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ABSTRACT

Large-scale training of modern deep learning models heavily relies on publicly
available data on the web. This potentially unauthorized usage of online data leads
to concerns regarding data privacy. Recent works aim to make unlearnable data for
deep learning models by adding small, specially designed noises to tackle this issue.
However, these methods are vulnerable to adversarial training (AT) and/or are
computationally heavy. In this work, we propose a novel, model-free convolutional
Filter-based UNlearnable (FUN) dataset generation technique. FUN performs
controlled class-wise convolutions using filters that are randomly generated via
a private key. FUN encourages the network to learn the relation between filters
and labels rather than informative features for classifying the clean data. We
develop some theoretical analysis demonstrating that FUN can successfully poison
Gaussian mixture data by reducing the clean data performance of the optimal Bayes
classifier. We also empirically demonstrate the effectiveness of FUN with various
datasets (CIFAR-10, CIFAR-100, and ImageNet-100), and architectures (ResNet-
18, VGG-16, Wide ResNet-34-10, and DenseNet-121). Our experiments show
that FUN is robust to various data augmentations and training approaches such
as smoothing, AT with different budgets, transfer learning, and fine-tuning. For
instance, training a ResNet-18 on FUN ImageNet-100 data achieves only 8.96%,
40.08%, and 20.58% clean test accuracies with empirical risk minimization (ERM),
L∞ AT, and L2 AT, respectively. Here, ERM on the clean training data achieves a
clean test accuracy of 80.66%. Furthermore, we also show that FUN is robust to
adaptive defenses designed specifically to break it.

1 INTRODUCTION

Modern deep learning training frameworks heavily depend on large-scale datasets for achieving high
accuracy. This encourages deep learning practitioners to scrape data from the web for data collection
(Lin et al., 2014; Sariyildiz et al., 2020; Desai & Johnson, 2021; Radford et al., 2021). Since a lot of
the data is publicly available online, sometime this scrapping of data is unauthorized. For instance, a
recent article (Hill, 2020) discloses that a private company trained a commercial face recognition
system using over three billion facial images collected from the internet without any user consent.
Although such massive data can significantly boost the performance of deep learning models, it raises
serious concerns about data privacy and security.

To prevent the unauthorized usage of personal data, a series of recent papers (Huang et al., 2021;
Fowl et al., 2021; Yuan & Wu, 2021) propose to poison data with additive noise. The idea is to
make datasets unlearnable for deep learning models by ensuring that they learn the correspondence
between noises and labels. Thereby, they do not learn much useful information about the clean data,
significantly degrading their clean test accuracy. However, in Huang et al. (2021); Tao et al. (2021);
Fu et al. (2021), these unlearnability methods are shown to be vulnerable to adversarial training (AT)
frameworks (Madry et al., 2017). Motivated by this problem, Fu et al. (2021) developed Robust
Error-Minimization (REM) noises to make unlearnable data that is protected from AT. While the
authors show the effectiveness of REM in multiple scenarios, we demonstrate that these methods are
still not robust against different data augmentations or training settings (see Section 3.2). Furthermore,
current unlearnability frameworks (Fu et al., 2021; Huang et al., 2021; Fowl et al., 2021; Yuan & Wu,
2021) are model-dependent and require expensive optimization steps on deep learning models to
obtain the additive noises. They also need to train the deep learning models from scratch to obtain
noises for each new data set.
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Figure 1: FUN CIFAR-10 images from each of the 10 classes convolved using convolutional filters
generated with blur parameter pb. As seen in the plot, a higher pb value results in better unlearnability
(lower clean test accuracy), but increased blurring. FUN CIFAR-10 does not break with ERM for all
the three pb values. In Section 5.2, we propose Filter Adversarial Training (FAT) that we specifically
design to break FUN. FAT adversarially learns class-wise filters to deconvolve FUN images. However,
FUN CIFAR-10 with pb ∈ {0.3, 0.5} does not break with FAT. Therefore, we select pb = 0.3 (lesser
blurring) for CIFAR-10 as discussed in Section 5.1. More details on FAT in Appendix A.8.

In this paper, we propose a novel convolutional Filter-based UNlearnable (FUN) dataset generation
technique. We address limitations of existing unlearnable data generation techniques and study
the effects of our proposed filter-based poisoning attack. For generating FUN datasets, an attacker
randomly generates different convolutional filters for each class in the dataset using a private key or
seed value. These filters are used to perform controlled class-wise convolutions on the clean training
dataset to obtain the FUN dataset. As we describe in Sections 3.3 and 5.2, FUN dataset generation
performs controlled convolutions using a blur parameter pb to ensure that the semantics of the dataset
are preserved (see Figure 1). FUN data generation with a lower blurring parameter pb adds less
perceptible noises to clean samples. A network trained by a defender on FUN dataset is encouraged
to learn the relation between class-wise filters and labels rather than useful features for classifying the
clean data. Since the seed value for generating the filters are private, its not possible for the defender
to obtain clean data from the FUN data. While the existing unlearnability works use additive noises,
FUN enjoys the advantage of introducing multiplicative noises in the Fourier domain. This lets FUN
to add higher amounts of noise in the image space, specifically along the edges in images, and makes
it resilient to AT with small additive noise budgets. In Figure 2, with the help of t-SNE plots (van der
Maaten & Hinton, 2008), we also find that the noises added by FUN is not linearly separable while
they are linearly separable for the existing works on unlearnability (Yu et al., 2022).

In Section 4, we theoretically show that FUN can successfully poison Gaussian mixture data by
degrading the clean data accuracy of the optimal Bayes classifier. We state our result informally
below while the formal version is presented in Theorem 2.

Theorem 1 (Informal) Let D denote a Gaussian mixture data with two modes, PD denote the
optimal Bayes classifier trained on D, and τD(PD) denote the accuracy of the classifier PD on D.
Then, under some assumptions, for every clean data D, FUN can generate a perturbed dataset D̃
such that τD(PD̃) < τD(PD).

Furthermore, our empirical experiments in Section 5 demonstrate the effectiveness of FUN under
various training scenarios such as ERM with various augmentations and regularizations, AT with
different budgets, randomized smoothing (Cohen et al., 2019; Levine & Feizi, 2020b; Kumar et al.,
2020), transfer learning, and fine-tuning. Figure 2 shows the effectiveness of FUN on ResNet-18
with CIFAR-10 dataset training. For instance, training a ResNet-18 on FUN CIFAR-10 achieves only
18.48%, 44.4%, and 51.14% clean test accuracies with ERM, L∞ AT, and L2 AT, respectively. Here,
ERM on the clean training data achieves a clean test accuracy of 94.66%. In addition, we also design
adaptive defenses to investigate if FUN breaks with random or adversarial defense mechanisms. We
find that FUN is robust to the adaptive defenses that we specifically design to break it.

2 RELATED WORKS

Our FUN data generation technique is intimately related with adversarial and poisoning attacks. We
first discuss some of this literature and then explain their relation with FUN data generation.
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Figure 2: In the left column, clean test accuracies of ResNet-18 on clean and FUN CIFAR-10 datasets
are shown. The lower the test accuracy, the higher the effectiveness of unlearnability is. We show that
FUN is robust to various training settings such as ERM, L2 AT, and L∞ AT. The error bars represent
the standard deviation of test accuracy over 5 independent trials. FUN is robust to the randomness in
its data generation process. In the right column, t-SNEs of the noises generated by REM (top) and
FUN (bottom) for the first 3 classes of CIFAR-10 are plotted.

Adversarial attacks. Adversarial examples are specially designed examples that can fool deep
learning models at test time (Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner,
2017; Kurakin et al., 2018; Laidlaw & Feizi, 2019). The adversary crafts these examples by adding
error-maximizing noises to the clean data. Even slightly perturbed data can serve as adversarial
examples. AT is a training framework proposed to make deep learning models robust to adversarial
examples (Madry et al., 2017; Zhang et al., 2019; Javanmard & Soltanolkotabi, 2020; Laidlaw et al.,
2020; Wang et al., 2021). AT is a min-max optimization problem where the model is trained to
minimize loss on adversarial examples that have the maximum loss.

Poisoning attacks. In data poisoning, an attacker aims to hurt the deep learning model’s performance
by perturbing the training data (Biggio et al., 2012; Koh & Liang, 2017; Shafahi et al., 2018; Levine &
Feizi, 2020a; Liu et al., 2020a; Wang et al., 2022). The backdoor attack is a special type of poisoning
attack where a trigger pattern is injected into clean data at training time (Chen et al., 2017; Liu et al.,
2020b; Nguyen & Tran, 2020; Li et al., 2021). The model trained on this data would misclassify an
image with a trigger pattern at test time. Gu et al. (2017); Li et al. (2020) use perceptible amounts of
noises similar to FUN for data poisoning. However, backdoor attacks do not affect the performance
of the model on clean data (Chen et al., 2017; Shafahi et al., 2018; Barni et al., 2019).

Recent literature utilize data poisoning to protect data from being used for model training without
authorization. Yuan & Wu (2021) use neural tangent kernels (Jacot et al., 2018) to generate clean
label attacks that can hurt the generalization of deep learning models. Huang et al. (2021) show that
error-minimizing noise addition can serve as a poisoning technique. Fowl et al. (2021) show that error-
maximizing noises as well can make strong poison attacks. However, all these poisoning techniques
do not offer data protection with AT (Yu et al., 2022; Tao et al., 2021). Fu et al. (2021) proposes
a min-min-max optimization technique to generate poisoned data that offers better unlearnability
effects with AT.

3 FILTER-BASED UNLEARNABLE (FUN) DATASETS

In this section, first we give some preliminaries about unlearnability. Then we discuss the limitations
of the existing unlearnability methods. Finally, we propose our FUN technique.

3.1 PRELIMINARIES

Let {(xi, yi)}ni=1 ∼ Dn be the clean training dataset where D is the clean data distribution, xi ∈
X ⊂ Rd are the samples, and yi ∈ Y are the corresponding labels. Suppose a network is given as
fθ : X → Y where θ ∈ Θ is the network parameter and ℓ : Y × Y → R is the loss function. ERM
trains a network using a minimization problem of the form: minθ

1
n

∑n
i=1 ℓ(fθ(xi), yi). Standard Lp-
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Table 1: Time taken for generating unlearnable noises for various datasets.
Dataset EM TAP NTGA REM FUN (ours)

CIFAR-10 0.4 hr 0.5 hr 5.2 hrs 22.6 hrs 10.8 s
CIFAR-100 0.4 hr 0.5 hr 5.2 hrs 22.6 hrs 15.5 s

ImageNet-100 3.9 hrs 5.2 hrs 14.6 hrs 51.2 hrs 0.15 hr

based AT (for p ∈ R+) solves the following min-max problem: minθ
1
n

∑n
i=1 max∥δi∥p≤ρa

ℓ(fθ(xi+
δi), yi) where ρa is the adversarial perturbation radius.

We will use τD(θ), with θ the clean model parameter, to denote the clean test accuracy of a model
trained on the clean training dataset (i.e., clean model accuracy). In unlearnable dataset generation, an
attacker uses an algorithm A : X → X to generate an unlearnable dataset {(x̃i = A(xi), yi)}ni=1 ∼
D̃n from the clean training data. Here, the attacker assumes access to the full clean training datatset.
Moreover, the attacker cannot modify the unlearnable dataset once it is released publicly. A defender
trains using the unlearnable dataset to obtain a network fθ̃. The objective of the attacker is to design an
unlearnable dataset such that the defender’s model trained on the unlearnable data achieves a clean test
accuracy (i.e., unlearnable model accuracy) worse than the clean model accuracy i.e. τD(θ̃) ≪ τD(θ).

3.2 LIMITATIONS OF EXISTING WORKS

Fu et al. (2021) show that the previous unlearnability methods including Error-Minimization (EM)
(Huang et al., 2021), Targeted Adversarial Poisoning (TAP) (Fowl et al., 2021), and Neural Tangent
Generalization Attack (NTGA) (Yuan & Wu, 2021) are vulnerable to AT. Hence, they propose a
Robust Error-Minimization (REM) (Fu et al., 2021) method that exploits a min-min-max optimization
procedure to generate unlearnable noises. REM first trains a noise generator f ′

θ on data points
{(xi, yi)}ni=1 over a loss function ℓ as follows

min
θ

1

n

n∑
i=1

min
∥δu

i ∥≤ρu

Et∼T max
∥δa

i ∥≤ρa

ℓ(f ′
θ(t(xi + δui ) + δai ), y). (1)

Here, T is a distribution over a set of transformations {t : X → X}, ρu is the defensive perturbation
radius, and ρa controls the protection level of REM against AT. After training the noise generator, an
unlearnable example (x̃, y) is generated via

x̃ = x+ argmin
∥δu∥≤ρu

Et∼T max
∥δa∥≤ρa

ℓ(f ′
θ(t(x+ δu) + δa), y) (2)

First, note that REM is computationally expensive since it needs to generate unlearnability noises
through solving optimization equation 2. Moreover, the existing techniques are model-dependent
and they require gradient-based training with a neural network to generate unlearnable data. They
also require neural network training from scratch for every dataset that is to be made unlearnable.
Table 1 shows the amount of time required to generate various unlearnable datasets using NVIDIA®

Tesla V100 GPU and 10 CPU cores. FUN dataset generation is significantly faster than the existing
methods since it uses a model-free approach. Furthermore, REM is sensitive to hyperparameters
and norm-budgets of AT since they generate noises with fixed L∞ norm budgets. For instance,
ResNet-18 trained on clean CIFAR-10 dataset achieves a clean test data accuracy of 94.66%. L∞
AT with perturbation radius ρa = 4/255 on REM CIFAR-10 data (generated using ρu = 8/255 and
ρa = 4/255) achieves only a clean test accuracy of 48.16%. However, L∞ AT with perturbation
radius ρa = 8/255 and L2 AT with perturbation radius ρa = 0.75 can achieve a clean test accuracy
of 78.71% and 79.65% on the same REM data, respectively. We also find that ERM with ResNet-18
on grayscaled REM CIFAR-10 images can achieve a high test accuracy of 70.76% on the grayscaled
CIFAR-10 test data. This shows that REM relies upon the color space for poisoning clean data. Fu et al.
(2021) also show that REM noise generated using ResNet-18 is not transferable to DenseNet-121.

3.3 OUR METHOD: FUN

FUN uses convolutional filters si ∈ Rk×k for each class i ∈ [1,K]. A random parameter, out of the
k2 parameters, in each of the filters is set to have a value of 1. The rest of the filter parameters are
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(a) ∥µ∥2 = 1.0 (b) ∥µ∥2 = 2.5 (c) ∥µ∥2 = 5.0

Figure 3: We plot the contour plots for clean test accuracy of the FUN Bayes classifier P̃ (given
as τD(P̃ )) for varying ay parameters where y ∈ {±1} in Figures 3(a–c). Gaussian mixture model
N (yµ, I) denotes the clean data. In the top row, we use Lemmas 1 & 4 to empirically generate the
plots. In the bottom row, we plot the theoretical upper bound of τD(P̃ ) we obtain using Theorem 2.

randomly initialized from a uniform distribution U(0, pb) using a private seed where pb is the blur
parameter. Blur parameter controls the level of blurring that occurs when an image x ∈ [0, 1]d1×d2×d3

is convolved with a filter si. Here, d1, d2, and d3 are the height, width, and number of channels
of the image, respectively. For example, a CIFAR-10 image has a dimension of 32 × 32 × 3. Let
x̂ = x ∗ si where x belongs to class i. The FUN data point for x is given by x̃ = x̂/MAX(x̂).
Rescaling is performed to make sure that the FUN image pixels lie between 0 and 1. We find that the
unlearnability effect gets stronger with larger pb and k values (see Appendix A.9).

4 THEORY FOR FUN

In this section, we define a binary classification setup similar to Javanmard & Soltanolkotabi (2020);
Min et al. (2021) to theoretically analyze FUN. Let D be a clean dataset modelled by an isotropic
Gaussian mixture model given by N (yµ, I), where y ∈ {±1} is the class label, µ ∈ Rd, and
I ∈ Rd×d is the identity matrix. The Bayes optimal decision boundary for classifying this Gaussian
mixture model is as follows (proof in Appendix A.1).

Lemma 1 The Bayes optimal decision boundary for classifying D is given by P (x) ≡ µ⊤x = 0.
The accuracy of the decision boundary P on the clean dataset D (i.e. τD(P )) is equal to ϕ(∥µ∥2).
Here, ϕ(.) represents the CDF of the standard normal distribution.

Now, to obtain D̃ (i.e., the FUN dataset), we perform class-wise 1D convolutions. Here, we consider
a class of 1D convolutional filters with kernel size 3 of the form fa = [a, 1, a] where a ∈ [0, 0.5].
The convolution of signal x ∈ Rd with filter fa using stride 1 (denoted by x ∗ fa), can be treated as
a matrix operation Ax. Here, A ∈ Rd×d is a tri-diagonal Toeplitz matrix denoted by T (d; a, 1, a).
For FUN data generation, we use class-wise convolution matrices Ay = T (d; ay, 1, ay) to perturb a
clean data point (x, y) ∼ D to an unlearnable data point (Ayx, y), where ay ∈ [0, 0.5] for y ∈ {±1}.
Note that in FUN, the labels remain the same. Next we show that such a perturbed dataset (i.e. the
FUN dataset) can be represented as a Gaussian mixture model (proof in Appendix A.2).

Lemma 2 A FUN dataset generated from clean data distribution D and the Ay’s defined above can
be modelled as a Gaussian mixture model with the distribution given by D̃ = N (yAyµ, A

2
y).

To characterize the decision boundary for FUN data, we need to use some properties of Toeplitz matri-
ces from Pasquini & Reichel (2006) given in the following Lemma 3 (check Appendix A.3 for details).

Lemma 3 Any tri-diagonal Toeplitz matrix A = T (d; a, 1, a) ∈ Rd×d with a ∈ [0, 0.5] can be
diagonalized as A = QDQ where Qi,j =

(
2

d+1

)1/2
sin

(
ijπ
d+1

)
and D is a diagonal matrix with

Di,i = 1 + 2a cos
(

iπ
d+1

)
for 1 ≤ i, j ≤ d.
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Next we use Lemma 3 to show that the Bayes optimal decision boundary for classifying D̃ is a
quadratic plane. Proof can be found in Appendix A.4.

Lemma 4 Let A−1 = T (d; a−1, 1, a−1) and A1 = T (d; a1, 1, a1). The Bayes optimal decision
boundary for classifying D̃ is given by P̃ (x) ≡ x⊤Ax+b⊤x+ c = 0, where A = A−2

−1−A−2
1 , b =

2(A−1
−1 +A−1

1 )µ, and c = 2
∑d

i=1[ln(1 + 2a−1 cos(
iπ
d+1 ))− ln(1 + 2a1 cos(

iπ
d+1 ))].

Now we state a lemma regarding the tail of Gaussian quadratic forms which plays a crucial role in
our main result (proof in Appendix A.5).

Lemma 5 Let ∥ · ∥ denote the operator norm, ∥ · ∥2 denote the vector 2-norm, z ∼ N (0, I), and
Z = z⊤Az + z⊤b+ c where A = QΛQ⊤. Using Chernoff bound, for any t ≥ 0 and γ ∈ R,

P{Z − EZ ≥ γ} ≤
exp

{
− t

4∥b∥2
2∥Λ∥ − t(γ +Tr(Λ) + ∥b∥2)

}
|I − 2tΛ| 12

.

Lemma 5 allows us to provide an upper bound for the accuracy of the unlearnable decision boundary
P̃ on the clean dataset D, given as τD(P̃ ), in Theorem 2 below. Proof can be found in Appendix A.6.

Theorem 2 (Main result) Let A = QΛQ = A−2
−1 −A−2

1 . For any non-negative constants t1 and t2,
the accuracy of the unlearnable decision boundary P̃ on the clean dataset D can be upper-bounded
as

τD(P̃ ) ≤ 1

2|I − 2t1Λ|
1
2

exp

[
t1

(
µ⊤Aµ+ b⊤µ+ c− 1

4∥2Aµ+ b∥2∥Λ∥

)]
+

1

2|I − 2t2Λ|
1
2

exp

[
t2

(
− µ⊤Aµ+ b⊤µ− c− 1

4∥2Aµ− b∥2∥Λ∥

)]
:= p1 + p2.

Furthermore, if µ⊤Aµ+ b⊤µ+ c+Tr(A) + ∥2Aµ+ b∥ < 0, we have τD(P̃ ) ≤ 1
2 (p1 + 1) < 1.

Also, if −µ⊤Aµ+b⊤µ−c−Tr(A)+∥2Aµ−b∥ < 0, we have τD(P̃ ) ≤ 1
2 (1+p2) < 1. Moreover,

for any µ ̸= 0 and a−1 ∈ [0, 0.5], ∃a1 such that τD(P̃ ) < τD(P ).

Poisoning is effective only if the accuracy of the unlearnable model P̃ is less than that of the clean
model P on the clean dataset D, that is, τD(P̃ ) < τD(P ). To satisfy this condition, we need to
carefully select ay’s. In Theorem 2, we formally state this condition1. Theorem 2 shows that FUN
can effectively poison when the class means of the clean data are not the same. We validate our
theoretical claim through empirical analysis as well (see Figure 3). Details for the analysis is given in
Appendix A.7. We find that our upper bound for the clean test accuracy of FUN-based classifiers are
consistent with our empirical analysis. In our experiments, we also find that the unlearnability effect
is stronger with a larger blur parameter. This effect is evident from Figure 3 where we find that it is
likely to get a lower τD(P̃ ) with higher ay values.

5 EXPERIMENTS

In this section, we first discuss our experimental setup. More details on the setup is deferred to
Appendix A.8. We then show the robustness of FUN with various datasets and architectures. We
also run various experiments to analyze the effectiveness of FUN under different training techniques
(ERM, AT with varying budgets, randomized smoothing, transfer learning, and fine-tuning) and
augmentation techniques (mixup (Zhang et al., 2017), grayscaling, random blurring, cutout (DeVries
& Taylor, 2017), cutmix (Yun et al., 2019), autoaugment (Cubuk et al., 2018), and orthogonal
regularization (Brock et al., 2016)). Finally, we also design adaptive defenses to test the robustness of
FUN. One might think that FUN filters can be obtained by adversarially training them with the data.
We show that FUN is robust to such adaptive defenses that we design.

1We note that the conditions µ⊤Aµ + b⊤µ + c + Tr(A) + ∥2Aµ + b∥2 < 0 or −µ⊤Aµ + b⊤µ −
c − Tr(A) + ∥2Aµ − b∥2 < 0 can always be satisfied by picking a sufficiently large µ in the direction of
an eigenvector corresponding to a negative or positive eigenvalue of A (note that A has negative and positive
eigenvalues).
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5.1 EXPERIMENTAL SETUP

Datasets. We use three image classification datasets – CIFAR-10, CIFAR-100, (Krizhevsky, 2009)
and ImageNet-100 (a subset of ImageNet made of the first 100 classes) (Russakovsky et al., 2015).
We use the data augmentation techniques such as random flipping, cropping, and resizing (Shorten &
Khoshgoftaar, 2019).

Architectures. We use ResNet-18 (He et al., 2015), VGG-16 (Simonyan & Zisserman, 2015), Wide
ResNet-34-10 (Zagoruyko & Komodakis, 2016), and DenseNet-121 (Huang et al., 2016). We train
the networks with hyperparameters used in (Fu et al., 2021).

FUN generation. We use filters of size k = 3 and blur parameter pb = 0.3 for both CIFAR-10
and CIFAR-100 datsets. ImageNet-100 is a higher dimensional 224×224×3 image dataset when
compared to the 32×32×3 dimensional CIFAR datasets. Hence, we use larger filters of size k = 9
with pb = 0.06 for ImageNet-100. These hyperparameters are chosen such that the FUN images are
not perceptibly highly perturbed and give good unlearnability effect (see plot in Figure 1). In Appendix
A.9, we show the results of FUN training with different hyperparameters for data generation.

Baselines. We compare FUN with four state-of-the-art unlearnability methods – REM (Fu et al.,
2021), EM (Huang et al., 2021), TAP (Fowl et al., 2021), and NTGA (Yuan & Wu, 2021). We adopt
the numbers reported in (Fu et al., 2021) since we use the same hyperparameters for training. For
REM, we select hyperparameters ρu = 8/255 and ρa = 4/255, the highest radii values in Fu et al.
(2021). For comparing unlearnable methods, we look at the clean test accuracy. The lower the test
accuracy, the better the unlearnability method is.

5.2 EFFECTIVENESS OF FUN

Blurring effect of FUN. In order to measure how much FUN’s blurring affects the dataset’s quality,
we compare class-wise blurring (FUN) against universal blurring where a single filter is used for
blurring all the images. We keep the filter generation parameters fixed (pb = 0.3 and k = 3) for both
FUN class-wise blurring and universal blurring. ResNet-18 trained with clean CIFAR-10, universally
blurred CIFAR-10, and FUN CIFAR-10 data achieve clean test accuracies of 94.66%, 90.47%, and
18.48%, respectively. This suggests that our controlled blurring does not obscure the semantics of the
dataset. Hence, the significant drop in the clean test accuracy introduced by the FUN dataset is most
likely due to the usage of class-wise filters. Furthermore, the FUN-based model achieves an accuracy
of 99.91% on the FUN CIFAR-10 test dataset. This supports our claim that the FUN model learns to
classify images based on the filters used to blur them. In addition, if we permute the class-wise filters
for blurring the test set (i.e., blurring class 1 images with class 2 filters, class 2 images with class 3
filters, and so on), we get a very low accuracy of 2.53% on this test set. See Appendix A.10 and A.11
for further details. Finally, we note that real-world datasets might also contain blurred images due
to various factors such as motion blurring, weather conditions, issues with the camera, etc. Hence,
detecting if a blurred image is poisoned might not always be possible.

Different datasets. We first compare the effectiveness of FUN with different datasets using ERM
and L∞ AT with ρa = 4/255. We use ResNet-18 for the experiments. The results are shown in
Table 2. These results show that EM, TAP, and NTGA are not robust to AT. However, both FUN and
REM are successful. Here, our method FUN outperforms REM with CIFAR-10 and ImageNet-100
datasets. Smartly designed additive noise in AT helps in achieving better generalization than ERM on
the unlearnable datasets. This experiment thus demonstrates that ERM and AT are not good choices
for training with FUN and REM datasets.

Different models. Next we compare the effectiveness of FUN using various deep learning architec-
tures with L∞ AT (ρa = 4/255). We use CIFAR-10 for the experiments. The results are shown in
Table 3. As we see in the table, FUN is effective with all the five network architectures. However,
REM is not seen to be transferrable with DenseNet-121.

Different training settings. In Section 3.2, we show that REM is sensitive to the training settings.
REM generated using L∞ radii budgets of ρu = 8/255 and ρa = 4/255 for CIFAR-10 breaks
with L∞ AT (ρa = 8/255) and L2 AT (ρa = 0.75) to get test accuracy of 78.71% and 79.65%,
respectively. Hence, we run experiments to check the robustness of FUN with various AT norm
budgets. The results are shown in Table 4. As we see in the table, FUN is robust to ERM, L∞, and
L2 AT settings with varying training budgets. Impressively, the highest test accuracy achieved with
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Table 2: Test accuracy (%) of ResNet-18 trained on various unlearnable datasets. We use L∞ AT
with budget ρa = 4/255.

Dataset Training
method Clean Unlearnability method

EM TAP NTGA REM FUN (ours)

CIFAR-10 ERM 94.66 13.20 22.51 16.27 27.09 18.48
AT 89.51 88.62 88.02 88.96 48.16 44.40

CIFAR-100 ERM 76.27 1.60 13.75 3.22 10.14 12.69
AT 64.50 63.43 62.39 62.44 27.10 34.34

ImageNet-100 ERM 80.66 1.26 9.10 8.42 13.74 8.96
AT 66.62 63.40 63.56 63.06 41.66 38.68

Table 3: Test accuracy (%) of network architectures trained on various CIFAR-10 unlearnable datasets
with L∞ AT (ρa = 4/255).

Model Clean Unlearnability method

EM TAP NTGA REM FUN (ours)

ResNet-18 89.51 88.62 88.02 88.96 48.16 44.40

VGG-16 87.51 86.48 86.27 86.65 65.23 42.98

Wide ResNet-34-10 91.21 90.05 90.23 89.95 48.39 53.02

DenseNet-121 83.27 82.44 81.72 80.73 81.48 45.95

FUN training on CIFAR-10, CIFAR-100, and ImageNet-100 are as low as 51.19%, 36.90%, and
40.08%, respectively. We also find that using a pre-trained ResNet-18 with FUN CIFAR-10 only
achieves clean test accuracy of 42.42% and 48.22% with fine-tuning the full network and a newly
trained final layer, respectively (details deferred to Appendix A.12).

Different protection percentages. In Section 3.1, we assume that the attacker has access to the full
clean training data. However, in real life settings, this might not be always possible. Hence, we train
ResNet-18 on a mix of FUN and clean CIFAR-10 training datasets to evaluate the effectiveness of
poisoning with varying data protection percentages. Protection percentage denotes the percentage of
the training data that is poisoned.

We show the results in Table 5. In the table, the “Mixed” column denotes the clean test accuracy of a
model trained using a mix of both clean and poisoned data. The “Clean” column denotes the clean
test accuracy of a model trained only using the clean subset of the training data. In the last row of
Table 5, we provide the results for FUN trained using ERM with varying data protection percentages.
The remainder of the rows provide the results for the L∞ AT (ρa = 4/255) scenario. For example,
FUN trained with ERM using an 80% clean training data partition achieves a test accuracy of 93.75%.
Adding the 20% FUN data partition to the training dataset drops the test accuracy of the model to
93.28%. Results from the last row of Table 5 show that FUN with varying data protection percentages
is effective with the ERM setting. However, with the AT scenario, all the poisoning techniques are
ineffective with varying data protection percentages. Even at 80% data protection percentage, training
with all the poisoning techniques achieve noticeably higher test accuracy than the test accuracy
achieved using the corresponding clean training data subset. Nevertheless, it is interesting to note
that FUN performs better than all the other unlearnability techniques with AT.

Smoothing and data augmentations. Cohen et al. (2019) proposes randomized smoothing which
is a provable adversarial defense in L2 norm. Since FUN is not an additive noise, FUN is robust
to randomized smoothing. A smoothed ResNet-18 (with a noise level of 0.5) with FUN CIFAR-
10 achieves only a clean test accuracy of 43.85%. In Section 3.2, we see that REM breaks with
grayscaling. While ResNet-18 training using grayscaled REM achieves 70.76% test accuracy,
grayscaled FUN only achieves 20.12% test accuracy on the clean grayscaled CIFAR-10 test data.
This shows that FUN exhibits the desirable property of not relying upon the color space for its attack.
FUN CIFAR-10 training achieves only 25.53%, 25.80%, 26.93%, 34.09%, and 50.72% clean test
accuracy with mixup, cutout, cutmix, autoaugment, and orthogonal regularization, respectively (see
Appendix A.13).

Adaptive defenses. Here, we first investigate the effect of training FUN CIFAR-10 with random
blurring augmentations using ResNet-18. Each batch of the FUN training data is convolved with

8
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Table 4: Test accuracy (%) of ResNet-18 with FUN datasets under various training settings.
Dataset Clean Training method FUN (ours)

CIFAR-10 94.66

ERM 18.48
AT L∞ (ρa = 4/255) 44.40
AT L∞ (ρa = 8/255) 32.85
AT L∞ (ρa = 16/255) 19.32
AT L2 (ρa = 0.25) 39.05
AT L2 (ρa = 0.50) 51.19
AT L2 (ρa = 0.75) 51.14

CIFAR-100 76.27

ERM 12.69
AT L∞ (ρa = 4/255) 34.34
AT L∞ (ρa = 8/255) 30.00
AT L2 (ρa = 0.75) 36.90

ImageNet-100 80.66

ERM 8.96
AT L∞ (ρa = 4/255) 38.68
AT L∞ (ρa = 8/255) 40.08
AT L2 (ρa = 0.75) 20.58

Table 5: Test accuracy (%) of ResNet-18 on CIFAR-10 with different data protecion percentages.
The last row shows the results for FUN with ERM setting. The rest of the rows show results for
unlearnability methods trained in the L∞ AT (ρa = 4/255) setting.

Unlearnability
method

Data Protection Percentage

0% 20% 40% 60% 80% 100%Mixed Clean Mixed Clean Mixed Clean Mixed Clean

EM

89.51

89.60

88.17

89.40

86.76

89.49

85.07

89.10

79.41

88.62
TAP 89.01 88.66 88.40 88.04 88.02

NTGA 89.56 89.35 89.22 89.17 88.96
REM 89.60 89.34 89.61 88.09 48.16

FUN (ours) 88.54 87.24 86.03 84.34 44.40

FUN + ERM 94.66 93.28 93.75 91.34 92.56 89.91 89.77 85.61 84.30 18.48

random 3 × 3 filters of varying blur parameters p′b. With p′b values of 0.1 and 0.3, FUN training
achieves lower test accuracy 9.2% and 13.37%, respectively. This shows that the noise added by
FUN is robust to random convolution augmentations.

One may think that FUN can be broken by learning the private filters from the data. We test this idea
by training deconvolution filters to find if we can break FUN with adversarially trained filters. We
use a novel Filter Adversarial Training (FAT) technique that is similar to AT (check Appendix A.7
and equation 3 for details). While the adversarial step in AT learns sample-wise error-maximizing
additive noises, the adversarial step in FAT learns class-wise error-maximizing deconvolution filters.
We train FAT with filters of varying sizes (3, 5, and 7) on FUN CIFAR-10 using ResNet-18. The filter
parameters are constrained within a finite range to make sure that the images do not get distorted
with the adversarial step. We find that FUN is robust to FAT. FAT using filters of size 3, 5, and 7
with FUN dataset achieves test accuracy of 39.05%, 46.21%, and 38.48%, respectively.

Limitations and future directions. The unlearnability effect of FUN can be defended if some
fraction of the clean data and its corresponding FUN images are leaked. The defender must also be
able to detect if all samples in the dataset are poisoned. However, our work assumes a setup where the
filters remain private. For example, a data publisher could simply publish their FUN images and delete
the clean images permanently to prevent this scenario. As discussed in this section, FUN as well
as other prior works do not perform well with different protection percentages with AT. Improving
this can be an interesting research direction. We believe that extending FUN to other domains such
as tabular and text data is also an interesting future direction. It would also be interesting to see
theoretical analysis of FUN considering more complex setups.
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A APPENDIX

A.1 PROOF FOR LEMMA 1

At the optimal decision boundary the probabilities of any point x ∈ Rd belonging to class y = −1
and y = 1 modelled by D are the same. Here, µ = µ1 = −µ−1 and I = Σ−1 = Σ1.

=⇒
exp[− 1

2 (x− µ−1)
⊤Σ−1

−1(x− µ−1)]√
(2π)d|Σ−1|

=
exp[− 1

2 (x− µ1)
⊤Σ−1

1 (x− µ1)]√
(2π)d|Σ1|

=⇒ − 1

2
log |I| − 1

2
(x⊤x− 2x⊤µ−1 + µ⊤

−1µ−1) = −1

2
log |I| − 1

2
(x⊤x− 2x⊤µ1 + µ⊤

1 µ1)

=⇒ x⊤(µ−1 − µ1)−
1

2
(µ⊤

−1µ−1 − µ⊤
1 µ1) = 0

=⇒ − x⊤µ = 0

=⇒ P (x) ≡ x⊤µ = 0.

Now, the accuracy of the clean model P is to be computed. Note that if P (x) < 0 the Bayes optimal
classification is class -1, else the classification is class 1. Let z ∼ N (0, I), and Z ∼ N (0, 1), and
sgn(.) be the signum function.

τD(P ) = E(x,y)∼D [1(y = sgn(P (x)))] = P[yx⊤µ > 0]

= P[y(yµ+ z)⊤µ > 0]

= P[(µ+ z)⊤µ > 0]

= P[∥µ∥22 + ∥µ∥2Z > 0] = ϕ(∥µ∥2).

□

A.2 PROOF FOR LEMMA 2

Let D1 = N (µ, I). For every data point (x, y) ∼ D1, let the perturbed data (A1x, y) be modelled
by a distribution D̃1. We prove that D̃1 = N (A1µ, A

⊤
1 A1).

E(x,y)∼D1
A1x = A1E(x,y)∼D1

x = A1µ.

E(x,y)∼D1
(A1x−A1µ)(A1x−A1µ)

⊤ = E(x,y)∼D1
A1(x− µ)[A1(x− µ)]⊤

= E(x,y)∼D1
A1(x− µ)(x− µ)⊤A⊤

1

= A1E(x,y)∼D1
(x− µ)(x− µ)⊤A⊤

1

= A1IA
⊤
1 = A1A

⊤
1 .

Tri-diagonal Toeplitz matrices Ay = T (d; ay, 1, ay) are symmetric. Hence, D̃ = N (yAyµ, A
2
y). □
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A.3 REMARKS ON LEMMA 3

A tri-diagonal Toeplitz matrix T (d; a1, a2, a3) is represented as


a2 a3 0 0 . . . 0
a1 a2 a3 0 . . . 0
0 a1 a2 a3 . . . 0
...

...
...

...
. . .

...
0 . . . . . . 0 a1 a2

 ∈ Rd×d

The class of matrices Ay = T (d; ay, 1, ay) are symmetric and can be diagonalized as QDQ⊤.

Q =
((

2
d+1

)1/2
sin

(
ijπ
d+1

))
i,j

is symmetric and it is the common eigenvector matrix to all Ay

matrices. As shown in Lemma 3, Q and D can be represented using trigonometric functions. Also,
we have A(n) := An

1 ±An
−1 = Q(Dn

1 ±Dn
−1)Q where A1 = QD1Q and A−1 = QD−1Q. Further,

Tr(A(n)) = Tr(Q(Dn
1 ±Dn

−1)Q) = Tr((Dn
1 ±Dn

−1)Q
2) = Tr(Dn

1 ±Dn
−1).

A.4 PROOF FOR LEMMA 4

At the optimal decision boundary the probabilities of any point x ∈ Rd belonging to class y = −1
and y = 1 modelled by D̃ are the same. Here, µ = µ1 = −µ−1 and Ay’s are symmetric.

exp[− 1
2 (x−A−1µ−1)

⊤(A−1IA
⊤
−1)

−1(x−A−1µ−1)]√
(2π)d|A−1IA⊤

−1|

=
exp[− 1

2 (x−A1µ1)
⊤(A1IA

⊤
1 )

−1(x−A1µ1)]√
(2π)d|A1IA⊤

1 |

=⇒ −1

2
ln

|A2
−1|

|A2
1|

− 1

2
[x⊤(A−2

−1 −A−2
1 )x− 2(µ⊤

−1A
−1
−1 − µ⊤

1 A
−1
1 )x

+ (µ⊤
−1µ−1 − µ⊤

1 µ1)] = 0

=⇒ P̃ (x) ≡ x⊤(A−2
−1 −A−2

1 )x− 2(µ⊤
−1A

−1
−1 − µ⊤

1 A
−1
1 )x+ (∥µ−1∥22 − ∥µ1∥22)

+

d∑
i=1

ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

= 0

=⇒ P̃ (x) ≡ x⊤(A−2
−1 −A−2

1 )x+ 2[(A−1
−1 +A−1

1 )µ]⊤x+

d∑
i=1

ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

= 0

=⇒ P̃ (x) ≡ x⊤Ax+ b⊤x+ c = 0.

□

Note that here if P̃ (x) < 0, the Bayes optimal classification is class -1, else the classification is
class 1. Here, for shorthand notations we denote A = (A−2

−1 − A−2
1 ), b = 2(A−1

−1 + A−1
1 )µ, c =∑d

i=1 ln

(
1 + 2a−1 cos(

iπ
d+1 )

1 + 2a1 cos(
iπ
d+1 )

)2

.

A.5 PROOF FOR LEMMA 5

Let Z = z⊤Az + z⊤b+ c and z ∼ N (0, I) ⊂ Rd where A = QΛQ⊤. Also,

Z = z⊤Az + z⊤b+ c =

(
z +

1

2
A−1b

)⊤

A

(
z +

1

2
A−1b

)
+ c− 1

4
b⊤A−1b.
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For any t ≥ 0 and x ∼ N (0, I), we write the moment generating function for a quadratic random
variable Y = x⊤Ax as 2

E[exp(tY )] =
1

(2π)d/2

∫
Rd

exp{tx⊤Ax} exp
{
− 1

2
(x− µ)⊤(x− µ)

}
dx

=
exp{−µ⊤µ/2}

(2π)d/2

∫
Rd

exp
{
− 1

2
x⊤(I − 2tA)x+ µ⊤x

}
dx

=
exp{−µ⊤µ/2}

(2π)d/2

(2π)d/2 exp
{

1
2µ

⊤(I − 2tA)−1µ
}

|I − 2tA|1/2

=
exp

{
− 1

2µ
⊤[I − (I − 2tA)−1]µ

}
|I − 2tA|1/2

.

=⇒ E[exp(tZ)] =
exp{− 1

8b
⊤A−1[I − (I − 2tA)−1]A−1b+ t[c− 1

4b
⊤A−1b]}

|I − 2tA| 12
.

Using the Chernoff bound and E z⊤Az = Tr(AE[zz⊤]) = Tr(A), for some γ,

P{Z ≥ E[Z] + γ} ≤ E[exp(tZ)]

exp{t[γ + E(Z)]}

=
exp{− 1

8b
⊤A−1[I − (I − 2tA)−1]A−1b+ t[c− 1

4b
⊤A−1b]}

exp{t([γ +Tr(A) + ∥b∥2 + c]}|I − 2tA| 12
.

Let us take u = Q⊤b. Also, −Λ−1[I−(I−2tΛ)−1]Λ−1 = 2tΛ−1(I−2tΛ)−1 since Λ is a diagonal
matrix. Using Woodbury matrix identity, we get (I − 2tΛ)−1 = I − (I − 1

2tΛ
−1)−1. This gives us

P{Z ≥ E[Z] + γ} ≤
exp{− 1

8b
⊤A−1[I − (I − 2tA)−1]A−1b+ t[c− 1

4b
⊤A−1b]}

exp{t[γ +Tr(A) + ∥b∥2 + c]}|I − 2tA| 12

=
exp{− 1

8u
⊤Λ−1[I − (I − 2tΛ)−1]Λ−1u+ t[c− 1

4u
⊤Λ−1u]}

exp{t[γ +Tr(Λ) + ∥b∥2 + c]}|I − 2tΛ| 12

=
exp{ t

4u
⊤Λ−1(I − 2tΛ)−1u+ t[c− 1

4u
⊤Λ−1u]}

exp{t[γ +Tr(Λ) + ∥b∥2 + c]}|I − 2tΛ| 12

=
exp{ t

4u
⊤Λ−1[I − (I − 1

2tΛ
−1)−1]u+ t[c− 1

4u
⊤Λ−1u]}

exp{t[γ +Tr(Λ) + ∥b∥2 + c]}|I − 2tΛ| 12

=
exp{−t

4 u⊤Λ−1(I − 1
2tΛ

−1)−1u+ tc}
exp{t[γ +Tr(Λ) + ∥b∥2 + c]}|I − 2tΛ| 12

≤
exp{ −t

4∥b∥2
2
λmin(Λ

−1(I − 1
2tΛ

−1)−1)− t(γ +Tr(Λ) + ∥b∥2)}

|I − 2tΛ| 12

=
exp{ −t

4∥b∥2
2

1
∥Λ∥−1/(2t) − t(γ +Tr(Λ) + ∥b∥2)}

|I − 2tΛ| 12

≤
exp{ −t

4∥b∥2
2∥Λ∥ − t(γ +Tr(Λ) + ∥b∥2)}

|I − 2tΛ| 12
.

□

2 (https://stats.stackexchange.com/users/119261/stubbornatom)
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A.6 PROOF FOR THEOREM 2

Note that if P̃ (x) < 0, the classifier predicts a label for class -1, else the predicted label would be 1.
Here, x = yµ+ z where z ∼ N (0, I) and y ∈ {±1} since (x, y) ∼ D.

τD(P̃ ) = E{1(y(x⊤Ax+ b⊤x+ c) > 0)}
= P{y(µ⊤Aµ+ z⊤Az + 2yµ⊤Az + yb⊤µ+ b⊤z + c) > 0}
= P(y = 1) P{y(µ⊤Aµ+ z⊤Az + 2yµ⊤Az + yb⊤µ+ b⊤z + c) > 0 | y = 1} +

P(y = −1) P{y(µ⊤Aµ+ z⊤Az + 2yµ⊤Az + yb⊤µ+ b⊤z + c) > 0 | y = −1}

=
1

2
P{z⊤Az + (b+ 2Aµ)⊤z + µ⊤Aµ+ b⊤µ+ c > 0} +

1

2
P{−z⊤Az − (b− 2Aµ)⊤z − µ⊤Aµ+ b⊤µ− c > 0} := p1 + p2

We can see that

−γ1 := E{z⊤Az + (b+ 2Aµ)⊤z + µ⊤Aµ+ b⊤µ+ c}
= Tr(Λ) + ∥b+ 2Aµ∥2 + µ⊤Aµ+ b⊤µ+ c, and

−γ2 := E{−z⊤Az − (b− 2Aµ)⊤z − µ⊤Aµ+ b⊤µ− c}
= − Tr(Λ) + ∥b− 2Aµ∥2 − µ⊤Aµ+ b⊤µ− c.

Using Lemma 5, with γ = γ1, t = t1 for computing p1 and γ = γ2, t = t2 for computing p2 where
t1, t2 are some non-negative constants, we get

p1 =
1

2|I − 2t1Λ|1/2
exp

[
t1

(
µ⊤Aµ+ b⊤µ+ c− 1

4∥2Aµ+ b∥2∥Λ∥

)]
, and

p2 =
1

2|I − 2t2Λ|1/2
exp

[
t2

(
− µ⊤Aµ+ b⊤µ− c− 1

4∥2Aµ− b∥2∥Λ∥

)]
.

This gives us the upper bound for τD(P̃ ). However, to make sure that this upper bound is smaller
than 1, we need to assert more conditions. p1 and p2 become smaller as γ1 and γ2 are larger positive
numbers. However, γ1 + γ2 = −(∥2Aµ+ b∥2 + ∥2Aµ− b∥2 + 4µ⊤Q⊤(D−1

1 +D−1
−1)Qµ) ≤ 0

since (D−1
1 +D−1

−1) ≽ 0. Hence, we look at separately at cases when either γ1 > 0 or γ2 > 0.

If γ1 > 0, then τD(P̃ ) = 1
2 (p1 + 1) < 1. Else, if γ2 > 0, then τD(P̃ ) = 1

2 (p2 + 1) < 1. We
know that for µ ̸= 0, τD(P ) = ϕ(µ) > 1

2 . Moreover, for any a−1 ∈ [0, 0.5], ∃a1 such that
τD(P̃ ) < τD(P ). This can be satisfied by picking a1 such that either γ1 or γ2 is very large, i.e.,
1
2 < τD(P̃ ) = 1

2 [1 + min(p1, p2)] < τD(P ). We note that the conditions −γ1 = µ⊤Aµ+ b⊤µ+

c+ Tr(A) + ∥2Aµ+ b∥2 < 0 and −γ2 = −µ⊤Aµ+ b⊤µ− c− Tr(A) + ∥2Aµ− b∥2 < 0 can
always be satisfied by picking a sufficiently large µ in the direction of an eigenvector corresponding
to a negative eigenvalue of A (note that A has negative eigenvalues). □

A.7 DETAILS ON GENERATING FIGURE 3

We use µ ∈ Rd, d = 100 to generate clean dataset with 1000 data points. They are randomly
split into training and testing partitions of equal size. All the assumptions are consistent with the
details provided in the main body. We use 30 × 30 mesh-grid to plot the contour plots. While
plotting the theoretical upper bounds, we choose the best t1, t2 with grid search from a search space
[21, 20, 2−1, 2−2, 2−3, 2−4, 2−5].

A.8 EXPERIMENTAL DETAILS

This subsection provides the details for experiments in Section 5.
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Hardware. We use NVIDIA® RTX A4000 GPU with 16GB memory with 16 AMD® EPYC 7302P
CPU cores.

Data augmentations. For CIFAR-10 and CIFAR-100, we use random flipping, 4 pixel padding, and
random 32 × 32 size cropping. For ImageNet-100, we use random flipping and random cropping
with resizing to 224× 224 size. All the images are rescaled to have pixel values in the range [0, 1].

Baselines. We compare FUN against error-minimizing noise (Huang et al., 2021), targeted adversarial
poisoning (Fowl et al., 2021), neural tangent generalization attack (Yuan & Wu, 2021), and robust
error-minimizing noise (Fu et al., 2021). We use the experimental outputs reported in Fu et al. (2021)
for our comparisons. For REM we choose ρu = 8/255 and ρa = 4/255 since REM works the best
when ρu = 2ρa (Fu et al., 2021). We perform experiments on REM not present in their work using
their code available publicly on GitHub 3 (MIT License).

Networks. For consistency, we use the same architectures used in Fu et al. (2021). We use their
GitHub script4 for this purpose.

Training. We train all the networks for 100 epochs. The initial learning rate is 0.1. Learning rate
decays to 0.01 at epoch 40 and to 0.001 at epoch 80. We use a stochastic gradient descent optimizer
with a momentum factor of 0.9, weight decay factor of 0.0005, and batch size of 128. For adversarial
training, we follow the procedure in Madry et al. (2017). We use 10 steps of projected gradient
descent with a step size of 0.15ρa.

Analysis of FUN. For grayscaling experiments, we use images with their average channel values as
the input to the network. Test accuracy is computed on the grayscaled test datasets. For smoothing,
we use the GitHub codes5 from (Cohen et al., 2019) (MIT License). For mixup (Zhang et al., 2017),
we use the default value of α = 1.0.

Filter adversarial training. We experiment with various filter sizes of 3,5, and 7 for the transpose
convolution filters. For each batch of data, we use 10 steps of projected gradient descent with a
learning rate of 0.1 to learn transpose convolution filters for each class. The weights and biases of
the transpose convolution filters are constrained to be within [−C,C]. We choose C = 5. After 10
steps of inner maximizing optimization, the resulting image is rescaled such that the pixel values lie
in [0, 1]. See Figure 4 for clean test accuracy vs. epochs plot for Filter Adversarial Training with
varying transpose filter sizes. As seen in Figure 1, FAT can break FUN CIFAR-10 with a low blur
parameter value of pb = 0.1 to get a clean test accuracy ∼78%. However, with higher pb values FAT
can not achieve more than 50% clean test accuracy. FAT solves the following optimization problem:

min
θ

1

n
Σn

i=1 max
∥syi∥∞≤C

ℓ(fθ(xi ⋆ syi
),yi) (3)

where ⋆ denotes the transpose convolution operator, syi denotes the transpose convolution filter for
class yi, and ℓ is the soft-max cross-entropy loss function.

FUN with augmentations. We use mixup with the default α = 1.0 (Zhang et al., 2017). See Figure
5 for the training curve. For random blurring augmentations, we use p′b = 0.1, 0.3 and k = 3. With
both these parameters, FUN is seen to be effective. See Figure 5 for the training curve with p′b = 0.3.

A.9 MORE EXPERIMENTAL RESULTS

Figure 6 shows the FUN CIFAR-10 data generated using k = 3 and different pb blur parameters.
Figure 7 shows the FUN CIFAR-100 and ImageNet-100 data generated using k = 3, pb = 0.3 and
k = 9, pb = 0.06, respectively. Figure 8 shows the clean test accuracy of ResNet-18 with FUN
CIFAR-10 generated using different blur parameters. As we see in the plots, higher the blur parameter,
better the effectiveness of FUN is. However, we choose pb = 0.3 for our experiments since the the
images generated using this hyperparameter look perceptibly more similar to the clean images (when

3https://github.com/fshp971/robust-unlearnable-examples
4https://github.com/fshp971/robust-unlearnable-examples/tree/main/

models
5https://github.com/Hadisalman/smoothing-adversarial
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Figure 4: FUN CIFAR-10 images (k = 3, pb = 0.3) trained using ResNet-18 with the Filter
Adversarial Training framework with varying transpose convolution filter sizes k.

Figure 5: FUN CIFAR-10 images (k = 3, pb = 0.3) trained using ResNet-18 with mixup and random
blurring augmentations.

compared to pb = 0.5) while giving a very low clean test accuracy. A lower value of pb = 0.1 gives
better unlearnability. However, FUN CIFAR-10 generated using pb = 0.1 is not robust with our Filter
Adversarial Training, as shown in Figure 1. Figure 9 shows the clean test accuracy of ResNet-18 with
FUN ImageNet-100 dataset generated using different filter sizes. Figure 10 shows the adversarial
training curves for ResNet-18 with different FUN datasets.

A.10 EFFECTS OF BLURRING

Here, we study the effects of blurring. We investigate if class-wise blurring is required for achieving
unlearnability. For this, we use a universal filter (generated using the same pb = 0.3 and k = 3
hyperparameters) to blur all the training images in the dataset. A ResNet-18 trained on this dataset
achieves a clean test accuracy of 90.47%. Essentially, the blurring that is performed only degrades the
clean test accuracy by ∼4%. This means that class-wise blurring (FUN) is required for achieving the
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(a) pb = 0.1

(b) pb = 0.3

(c) pb = 0.5

Figure 6: FUN CIFAR-10 images generated using different blur parameters pb. The top row shows
the clean images, the bottom row shows the corresponding FUN image, and the middle row shows
the normalized difference between the clean and the FUN image.

unlearnability effect (see Figure 11). This experiment also demonstrates that the blurring we perform
does not make the dataset useless or destroy its semantics. For this experiment, we use models with
fixed initialization and random seeds.

A.11 WHY DOES FUN WORK?

In this section, we perform experiments that show that a model trained on FUN dataset learns the
relation between the class-wise filters and the labels. We train ResNet-18 using the FUN CIFAR-10
dataset for the experiments. We perform three independent trials for each of the experiments and
report the mean performance scores. Trained models achieve a mean clean test accuracy of 21.34%.
Now, we use the class-wise filters to perturb the images in the test set based on their corresponding
labels. Trained models achieve a very high mean accuracy of 99.91% on this perturbed test set. This
shows that the trained models learned the relation between the filters and their corresponding labels.
Next, we permute the filters to perturb the test set such that test set images with label i are perturbed
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(a) CIFAR-100

(b) ImageNet-100

Figure 7: FUN CIFAR-100 and ImageNet-100 images generated using k = 3, pb = 0.3 and
k = 9, pb = 0.06, respectively. The top row shows the clean images, the bottom row shows the
corresponding FUN image, and the middle row shows the normalized difference between the clean
and the FUN image.

Figure 8: ResNet-18 trained using FUN CIFAR-10 data generated using different blur parameters pb.

with the filters of class (i+ 1)%10. Trained models achieve a very low mean accuracy of 2.53% on
this perturbed test set. This is evidence that FUN can also be used for backdoor attacks.
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Figure 9: ResNet-18 trained using FUN ImageNet-100 dataset generated using different filter sizes k.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-100

Figure 10: Adversarial training curves for ResNet-18 with CIFAR-10, CIFAR-100, and ImageNet-100
FUN datasets.

A.12 EFFECT OF TRANSFER LEARNING

In this section, we experiment the effect of using a pre-trained ResNet-18 with PyTorch (Paszke
et al., 2019). We train it on the FUN CIFAR-10 dataset in two different ways. First, we fine-tune
the whole network on the FUN dataset with a learning rate of 0.001 for 15 epochs. This achieves a
clean test accuracy of 42.42%. Fine-tuning the network with clean training data gives 94.19% clean
test accuracy. Next, we freeze all the layers except the final layer to train a linear classifier with the
pre-trained weights using the FUN CIFAR-10 dataset. We call this “Freeze and learn". We use a
SGD optimizer to train the linear layer for 15 epochs with an initial learning rate of 0.1. The learning
rate is decayed by a factor of 10 after every 5 epochs. This achieves a clean test accuracy of 48.22%.
The results are shown in Figure 12. This experiment shows that pre-trained network with FUN data
training does not help achieve good generalization on the clean data distribution.

A.13 EFFECT OF FUN WITH REGULARIZATION TECHNIQUES

In this section, we study the effect of training a ResNet-18 with FUN CIFAR-10 dataset using various
regularization techniques such as mixup (Zhang et al., 2017), cutout (DeVries & Taylor, 2017), cutmix
(Yun et al., 2019), autoaugment (Cubuk et al., 2018), and orthogonal regularization (Brock et al.,
2016). We perform mixup, cutout, cutmix, autoaugment, and orthogonal regularization to achieve
25.53%, 25.80%, 26.93%, 34.09%, and 50.72%. Even though these regularizations help in improving
the vanilla ERM training, these networks still do not achieve good generalization on the clean data
distribution. We use cutout using GitHub codes6 with length=16 and n_holes=1, cutmix using

6https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
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(a) Test accuracy (b) Training loss

Figure 11: ResNet-18 trained using clean, FUN, and universally blurred CIFAR-10 datasets.

(a) Test accuracy (b) Training loss

Figure 12: Pre-trained ResNet-18 with fine-tuning and training the linear layer using FUN and clean
CIFAR-10 datasets.

GitHub codes7 with α = 1, autoaugment using PyTorch (Paszke et al., 2019), mixup using GitHub
codes8 with α = 1, and orthogonal regularization using GitHub codes9 with reg=1e-6 (all MIT
licenses).

A.14 NETWORK PARAMETER DISTRIBUTION

In this section, we compare the network parameter distributions of ResNet-18 trained on clean and
FUN CIFAR-10 datasets (see Figure 13). Both the distributions are similar to normal distributions
with a mean of 0. However, the parameter distribution of the clean model has a higher standard
deviation than the FUN-based model’s parameter distribution.

7https://github.com/hysts/pytorch_cutmix/blob/master/cutmix.py
8https://github.com/facebookresearch/mixup-cifar10/blob/main/train.py
9https://github.com/kevinzakka/pytorch-goodies
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Figure 13: Network parameter distributions of ResNet-18 trained on clean and FUN CIFAR-10
datasets.
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