (Cao et al.,
2024; Zhu et al.| 2024; Jiang et al., [2025; Zhang et al., [2025)), enabling direct ID-level generation.
While effective in principle, such naive integration often causes knowledge interference: collaborative
signals entangle with linguistic semantics, leading to degraded performance on both sides. As we’ll
show, this interference does not vanish by simply scaling up parameters (e.g. adding more parameters
naively) and thus calls for more principled architectural solutions.
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Figure 1: Four designs for recommendation with Transformers/LLMs. (a) ID-only Transformer:
trained from scratch on item-ID sequences, with no pretrained LLM involved. (b) Text-derived bias: a
pretrained LLM on IDs, with an external text encoder providing side features that bias item scores. (c)
Explicit text tokens: a pretrained LLM that directly consumes both item-ID tokens and (possibly) text
tokens in the same sequence. (d) Explicit text tokens + extra capacity: like (c), but adds item-specific
parameters to better handle IDs. IDIOMOE is a special case of (d).

Inspired by mixture-of-experts (MoE) (Shazeer et al} 2017} [Lepikhin et al.,[2020; [Fedus et al.} 2022),
we view ItemID modeling as a dialect distinct from natural language. But unlike standard MoE,

which routes tokens indiscriminately, we design a targeted Item-ID + Natural-language Mixture-of-
Experts Language Model (IDIOMoE) that assigns a dedicated collaborative expert for IDs alongside
a preserved text expert for language. A token-type gate orchestrates their interaction, mitigating
interference while retaining pretraining knowledge. Evaluations on both public benchmarks and
a real-world industrial dataset from a leading online platform with hundreds of millions of users
show that IDIOMOE consistently outperforms text-only adapters and item-only baselines. Our main
contributions are:

Disentangled MoE architecture for recommendation. We propose a Mixture-of-Experts design
that treats Item-IDs as a native dialect. To the best of our knowledge, this is the first attempt at
separating collaborative filtering from semantic processing, with a router that activates text experts
only when useful.

Robust performance on real-world scale. Our method achieves compelling results on public
datasets and on our large proprietary dataset with more hundreds of millions of users, while maintain-
ing the natural language understanding of a pre-trained LLM.

Extensive ablations isolating the source of gains. We study model capacity and matched-capacity
non-MoE baselines showing that improvements arise from expert specialization and routing, not just
added parameters.

Analysis of expert specialization. Through a key-value memory lens of FFN neurons, we show
that MoE separation yields clearer item-text affinity, higher category purity, and more clustered
neurons than a non-MoE baseline, providing evidence that expert disentanglement leads to more
interpretable and modular representations.

2 RELATED WORK

2.1 CONVENTIONAL RECOMMENDATION METHODS

Traditional recommendation models fall into collaborative filtering (CF), content-based (CB), and
sequential paradigms. CF learns from user—item interactions to model latent preferences
2009), while CB leverages item attributes to improve personalization and mitigate cold-start
issues 201T). Sequential models further capture temporal dynamics, using models such
as RNNs (Hidast et al.| 2015), SASRec (Kang & McAuley, [2018), and BERT4Rec 2019).
Though these models achieve strong performance under sufficient data, they operate on opaque ID
sequences and require hand-crafted features or specialized architectures to incorporate diverse signals
like language or intent. They also struggle with long-tail exposure (Abdollahpouri et al.l 2019).
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Figure 2: Overview of our proposed IDIOMoE. We extend the LLM tokenizer with new "item-id"
tokens and introduce a dedicated item embedding layer. The Normalization and Attention layers are
shared across all token types, while tokens are routed to distinct FFN layers depending on their type.

2.2  GENERATIVE RECOMMENDATION

Some works treat recommendation as sequence generation, unifying retrieval and ranking under a

generative objective 2025)). This includes large-scale decoder models such as HSTU (Zhal
2024), which scales to trillions of parameters, and OneRec (Deng et al), 2025b), which

uses a sparse MoE encoder—decoder architecture for scalable training. These approaches improve
novelty, fluency, and explainability, but are resource-intensive and require careful objective and data
design to fully exploit collaborative interaction signals. They also do not support conversational
recommendation.

2.2.1 LLM-BASED RECOMMENDATION AND SEMANTIC—ID ALIGNMENT

Large language models (LLMs) offer world knowledge and instruction-following capabilities that
are appealing for building explainable recommenders. Recent frameworks such as P35
[2022) reframe recommendation tasks as text-to-text generation, supporting few-shot generalization.
Prompt-based methods (Hou et al, 2024b)) further explore LLMs as zero-shot rankers. However,
these methods require verbose text inputs and often discard raw user—item interaction data, missing
collaborative patterns entirely. To bridge this semantic collaborative gap, prior work fine tunes

on interactions (Cao et al |[2024), aligns with rewards (Lu et al., |2024), or unifies modalities in
shared token spaces (Zhai et al., 2025)). A complementary direction embeds item IDs as tokens (e.g.,

CoVE (Zhang et al}[2025), CLLM4Rec [2024), URM 2025))), enabling token
efficient generation and retrieval. However, designs like URM that drop explicit text tokens, hinder
conversational recommendation and instruction handling. And when ID tokens and text tokens share
parameters, interference emerges: language and collaborative signals entangle, degrading both.

2.3 MULTIMODAL MOE LLMs

Recent work integrates MoE into multimodal LLMs (MLLMs) and LVLMs Bao et al.| (2022); [Shen|
let al.| (2023)); Diao et al.| (2025)); Deng et al.| (2025a). MoE-LLaVA (Lin et al., 2024a)) adds a sparse
MoE backbone to LLaVA 2023a)), converting feed-forward blocks into experts to match or
exceed larger dense variants while activating fewer parameters and reducing visual hallucinations.
Uni-MoE 2025) scales unified multimodal LLMs across many modalities and tasks with
MOoE layers. MoME further mitigates task interference by factorizing the model
into a Mixture of Vision Experts (MoVE) and a Mixture of Language Experts (MoLE), with MoVE
aggregating multi-encoder vision features via an instruction-conditioned router and MoLE using
sparsely gated adapter experts.

2.4 MOTIVATION AND POSITIONING

While prior work has shown the potential of combining semantic understanding with collaborative
signals, existing methods lack clear mechanisms to separate and preserve these distinct forms
of knowledge. Text can be incorporated via (a) text-as-features (pre-encoded embeddings/biases
attached to IDs); or (b) explicit text tokens (Figure[T). We choose the latter to preserve conversational
capabilities of the LLM. In this setting, interference between language understanding and ID-level
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Table 1: Improvements over the ID-only base- Figure 3: Language understanding retention.
line when adding text features.

Backbone ID+Txt  WmW Txt-Atr s IDIOMoE

Arts A(%) Industrial A(%)
HR@10 NDCG@10 HR@10 NDCG@10

Variant

ID-only (baseline) —
ID-only + text-derived bias ~ +42.8% +26.4% +18.1% +13.9%
ID + explicit attributes +24.6% +17.6% +11.4% +6.8%

IDIOMoE +44.1% +28.1% +22.7% +14.2%

Normalized score

NLL (4 — quality ) BBH HellaSwag MMLU Winogrande

preference modeling remains an underexplored bottleneck. Simply mixing tokens or scaling capacity
does not solve it.

We address this challenge by introducing a Item-ID + Natural-language Mixture-of-Experts Language
Model (IDIOMoE) that treats item interactions as a native dialect. IDIOMOoE dedicates separate
pathways to item and text processing in each block, with a lightweight token-type gate that reduces
interference while retaining language understanding. This design enables efficient ID-level modeling
and better alignment with both semantic and collaborative objectives.

3 METHOD

3.1 PRELIMINARY

We study how incorporating item textual attributes affects performance given a user’s interaction
history. We start from the pretrained Qwen/Qwen2.5-0.5B (Qwen et al.l [2025), extend its
vocabulary with item-ID tokens, and compare three variants that differ only in input format and the
source of item embeddings. In all variants, instruction text tokens are embedded with the LLM’s
native token embedding matrix.

1. ID-only (learned ID embeddings). Input: “The user has interacted with <|item-53 />
</item-11/>..”. Each item token is embedded via a learned item embedding table.

2. ID-only + text-derived bias. Following Jiang et al. (2025) this variant has same input as
(a). However, each item token embedding is the sum of (i) a learned ID vector and (ii) a
text-derived vector computed from the item’s title and category using a general-purpose
sentence-embedding model.

3. ID + explicit attributes. Input interleaves IDs with attributes: “The user has interacted
with <|item—-53|> title: X, category: Y; <|item—11/>..”. Item-ID tokens use the
learned item embedding table; Text tokens are embedded by the LLM’s token embeddings.

We evaluate the above on two datasets: Amazon-Arts (N1 et al., 2019) and our industrial dataset. The
results are presented in Table|l} In both datasets adding item textual attributes improves performance.
The text-derived bias approach performs better as it is easier for the model to handle as it adds some
semantic signal without making the sequence longer or more complex. In contrast, giving the model
full attribute text makes the input longer and harder to learn from. But there is a key reason to still
include explicit text: it enables capabilities that the bias method can’t. Conversing with users and
generating user-friendly explanations all rely on having real text.

To evaluate whether the variants preserve the pretrained model’s linguistic ability, we measure negative
log-likelihood (NLL) on 5,000 samples from the wikitext validation set (Merity et al.,|2016) and
further assess performance on four benchmarks: BBH (Suzgun et al., 2022), HellaSwag (Zellers
et al.,2019), MMLU (Hendrycks et al.,[2021)), and WinoGrande (Sakaguchi et al.l 2019). As shown
in Figure 3] ID+Text achieves substantially lower NLL and significantly higher benchmark results
compared to the text-derived bias variant. While the bias method provides strong recommendation
accuracy, it does so at the cost of language degradation, reflected in much poorer performance on
language understanding tasks. This points to the need for a better approach; one that preserves
the advantages of explicit text for conversational recommendation while still achieving strong
performance on standard recommendation tasks.

In this paper, we propose to divide responsibilities rather than forcing a single model to handle
everything. One expert is dedicated to IDs and collaborative filtering, while another is responsible
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for text. This design allows us to retain the benefits of explicit text when needed, without sacrificing
efficiency or accuracy when it is not. We show IDIOMOE preserves the language understanding of
the model, while delivering the best recommendation performance (Table[I|and Figure3)), confirming
that separating experts by token type reduces semantic—collaborative interference.

3.2 IDIOMOE

We present the Item-ID + Natural-language Mixture-of-Experts Language Model (IDIOMOoE), a
pretrained decoder-only LLM augmented with item-specialized experts and native item tokens.
IDIOMOE keeps the language skills of the base model intact while learning collaborative patterns
directly from user-item sequences. We start from a pretrained causal transformer and replace each
feed-forward network (FFN) with a two-expert module:

» Text Expert: the original FFN from the pretrained LLM, preserved as-is.

* Item Expert: a new FFN similar to the text expert, optionally shrunk (e.g., x%7 xi) to add
capacity efficiently.

Routing is handled by a static token-type gate: We use a simple static routing scheme: only item-ID
tokens <|it—-. | > are routed to the item expert, and all other tokens (titles, attributes, etc.) are
routed to the text expert. All tokens share the same self-attention layers at every depth, so IDs and
text always attend to each other, and the MoE split only affects the FFN sublayers, i.e., where ID-
vs. text-specific information is stored. This design lets the model jointly reason over blended textual
attributes and item IDs while allocating separate capacity for catalog structure. Moreover, since only
one expert is active per token, so compute stays comparable to the base model (See Appendix [B.6.4]
for a discussion of efficiency results). Figure[2] provides an overview of our framework.

3.2.1 NATIVE ITEM TOKENS AND HYBRID HEAD.

We augment the tokenizer with special item tokens < |it—1id|> and attach a hybrid embedding
layer that combines the frozen text embeddings with a trainable item embedding table. The output
head reuses the same hybrid parameterization so the model can generate item IDs directly.

3.3 FFN KEY-VALUE MEMORY ANALYSIS

3.3.1 SETUP

Following (Geva et al.[(2022), we view each feed-forward network (FFN) in a transformer block as a
key-value memory, where hidden states act as queries and FFN neurons contribute value vectors. Our
goal is to probe whether Mixture-of-Experts (MoE) separation encourages the item expert to encode
item semantics distinct from the fext expert, and how this differs from a non-MoE baseline.

For a transformer layer £ € {1,..., L}, let the FFN consist of two linear projections with activation
in between. We denote the second projection as Wo(ft) € R7¥4 where [ is the FFN hidden dimension

and d is the model dimension. Each row wy) € R? of Wo(ft) is treated as a value vector associated

with neuron j in layer £. To study how these rows align with model embeddings, we construct two
sets of reference vectors:

o Item embeddings: Fins € RNiemsxd  taken from the learned item embedding table used
for ID tokens.

¢ Text token embeddings: Fi. € RViexxd taken from the backbone’s input embedding
matrix for standard vocabulary tokens (excluding items).

Given a value vector w € R?, we compute cosine similarities to both sets:

Silems(w) = Eitemsz7 Stext(w) = Etextha (1

assuming all vectors are ¢5-normalized. We then retrieve the top-k most similar item IDs and text
tokens for analysis.
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Table 2: Results on small Amazon catalogs. Highlight = LLM-Based. Bold = best; underline =
second best; “—” = unreported. 1Zhai et al|(2025). 2|Cao et al.| (2024). 3 Zhang et al.| (2025)).

Method Games Instruments Arts Sports Beauty Toys
NDCG@10 HR@10 NDCG@10 HR@I0 NDCG@10 HR@10 NDCG@I0 HR@10 NDCG@10 HR@10 NDCG@10 HR@10
GRU4Rec!? 0.0453 0.0895 0.0857 0.1207 0.0690 0.1088 0.0110 0.0204 0.0137 0.0283 0.0084 0.0176
Bert4Rec!? 0.0366 0.0725 0.0739 0.1081 0.0575 0.0922 0.0099 0.0191 0.0170 0.0347 0.0099 0.0203
FDSA!2 0.0509 0.0988 0.0859 0.1249 0.0695 0.1190 0.0156 0.0288 0.0208 0.0407 0.0189 0.0381
S3-Rec'? 0.0468 0.0903 0.0743 0.1123 0.0630 0.1030 0.0240 0.0385 0.0327 0.0647 0.0376 0.0700
TIGER!? 0.0453 0.0857 0.0950 0.1221 0.0806 0.1167 0.0225 0.0400 0.0384 0.0648 0.0432 0.0712
VQ-Rec! 0.0329 0.0679 0.0891 0.1357 0.0844 0.1386 - - - - - -
MISSRec! 0.0499 0.1048 0.0880 0.1361 0.0815 0.1321
P5-CID* 0.0454 0.0824 0.0704 0.1119 0.0662 0.0994
VIP5! 0.0418 0.0758 0.0872 0.1071 0.0635 0.0859
MQL4GRec! 0.0548 0.1033 0.1060 0.1375 0.0950 0.1327 - - - - - -
ReAT? - - - - - - 0.0232 0.0422 0.0535 0.0722 0.0461 0.0776
EA4SRec? - - - - - - 0.0237 0.0410 0.0435 0.0758 0.0479 0.0798
IDGenRec? - - - - - - 0.0372 0.0574 0.0541 0.0814 0.0551 0.0870
CoVE? - - - - - - 0.0359 0.0624 0.0593 0.1009 0.0595 0.0986
SASRec 0.0547 0.0997 0.0749 0.1256 0.0927 0.1290 0.0289 0.0531 0.0541 0.0945 0.0542 0.0958
HSTU 0.0609 0.1089 0.0712 0.1214 0.0941 0.1301 0.0287 0.0515 0.0474 0.0863 0.0536 0.0933
ID Transformer 0.0392 0.0669 0.0709 0.0761 0.0824 0.1025 0.0081 0.0122 0.0314 0.0503 0.0271 0.0405
Text-Attr LLM 0.0464 0.0862 0.0778 0.1133 0.0938 0.1374 0.0251 0.0497 0.0390 0.0761 0.0502 0.0895
Item-LLM 0.0407 0.0734 0.0943 0.1095 0.0901 0.1272 0.0211 0.0369 0.0449 0.0738 0.0410 0.0704
IDIOMoE 0.0605 0.1102 0.1054 0.1385 0.1029 0.1409 0.0391 0.0674 0.0665 0.1104 0.0531 0.0927

3.3.2 METRICS

We define three metrics to quantify the specialization of each neuron’s value vector w:

Affinity: a(w) = median(s;gfz(w}) - median(sfgf{k(w)), 2)
. 1, . .
Purity: p(w) = max - |{i € top-k(w) : cat(i) =c}| € [0,1], 3)
(&
Clustered row:  1uger(w) = I[p(w) > 7|, for threshold 7 € [0, 1]. 4)

Here, C denotes the set of item categories, cat(7) returns the category of item ¢, and 7 controls the
strictness of cluster assignment. In simple terms, affinity quantifies the relative alignment of an FFN
neuron’s value vector with item versus text embeddings, thereby indicating modality preference.
Purity measures the concentration of a neuron’s top-k nearest neighbors within a single item category,
reflecting category-specific specialization. Clustered rows are those neurons whose purity exceeds a
threshold 7, identifying dimensions of the FFN value space that form coherent category-level clusters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Baselines Our main focus is on LLM-based recommenders, so the most relevant baselines are
different ways of adding recommendation capability to LLMs. We include established LLM-for-
Rec baselines that are directly comparable to our setting: the P5/P5-CID family, which reframes
recommendation as text-to-text generation over a pretrained language model (Geng et al.| 2022}
Hua et al.| [2023)); VIP5, a multimodal extension of P5 that adapts the LLM with parameter-efficient
modules (Geng et al.,|2023)); EASRec, which keeps the LLM largely frozen and adds a lightweight
ID-side adapter for sequential recommendation (Li et al.}2023d); and ReAT, which aligns LLMs to
recommendation objectives via auxiliary, recommendation-specific generated tasks (Cao et al., [2024)).
These capture the main design choices for adding recommendation capability to LLMs (prompting,
adapters, frozen-backbone adapters, alignment), and thus form our most relevant comparison set. In
addition, we compare three variants built on the same backbone: (i) ID Transformer, trained only
on item tokens; (ii) ltem-ID LLM + text-derived bias (Jiang et al.l [2025), where ID embeddings
are augmented with text features; and (iii) /tem-LLM, which integrates item text via vocabulary
expansion but without MoE. These three variants are matched to IDIOMOE in parameter count
and trained under identical token budgets. For completeness, we also report results of classical
sequence models (GRU4Rec (Hidasi et al.| 2015), Bert4Rec (Sun et al.l 2019), FDSA (Zhang et al.,
2019), S3-Rec (Zhou et al., 2020)), recent quantized/contrastive approaches (VQ-Rec (Hou et al.}
2023b), MissRec (Wang et al.l 2023a), TIGER (Rajput et al., 2023), MQL4GRec (Zhai et al., 2025),
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Table 3: Results on large Amazon cat-  Figure 4: Results on our industrial dataset.
alogs. Bold=best; underline=second best;
Highlight=L.LM-Based Tert Ly
=D Tonstomer 1 e i
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Method Beauty Books Toys < °
e
NDCG@10 HR@10 NDCG@10 HR@I0 NDCG@10 HR@I10 g’g
5
SASRec 0.0051 0.0101 0.0064 0.0128 0.0122 0.0245 S D‘.
HSTU 0.0130 0.0247 0.0211 0.0410 0.0149 0.0332 2 g
ID Transformer 0.0068 0.0095 0.0224 0.0295 0.0048 0.0079 s
Text-Attr LLM 0.0105 0.0163 0.0195 0.0290 0.0164 0.0300 2
Item-LLM 0.0082 0.0119 0.0174 0.0261 0.0079 0.0148
IDIOMoE 0.0119 0.0228 0.0224 0.0419 0.0186 0.0361
NDCG@lO HR@lO

IDGenRec (Tan et al.|[2024)), and strong transformer baselines (SASRec (Kang & McAuley, 2018)),
HSTU (Zhai et al.}[2024)). We further include CoVE (Zhang et al.| 2025)), which extends an LLM
with LoRA parameters to encode catalog items. While these embedding-driven or classical models
are not our primary comparison targets, we include them for completeness on smaller Amazon
datasets. Full baseline details are in Appendix [B.I]

Datasets, Evaluation, & Backbone We use public Amazon Dataset: Games, Instruments and
Arts (Ni et al},[2019) as well as Sports, Beauty and Toys|McAuley et al.|(2015). We further report
performance on larger 2023 Amazon variants (Beauty, Books, and Toys) with substantially larger item
vocabularies |Hou et al.| (2024a). We also train and evaluate on our in-house industrial-scale dataset
with hundreds of millions of users and tens of thousands of items. We report NDCG@ 10, HR@ 10
and MRR. Metrics are computed over the full catalog on Amazon datasets and on 50000 samples in
our industrial dataset. We follow the standard leave last item out procedure for separating train and
test datasets. All LLM-based models that we train, use Qwen/Qwen?2.5-0. 5B on text-analysis
results, Amazon datasets, and for all ablations. We use Qwen/Qwen?2.5-1. 5B for main results on
our proprietary dataset. See Appendix [B|for all details.

4.1.1 RESULTS: AMAZON CATALOGS

Table [2| summarizes performance across six small Amazon datasets. We observe that classical
sequence models such as GRU4Rec (Hidasi et al., |2015) and Bert4Rec |Sun et al.|(2019) perform
consistently worse than more recent architectures, confirming the difficulty of modeling sparse
item interactions in these settings. Transformer-based methods with additional inductive biases,
such as FDSA (Zhang et al., 2019), S3-Rec|Zhou et al.| (2020), and TIGER [Rajput et al.| (2023),
provide moderate gains, while recent quantization and multi-modal approaches like VQ-Rec |Hou
et al.| (2023b), MISSRec Wang et al.|(2023a), and MQL4GRec|Zhai et al.| (2025) achieve stronger
results. Compared to direct LLM-Based baselines (highlighted in gray) and classical sequence
models, IDIOMOoE delivers the most consistent improvements: it achieves the highest NDCG@ 10
and HR@10 in nearly all domains. These results highlight the robustness of our approach across
diverse catalog sizes and domains, suggesting better generalization than prior methods that either
overfit to specific datasets or fail to transfer across settings.

We evaluate SASRec (Kang & McAuley, [2018)), HSTU (Zhai et al., [2024)), ID-Transformer, LLM-
based baselines and IDIOMOoE on Larger Amazon datasets. Table [3| presents the results. IDIOMOE is
the strongest LLM-based method across all three catalogs: it is the top LLM on Beauty (2nd overall
behind HSTU by a small margin), and it achieves the best overall scores on Books and Toys. In
contrast, [tem-LLM and Text-Attr LLM [Jiang et al.| (2025) lag behind IDIOMOE across metrics,
indicating that simply mixing item/text tokens or adding text-derived biases is insufficient. Together,
these results support our claim that disentangling item and language pathways yields higher ranking
quality than prior LLM baselines while remaining competitive with the best non-LLM models.

4.1.2 RESULTS: PROPRIETARY DATASET

While results on the Amazon datasets remain a useful reference point, we acknowledge their limi-
tations. The benchmarks are relatively small and may contain overlaps that make them easier than
real-world scenarios. Therefore, although we report results on these datasets for comparability with
prior work, we place greater weight on evaluations conducted on our large-scale proprietary dataset,
which we consider a more realistic and meaningful test of recommendation quality.

Figure [4] (Table [O) shows results on our large-scale proprietary dataset as improvements over the
SASRec |Kang & McAuley| (2018)) baseline. ID-Transformer achieves strong gains, confirming that
transformers can effectively capture collaborative filtering signals when grounded in IDs and given
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enough compute. Title-LLM, which relies solely on free-form item titles, collapses in performance,
highlighting the limitations of text-only representations for recommendation. Item-LLM combines
IDs with textual features and yields further improvements, particularly on HR @ 10, demonstrating
the value of jointly modeling collaborative and semantic signals. HSTU [Zhai et al.| (2024) provides
modest gains but falls short compared to the LLM-based approaches and doesn’t support explainable
recommendation. Finally, our method (IDIOMOoE) achieves the largest improvements across all
metrics (+27.1% NDCG @10, +16.6% HR@10, +31.2% MRR), showing that disentangling ID and
text processing with specialized experts and routing not only preserves collaborative filtering strength
but also better leverages semantic cues for robust large-scale recommendation.

4.2 ABLATIONS

4.2.1 NON-MOE CAPACITY CONTROLS.

To ensure that the improvements of IDIOMOoE are not simply due to added parameters, we compare
against non-MoE variants with matched capacity. Specifically, we consider three settings: (i) wide-
FFN, where the feed-forward layers of the transformer blocks are widened to match IDIOMOoE ’s
parameter count; (ii) append-blocks, where additional transformer layers are added after the original
stack; and (iii) prepend-blocks, where extra layers are inserted before the original stack. All models
are trained under the same setup as IDIOMoE with the hyperparameters and the same FLOPS. We
also compare against a LoRA Hu et al.|(2022)) variant where low-rank adapters are added across all
layers. Table[d] summarizes the results.

We find that simply adding parameters in non-

structured ways is insufficient. Wide-FFN im-  Typle 4: Non-MoE capacity controls on Amazon-
proves performance on Amazon-Beauty but Beauty and Industrial datasets. All variants are
only marginally helps in the industrial set- matched to IDIOMOE in parameter count. Re-

ting. In contrast, append-blocks and prepend-  gy]ts are shown as relative improvements over Item-
blocks severely degrade performance across [.M.

both datasets, likely due to disruption of pre-

trained representations or training instability. Method Amazon-Beauty A(%)  Industrial A(%)

LoRA-LLM, where low-rank adapters are added NDCG@10 HR@10 NDCG@10 HR@10
across all layers, helps slightly on Amazon- _liem-LLM (baseline) — —

Beautv but fails drasticall the industria] _LORALLM 215%  +19% 790%  16.3%
cauty but Tatls drastically on the industria Wide-FFN 270%  +249%  +38% +1.3%
benchmark, highlighting its sensitivity to scale  Append-blocks -878%  -903%  -5.5% -5.3%
. . Prepend-blocks 972%  959%  -153%  -162%
and signal sparsity. MoA HA83%  +462%  +209%  £21.1%
) ) ) MoT +493%  +511%  +22.5% = +24.8%
We also compare with various MoE designs. _IDIOMoE +48.1%  +49.6%  +24.1%  +289%

Both MoA (expert attention modules) and MoT

(expertized full transformer blocks with cross

attention) yield large improvements over all non-MoE controls. Importantly, IDIOMoE performs on
par or better than both, despite using a simpler and more efficient expert design focused solely on
FFNs with static routing. Although MoA and MoT are competitive on Amazon-Beauty and occa-
sionally match or slightly exceed IDIOMOE there, we emphasize the industrial-scale results as our
primary evidence. On this large setting, the FFN-based MoE of IDIOMOoE consistently outperforms
MoA/MoT variants. Nonetheless, the pattern we observe might be dataset-dependent. The core idea
of IDIOMOE is to treat catalog items as first-class citizens and to separate where information about
IDs and text is stored. All three MoE variants we ablate are consistent with this idea. Our choice to
place MoE in the FFNSs is guided by the stronger and more stable gains we see on the large-scale
industrial dataset.

These results confirm that IDIOMoE’s performance is not due to raw parameter count, but rather due
to its intentional separation of item and language processing via token-type MoE routing. Compared
to generic scaling or lightweight tuning (e.g., LoRA), the structured, disentangled pathways in
IDIOMOE yield higher accuracy, especially in large-scale settings where interference between item
IDs and natural language is more pronounced.
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4.2.2 ITEM EXPERT CAPACITY

We vary the intermediate width of the item expert per layer by applying different shrink factors
to the middle layer of the item FFN experts. Larger shrink factors reduce the parameter count
and latency, but they also constrain the model’s ability to capture rich collaborative signals. Ta-
ble [§] presents the results. On Amazon-Beauty, we see that moderate shrink values (2 and 4)
provide substantial improvements over the baseline, with shrink=4 yielding the best balance of
capacity and efficiency (+41.8% NDCG@10, +26.6% HR@10). However, very aggressive shrink-
ing (shrink=8) reduces gains, suggesting that the item expert becomes under-parameterized.In
contrast, results on the industrial dataset show a different trend: shrinking consistently hurts per-
formance, with small but steady drops in both NDCG@ 10 and HR@10 as capacity decreases.
These findings indicate that while smaller bench-

marks can benefit from lighter experts, large-  Taple 5: Impact of varying item expert capacity.
scale real-world data demands higher item-

expert capacity to preserve recommendation ac- Shrink Amazon-Beauty A(%)  Industrial A(%)

curacy. This motivates the need for adaptive i NDCG@10 HR@I10 NDCG@10 HR@10

capacity allocation, where expert width canbe " celine) — —

tuned to match the complexity and scale of the 2 +21.5%  +23.3% 2.0% 2.1%
: : : 4 +418%  +26.6% 3.1% 2.2%

target domain. Our method provides this control N Sl 66% sa Sea

on capacity allocation.

4.2.3 WHERE TO INSERT MOE LAYERS

To study where MoE layers are most effective, we conduct an ablation by selecting different insertion
strategies. Specifically, we activate MoE experts in (i) the first 8 layers, (ii) the middle 8 layers, (iii)
the last 8 layers, and (iv) every third layer throughout the model. This allows us to compare the
impact of placing MoE capacity in shallow, intermediate, deep, or evenly distributed positions. We
report results on the Amazon-Arts dataset in Table [6]

We observe clear differences depending on

where MoE layers are inserted. Using MoE  Taple 6: Ablation on where to insert MoE layers.
in the first 8 layers yields the weakest perfor-

mance, suggesting that early representations are MoE P1 Amazon-Beauty A(%)  Industrial A(%)
dominated by low-level token processing where NDCG@10 HR@I0 NDCG@I0 HR@10
additional capacity is less beneficial. Distribut-  First 8 (baseline) — —

ing MoE every three layers achieves moderate ~ Feor 3 D S e S
improvements but still falls short. Placing MOE  Lasts +284%  +27.6%  +9.6%  +9.0%
in the middle 8 layers improves results, but the
largest gains come from inserting MoE in the
last 8 layers (+27.6% HR @10 and +28.4% NDCG@ 10 over baseline). This indicates that deeper
layers (where task-specific semantics and collaborative filtering patterns are most prominent) benefit
most from specialized experts, as they directly shape the final ranking representations.

4.2.4 STATIC VS. DYNAMIC ROUTING

We find that a switch-style (Fedus et al., 2022

dynamic gating severely degrades recommen- Table 7: Impact of static routing.

dation quality, while static token-type routing

performs mugh bett;r (Tgble E]) The likely rea- Routing Strategy Amazon-Beauty (%) Industrial A(%)
son is that static routing gives each expert a clear, NDCG@10 HR@10 NDCG@I0 HR@I0
consistent role (language vs. item IDs) so they  static — —

can specialize without interference. In contrast, ~_Pynamic 595%  369%  242%  244%
dynamic routing mixes assignments across ex-

perts, leading to greater entanglement between signals and weaker specialization. This highlights that
a fixed separation by token type is not just simpler but also more effective for disentangling language
and recommendation signals.

For each layer ¢, we report means/medians of a(w) (Equation 2) and p(w) (Equation[3) across rows,
and the clustered fraction E[1yger(w)] (Equation . In MoE, we compare the item expert. We
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Figure 5: FFN key-value memory analysis comparing MoE vs. non-MoE. Each subfigure shows
item-text affinity, cluster purity, and fraction of clustered rows across transformer layers.

extract Wy, rows, compute top-k similarities to items and text, and summarize per layer and overall.
We set k=20 and 7=0.5.

4.3 FFN KEY-VALUE MEMORY ANALYSIS

The results in Figure 5] show clear differences between MoE and non-MoE models when analyzing
FFN neurons as key-value memories. In terms of item-text affinity, both models begin with weak
modality preference, but deeper layers of the non-MoE baseline drift toward negative affinity (favoring
text), whereas the MoE model maintains more balanced alignment. This indicates that MoE preserves
item sensitivity in upper layers, where recommendation decisions are most critical (Table|6).

For cluster purity, MoE consistently yields higher values across layers, meaning that its neurons are
more category-specific: when a neuron activates for items, it tends to retrieve items from the same
category. Similarly, the fraction of clustered rows (neurons forming coherent category-level clusters)
remains low and flat for the non-MoE baseline, is always higher in MoE and rises sharply in the
later layers of MoE on the more challenging industrial dataset. Together, these results suggest that
MOoE separation leads to clearer item-text specialization, higher category purity, and more structured
clustering than a vanilla transformer, reinforcing our claim that expert separation enables more
interpretable and modular representations of recommendation signals.

5 CONCLUSION

We introduced IDIOMOE, a dual-expert continued-pretrained language model that processes text and
item data through two specialized experts. Despite its simplicity, IDIOMoE outperforms both classical
and recently proposed LLM-based recommendation models. It effectively preserves the pretrained
knowledge of the LLM. Our findings highlight the importance of using specialized sub-networks
for different modalities, rather than scaling indiscriminately with a single model for all inputs. We
view IDIOMOE as a step toward more sustainable and adaptive LLMs for recommendation tasks,
and believe this direction is crucial in our efforts to achieve better recommendation performance and
interpretability without relying on unnecessarily large models that exhibit diminishing returns.
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A EXTENDED RELATED WORK

A.1 CLASSIC RECOMMENDATION APPROACHES

Recommender systems have long relied on two complementary paradigms: collaborative filtering
(CF) (Yao et al., 2021} [Wang et al., 20255 L1 et al., [2022; |He & McAuley, [2015) and content-based
(CB) methods. CF models exploit user—item interaction patterns, such as ratings or clicks, to learn
latent representations of users and items (Koren et al.; 2009). This approach is domain-agnostic
and often yields high accuracy, but it suffers from well-known cold-start problems for new users
or items and can exhibit strong popularity bias (Abdollahpouri et al., 2019), over-recommending
popular items at the expense of long-tail discovery. CB methods instead leverage explicit item
features or descriptions to recommend similar items, which can address item cold-start but ignore
collaborative patterns and the “wisdom of the crowd.” These methods may produce over-specialized
recommendations that limit serendipity.

Hybrid recommenders attempt to combine CF and CB to balance relevance, novelty, and coverage.
However, even hybrid systems can be difficult to control with respect to multi-objective goals like
fairness, diversity, or novelty without post-hoc re-ranking.

Sequential and Contextual Models. Moving beyond static recommendation, sequential mod-
els (Yuan et al., 2018}, [Zhou et al., |2020; |de Souza Pereira Moreira et al., [2021; [Hou et al., 2022}
2023a; |Wang et al.,[2023a)) predict a user’s next interaction by modeling temporal dependencies in
their history. Early neural solutions include GRU4Rec (Hidasi et al.,[2015)), which applied gated re-
current units to capture sequence dynamics. The introduction of Transformers brought a step-change:
SASRec (Kang & McAuley, |2018]) was the first to model next-item prediction in an autoregressive
fashion using self-attention, improving short-term preference modeling. BERT4Rec (Sun et al.,2019)
adapted bidirectional Transformers to better utilize context on both sides of a target position. These
architectures form strong baselines in academic and industrial settings, yet they still rely on abstract
IDs or dense embeddings, making it hard to integrate external semantic knowledge or to directly
optimize multiple objectives beyond accuracy.

Recent work also explores fairness- and diversity-aware training, multi-objective loss formulations,
and contextual augmentation, but these methods often require complex pipelines and lack the natural
flexibility of a language interface.

A.2 LARGE LANGUAGE MODELS FOR RECOMMENDATION

The advent of large language models (LLMs) pretrained (Yuan et al.| 2020; Xiao et al.| 2021} |Qiu
et al., 2021} L1 et al.l 2021; [Yuan et al., 2021} [Shin et al., [2022) on massive corpora has opened
new opportunities for recommendation. (Zeng et al., [2020; [Liu et al.,|2023c; |Lin et al.,|2024b; | Yuan
et al.}2023; Wang et al.| 2024a} |Fu et al.||2024) LLMs provide broad world knowledge, reasoning
skills, and instruction-following [Zhang et al.| (2023)); IL1 et al.| (2024a); Contal & McGoldrick| (2024)
abilities that can extend beyond the pattern-matching of traditional recommenders (Zhang et al.
2021b; Muhamed et al., 2021} |Cui et al 2022} [Liu et al.| 2022; Zhang & Wang] 2023; Wei et al.|
2024; L1 et al.,|2023b; 'Wang et al., [2023b).

LLMs as Recommenders. A pioneering example is P5 (Geng et al.| 2022), which reformulates
diverse recommendation tasks into a unified text-to-text format, allowing zero-shot Hou et al.[(2024b)
and few-shot transfer between tasks such as rating prediction, sequential recommendation, and
explanation generation (Bao et al.||2023a; Li et al.} 2023c; |Yue et al., [2023; |[Lu et al.| 2023} |Zhang
et al.,[2021aj [Wu et al.| 2024). This unification facilitates integration of multiple modalities, such
as textual descriptions or reviews, and enables natural-language queries |Liu et al.| (2023b); |Bao
et al.[(2023b)); [Dai et al.| (2023)); |ILin & Zhang|(2023); Zhang & Wang| (2023); |Yang et al.| (2023);
Carranza et al. (2024); Kieu et al.| (2025). However, item representation in such setups is often
token-inefficient—especially for large catalogs—because items must be described in text, and off-
the-shelf LLMs lack direct exposure to collaborative signals from user—item interactions (Cao et al.,
2024). This leads to a mismatch between the LLM’s pretrained knowledge and the domain-specific
collaborative knowledge needed for effective recommendation.
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Zero-Shot and Prompt-Based Approaches. Zero-shot prompting (Hou et al., |2024b; |Liang et al.,
2025) evaluates an LLM as a ranker given a user’s history and a set of candidate items in the prompt.
Such methods can achieve competitive performance without task-specific training, demonstrating
strong generalization, but are sensitive to prompt design, prone to sequence-order biases, and often
ignore subtle interaction semantics.

Fine-Tuning and Alignment. To address these limitations, fine-tuning methods adapt LLMs to
recommendation tasks while preserving language capabilities Ren & Huang|(2024)); Zhao et al.|(2025);
Li et al.[(2024b); Wang et al.| (2021). GDM (Cao et al.,|2024)) introduces auxiliary natural-language
training tasks (e.g., masked item modeling, BPR) to inject collaborative patterns. MQL (Zhai et al.,
2025) encodes multimodal item attributes (text, images) into a shared quantitative token space,
enhancing cold-start and cross-domain performance. RL-based alignment (Lu et al.,|2024) further
improves controllability by optimizing instruction-following behavior with preference-based rewards,
enabling conversational Friedman et al.| (2023)); |Li et al.| (2019); |[Chen et al.| (2019); Kemper et al.
(2024); L1 et al.[(2023a); [Tang et al.| (2025) and constraint-aware recommendation.

Item ID Integration and Hybrid Representations. To avoid verbose item descriptions, several
works embed item IDs directly into the LLM’s vocabulary. CoVE (Zhang et al., |2025)) expands
the token set with unique item tokens, enabling single-token recommendations and compressed
embeddings. CLLM4Rec (Zhu et al.} 2024)) extends this with both user and item tokens, combining
soft and hard prompts to integrate collaborative semantics. These ID-augmented models improve
efficiency and accuracy but risk “knowledge entanglement”: naive merging of ID and language tokens
can cause interference, harming both recommendation accuracy and language fluency.

A.3 GENERATIVE AND HYBRID RECOMMENDER MODELS

Generative recommenders recast recommendation as a sequence generation task (Yang et al., 2025),
unifying retrieval and ranking in one model. HSTU (Zhai et al., [2024)) employs a Transformer-
based transducer, scaling up to 1.5T parameters and achieving large offline and online gains, while
demonstrating NLP-like scaling laws for recommendation. TIGER (Rajput et al., 2023) compresses
item vocabularies via multi-code vector quantization. OneRec (Deng et al.,|2025b) unifies retrieval
and ranking in an encoder—decoder Transformer with sparse Mixture-of-Experts (MoE) |Shazeer et al.
(2017); |[Fedus et al.[(2022); Ma et al.| (2018); [Tang et al.| (2020); | Xu et al.[(2024)); [Zhang et al.| (2024));
Wang et al.|(2024b) for capacity scaling and adds Iterative Preference Optimization for alignment.
These approaches offer novelty, explainability, and unified modeling, but require heavy compute and
careful fine-tuning strategies to retain collaborative memory.

Beyond Accuracy. Extensions like MTGR (Han et al.| 2025)) integrate hand-crafted features into
generative architectures, while others focus on fairness, calibration, and bias mitigation in LLM-based
recommenders (Yang et al., [2025). The generative format naturally supports novelty and explanation
generation, which can combat popularity bias and improve transparency, but system design remains
challenging.

A.4 MULTIMODAL MOE LLMs

More recently, MoE has been integrated directly into multimodal large language models (MLLMs) and
large vision—language models (LVLMs)|Bao et al.|(2022);|Shen et al.| (2023); Diao et al.|(2025)); Deng
et al. (2025a). MoE-LLaVA (Lin et al.,2024a)) introduces a sparse MoE backbone for LLaVA (Liu
et al., [2023a)-style LVLMs and proposes a three-stage MoE-tuning strategy that first builds a strong
dense LVLM and then converts its feed-forward blocks into experts. The resulting MoE-LLaVA
model achieves performance comparable to or better than substantially larger dense LLaVA variants,
while activating only a fraction of the parameters per token and reducing visual hallucinations.

Uni-MoE (Li et al., 2025) targets unified multimodal LLMs that support a broad set of modalities and
tasks, applying MoE layers to scale capacity while maintaining a single generalist model. Addressing
task interference in instruction-tuned MLLMs, MoME (Mixture of Multimodal Experts) (Xu et al.|
2024) decomposes the architecture into a Mixture of Vision Experts (MoVE) and a Mixture of
Language Experts (MoLE). MoVE aggregates features from multiple vision encoders via an adaptive
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Table 8: Statistics of Amazon datasets used.

Dataset Total sequences Num items
Games 42259 13839
Instruments 17112 6250
Arts 22171 9416
Sports 35598 18357
Beauty 22363 12101
Toys 35598 11924
Books(23) 776370 495063
Beauty(23) 729576 207649
Toys(23) 432264 162035

deformable transformation and an instruction-conditioned router, while MoLE inserts sparsely gated
adapter experts into LLM layers.

B EXPERIMENTS

B.1 BASELINES

We benchmark IDIOMOE against representative methods spanning classic sequence modeling and
recent LLM-based recommenders, with an emphasis on baselines that add recommendation capability
to LLMs.

Early sequential modeling. GRU4Rec (Hidasi et al., | 2015) pioneers GRU-based session modeling;
SASRec (Kang & McAuley, |2018)) introduces unidirectional self-attention; BERT4Rec (Sun et al.}
2019) adopts bidirectional masked modeling for sequences.

Transformer extensions and self-supervision. FDSA (Zhang et al., [2019)) enriches feature de-
pendencies within Transformers, and S3-Rec (Zhou et al. [2020) pretrains with sequence-aware
self-supervision.

Representation design, multimodality, and framework-style comparatives. VQ-Rec (Hou et al.,
2023b)) learns discrete item codes via vector quantization; MissRec (Wang et al.,2023a) explores mul-
timodal pretraining and transfer; TIGER (Rajput et al., | 2023) formulates autoregressive retrieval over
semantic IDs. Framework baselines that unify text and recommendation include P5/P5-CID (Geng
et al.}[2022; Hua et al.,[2023) and its multimodal extension VIP5 (Geng et al., |[2023)). E4SRec (Li
et al.} [2023d) targets efficient sequential recommendation with a largely frozen LLM. ReAT (Cao
et al.| [2024) aligns LLMs to recommendation through auxiliary, recommendation-specific tasks. For
completeness on small Amazon benchmarks, we also report CoVE (Zhang et al., [2025).

Our reproduced and controlled variants. To isolate architectural effects under identical capacity,
tokenizer, and training budget, we implement three LLM-based variants on the same backbone
as IDIOMOoE: (i) ID Transformer (item tokens only); (ii) Item-ID LLM + text-derived bias (ID
embeddings augmented with text features); and (iii) Item-LLM (vocabulary expansion with explicit
item text but no MoE). We also reproduce strong non-LLM and hybrid sequential baselines, including
SASRec (Kang & McAuley, 2018) and HSTU (Zhai et al., 2024). Unless stated otherwise, all LLM-
based baselines are matched to IDIOMOE in active parameter count and trained with the same token
budget, optimizer, sequence length, and schedules.

B.2 DATASETS

We use public Amazon Dataset: Games, Intruments and Arts (Ni et al., [2019) as well as Sports,
Beauty and Toys|McAuley et al.|(2015). See Table E] for dataset statistics. We also train and evaluate
on our in-house industrial-scale dataset with millions of users and tens of thousands of items.
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B.3 PREPROCESSING

We take the preprocessed version of Games, Arts, and sports from |[Zhai et al.| (2025). We take small
Sports, Beauty and Toys from Zhang et al.| (2025). We download 2023 amazon variants from the
official website Hou et al.[(2024a)). Following previous work Rajput et al.|(2023), we first filter out
unpopular users and items with less than five interactions. Then, we create user behavior sequences
based on the chronological order. We use chronological leave-last-k splitting per user: last 1 for
test, the preceding 1 for validation, and the remainder for training. Item text comes from title and
categories. Maximum item history length is 50 items (most recent first). Maximum total token length
(items + text) is 1024. We truncate text first, then items if necessary to satisfy the context size. We
pad shorter sequences to 1024 with a special pad token; attention masks prevent loss on padded
positions. We take the final unpadded position for evaluation.

B.4 OPTIMIZATION AND EVALUATION

Optimizer is AdamW (betas (0.9,0.9999), eps 1e—8, weight decay 1le—2). We use linear warmup
of 3000 iterations, then a cosine decay learning rate schedule. We tune learning rate with a grid
search over {le — 3, 1e — 5, 1e — 5} for IDIOMOE and baselines. Training runs with bfloat16 on
NVIDIA A100-80GB. Batch size is 128. We use standard next-token objectives that minimizes the KL
divergence between the data distribution and the distribution of the LLM. We report NDCG @ 10/50,
HR@10/50, and MRR. Metrics are computed over the full catalog. We train for 200 epochs on
small amazon datasets and for 50 epochs on larger amazon datasets. For text benchmarks we use
lm-eval-harness|Gao et al|(2024). We constrain the output space to the unseen token items for
retrieval quality.

B.5 IDIOMOE DETAILS

1. Experts per FFN block: 2 (ID expert + Text expert).

2. Routing: static token-type routing (ID tokens — ID expert; text tokens — Text expert).
3. Shared components: attention, LayerNorms, positional embeddings.
4

. Expert widths: Text expert width = 1. ID expert width = 1 for ablations. Tuned for main
tables.

5. Placement: all-layers become MoE for ablations. last-k with 4,8, 16 is tuned for main
results.

6. Freezing Policy: For Table 1 experiments (Text analysis) and ablations, LLM backbone is
frozen. In other small-scale runs we select the best among: freeze-all, freeze-text-expert-
only, and freeze-attention-only. In industrial dataset, we freeze everything and only train the
item experts and item embeddings.

7. Factorized Embedding: On amazon datasets, instead of a single embedding table E €
RNiemsxd " we first project to a lower dimensional space and then to the model dimension to
reduce embedding parameters £ = W, x W,, where W, € RNiemXdmia and W/, € RImiaxd,

8. For main results (not ablations and not Table|[T)), we warm up the item expert with item-only
sequences for 20% of epochs, then gradually mix in text tokens with a linear schedule.
Ablations with LLM-based models and Table 1 do not use this warm-up to ensure fairness.

B.6 RESULTS

B.6.1 PROPRIETARY RESULTS

Table [9] shows the results on our industrial dataset.

We also conduct an additional experiement on our industrial dataset to study the effect of scaling
the model using the Qwen 2.5/Qwen et al.|(2025) family (0.5B, 1.5B, 3B, 7B). Figure [6] shows the
results. We see that recommendation quality improves with LLM size given enough training data,
and the gains of IDIOMOE over Item-LLM as the main baseline are persistent across all model scales
considered.
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Table 9: Results on our industrial dataset.

Method Industrial A(%)
NDCG@10 HR@10 MRR

SASRec (baseline) —
HSTU +10.5% +2.7%  +13.2%

ID Transformer +21.1% +89%  +23.1%
Title-LLM -81.8% -87.6%  -98.4%
Text-Attr LLM +25.4% +14.1% +25.9%
Item-LLM +23.5% +13.0% +24.3%
IDIOMoE +27.1% +16.6% +31.2%

HR@10 vs. model size NDCG@10 vs. model size
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Figure 6: Relative performance on the industrial dataset with Qwen 2.5 backbones of different sizes.
All values are reported as relative improvements (%) over the 0.5B baseline Item-LLM.

B.6.2 SEMANTIC IDS

IDIOMOE is fully compatible with semantic ID schemes for handling new items. We conduct an
experiments where we replace raw item IDs with semantic IDs from MQL4GRec (Zhai et al., [2025)),
showing that IDIOMOE ’s gains persist in this setting (Table[T0).

We also conducted a cold-start experiment following the steps described in the section 4.3 of
TIGER (Rajput et al.l [2023)), where we remove 5% of test items from the training data and report
the test performance overall and over the unseen set items. We set the ratio of unseen items to seen
items in the top-k items € = 0.1. Table[TT|shows the results, demonstrating that our method extends
naturally to standard cold-start mechanisms.

These results demonstrate that our method extends naturally to standard cold-start mechanisms and is
compatible with semantic-ID-based handling of new items.

B.6.3 ATTENTION ANALYSIS ON TEXT-ONLY PROMPTS

We analyze the internal attention behavior of our Item LLM on text-only inputs. We use the same
tokenizer and pretrained backbone as the deployed model, run the model on a set of text prompts,
and compute summary statistics per layer. We compare (i) IDIOMOE (ii) a freshly loaded pretrained
backbone.

For each transformer layer, we average heads, mask padding, and re-normalize per query. We report:

1. previous-token attention, A[i, i — 1] averaged over valid positions
2. attention to the first token, A[:, 0]
3. the distance profile, A[i, i — d] as a function of offset d
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Table 10: Performance with Semantic IDs on three Amazon datasets.

Arts Games Instruments
Method HR@10 NDCG@10 HR@I0 NDCG@10 HR@10 NDCG@I10
Ttem-LLM  0.0946 0.0658 0.0823 0.0481 0.0826 0.0622

IDIOMoE  0.1018 0.0730 0.0880 0.0492 0.0917 0.0686

Table 11: Cold-start evaluation following TIGER: 5% of test items are removed from training. We
report overall test metrics (All) and metrics restricted to unseen items (Unseen) for three datasets.

Arts Games Instruments
All Unseen All Unseen All Unseen
Method HR@10 NDCG@10 HR@I0 NDCG@10 HR@10 NDCG@I0 HR@I0 NDCG@10 HR@10 NDCG@10 HR@I0 NDCG@10

Backbone  0.0808 0.0618 0.0569 0.0395 0.0849 0.0534 0.0478 0.0332 0.0642 0.0433 0.0394 0.0249
IDIOMoE  0.0892 0.0643 0.0547 0.0416 0.0941 0.0572 0.0541 0.0422 0.0877 0.0579 0.0580 0.0313

4. the entropy of the attention distribution over keys per query, averaged over queries.

We also aggregate distance profiles over early/mid/late layer blocks for clarity.

Figures[7]and[8]show that the MoE model and the pretrained backbone exhibit near-identical attention
patterns on text-only inputs across all layers. Layer-wise previous-token bias, first-token emphasis,
and attention entropy overlap almost perfectly, and early/mid/late distance profiles coincide within
visual resolution.

This alignment is expected in our setting for two reasons:

1. The MoE architecture modifies the feed-forward pathways, while the backbone self-attention
blocks remain architecturally unchanged

2. The text-only inputs do not activate item-specific experts, so the effective computation path
closely matches the backbone.

Consequently, attention structure (diagonal strength, range of contextual aggregation) remains stable,
even though token-level representations downstream of attention can still differ due to MoE expert
routing within the MLPs. Under text-only prompts, our fine-tuned Item LLM preserves the backbone’s
attention geometry. This suggests that improvements from MoE primarily arise in representation and
computation within expert MLPs rather than from altering attention allocation.

B.6.4 EFFICIENCY RESULTS

Our model is evaluated with standard batched inference. It is not restricted to processing a single query
at a time. Just like a conventional LLM, IDIOMoE supports multi-query batches with appropriate
padding and attention masking, and all of our reported results use evaluation batch sizes larger than
1. Table[I2]reports latency and throughput values for both batched training and inference on three
sequence lengths, showing that IDIOMoE achieves comparable performance values to the underlying
backbone model at various sequence lengths. The MoE modification only changes the FFN sublayers
(attention remains shared), so the per-token compute remains similar, and there is no additional online
adaptation step at serving time beyond a single forward pass. From Table[I2]two trends stand out:

1. Overhead shrinks with sequence length. At short contexts (256 tokens), MoE adds modest
training overhead (+6.5% latency, -6.1% tokens/s) and a larger inference overhead (+18.4%
latency). As context grows, routing/pack—scatter costs amortize: at 512 tokens the inference
overhead drops to +12.5%, and at 1024 tokens it is only +3.8% with no memory increase.
Training overhead is similarly small at long sequences (< 0.7% tokens/s at 1024).

2. Memory is neutral. Peak GPU memory is within +0.5G of the dense baseline across all
settings, and identical at 1024 tokens for both training (29.4G) and inference (4.67G),
consistent with activating one expert per token.

IDIOMOE achieves near-parity efficiency at long contexts (< 4% overhead at 1024) and acceptable
overheads at short contexts (= 18% at 256), while keeping memory effectively unchanged. In
Section [4] we show these costs buy consistent quality gains placing IDIOMoE on a favorable
quality—latency Pareto frontier.
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Figure 7: Layer-wise attention metrics on text-only inputs. Left: previous-token attention. Middle:
attention to the first token. Right: attention entropy. MoE (blue) and backbone (orange) overlap
across layers, indicating preserved attention geometry.
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Figure 8: Distance profiles aggregated over early, mid, and late layers. MoE and backbone curves are
nearly identical, reflecting similar allocation of attention mass across short-, medium-, and long-range

dependencies.

Table 12: Efficiency at batch size 8 for three sequence lengths with item ratio of 0.2. A is MoE
relative to the dense baseline. Latency is end-to-end per query; throughput is steady-state.

Latency (ms) | Examples/s T Tokens/s T Peak Mem (G) |
Base MoE A Base MoE A Base MoE A Base MoE A

256 Train 117.86 12553 +6.5% 67.88  63.73 —6.1% 17377.08 16314.61 —6.1% 1045 10.51 +0.6%
Infer  36.13 4278 +18.4% 22144 186.99 —15.6% 56689.83 4787029 —15.6% 2.81 282 +0.4%

Train  180.59 186.58 +3.3% 4430 4288 —3.2% 22681.76  23196.24  +23% 1672 16.80 +0.5%

Seq  Phase

S12 Infer  49.16 5533 +12.5% 162.72 14459 —11.2% 83314.50 7402848 —11.2% 343 343 0.0%
1024 Train 32348 32398 +02% 2473 2469 —0.2% 25324.61 2514642 —0.7% 2940 2940 0.0%
Infer 9245 9592  +3.8% 86.53 8340 —3.6% 88607.00 85400.26 —3.6% 4.67 4.67 0.0%
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