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Abstract

This paper proposes Semantic Inference (SINF)
that creates semantic subgraphs in a deep neu-
ral network (DNN) based on a new Discrimina-
tive Capability Score (DCS) to drastically reduce
the DNN computational load with limited perfor-
mance loss. We evaluate the performance of SINF
on VGG16, VGG19, and ResNet50 DNNSs trained
on CIFAR100 and a subset of the ImageNet
dataset. Moreover, we compare its performance
against 6 state-of-the-art pruning approaches. Our
results show that (i) on average, SINF reduces the
inference time of VGG16, VGG19, and ResNet50
respectively by up to 29%, 35%, and 15% with
only 3.75%, 0.17%, and 6.75% accuracy loss for
CIFAR100 while for ImageNet benchmark, the
reduction in inference time is 18%, 22%, and
9% for accuracy drop of 3%, 2.5%, and 6%; (ii)
DCS achieves respectively up to 3.65%, 4.25%,
and 2.36% better accuracy with VGG16, VGG19,
and ResNet50 with respect to existing discrim-
inative scores for CIFAR100 and the same for
ImageNet is 8.9%, 5.8%, and 5.2% respectively.
Through experimental evaluation on Raspberry
Pi and NVIDIA Jetson Nano, we show SINF is
about 51% and 38% more energy efficient and
takes about 25% and 17% less inference time than
the base model for CIFAR100 and ImageNet.

1. Introduction

State-of-the-art DNNs employ a larger number of parame-
ters than what mobile devices can tolerate today. For exam-
ple, YoLov10, the state of the art DNN for object detection,
uses a DNN backbone with 29.5M parameters (Ao Wang,
2024). Approaches such as pruning (Han et al., 2015b;
Chen et al., 2023), quantization (Han et al., 2015a; Qin
et al., 2022), and coding (Gajjala et al., 2020; Han et al.,
2015a) incur in excessive performance loss and most often
require fine-tuning.
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In this paper, we propose an approach based on cluster-level
semantic DNN subgraphs to reduce the computing load with-
out compromising the DNN accuracy and without retraining.
As detailed in Section 3, semantically similar inputs share a
significant number of filter activations compared to semanti-
cally dissimilar inputs. For example, as shown in Section
3, images of seals share significantly more filter activations
with images of dolphins than with images of tables. As such,
if a semantic subgraph were to be available, we could only
execute that subgraph related to the current input and “turn
oft” the rest of the DNN.
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Figure 1: Overview of proposed SINF framework.

‘We build on top of this interpretability insight and propose
Semantic Inference (SINF), whose main components are
illustrated in Figure 1. In a nutshell, SINF transforms a pre-
trained and static DNN into a dynamic DNN by (i) creating
subgraphs corresponding to each semantic cluster, which are
defined based on the current DNN task (steps 1 and 2); (ii)
selecting the semantic-relevant subgraphs at inference time
based on a preliminary cluster-based classification of the
input image (step 3). Conversely from pruning approaches,
SINF does not require changing any portion of the DNN to
decrease computing load.

This paper makes the following novel contributions:

e We propose a new inference framework called SINF,
which logically partitions the DNN into semantic subgraphs
based on a new Discriminative Capability Scoring (DCS)
that finds the filters most associated with a given semantic
cluster (Section 3). Finally, SINF pre-classifies an image
based on its relevant cluster so that only its semantic-specific
subgraph is activated (Section 4);

e We benchmark the performance of SINF on VGG16,
VGG19, and ResNet50 DNN s trained on the CIFAR100 and



ImageNet dataset. We compare DCS against several state-
of-the-art discriminative algorithms (Mittal et al., 2019;
Molchanov et al., 2019; Hu et al., 2016; Sui et al., 2021;
Lin et al., 2020) (Section 5). Although the target of SINF
is not to perform pruning but to extract subgraphs, we use
DCS as a pruning approach and compare it against (Murti
et al., 2023) which does not require fine-tuning. We have
implemented SINF on real-world platforms Raspberry Pi
and NVIDIA Jetson Nano and evaluated its latency and
energy consumption;

Key Results: On average, executing the semantic sub-
graphs reduces the inference time of VGG16, VGG19, and
ResNet50 respectively by up to 29%, 35%, and 15% with
only 3.75%, 0.17%, and 6.75% accuracy loss for CIFAR100
while for ImageNet benchmark, the reduction in inference
time is 18%, 22%, and 9% for accuracy drop of 3%, 2.5%,
and 6%. Moreover, DCS achieves respectively up to 3.65%,
4.25%, and 2.36% better accuracy with VGG16, VGG19,
and ResNet50 with respect to existing discriminative scores
for CIFAR100 and the same for ImageNet is 8.9%, 5.8%,
and 5.2% respectively. Finally, SINF is about 51% and
38% more energy efficient and takes about 25% and 17%
less inference time than the base DNNs for CIFAR100 and
ImageNet, respectively.

2. Related Work

Table 1 compares SINF with prior approaches, which are
detailed in the rest of the section. Unlike early exit methods,
which require multiple classifier heads, SINF requires a
single auxiliary classifier. As for pruning and quantization,
these are considered orthogonal to SINF and can be used in
addition to SINF to further improve performance.

Dynamic | Fine-tuning | Semantic
Pruning X v X
Quantization X v X
Early-exit v N/A X
SINF v X v

Table 1: SINF vs other related approaches.

Pruning: Han et al. (Han et al., 2015b) proposed weight-
norm-based unstructured pruning. Li et al. (Li et al., 2017)
used the L; norm of the kernel weights to prune entire filters.
However, weight-norm-based strategies do not directly take
into account the importance of the filters or parameters to
preserve the DNN accuracy. Another approach employs
first-order gradient which estimates the importance of the
filters based on the gradient of the loss function (Molchanov
et al., 2019). Another class of techniques find and prune
duplicate or redundant filters. To find such filters, Sui et
al. (Sui et al., 2021) use the change in the nuclear norm of
the matrix formed from the activation maps when individual

filters are removed from a layer. Lin et al. (Lin et al., 2020)
use the expected rank of the feature maps, while Chen et
al. (Chen et al., 2023) explain the soft-threshold pruning
as an implicit case of Iterative Shrinkage-Thresholding. Al-
though these methods determine the redundant filters, they
fail to focus on the filters that are necessary to distinguish
among the classes. Moreover, all of these methods require
fine-tuning after pruning. When fine-tuning is not possi-
ble, these methods do not provide satisfactory performance.
Recently, Murti et al. (Murti et al., 2023) proposed a retrain-
free IterTVSPrune approach based on Total Variational Dis-
tance (TVD) (Verdd, 2014). Here, we extract subgraphs
most representative of classes belonging to a given semantic
cluster.

Quantization and Coding: The seminal work by (Han
etal., 2015a) compressed the DNN through quantization and
Huffman coding to reduce the memory footprint. Among
more recent work, post-training quantization (Cai et al.,
2020) and quantization-aware training (Zhong et al., 2022)
have been proposed. Qin et al. (Qin et al., 2022) pushes
the boundary using single-bit quantization of the popular
language model Bidirectional Encoder Representations from
Transformers (BERT). Lin et al. (Li et al., 2020) designed a
layer-wise symmetric quantizer with the learnable clip value
only for high-level feature extraction module. Tu et al. (Tu
et al., 2023) recently designed an algorithm for network
quantization catered to the needs of image super-resolution.
Both quantization and coding are orthogonal to SINF and
can be used to achieve further improvement.

Early Exiting: Early exiting was proposed by (Teerapit-
tayanon et al.) to make the DNN inference dynamic by
using auxiliary (and relatively small) classifiers attached to
the output of the DNN layers (Matsubara et al., 2021). Based
on their confidence, the decision to traverse the remaining
layers is made (Matsubara et al., 2021). The training of
the auxiliary classifiers can be done jointly with the back-
bone network (Pomponi et al., 2022) or separately (Garg &
Moschitti, 2021). The classifiers can be trained using either
cross-entropy loss (Wang et al., 2019), or knowledge dis-
tillation (Phuong & Lampert, 2019). Recently, (Han et al.,
2023) proposed using block-dependent loss from a subset
of the exits close to a block to train the classifiers. Dong
et al. (Dong et al., 2022) predicts which early exit to use
using a lightweight "Exit Predictor". (Narayan et al., 2023)
modeled the exit selection as an online learning problem and
chooses the exit in an unsupervised way. Conversely, SINF
uses an auxiliary classifier to select the subgraph according
to the input.

3. Dividing a DNN into Semantic Subgraphs

We define the concept of semantic cluster. Let D be a
labeled dataset with class labels K. We define K semantic



clusters, each composed by a subset of classes {1, ..., vk }
such that 4 U~vye U ---vx = K. We primarily assume
that these clusters are formed based on similarity of the
semantics of their member classes. These semantics can be
defined at the application level. The clusters can also be
pre-defined at the dataset level (e.g., as in the CIFAR100
dataset).

We performed a series of experiments to validate the in-
tuition behind our proposed SINF approach (we refer to
supplementary section A for the details). It is well known
that filters of DNN identify parts of objects, colors or con-
cepts. Many of these filters are shared among classes (Bau
et al., 2017). On the other hand, filter activations become
sparser as the DNN becomes deeper, with filters reacting
only to specific inputs belonging to specific classes. This
phenomenon can be observed in the top portion of 2, which
shows the average filter activation strength for the “otter”
and “seal” classes in the the 40th and 49th convolutional
layers of ResNet50 trained on CIFAR100.
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Figure 2: (top) Filter activations in ResNet50; (bottom)
Percentage of filters shared between (a) semantically similar
“dolphin” and “whale”’; (b) semantically dissimilar “dolphin”
and “table”.

Key Observations. This experiment indicates that filters
in earlier layers are less specialized than filters in deeper
layers. Moreover, it remarks that filters from semantically
similar classes get similarly activated, especially in earlier
layers. To put it in more quantitative terms, the L; distance
of the activation maps of the mentioned classes in the 40"
layer is 0.028, while the same for the 49™ layer is 0.111. To
further investigate this critical aspect, we have performed
additional experiments where we have computed the per-
centage of filters “shared” among different classes for each
layer of VGG16. Specifically, we have tagged each filter
with the top 20 classes for which it gets activated. For each
pair of classes, their similarity is calculated as the number

of filters tagged with both classes over the number of fil-
ters tagged with at least one of the classes. The results are
shown in the bottom portion of Figure 2, where the first row
shows the filters shared between the “dolphin” and “whale”
classes — two semantically similar classes. The second row
shows the filter sharing between two semantically dissimilar
classes - “dolphin” and “table”. We notice that the semanti-
cally similar classes share more filters.

A key issue is to define the subgraphs corresponding to each
semantic cluster. We formalize this step as Semantic DNN
Subgraph Problem (SDSP). We consider a DNN F trained
on dataset D as a computation graph, while the filters of the
DNN work as the nodes of the graph.

Semantic DNN Subgraph Problem (SDSP)

Find K subgraphs F,, - - - 7, such that

Beval(]:v D'yl) S Beval(]:'y“D'yl') + €, (1)

where € is an error margin and 7., C F and D,, C
D are respectively the proper subgraphs of F and
subset of data corresponding to the semantic cluster
~;. The function Be,,q; is the metric to measure the
performance of the DNN on the subsets of dataset
corresponding to semantic clusters. A higher value
of Beyqi corresponds to better performance.

In other words, the subgraph ¥, contains the nodes of F
which best classifies the members of the semantic cluster ;
within the error margin of e.

4. Discriminative Capability Score

We design a novel algorithm named Discriminative Capa-
bility Score (DCS), which aims at satisfying Equation 1 by
extracting the filters from each layer of a DNN which best
discriminate among the members of a semantic cluster ~.
We describe the DCS for a given layer / and given semantic
cluster 7,,, in algorithm 1 (in Appendlx) We start by consid-
ering the activation map AJ € RCourxkxk of o generic layer
I of a DNN for input X/ (w1th target label t7) € D.,. Here,
C! ,,and k is the number of channels and size of a single
channel of the activation map. We apply an adaptive average
pooling operation P to obtain A7 € R%u:*k xk" | where
k' is the reduced size of a single channel of the activation
map. We then flatten the activation map to obtain feature
map FJ € RCuk” for the layer [ and input X7. Our goal
is to first learn a linear transformation W; € RIVXCouk™
(|7| = cardinality of set ) that can distinguish the members
of v from the feature maps F{ . To this end, we minimize
the objective function LpoF:



j:|D'Ym|
1 . .
W/ = argmin ﬁ Z Lpor(W;-F], t/), (2)
W Ym .
=1

Once the transformation W) is learned, the importance of
the features and in turn the filters, are encoded in W;.

We provide an example of DCA in Figure 3. For simplicity,
we show the feature vector and the weight matrix in trans-
posed form. Notice that each column of the weight matrix
‘W, connects a single feature to the outputs. The weights
of these connections can be used to directly measure the
importance of the feature. The importance of the i-th feature
in discriminating among the members of the cluster depends
on the weight of its connections to the outputs and on the
sensitivity of those weights, i.e., the gradient of the objective
function with respect of those weights. We formalize this
notion in Proposition 2?.
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Figure 3: Example of computation of DCS score.

As a result, the importance of i-th feature can be calculated

Cl k2 .. .
as s; = Zj:mf I[j,i)2. As k' consecutive features

come from the same filter, we calculate the DCS of the ¢-th

filter of the I-th layer as DCS} = | />, 1s;l,7 € Filteri,

where j denotes indices of the features that come from the
i-th filter.

Figure 4 shows the DCS distributions obtained in layers 6,
9, 11, and 13 of VGG16 by considering the cluster “fish” of
CIFAR100. Figure 4 confirms that deeper layers are more
specialized for individual classes, and thus the average DCS
for the filters in the deeper layers is smaller, i.e., 0.68 for
layer 6 vs 0.39 for layer 13. As such, DCS captures the filter
activation pattern of the DNN.
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Figure 4: The DCS distribution for cluster “fish” of CI-
FARI100 in different layers of VGG16.

5. Dynamic Semantic Inference (SINF)

A step-by-step overview of the main operations of SINF
is summarized in the top portion of Figure 5. A key chal-
lenge is assigning each incoming input to a semantic cluster.
For this reason, we divide the DNN into two portions — a
Common Feature Extractor (CFE) and the Semantic Subnet-
works (SSN). The output of the CFE is used by a Semantic
Route Predictor (SRP) that assigns the input to a semantic
cluster (step 1). To this end, the features extracted by the
CFE are passed to the SRP (step 2). The SRP, detailed
later in this section, provides both the predicted semantic
cluster and its confidence in its prediction to the Feature
Router (FR) (step 3). Based on the SRP output, the features
extracted by the CFE will be routed to the selected semantic
subgraph by using the FR (step 4). Finally, the extracted
subgraphs predict the output (step 5). Although Figure 5
represents each subgraph separately for better graphical clar-
ity, no additional memory beyond the annotations is needed
to characterize each subgraph.

Semantic Route Predictor. The SRP predicts the semantic
clusters using an auxiliary classifier x, which is attached
after the M — 1-th layer of F. In our experiments, we chose
as M the earliest layer providing classification accuracy of
75%. As such, the layers of F up to the M — 1-th layer
become the CFE. In our current design, the architecture of
the auxiliary classifier consists of two convolutional layers,
followed by an adaptive average pooling layer stacked on
top of three fully connected layers. We use the convolu-
tional layers to tailor the activation map from layer [ of
F for the classification of the semantic clusters. To train
the auxiliary classifier x, the first M — 1 layers of F are
frozen and the classifier is trained in supervised fashion
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Figure 5: Overview of SINF.

using {Agw_17 v ;lel as the dataset. Here, Agw_l, and

J are respectively the activation of the M — 1-th layer
of the F and the ground truth semantic cluster for the j-th
sample. As we are considering a pre-trained DNN, we train
the auxiliary classifier separately from the DNN using the
activations obtained from the M — 1-th layer. The output of
the SRP is the probability distribution over the K different
semantic clusters, and the input is assigned to the semantic
cluster with the highest probability.

Extraction of Subgraphs. The extraction of the subgraph
follows the procedure described in Algorithm 2 in Appendix
C. We define L and M as respectively the last layer of
the base model F and the layer after the CFE. We define
r; as the percentage of retained filters in generic layer /.
For semantic cluster «y;, we iterate from layer L to layer M
to extract the subgraph. For each layer M < [ < L, we
calculate 7 (r, < r; < rar), as well as the DCS score of
the filters using DCS algorithm. For each cluster, we rank
the filters based on the DCS score, and the indices of the top
r; percent filters are saved. If the average accuracy of the
subgraphs is above threshold 7,.., the indexes of the filters
belonging to the subgraphs are stored. This procedure is
performed for different values of rz, and rj;. Further details
are provided in Section D.

Feature Router. The effectiveness of the DCS score can be
improved by conditioning the outputs of the SRP to the con-
fidence of the SRP x. A higher confidence value represents
a higher probability that the SRP is able to correctly place
the input in the proper semantic cluster. The Feature Router
(FR) calculates this confidence by taking the activation map
from x along with the probability distribution from its pre-
diction layer. To compute the confidence of the classifier on
individual decisions, the FR employs the lightweight metric
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Figure 6: Accuracy and inference time vs confidence thresh-
old for CIFAR100 (left) and ImageNet (right).

in (Park et al., 2015). The confidence score can be calcu-
lated as C, = P, — P, using the highest (P;,) and the
second highest probabilities (Psy,) for individual semantic
clusters. If the confidence score exceeds a threshold, the ac-
tivation map is routed to the subgraph corresponding to the
predicted semantic cluster. Otherwise, F is fully executed
to obtain the inference task output.

6. Experimental Results

We perform an extensive set of experiments to understand
the utility of SINF. We defer the experimental setup to sup-
plementary section D and discuss the experimental results
here.

6.1. Impact of Confidence Threshold

We first evaluate the impact of the confidence threshold
a. The top row of Figure 6 shows the decrease in accuracy
and the relative latency with respect to the original DNN
as a function of o. As expected, increasing « increases
the accuracy while also decreasing the gain in latency. As
such, the confidence threshold « acts as a hyperparameter
to find the needed trade-off between accuracy and latency.
We notice that with VGG19, the overall accuracy actually
increases by up to 0.49% for 0.4 < o < 0.9. In the best
case, SINF reduces the inference time by up to 35%, 29%
and 15% with only 0.17%, 3.75%, and 6.75% accuracy loss
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CIFAR100 (left) and ImageNet (right) benchmarks respec-
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for VGG19, VGG16, and ResNet50 respectively. For the
ImageNet benchmark, we observe that SINF achieves 18%,
22%, and 9% less inference time with an accuracy degrada-
tion of 3%, 2.5%, and 6% respectively. This effect may be
due to many filters being shared among the semantic clus-
ters creating polysemantic neurons (Olah et al., 2017). As
a result, the gain from such partitioning is smaller than the
same for datasets like CIFAR100. This gain in performance
depends on the frequency of activation of the semantic sub-
graphs. As such, we analyze the cumulative distribution of
the confidence values in Figure 8 with CIFAR100 (top) and
ImageNet (bottom) datasets. Figure 8, shows that for both
CIFAR100 and ImageNet datasets, we obtain high confi-
dence value. The distribution of confidence values is skewed
to the right with a high mean, which translates to a high
frequency of activation of the subgraphs.

6.2. DCS vs Existing Discriminative Metrics

To evaluate the effectiveness of DCS with respect to prior
approaches, we use the metrics proposed in existing work
while keeping the same inference structure of SINF. Figure
7 compares DCS against gradient-based approaches Sen-
sitivity by (Mittal et al., 2019) and Taylor by (Molchanov
et al., 2019), sparsity of activation based approach APOZ
by (Hu et al., 2016), channel-independence based approach
CHIP by (Sui et al., 2021), and an approach based on chan-
nel importance named HRANK by (Lin et al., 2020). All
the approaches are compared without retraining the DNN.
Figure 7 shows that in the best case, DCS has 15% higher
accuracy than the second-best approach Taylor for VGG16
with 75% sparsity (i.e., percentage of parameters dropped).
For VGG19, DCS achieves in the best case 6.54% higher
accuracy than the second-best approach Taylor at 63% spar-
sity. Lastly, in the case of ResNet50, the best case is attained
at 51% sparsity, where DCS presents 14.87% more accu-
racy than the second-best approach Sensitivity. On average,
SINF achieves 3.65%, 4.25%, and 2.36% better accuracy
than the second-best approaches for VGG16, VGG19, and
ResNet50 respectively on CIFAR100 dataset. For ImageNet
dataset, SINF outperforms the second best approaches by
8.9%,5.8%, and 5.2% on average for VGG16, VGG19, and
ResNet50.

6.3. Visualization of Discriminative Features from
Subgraphs

To understand if the extracted subgraphs have sufficient
discriminative capability, we utilize the feature map gen-
erated from the convolution layer backbone of the DNN.
Our objective is to evaluate whether the features are suffi-
ciently separated from each other. We plot the t-distributed
stochastic neighbor embedding (t-SNE) visualization of the
features extracted by VGG16 for the "flowers" cluster of CI-
FAR100. For comparison, we plot the t-SNE visualization
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Figure 9: Performance gain compared to the original DNN.

for the original DNN in Figure 10 (a). From Figure 10 (b),
we observe that the feature maps are sufficiently separated
to obtain good performance.
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Figure 10: Comparison of the original model (a) and ex-
tracted subgraph (b) using TSNE visualization of the ex-
tracted features.

6.4. Per-Cluster Accuracy Gain

We ask the question: “Can SINF perform better than the
original DNN when considering the accuracy obtained in
individual clusters?”. Figure 9 shows the accuracy gain
obtained on the individual clusters by those subgraphs as
compared to the original VGG16, VGG19, and ResNet50
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INA-219

Figure 11: The setup for power measurement.

DNNGs. In these experiments, we find the subgraphs with the
lowest percentage of parameters retained while satisfying
the constraint on the evaluation criterion posed in Equa-
tion 1. Intriguingly, SINF provides on the average 5.73%,
8.38% and 6.36% better per-cluster accuracy than the orig-
inal VGG16, VGG19, and ResNet50 DNNs, respectively,
notwithstanding that the number of parameters have been
reduced by 30%, 50%, and 44%. We believe the reason
behind this improvement is that the semantic partitioning
performed by SINF improves the DNN explainability sav-
ing the DNN from being “less confused” among different
semantic clusters, which justifies better results when consid-
ering per-cluster accuracy.

6.5. Latency and Energy Consumption on Mobile
Devices

We considered Raspberry-Pi-5 and Nvidia Jetson-Nano as
example devices for running mobile computer vision (CV)
applications. Our experimental setup is shown in Figure 11.
The Raspberry Pi runs a quad-core ARM A76 SoC running
at upto 2.4 GHz with 8 GB LPDDR4 memory. In addition
to being powered by a quad-core ARM Cortex A57 CPU,
Jetson-Nano is equipped with 128 core Maxwell GPU.

Energy Consumption: We measure the power consump-
tion of SINF and compare against the power consumption
of the considered baselines. From 12, we show that SINF
outperforms the other methods in terms of power efficiency.
Specifically, for Raspberry Pi 5 and Jetson Nano devices
SINF respectively achieves 50% and 52% better energy
efficiency on CIFAR100 benchmark and about 21% and
22% better energy efficiency on the ImageNet benchmark as
compared to the second best approach Taylor. When com-
paring with the base (static) model, SINF uses about 50%
less power for CIFAR100 and 38% less power for ImageNet
benchmark.

Inference Latency: We consider the time introduced by
the common feature extractor (static part), semantic route
predictor, and the semantic cluster specific subgraph (dy-
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Figure 12: Power, SINF vs baselines.

namic part). Our experiment shows that on an average,
SINF achieves the lowest inference latency compared to
the baselines which includes the base model itself. Specif-
ically, SINF takes about 27% and 24% less time than the
base model for the CIFAR100 benchmark while running
on the Raspberry Pi 5 and Jetson Nano respectively. For
the ImageNet Benchmark, SINF takes about 18% and 16%
less inference time on Raspberry Pi 5 and Jetson Nano re-
spectively than the base model itself. When considering the
task adaptive deployment setting, we measure the latency
of communication. We observe that sending the semantic
subgraph reduces the average communication latency about
52% than sending the base model for CIFAR100 benchmark.
For the ImageNet benchmark, the communication latency is
reduced by about 30%.

6.6. DCS as Pruning Criterion

Viewing the dataset D as a single macro-cluster DCS can
be applied to determine the most relevant filters effectively
acting as a pruning criterion. For comparison, we consider
the state-of-the-art IterTVSPrune by (Murti et al., 2023)
published at ICLR 2023, which also does not require fine-
tuning. For a fair comparison, we have taken the percentage
of parameters pruned by IterTVSPrune at each layer and
set the same pruning threshold for DCS. 2 summarizes the
performance achieved by DCS and IterTVSPrune. We did
not compare performance on CIFAR100 with ResNet50
as the authors of (Murti et al., 2023) did not provide the
performance of their approach on ResNet50 trained with
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Figure 13: Latency, SINF vs baselines.

CIFAR100. We notice that for different DNN structures and
datasets, DCS achieves substantially better performance in
three out of five settings considered while achieving similar
performance in the remaining two settings. For VGG19,
both our technique and the IterTVSPrune have pruned a
significant amount of weights — respectively about 50%
and 60% for CIFAR10 and CIFAR100 — possibly causing
the DNN to reach a lower bound on its predictive capa-
bility thereby causing similar performance of both tech-
niques. The best results are obtained in the case of VGG16
trained on CIFAR100 and ResNet50 trained on CIFAR10,
where we see respectively 9.75% and 8.13% accuracy gain
with 3.6% and 5.82% less parameters. On average, DCS
presents 3.78% better accuracy and 2.89% less parameters
than IterTVSPrune.

7. Concluding Remarks

In this paper, we propose Semantic Inference (SINF), a
framework for accelerating DNNs without compromising
accuracy. Central to SINF is the Discriminative Capability
Score (DCS), which we employ to identify subgraphs within
large DNNs that discriminate specific semantic clusters.
Unlike model compression (e.g., pruning, quantization),
SINF requires no fine-tuning and operates at the cluster
level. We have benchmarked SINF on VGG16, VGG19,
and ResNet50 using CIFAR100 and ImageNet, showing
promising performance as compared to the existing methods
and proving its efficiency for edge deployment.
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A. Details of the Experiment Motivating SINF

To obtain the results in the top portion of Figure 2, we have
observed the activation pattern of the filters of a specific
layer of the DNN for a given class. To obtain the activation
pattern of the filters of layer L for a specific class ¢, we
feed the input samples of that class and obtain the activation
vectors Ay € RNeXHXW from layer L, where N, H, W
are number of channels, height and width of the activation.
Next, we take the mean value of the activations for each filter
giving us activation vectors of length /N, for each sample.
For future reference, we will denote this with A 1. Next,
we take the expected values of the activation to obtain the
filter activation pattern of layer L for class c. For ease of
visualization, we standardize the activation pattern using
min-max standardization.

To obtain the filter activation frequency in the bottom side
of Figure 2, we take the A; for each sample and stack
them along the sample axis. This gives us a matrix of size
RNsamplesxNe - Eor each filter f (each column represents
a filter of layer L now), we calculate the maximum value
of activation max y and minimum value of activation min .
We consider the filter to be activated if its activation value
exceeds 70% of the range maxy — miny. Next, we obtain
class-wise activation frequency freq,. for each filter where
c denotes the class for which the activation frequency is
being calculated. Next, we assign each filter with the top 20
classes for which it gets most activated.

B. DCS Algorithm

Algorithm 1 DCS: Discriminative Capability Scoring for
Filters in Layer [ and Semantic Cluster ~y

Require: Dataset D, = {(X7,t/ )}L-Z”ll for semantic clus-
ter
Require: Pretrained L-layer DNN F = F_j0...0Fy
Require: Objective function Lpor
Ensure: Discriminative Capability Score DCS' for filters
in layer [
Initialize score list s; < []
for each (X7,¢7) in D., do
A{ — Fro...0F(XY)
Ag +— P(A{ ) {adaptive pooling to k x k}
F] < Flatten(A7)
end for ‘
W/ + arg minw ﬁ Zj Lpor(W -F t7)
I, «+ W} ©Vw; Lpor
fori =0t C!,, —1do
Append ||I;[:, ] ||2 to s
end for
: DCS! « | />_; |s;| {7 indexes features of filter i}

—_ =
iy AN R A U

—_
N
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C. Algorithm for Subgraph Extraction

Algorithm 2 Subgraph Extraction for Semantic Clusters

Partitioned Dataset D = {D.,,,D-,,..., Dy }
Pretrained DNN F = F;_j10...0F
Require: Discriminative Objective Function Lpop
Require: Filter retention percentages r, at layer L, rjs at
layer M
Require: Accuracy threshold 7,
Ensure: Filter annotations SA[] for extracted subgraphs
1: Initialize empty dictionary SA « {}
2: for each D, in D do
SA,  {}
4:  for ! = L to M decreasing do
5: ry < ra + U=M)(rL—rar) {Linear interpolation
of retention rate}

Require:
Require:

w

L—-M

6: DCS! %DCS(]:,'D%,‘CDOF)
7: Rank filters in layer / by DCS/
8: Save indices of top 7% filters in SA.,, [{]
9:  end for
10: acCang < = Zfil accuracy(F,,)
11:  ifaccang > Tacc then
12: Save SA,, in SA[v;]
13:  endif
14: end for

D. Experimental Setup

Hyperparameters: We set 7, between 90% and 10%, with
steps of 10, while 7, is set between 10% and 1%, with steps
of 2. This way, we vary the number of retained filters in
different layers allowing us to find multiple sub-graphs satis-
fying our constraint set discussed in Section 3. Based on the
application-level performance constraint, we can choose the
optimum model based on additional requirements (e.g. sub-
graph size, latency). We linearly decrease the percentage
of filters retained from layer M to layer L according to the
Equation presented in Line 5 of Algorithm 2. Since we are
considering classification tasks, categorical cross entropy is
used for LporF.

Dataset, Base DNNs, and Baselines. We have used the
well-known CIFAR100 (Krizhevsky & Hinton, 2009) and
ImageNet (Deng et al., 2009) for image classification. CI-
FAR100 has 100 classes and the entire dataset is labeled into
20 super-classes corresponding to 20 coarse labels corre-
sponding to our semantic clusters. With ImageNet we form
6 semantic clusters each consisting of 5 fine-grained classes.
The semantic clusters formed are fish, bird, lizards, animal,
insects, and seafish. A summary of the semantic clusters
and their member classes are provided in Table 3. We have
considered VGG16 and VGG19 (Simonyan & Zisserman,
2014) as well as ResNet-50 (He et al., 2016) for base DNNS.



To the best of our knowledge, there is no prior work on
semantic clustering. As such, we adapt pruning methods to
use them without fine-tuning, i.e., (Molchanov et al., 2019),
(Hu et al., 2016), (Mittal et al., 2019), (Sui et al., 2021), and

(Lin et al., 2020).

Semantic Cluster Class Label (Wordnet Label)
2 (great white shark), 3 (tiger shark),
Fishes 4 (hammerhead shark), 5 (electric ray),
6 (sting ray)
Birds 10 (brambling), 11 (goldfinch), 12 (house finch),
13 (junco), 14 (indigo bunting)
37 (box turtle), 38 (banded gecko),
Lizards 39 (common iguana), 40 (American chameleon),
41 (whiptail)
. 253 (basenji), 261 (keeshond), 276 (hyena),
Animals 283 (persian cat), 298 (mongoose)
Insects 305 (dung beetle), 308 (fly), 309 (bee),
310 (ant), 311 (grasshopper)
Sea fish 393 (anemone fish), 394 (sturgeon), 395 (gar),
396 (lionfish), 397 (puffer)

Table 3: Summary of the semantic clusters formed from

ImageNet dataset.
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