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ABSTRACT

Large Multimodal Models (LMMs) store vast amounts of pretrained knowledge
but struggle to remain aligned with real-world updates, making it difficult to avoid
capability degradation when acquiring evolving knowledge. Furthermore, most
current work focuses on exploring static textual knowledge injection, neglecting
dynamic multimodal evolving knowledge injection, leaving the potential of LMMs
for multimodal knowledge injection as an open question. To address this, we
first propose a pipeline to construct MMEVOKE, a benchmark for evaluating
LMMs’ ability in multimodal evolving knowledge injection. MMEVOKE contains
9,422 samples spanning 159 subtypes. Then, based on extensive experiments
with MMEVOKE, we reveal challenges such as poor injection performance and
capability degradation in existing knowledge injection methods through knowledge
injection tests and general capability tests. Finally, to tackle these challenges, we
introduce knowledge augmentation and knowledge retention methods, finding that
knowledge-aware augmentation strengthens knowledge injection performance, and
that Data Replay and MoE methods effectively mitigate capability degradation.

1 INTRODUCTION

Recent research shows that Large Language Models (LLMs) and Large Multimodal Models (LMMs)
gain substantial world knowledge and reasoning capabilities through large-scale pre-training (Brown
et al., 2020; Zhao et al., 2023; Liu et al., 2023a). By capturing linguistic patterns and factual informa-
tion, they achieve significant advancements across domains, demonstrating significant potential for
research and applications (Cui et al., 2024; Su et al., 2025). However, the rapid evolution of global
information poses significant challenges for LLMs and LMMs in maintaining knowledge consistency,
as the constant updating of knowledge and the emergence of new events and entities hinder their
ability to maintain accuracy, leading to knowledge obsolescence and inaccuracies.

As shown in Figure 1, LMM fails to recognize or answer question regarding the newly emerged entity
Xiaomi Su7, responding with irrelevant information (e.g., Question: Which company produces the
car in the image? Answer: Porsche). This indicates that the static nature of trained LMM causes rapid
knowledge obsolescence, resulting in inaccuracies and illusions, thereby undermining the reliability
of knowledge intensive tasks and requiring consistency with the constantly evolving knowledge.

Researchers have proposed several methods to inject knowledge into LLMs, including fine-tuning
to adapt parameters to specific domains (Singhal et al., 2023; Google, 2023), retrieval-augmented
generation to integrate external knowledge through retrieval and reasoning tools (Ram et al., 2023; Si
et al., 2023; Yao et al., 2023), and real-time knowledge updates through internet search combined
with LLMs (Nakano et al., 2021; Jiang et al., 2023). Previous works (Jang et al., 2022; Ovadia et al.,
2024) constructed distinct knowledge corpora using CC-RECENTNEWS articles and U.S. current
events, respectively, to explore knowledge injection in LLMs. Researchers begin focusing on LLMs’
ability to handle temporal knowledge. Realtime QA (Kasai et al., 2023) and DyKnow (Mousavi et al.,
2024) assess knowledge freshness in real-time content. EvoWiki (Tang et al., 2025) provides a multi-
dimensional framework for evolving knowledge, categorizing it into stable, evolved, and uncharted
levels. This framework enables comprehensive analysis by incorporating multi-hop reasoning and
automatic updates. However, the majority of existing research is confined to the text domain and
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fails to explore solutions for discovered challenges. This manifests in two ways: first, a lack of
real-world multimodal evolving knowledge, such as the iterative updating of entities like Xiaomi Su7
and Xiaomi Yu7 in Figure 1. Second, existing work often overlooks analyzing and exploring solutions
for the temporal and evolving knowledge challenges identified during evaluation.

Figure 1: Motivation and Overview of MMEVOKE. A fundamental limitation of trained LMMs
is their static nature, which causes their inherent knowledge to become outdated and inaccurate
over time. Addressing this requires methods for the efficient acquisition of evolving knowledge. To
facilitate research in this direction, we propose MMEVOKE to specifically evaluate the knowledge
injection performance of LMMs when confronted evolving knowledge.

To address these challenges, we introduce MMEVOKE, a multimodal evolving knowledge benchmark
designed to systematically assess knowledge injection methods in LMMs. We then conduct two types
of evaluations: knowledge injection tests (to evaluate knowledge adaptation, i.e., the ability to acquire
new knowledge) and general capability tests (to evaluate knowledge retention, i.e., the ability to
preserve previous knowledge). Based on observations from tests, we identify two challenges inherent
in current knowledge injection paradigms and explore corresponding attempts to address them. Our
efforts are summarized as follows:

i. We propose a comprehensive benchmark MMEVOKE for multimodal evolving knowledge,
which, to our best knowledge, serves as the first evaluation dataset to measure LMMs’
evolving knowledge injection capabilities. In Figure 2, we propose a simple and repro-
ducible data construction pipeline capable of continuously collecting evolving knowledge.
MMEVOKE is divided into two primary areas: News and Entity. In Figure 1, News and
Entity area encompass the latest and popular news and entities since 2024, respectively.
Collectively, these two areas span 159 subfields and contain 9,422 carefully collected
multimodal evolving knowledge.

ii. Knowledge injection and general capability tests unveil challenges in existing knowl-
edge injection paradigms. We conduct knowledge injection tests with Supervised Fine-
Tuning, Retrieval Augmented Generation, Web Search Engine, and Sufficient Context on
MMEVOKE. Obtained the following observations: ❶ Existing methods exhibit poor knowl-
edge adaptation performance; ❷ Contrary to intuition, the performance of LMMs remains
imperfect even with sufficient context. Second, we conduct knowledge retention ability on
LMMs after SFT across 7 capability dimensions, ❸ revealing significant capability degrada-
tion and ❹ a consistent ranking of degradation severity. ❺ Notably, severe degradation in
instruction-following causes cascading failures in other capabilities.

iii. Knowledge augmentation and retention methods are effective explorations to mitigate
knowledge injection’s challenges. We articulate the distinction between data augmentation
and knowledge augmentation, demonstrating that a knowledge-aware approach not only
strengthens knowledge adaptation but also mitigates capability degradation. For mitigating
capability degradation, we find Direct Knowledge Rehearsal (Replay) and Structured Knowl-
edge Separation (MoELoRA) to be effective, in contrast to Indirect Knowledge Constraint
methods (EWC, LwF), which yield unstable results and even worsen degradation.
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2 RELATED WORK

Large Multimodal Models. Demonstrating strong vision-language understanding through extensive
knowledge and cross-modal alignment, these models typically combine a vision encoder with a
pretrained large language model via an alignment module. BLIP-2 (Li et al., 2023a) employs a
lightweight Transformer (Q-Former), while MiniGPT-4 (Zhu et al., 2024) and InstructBLIP (Dai
et al., 2023) enhance performance via multimodal instruction tuning. LLaVA (Liu et al., 2024a) uses
an MLP alignment layer and self-instruct (Wang et al., 2023b) data generation, and Qwen-VL (Bai
et al., 2023) introduces a visual receptor with three-stage training.

Knowledge Injection. Improving factual accuracy is frequently achieved by integrating external
knowledge. Common approaches include encoding new information (Wang et al., 2021; Chen
et al., 2022), retrieving from knowledge sources (Fan et al., 2020; Song et al., 2016; Lewis et al.,
2020a), or leveraging structured resources like knowledge graphs (Martino et al., 2023). Alternatively,
parameter-efficient adapters (Lauscher et al., 2020) enable effective domain adaptation.

Continual Learning. The injection of evolving knowledge is fundamentally a continual learning
(CL) problem, specifically one centered on the acquisition of new factual knowledge(Shi et al.,
2024; Zheng et al., 2025; Huo & Tang, 2025; Liu et al., 2025a). A central challenge in CL is
mitigating catastrophic forgetting (Kirkpatrick et al., 2017), which is the tendency of models to lose
prior knowledge and capabilities while learning new information. Existing CL methods designed
to address this can be broadly categorized. Regularization-based techniques focus on maintaining
the stability of critical parameters (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Feng et al., 2022;
Liu et al., 2024b; Qiao et al., 2024; Wang et al., 2023a). Architecture-centric approaches introduce
parameter isolation (Mallya & Lazebnik, 2018; Serra et al., 2018; Cao et al., 2024), adaptive structures
(Yoon et al., 2018; Hung et al., 2019), or modular designs (Shen et al., 2019). Rehearsal-based
methods leverage memory buffers for experience replay (Bonicelli et al., 2022; Chen & Chang, 2023).
Finally, prompt-based solutions employ learnable prompts to enhance efficiency without explicit data
storage (Wang et al., 2022c; Smith et al., 2023; Wang et al., 2022b). Unlike previous work which
often focuses on task-level retention in computer vision, this work investigates the specific challenges
of knowledge retention and adaptation when LMMs are confronted with evolving factual knowledge.

3 MULTI-MODAL EVOLVING KNOWLEDGE BENCHMARK

To evaluate evolving knowledge injection in LMMs, we propose an automated pipeline to construct
MMEVOKE (Multi-Modal EVOlving KnowledgE), a benchmark focused on evolving knowledge.

Figure 2: Overview of construction pipeline for MMEVOKE. For heuristic query, we manually
write multiple templates and randomly select one template for each data.

3.1 DATA FORMAT

Figure 2 illustrates MMEVOKE benchmark’s data format via a Nobel Prize in Physics case. Each
evolving knowledge consists of two components: injection data DK = (ik, xk, yk)

N
k=1 comprises

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

N triples of knowledge-associated image ik, heuristic query xk, and knowledge summary yk; and
evaluation data DQ = (iq, xq, yq)

N
q=1 contains query image iq , query xq , and ground truth yq .

3.2 BENCHMARK CONSTRUCTION

The simple and reproducible pipeline process for evolving knowledge collection is shown in Figure 2,
and continuously provides evolving knowledge for the field of knowledge injection.

• Step 1: Knowledge Collection. To ensure data timeliness and authenticity, we collect News and
Entity evolving knowledge (starting from 2024) from authoritative CNN and Wikipedia sources. For
News evolving knowledge: we extract URLs from CNN’s robots.txt via Gentleman’s Agreement,
collecting Type, Title, Content and Image. For Entity evolving knowledge: We compare offline
versions of Wikipedia at different time points to identify new entries, collecting Type, Entity
Name, Description, Image and Pageviews. To select representative data, we filter for popularity.
News evolving knowledge cannot be filtered directly due to lacking popularity metrics; we search
Google using the Title and select popular data based on high-similarity result count. Entity
evolving knowledge uses Pageviews directly to obtain popular data.

• Step 2: Content Summarization. Whether the Content and Description of evolving knowledge,
the textual content is often lengthy, posing challenges for LMMs to utilize effectively. Consequently,
we employ GPT-4o to summarize the content by establishing stringent rules and providing rich
contextual examples, thereby obtaining Summary for each data.

• Step 3: QA Generation and Query Image Collection. We establish stringent rules for GPT-
4o to extract a corresponding VQA pair for each News / Entity evolving knowledge Summary.
Simultaneously, GPT-4o must identify the core Object described in the VQA pair and its Hypernym.
For VQA pairs generated in the preceding step, the Query Image is absent. Consequently, we
combine Object with Hypernym as search key words (e.g., Geoffrey Hinton Person), search images
via Google, and download images. Given potential inclusion of anomalous images in Google-
sourced data, we follow prior work (Li et al., 2024b) by utilizing CLIP to extract image features for
clustering, thereby detecting and removing aberrant image data.

• Step 4: Manual Selection. Since the data collected from CNN websites and Wikipedia often
contain multiple associated images, we meticulously conduct a manual review of the images
corresponding to each data to ensure the acquisition of high-quality image data.

Benchmark’s Quality. For MMEVOKE, data quality is paramount. We source popular data from
authoritative providers (CNN, Wikipedia) to ensure high-quality original data. For data generation,
strict rules and contextual examples are implemented using GPT-4o. Query images are collected from
Google and refined using K-Means clustering to remove noise. This benchmark construction pipeline
ensures MMEVOKE’s high quality, further validated by human study in Appendix B.5.

Table 1: Key Statistics of MMEVOKE.

Statistic Number

Total evolving knowledge 9,422
- Entity evolving knowledge 4,494 (47.7%)
- News evolving knowledge 4,928 (52.3%)

Total Areas/Subfields 2/159

Number of unique images 18,834
- Injection images 9,422
- Evaluation images 9,412

Evolving knowledge length
- Maximum length 386
- Average length 95.7

Evaluation question length
- Maximum length 38
- Average length 23.2

Evaluation answer length
- Maximum length 12
- Average length 2.3
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Figure 3: Area and Subfield Distribution
of MMEVOKE. “Others” for Entity and
News includes undisplayed subfields.
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More details regarding MMEVOKE are presented in Appendix B and G.

3.3 BENCHMARK ANALYSIS

• Key Statistics, Area and Subfield Distribution. MMEVOKE comprises 9422 evolving knowledge
instances, covering 159 fine-grained subfields as shown in Figure 3 (29 News and 130 Entity
subfields), highlighting its diversity, with key statistics presented in Table 1.

• Self-Evolving Properties. Evolving knowledge will continue to emerge, so self-evolving properties
are crucial for MMEVOKE. Our data construction pipeline minimizes manual involvement, only
manual selection is not automated. Thus, we develop front-end webpages for each data, accelerating
manual selection and reducing average inspection time to 10 seconds. To sum up, we easily
reproduce data construction pipeline and update MMEVOKE quarterly.

4 EXPERIMENT

Under the knowledge injection paradigm, assume a large multi-modal model M can be optimized
through access to the injection data DK. The optimization seeks a mapping function f ∈ F to derive
the enhanced model M∗ = f(M,DK) must satisfy dual objectives:

(1) Knowledge Adaptation: Maximize accuracy on evaluation data DQ to demonstrate robust
generalization capabilities on new knowledge:

max
f

E(iq,xq,yq)∼DQ
[I (M∗(iq, xq) = yq)− I (M(iq, xq) = yq)] . (1)

(2) Knowledge Retention: Minimize the performance gap between M∗ and M on general capability
tests DP to maintain the model’s previous knowledge and capabilities:

min
f

E(ip,xp,yp)∼DP
[I (M(ip, xp) = yp)− I (M∗(ip, xp) = yp)] . (2)

In this section, we conduct experiments to explore the following research questions:

• RQ1: How do existing knowledge injection methods perform in evolving knowledge injection
task? Is the injection performance of knowledge from different fine-grained subfields consistent?

• RQ2: How do knowledge-injected LMMs perform on previous general capability tests? Do the
post-injected LMMs successfully retain their inherent capabilities?

4.1 EXPERIMENTAL SETUP

Large Multimodal Models. To ensure that the evolving knowledge in MMEVOKE is as unknown
as possible to LMMs, we select two representative models for our experiments: LLaVA-v1.5 (Liu
et al., 2024a) and Qwen-VL-Chat (Bai et al., 2023) (all released in 2023). To verify this, we conduct
zero-shot testing on MMEVOKE (Vanilla in Table 2), where the extremely low performance indicates
that the vast majority of the evolving knowledge is indeed unknown to the LMMs. The knowledge
injection methods will be detailed below.

• Supervised Fine-Tuning necessitates datasets comprising labeled input-output pairs. Among
the commonly used SFT approaches, instruction tuning (Wang et al., 2022a; Mishra et al., 2022;
Ouyang et al., 2022; Taori et al., 2023) has been identified as a highly effective technique to improve
model performance. We employ two training strategies: Full-FT and LoRA.

• Retrieval Augmented Generation enhances LMMs in knowledge-intensive tasks by integrating
external knowledge sources (Lewis et al., 2020b). While early implementations required task-
specific training, recent studies (Neelakantan et al., 2022) demonstrate that pre-trained embedding
models can achieve significant performance gains without additional training. Here, we focus on
the knowledge injection performance of Multimodal Retrieval Augmented Generation (MM-RAG)
on LMMs. Three retrieval strategies are employed: Text-Only (retrieving candidate documents
only based on textual features), Image-Only (retrieving candidate documents only based on visual
features), UniIR (Wei et al., 2024) (retrieving candidate documents based on multimodal features).
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• Commercial AI Web Search Engine integrates internet search and retrieves the evolving knowl-
edge in the reasoning process. To validate the capabilities of commercial AI web search engines,
we employ Gemini (Team et al., 2023), Perplexity AI, and GPT-4.1.

• Sufficient Context can be regarded as a special case of RAG, where it contains all the necessary
information required to answer the question and directly serves as context for LMMs’ inference.
Meanwhile, MMEVOKE’s high-quality (Section 3.2) ensures reliable Sufficient Context results.

Evaluation Protocol: Cover Exact Match (CEM) and F1-Score (F1) are used as evaluation metrics in
open-domain question answering tasks. The former requires to match model prediction with ground

truth (Xu et al., 2023) and equation is CEM =

{
1, yq ⊆ Ŷ

0, otherwise
, Where Ŷ is model prediction. The

latter evaluates overlap between the model’s prediction and ground truth at the word level, balancing
Precision and Recall (Chan et al., 2024). Let W(yq) = {y1, . . . , ym} be ground truth and W(Ŷ ) =

{ŷ1, . . . , ŷn} be model’s prediction. The overlap is U(Ŷ , yq) =
∑

t∈W(yq)
1[t ∈ W(Ŷ )], where 1[·]

is the indicator function. Precision is P(Ŷ , Y ) =
U(Ŷ ,yq)

|W(Ŷ )| and Recall is R(Ŷ , Y ) =
U(Ŷ ,yq)
|W(Y )| .

4.2 PERFORMANCE OF KNOWLEDGE ADAPTATION (RQ1)

Table 2: Performance of knowledge injection
methods on MMEVOKE.

Method ALL News.Avg Entity.Avg

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 4.89 9.34 7.37 11.96 2.18 6.47
Full-FT 18.02 15.17 21.35 16.34 14.37 13.88
LoRA 15.23 18.31 17.72 19.42 12.51 17.09
MM-RAGText-Only 24.05 34.32 37.32 49.39 9.50 17.80
MM-RAGImage-Only 25.25 37.11 19.28 26.76 31.80 48.45
MM-RAGUniIR 40.68 57.51 40.12 53.21 41.30 62.23

Qwen-VL-Chat
Vanilla 5.84 10.99 7.75 12.72 3.74 9.10
Full-FT 10.16 16.61 13.35 18.22 6.65 14.83
LoRA 6.95 12.64 9.27 14.55 4.41 10.54
MM-RAGText-Only 21.79 31.28 31.51 41.14 11.13 20.47
MM-RAGImage-Only 22.31 33.09 17.82 25.15 27.24 41.79
MM-RAGUniIR 32.75 46.18 33.26 43.36 32.20 49.28

Commercial AI Web Search Engines
Gemini-2.0-Flash 18.21 26.52 21.23 27.75 14.91 25.16
Gemini-2.5-Pro 44.19 52.58 48.86 52.84 39.27 46.27
Perplexity AI 48.27 62.44 47.58 56.51 48.96 68.78
GPT-4.1 39.61 42.69 41.81 43.08 37.19 42.26

Sufficient Context
LLaVA-v1.5 56.13 75.77 56.78 72.37 55.43 79.50
Qwen-VL-Chat 48.96 66.02 49.98 63.42 47.84 68.87
Gemini-2.5-Pro 72.15 80.46 72.61 78.77 71.65 82.32
GPT-4.1 75.02 83.74 79.22 88.20 71.21 79.68 Figure 4: Case Study.

We conduct extensive experiments to evaluate knowledge injection methods on MMEVOKE. Addi-
tional results are in Appendix C. Key observations from Table 2 include:

• Obs 1: Current methods perform poorly on MMEVOKE. ❶ Specifically, the performance of
parameter-modifying methods (Full-FT, LoRA) is extremely low. For example, on Qwen-VL-Chat,
LoRA achieves only 6.95% CEM, showing minimal performance gain compared to Vanilla. ❷ MM-
RAG outperforms SFT, yet its highest performance is only 40.68% CEM and 57.51% F1. Among
these, MM-RAGText-Only and MM-RAGImage-Only variants perform comparably, while the version
using MM-RAGUniIR yields the best results. ❸ Commercial AI Search Engines can also perform
multimodal knowledge injection, but their performance varies significantly. Gemini-2.0-Flash
achieves only 18.21% CEM and 26.52% F1, far below the results of Gemini-2.5-Pro, Perplexity
AI, and GPT4.1. Although Perplexity AI and Gemini-2.5-Pro achieve 48.27% and 44.19% CEM
respectively, this performance still falls short of ideal application standards. Current methods
exhibit shortcomings such as overfitting, instruction refusal, and irrelevant responses in Figure 4.
These issues underscore the need for improved knowledge injection methods.

• Obs 2: Contrary to intuition, LMMs still provide incorrect answers even when the context is
sufficient. We often assume that accurate and sufficient information can guarantee correct answers.
However, as shown in Sufficient Context experiments in Table 2, models still give wrong answers
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under sufficient context conditions; for instance, Qwen-VL-Chat achieves only 48.96% CEM, and
even powerful commercial models like GPT-4.1 and Gemini-2.5-pro achieve only 75.02% and
72.15% CEM, respectively, failing to achieve the expected perfect accuracy. This aligns with
phenomenon observed by (Joren et al., 2025; Tang et al., 2025). This indicates that providing
context is not enough; LMM’s reasoning and utilization skills for evolving knowledge are essential.

Challenges

Challenge 1: Current knowledge injection methods perform poorly on MMEVOKE, failing to
achieve optimal performance even with sufficient context.

4.3 PERFORMANCE OF KNOWLEDGE RETENTION (RQ2)

Due to the fact that only fine-tuning methods will modify model parameters in the knowledge
injection methods we evaluated, general capability testing focuses on Full-FT and LoRA. To further
test general capability of LMMs after knowledge injection, we conduct general capability test on
12 benchmarks across 7 different dimensions (Fu et al., 2024). Specifically, the evaluation tasks
include: ❶ Comprehensive Evaluation: MME (Fu et al., 2023) and MMBench (Liu et al., 2024c); ❷
OCR: SEEDBench2 Plus (Li et al., 2024a) and OCRBench (Liu et al., 2023b); ❸ Multidisciplinary:
ScienceQA (Lu et al., 2022) and MMMU (Yue et al., 2024); ❹ Instruction Following: MIA-
Bench (Qian et al., 2024); ❺ Multi-Round QA: MMDU (Liu et al., 2025b); ❻ Mathematical
Reasoning: MathVista (Lu et al., 2024) and MathVision (Wang et al., 2025); ❼ Hallucination:
POPE (Li et al., 2023b) and HallusionBench (Guan et al., 2024). More details in Appendix D. Table 3
illustrates quantitative results of Vanilla, Full-FT, and LoRA and we have following observations:

Table 3: The results of LLaVA-v1.5 on general capability tests. First line shows results of current
methods in general capability tests; Second line shows the percentage of capability degradation or
improvement of current methods compared to Vanilla. Red value indicates capability degradation, the
darker the color, the more severe the degradation, and Green value indicates capability improvement.
Ranking includes average degree of degradation and degradation ranking.

Method
Comprehensive OCR Multidisciplinary Instruction Multi-Round Mathematical Hallucination Ranking

MME ↑ MMBench ↑ SEEDB2P ↑ OCRBench ↑ ScienceQA ↑ MMMU ↑ MIA-Bench ↑ MMDU ↑ MathVista ↑ MathVision ↑ POPE ↑ HallusionBench ↑
Vanilla 1,865.56 64.60 38.78 30.80 69.83 28.60 66.33 26.37 25.50 13.16 86.87 21.76 -

Full-FT 956.80 52.92 31.44 28.10 67.13 24.20 25.25 13.03 24.70 11.94 74.22 9.27 8
↓48.71% ↓18.08% ↓18.93% ↓8.77% ↓3.87% ↓15.38% ↓61.93% ↓50.59% ↓3.14% ↓9.27% ↓14.56% ↓57.40% ↓25.89%

LoRA 1,233.54 53.87 30.22 25.70 66.18 21.40 29.66 13.70 23.20 12.83 73.97 8.78 7
↓33.88% ↓16.61% ↓22.07% ↓16.56% ↓5.23% ↓25.17% ↓55.28% ↓48.05% ↓9.02% ↓2.51% ↓14.85% ↓59.65% ↓25.74%

Knowledge Augmentation for Text
Knowledge
Agnostic

1467.00 56.96 32.54 26.20 68.88 22.20 22.90 10.61 22.30 8.19 81.40 8.24 10
↓21.36% ↓11.83% ↓16.09% ↓14.94% ↓1.36% ↓22.38% ↓65.48% ↓59.76% ↓12.55% ↓37.77% ↓6.30% ↓62.13% ↓27.66%

Knowledge
Aware (+3)

1488.83 58.76 39.66 26.80 68.95 26.80 23.64 10.54 23.60 9.54 73.18 16.10 4
↓20.19% ↓9.04% ↑2.27% ↓12.99% ↓1.26% ↓6.29% ↓64.36% ↓60.03% ↓7.45% ↓27.51% ↓15.76% ↓26.03% ↓20.72%

Knowledge Augmentation for Images
Knowledge
Agnostic

1436.52 57.56 29.64 26.00 66.47 20.00 21.62 10.69 20.60 9.74 81.52 6.53 11
↓23.00% ↓10.90% ↓23.57% ↓15.58% ↓4.81% ↓30.07% ↓67.41% ↓59.46% ↓19.22% ↓25.99% ↓6.16% ↓69.99% ↓29.68%

Knowledge
Aware (+3)

1248.54 54.21 36.19 25.00 66.92 27.00 18.01 10.62 20.50 8.13 77.17 13.72 9
↓33.07% ↓16.08% ↓6.68% ↓18.83% ↓4.17% ↓5.59% ↓72.85% ↓59.73% ↓19.61% ↓38.22% ↓11.17% ↓36.95% ↓26.91%

Knowledge Retention Methods
ReplayFull-FT

+10%
1,608.00 60.57 38.69 28.60 68.74 29.10 51.20 18.09 24.40 13.45 86.52 16.15 3
↓13.81% ↓6.24% ↓0.23% ↓7.14% ↓1.56% ↑1.75% ↓22.81% ↓31.40% ↓4.31% ↑2.20% ↓0.40% ↓25.78% ↓9.14%

ReplayLoRA
+10%

1,650.75 60.48 38.34 28.60 68.77 28.50 62.33 19.31 25.20 13.13 85.44 17.90 1
↓11.51% ↓6.38% ↓1.13% ↓7.14% ↓1.52% ↓0.35% ↓6.03% ↓26.77% ↓1.18% ↓0.23% ↓1.65% ↓17.74% ↓6.80%

EWC 1,360.09 50.26 33.60 25.70 65.71 25.20 29.79 13.36 23.30 12.76 76.22 10.77 5
↓27.09% ↓22.20% ↓13.36% ↓16.56% ↓5.90% ↓11.89% ↓55.09% ↓49.34% ↓8.63% ↓3.04% ↓12.26% ↓50.51% ↓22.99%

LwF 1,424.41 55.41 32.02 25.60 66.21 20.60 36.19 13.68 24.40 12.04 79.23 9.13 6
↓23.65% ↓14.23% ↓17.43% ↓16.88% ↓5.18% ↓27.97% ↓45.44% ↓48.12% ↓4.31% ↓8.51% ↓8.79% ↓58.04% ↓23.21%

MoELoRA 1732.47 63.32 38.03 20.10 69.70 28.10 64.97 18.66 25.80 12.70 83.93 18.50 2
↓7.13% ↓1.98% ↓1.93% ↓34.74% ↓0.19% ↓1.75% ↓2.05% ↓29.24% ↑1.18% ↓3.50% ↓3.38% ↓14.98% ↓8.31%

• Obs 3: All general capacities of LMMs after injection will degrade, and degree of degradation
of capacities varies in different dimensions. Specifically, the average performance of the model
significantly decreased on MME ↓41.30% , MIA-Bench ↓58.61% , MMDU ↓49.32% , and
HallusionBench ↓58.53% after undergoing Full-FT and LoRA, while the degree of decline is
relatively small on ScienceQA ↓4.55% , Mathvista ↓6.08% , and Mathvision ↓5.89% .

• Obs 4: The degradation degree of different capacities of LMMs after injection shows consis-
tent rankings in Full-FT and LoRA. Specifically, the ranking from severe to mild according to
degree of capacities degradation (calculating the mean under the same test) is as follows: Instruc-
tion Following → Multi-Round QA → Hallucination → Comprehensive Evaluation → OCR →
Multidisciplinary → Mathematical Reasoning.

• Obs 5: Capacities degradation in different dimensions is interrelated. Specifically, the degra-
dation of instruction-following capability negatively impacts other capacities. Benchmarks such as
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Prompt: Is a c++ code shown in the picture?
Answer the question using a single word or phrase.
Ground Truth: Yes.
Vanilla’s prediction: Yes.
Full-FT’s prediction: The ’Hello, World!’ program
in C++, written by Bjarne Stroustrup in 1984, has
been compiled and run on a 1950s UNIVAC I
computer......

Figure 5: Violating instruction on MME.
Figure 6: Comparison of violation in-
structions between Vanilla and Full-FT.

MME, SEEDBench2 Plus, etc, which require Yes/No or multiple-choice formats, necessitate robust
instruction-following capability. However, according to Figures 5 and 6 , we find that deterioration
in instruction-following capability exerts cascading negative effects on these capabilities.

Challenges

Challenge 2: Parameter modification methods cause capability degradation in injected LMMs,
exhibiting a consistent severity ranking and cascading effect.

5 EXPLORATIONS OF EVOLVING KNOWLEDGE INJECTION

5.1 KNOWLEDGE AUGMENTATION STRENGTHENS KNOWLEDGE ADAPTATION

Section 4.2 shows that existing methods struggle with knowledge injection. Data augmentation,
though common for limited-data scenarios, fails to improve semantic knowledge learning. Knowledge
augmentation, however, substantially enhances model comprehension and adaptation.

The core distinction between data augmentation and knowledge augmentation lies in their augmen-
tation goals: the former operates solely on surface-level features (e.g., pixel transformations in
images or replacement of synonyms in text), whereas the latter explicitly augments knowledge-related
semantic information. In Figure 7, we use Figure 1’s example of Xiaomi SU7 to illustrate both
knowledge-agnostic and knowledge-aware augmentation.

Figure 7: Examples and performance of knowledge-agnostic and knowledge-aware augmen-
tation. (a) Performance of textual knowledge augmentation across the entire MMEVOKE. (b)
Performance of visual knowledge augmentation solely on Entity subset.

• Knowledge-agnostic augmentation is a rule-based mechanical augmentation. “created” in
description of is replaced by “built” and rotation operation of “Xiaomi SU7” image does not require
understanding of “Xiaomi SU7” related knowledge, only mechanical augmentation.

• Knowledge-aware augmentation is a knowledge-driven semantic augmentation. For text,
it creatively restated knowledge based on profound understanding of description. Additionally,
introducing real-world images greatly enrich model’s perception of the concept of “Xiaomi SU7”.

Additional results are in Appendix E. Based on Figure 7 and Table 3, we have following observations:
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• Obs 6: Knowledge-agnostic augmentation leads to negative effects. In Figure 7, text/images
knowledge-agnostic augmentation results in a decrease of 5.66% and 47.36% in CEM, along with
a reduction of 7.78% and 12.76% in F1-Score, respectively. This demonstrates that knowledge-
agnostic augmentation fails to strength knowledge adaptation.

• Obs 7: Knowledge-aware augmentation strengths knowledge adaptation. In Figure 7, using
just a single data instance for textual/visual knowledge-aware augmentation yields improvements of
11.32% and 43.28% in CEM, along with 39.82% and 13.19% in F1-Score, respectively. Moreover,
performance further improves with increasing data quantity. This demonstrates that knowledge-
aware augmentation is crucial for strengthening knowledge adaptation.

• Obs 8: Surprisingly, knowledge augmentation can partially mitigate capability degradation.
In Table 3, knowledge augmentation outperforms both Full-FT and LoRA on benchmarks such as
MMBench, SEEDBench2 Plus, and ScienceQA. Furthermore, text knowledge-aware augmentation
surpasses not only Full-FT and LoRA but also conventional knowledge retention techniques (EWC
& LwF). This novel discovery points to a promising new research direction.
Insights

Insight 1: Knowledge-agnostic augmentation proves detrimental and fails to add semantic
knowledge. Conversely, knowledge-aware augmentation confirms that knowledge-centric
strategies strength knowledge adaptation and concurrently mitigate capability degradation.

5.2 KNOWLEDGE RETENTION MITIGATES CAPABILITY DEGRADATION

To efficiently mitigate capability degradation after knowledge injection, we introduce knowledge
retention methods: data replay (Replay), mixture of experts (MoELoRA (Luo et al., 2024)), parameter
regularization (EWC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017)). Specifically, we
categorize Replay into ReplayFull-FT

+10% and ReplayLoRA
+10%: randomly sampled fixed-quantity data (10% of

MMEVOKE’s data size) from LLaVA-v1.5’s pre-training data and MMEVOKE’s injection data DK
are mixed and used for fine-tuning employing Full-FT and LoRA strategies. Additional results are in
Appendix F. Table 3 shows results and we have following observations:

• Obs 9: Replay reactivates old knowledge networks by forcing model to “review the old”.
Specifically, ReplayFull-FT

+10% (ranked 3rd) and ReplayLoRA
+10% (ranked 1st) mitigate model capability

degradation across all tests. Notably, ReplayFull-FT
+10% surpasses Vanilla by 1.75% and 2.20% on

MMMU and MathVision, respectively.
• Obs 10: MoELoRA carves out dedicated zones for new knowledge to prevent parameter

conflicts. Specifically, MoELoRA (ranked 2nd) exhibits minimal degradation of only 2.05% in
instruction following and surpasses Vanilla by 1.18% on MathVista.

• Obs 11: EWC & LwF attempt to freeze prior knowledge areas through indirect and rigid
constraints. Specifically, EWC (ranked 5th) and LwF (ranked 6th) provide almost no mitigation of
degradation on MIA-Bench, MMDU, and HallusionBench. Moreover, both EWC on OCRBench,
ScienceQA, and MathVista and LwF on MMMU, MMDU, MathVision, and HallusionBench
underperform standard Full-FT and LoRA, further exacerbating capability degradation.
Insights

Insight 2: Direct Rehearsal (Replay) and Structured Separation (MoELoRA) effectively
preserve old knowledge by retraining on old data and isolating new knowledge, respectively.
Indirect Constraint (EWC, LwF) fails due to rigid parameter constraints impairing retention.

6 CONCLUSION AND DISCUSSION

In this paper, we systematically investigate multimodal evolving knowledge injection on LMMs and
propose a diverse benchmark, MMEVOKE. This work reveals two critical challenges, and correspond-
ing explorations are conducted. Current research (Allen-Zhu & Li, 2024; Omar et al., 2023; Singhal
et al., 2023) indicates that mere “data memorization” and genuine “knowledge internalization”
are distinct concepts. The former only enables models to accurately fit training data, while the
latter empowers models to effectively extract and manipulate factual knowledge. Similarly, in our
work, knowledge-agnostic and knowledge-aware augmentation exhibit this distinction, with only
knowledge-aware augmentation significantly enhancing a model’s ability to internalize knowledge.
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Although less effective than knowledge retention methods like Replay, MoELoRA, knowledge-aware
augmentation can partially mitigate capability degradation. Therefore, exploring the synergy between
these two classes of methods is a promising research direction. Potential strategies include multi-
stage training to decouple knowledge adaptation from retention, or hybrid framework that integrates
knowledge-aware augmentation into loss function. We posit that the synergy between the “proactive
learning” of knowledge augmentation and the “capability-preserving” nature of retention methods
can more effectively tackle the challenges of continuous injection of evolving knowledge.

ETHICS STATEMENT

The primary motivation for MMEVOKE is to investigate the effectiveness of existing knowledge
injection methods in learning new knowledge. Due to the scarcity of evolving knowledge in authentic
multimodal contexts, we design a pipeline to collect such data from the internet. However, information
online is complex and may contain false, harmful, or biased content. We therefore urge researchers to
collect evolving knowledge responsibly and cautiously, ensuring that the information injected into
models is accurate and safe, and that the technology is applied ethically.

REPRODUCIBILITY STATEMENT

To guarantee reproducibility, we will release all source code, MMEVOKE dataset, and trained weights
(e.g., on Hugging Face) post-review to aid the community in verifying and reproducing our findings.
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A THE USE OF LARGE LANGUAGE MODELS IN MMEVOKE

In this section, we elaborate on the precise role of large language models within MMEVOKE, as
detailed below.

• Usage 1: MMEVOKE’s construction. In Section 3.2, we specify that GPT-4o is employed for
content summarization and QA generation, which aligns with current research practices.

• Usage 2: MMEVOKE’s evaluation. In Section 4.2, we evaluate MMEVOKE using Gemini-2.0-
Flash, Gemini-2.5-Pro, Perplexity AI, and GPT-4.1, following standard benchmarking practices.

• Usage 3: General capability tests. In Section 4.3, we employ MIA-Bench, MMDU, MathVista,
and MathVision, whose evaluation requires large language models as judges—a practice consistent
with current research standards.

• Usage 4: Paper grammar polishing. The paper is initially drafted by humans and subsequently
polished for grammar using LMMs, a practice consistent with current research norms.

B MORE DETAILS ABOUT MMEVOKE

In this section, we further demonstrate the details of MMEVOKE, including benchmark presentation,
complete subfields distribution, word cloud distribution, human study, fine-grained difficulty level
results and release plan.

B.1 PRESENTATION OF MMEVOKE BENCHMARK

Figure 8 presents additional examples of MMEVOKE, encompassing four distinct subfields: Politics,
Science, Video Game, and Songs. Each subfield showcases relevant Type, Knowledge Summary,
Knowledge Image, Query, Query Image. Specifically, four examples are as follows:

Figure 8: Examples of News/Entity Evolving Knowledge in MMEVOKE, including Type, Knowl-
edge Summary, Knowledge Image, Query, Query Image. Examples are taken from different clusters:
Politics for News, Science for News, Video Game for Entity, and Songs for Entity.

• Politics: Describes the unsuccessful assassination attempt targeting former U.S. President Donald
Trump at a campaign rally in Butler, Pennsylvania, on July 13, 2024. The query question asks for
the identity of the individual depicted in the image.

• Science: Details the awarding of the 2024 Nobel Prize in Physics to John Hopfield and Geoffrey
Hinton for their contributions. The query question inquires about the person who shared the Nobel
Prize with the individual shown in the image.

• Video Game: Lists the video game Black Myth: Wukong, released on August 20, 2024. The query
question focuses on the game’s sales figures during its first month.
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• Songs: Introduces the song Apt, performed by Russ and Bruno Mars. The query question concerns
the drinking game that served as inspiration for the song.

These examples illustrate the diverse subfields of evolving knowledge captured within MMEVOKE,
providing a more detailed demonstration.

B.2 WORD CLOUD DISTRIBUTION

(a) News Evolving Knowledge. (b) Entity Evolving Knowledge.

Figure 9: Word Cloud Distributions of MMEVOKE.

In Figure 9a, we show the word cloud distribution of News evolving knowledge. It can be found
that Trump appears more often, which may be because MMEVOKE contains a large number of US
political News data. Meanwhile, in Figure 9b, we present the word cloud distribution of entity names
in the Entity evolving knowledge.

We have demonstrated the diversity of MMEVOKE benchmark through fine-grained subfields dis-
tribution, key statistics, word cloud distribution, and multiple perspectives. At the same time, our
automated pipeline can continuously collect evolving knowledge and provide injection data for the
knowledge injection field.

B.3 COMPLETE SUBFIELDS DISTRIBUTION
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Figure 10: Fine-grained subfields distribution of
News evolving knowledge.
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Figure 11: Fine-grained subfields distribution of
Entity evolving knowledge.

In Figures 10 and 11, we comprehensively illustrate the fine-grained subfields distribution of the
MMEVOKE benchmark, which includes 29 distinct subfields for News evolving knowledge and
130 subfields for Entity evolving knowledge, underscoring its exceptional diversity. This bench-
mark serves as a critical resource for the evolving knowledge injection domain, providing a robust
foundation for advancing research and development in the field.
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B.4 DENSITY DISTRIBUTION

Figure 12: Density distribution based on evolving knowledge sources.

Figure 13: Density distribution of fine-grained subfields based on evolving knowledge.

B.5 HUMAN STUDY TOWARDS BENCHMARK QUALITY TEST

To verify the hallucination level of GPT-4o in data generation, We randomly selected 100 pieces
of data from MMEVOKE during manual selection for human study. Specifically, four annotators
scored the samples (1-5 scales, higher scores indicate greater purity) from the perspectives of content
summarization, QA generation, and whether the summary contained information necessary to answer
the question. According to the results in Table 4, MMEVOKE exhibits high quality, demonstrating
minimal hallucination during the data construction process.

Table 4: Human Study Towards Benchmark Quality Test.
Dimension ALL News Entity

MMEVOKE
Q&A 4.86 (±0.01) 4.87 (±0.01) 4.85(±0.02)

Summary 4.98 (±0.01) 4.97 (±0.01) 4.98 (±0.02)

B.6 FINE-GRAINED DIFFICULTY LEVEL OF MMEVOKE

Table 5: The performance of different difficulty levels on MMEVOKE.

Task Method
ALL News Entity

CEM F1-Score CEM F1-Score CEM F1-Score

SimpleVQA Full-FT 16.55 14.82 17.43 14.12 15.53 15.61
Sufficient Context 55.63 76.00 55.59 72.05 55.68 80.54

3-Hop Full-FT 12.15 5.65 11.18 5.22 13.26 6.14
Sufficient Context 40.49 52.58 38.16 51.49 43.18 53.82

Counterfactual Reasoning Full-FT 70.42 70.42 74.01 74.01 66.29 66.29
Sufficient Context 76.58 76.58 65.46 65.46 89.39 89.39

To further diversify MMEVOKE, we constructed 568 Counterfactual Reasoning and 3-Hop QA pairs
using GPT-4o, and extracted their corresponding SimpleVQA data, yielding experimental results
comparing fine-grained difficulty levels. The SimpleVQA here refers to the QA data of MMEVOKE
itself. Table 5 shows the difficulty ranking: Counterfactual Reasoning < SimpleVQA < 3-Hop, and
48.24% (avg) of cases have SimpleVQA failing while Counterfactual Reasoning succeeding, and
40.06% (avg) have SimpleVQA succeeding but 3-Hop failing.
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C MORE RESULTS ABOUT MMEVOKE

C.1 MORE QUANTITATIVE EXPERIMENTAL RESULTS ABOUT RQ1

Table 6: Performance of knowledge injection methods on MMEVOKE. ALL, News.Avg, and
Entity.Avg respectively show the performance of knowledge injection methods on entire MMEVOKE,
News subset, and Entity subset. Orange value marks the best performance of methods on LLaVA-
v1.5 and Qwen-VL-Chat, as well as the best performance of models in Web Search Engine and
Sufficient Context (vertical perspective). Red value indicates knowledge subfield with the best
performance of the same method and model on different fine-grained subfields, while blue value
indicates knowledge subfield with the worst performance (horizontal perspective). PO: Politics; SP:
Sports; BU: Business; HE: Health; CE: Celebrity; FI: Film; AL: Album; WR: Written Work.

Method
ALL

News Entity

Avg PO SP BU HE Avg CE FI AL WR

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 4.89 9.34 7.37 11.96 1.92 5.86 4.59 9.74 10.70 15.99 10.12 17.54 2.18 6.47 1.37 6.48 2.39 5.71 3.77 6.02 6.78 11.24
Full-FT 18.02 15.17 21.35 16.34 12.92 10.99 22.49 20.88 27.31 20.95 19.84 16.47 14.37 13.88 13.11 16.93 12.39 13.16 12.17 7.66 20.34 8.43
LoRA 15.23 18.31 17.72 19.42 10.54 12.96 19.11 21.50 20.66 24.03 17.81 23.76 12.51 17.09 12.20 21.19 12.39 15.82 10.72 8.72 20.34 12.94
MM-RAGText-Only 24.05 34.32 37.32 49.39 22.18 36.25 47.88 54.77 34.87 51.07 36.44 50.95 9.50 17.80 15.14 25.39 1.93 4.04 2.90 13.86 3.39 13.07
MM-RAGImage-Only 25.25 37.11 19.28 26.76 9.35 16.96 33.37 39.19 19.56 29.46 18.22 28.60 31.80 48.45 26.37 43.01 39.09 47.58 40.29 58.14 28.81 53.68
MM-RAGUniIR 40.68 57.51 40.12 53.21 21.81 35.08 56.23 65.94 39.85 57.08 35.22 50.93 41.30 62.23 41.01 63.94 48.86 58.98 41.45 63.02 35.59 60.09

Qwen-VL-Chat
Vanilla 5.84 10.99 7.75 12.72 3.21 7.69 4.47 10.37 10.52 14.92 10.93 19.32 3.74 9.10 1.78 8.06 8.18 13.10 4.35 6.93 8.47 16.81
Full-FT 10.16 16.61 13.35 18.22 6.42 11.80 12.70 17.11 16.42 22.27 17.00 25.42 6.65 14.83 5.39 14.68 11.59 17.95 5.22 10.83 15.25 21.69
LoRA 6.95 12.64 9.27 14.55 4.31 9.24 5.68 11.82 12.55 17.79 12.96 21.64 4.41 10.54 2.34 9.54 9.32 14.96 5.22 8.04 10.17 18.07
MM-RAGText-Only 21.79 31.28 31.51 41.14 20.71 29.81 30.71 40.75 32.29 43.38 33.20 47.56 11.13 20.47 13.36 24.27 8.41 14.02 6.67 15.27 11.86 19.60
MM-RAGImage-Only 22.31 33.09 17.82 25.15 9.26 15.97 20.80 29.82 18.45 28.33 18.62 29.38 27.24 41.79 20.27 33.52 33.98 45.81 39.42 53.80 33.90 54.43
MM-RAGUniIR 32.75 46.18 33.26 43.36 18.15 27.56 32.77 44.90 37.08 49.25 31.98 44.96 32.20 49.28 28.20 45.05 37.16 50.60 41.45 56.57 42.37 65.29

Commercial AI Web Search Engines
Gemini-2.0-Flash 18.21 26.52 21.23 27.75 10.91 16.87 21.64 27.45 22.88 30.03 17.41 28.32 14.91 25.16 10.11 20.35 28.64 37.47 14.49 23.87 16.95 28.77
Gemini-2.5-Pro 44.19 52.58 48.86 52.84 39.07 52.28 31.90 37.00 51.11 57.22 58.04 59.97 39.27 46.27 24.29 35.81 63.98 73.14 53.62 68.36 42.37 57.40
Perplexity AI 48.27 62.44 47.58 56.51 34.78 43.14 56.13 66.19 41.82 54.33 35.29 47.88 48.96 68.78 47.03 70.95 62.22 73.65 54.41 68.54 43.75 59.17
GPT-4.1 39.61 42.69 41.81 43.08 25.23 26.07 52.60 52.43 34.82 42.45 47.60 50.81 37.19 42.26 24.29 26.53 57.50 62.41 58.26 62.94 30.51 47.61

Sufficient Context
LLaVA-v1.5 56.13 75.77 56.78 72.37 38.77 58.44 75.09 84.69 54.61 74.33 48.58 67.01 55.43 79.50 52.08 78.83 75.91 89.71 57.39 78.80 49.15 69.96
Qwen-VL-Chat 48.96 66.02 49.98 63.42 35.20 50.29 52.00 68.90 50.55 67.25 48.18 62.02 47.84 68.87 43.29 66.15 62.05 75.92 58.55 75.41 47.46 67.79
Gemini-2.5-Pro 72.15 80.46 72.61 78.77 57.01 65.75 86.34 89.63 71.77 81.65 62.35 74.65 71.65 82.32 73.53 80.89 81.14 88.09 75.07 85.59 52.54 72.05
GPT-4.1 75.02 83.74 79.22 88.20 53.62 65.21 84.04 90.23 69.37 80.75 68.83 79.56 71.21 79.68 80.74 88.02 88.18 91.97 86.38 91.58 59.32 74.86

Table 6 presents the quantitative experimental results of RQ1, revealing that no method achieves robust
injection performance, with significant performance variance observed across different fine-grained
subfields knowledge. Specifically, We have obtained further observations:

• Obs 1: In Table 6, across nearly all evaluated methods, News knowledge injection performance
consistently outperforms Entity knowledge. We attribute this gap to their fundamental differences
in learning difficulty. Entity knowledge introduces entirely novel concepts to model, posing a
substantial learning challenge. In contrast, News knowledge primarily establishes new and complex
relationships among existing entities, which represents a comparatively lower learning barrier.

• Obs 2: The performance of knowledge in the same subfield varies depending on the method used.
For example, in Full FT, LoRA, and MM-RAGText-Only, the performance of film knowledge is poor.
In sharp contrast, it performs better when using MM-RAGImage-Only, MM-RAGUniIR, Sufficient
Context, and Web Search.

• Obs 3: A significant performance variance among different strategies within same method. Notably,
MM-RAGText-Only is more effective for injecting News knowledge, while MM-RAGImage-Only is
better suited for Entity knowledge. This discrepancy indicates that knowledge injection is optimized
when the modality of the feature aligns with the nature of the knowledge source (textual features
for News and visual features for Entity).

• Obs 4: The performance of the same subfield knowledge differs across models. For instance,
Health and Written work perform better on Qwen-VL-Chat; Sport and Business perform better on
LLaVA-v1.5. This is likely due to significant distributional differences in types of knowledge data
encountered during pre-training of different models.

• Obs 5: Politics knowledge contains a wide range of professional terms and complex concepts that
are difficult to learn, ranking lowest among almost all methods.

Observations

Observation 1: Current knowledge injection methods have significant domain specificity for
different fine-grained subfield knowledge.
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Table 7: The performance of knowledge injection methods on Entity subset of MMEVOKE.
TEL: Television Series; COM: Company; VID: Video Game; CHU: Church Building; SIN: Single;
OGR: Organization; PAI: Painting; MOT: Motor Car.

Method
TEL COM VID CHU SIN ORG PAI MOT

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 6.15 9.77 1.12 5.69 0.00 3.16 0.00 6.39 4.55 9.51 2.70 6.31 0.00 11.90 0.00 4.76
Full-FT 13.97 10.29 29.21 14.15 10.34 7.32 26.53 22.67 15.91 8.55 27.03 15.52 17.86 13.83 7.14 6.21
LoRA 15.64 16.20 10.11 11.42 12.07 15.24 14.29 24.54 20.45 20.39 16.22 17.45 14.29 14.42 0.00 1.41
MM-RAGText-Only 3.35 6.15 4.49 14.31 5.17 21.81 8.16 18.10 2.27 20.72 2.70 13.69 14.29 21.31 7.14 27.55
MM-RAGImage-Only 36.87 54.26 30.34 57.23 29.31 59.73 40.82 66.33 34.09 56.78 24.32 49.88 53.57 70.95 21.43 57.93
MM-RAGUniIR 41.34 62.91 30.34 63.49 32.76 65.77 34.69 64.30 31.82 61.50 29.73 59.19 64.29 85.12 21.43 68.30

Qwen-VL-Chat
Vanilla 7.82 11.33 1.12 7.32 1.72 2.59 0.00 10.20 6.82 11.33 0.00 2.88 7.14 13.10 0.00 10.37
Full-FT 8.94 16.49 1.12 11.05 3.45 15.54 2.04 16.91 6.82 15.75 5.41 8.61 10.71 12.93 7.14 15.48
LoRA 7.26 11.55 1.12 8.64 1.72 3.85 2.04 9.90 6.82 13.61 2.70 5.59 10.71 15.95 0.00 8.33
MM-RAGText-Only 7.26 13.22 7.87 23.37 8.62 25.35 4.08 12.90 13.64 31.20 13.51 19.91 14.29 23.45 14.29 30.36
MM-RAGImage-Only 22.91 38.39 30.34 55.94 18.97 56.23 38.78 52.91 31.82 56.92 29.73 45.95 39.29 48.45 14.29 46.90
MM-RAGUniIR 19.67 23.81 30.34 63.84 18.97 59.04 28.57 50.26 34.09 59.51 43.24 63.13 42.86 52.62 14.29 46.90

Commercial AI Web Search Engines
Gemini-2.0-Flash 19.55 31.14 8.99 20.82 10.34 25.01 10.20 21.56 9.09 22.58 18.92 25.02 14.29 16.43 0.00 26.11
Gemini-2.5-Pro 58.10 74.71 41.57 66.09 46.55 65.25 20.41 33.07 43.18 66.37 43.24 59.98 46.43 38.27 7.14 35.48
Perplexity AI 43.90 54.59 30.00 52.08 33.33 48.41 62.50 75.83 50.00 70.00 33.33 54.07 85.71 83.67 33.33 13.33
GPT-4.1 50.28 62.08 52.81 57.02 53.45 65.23 22.45 29.31 38.64 47.03 45.95 52.43 17.86 20.53 0.00 15.99

Sufficient Context
LLaVA-v1.5 56.42 81.18 41.57 78.05 34.48 68.72 44.90 72.48 45.45 68.79 45.95 79.70 75.00 90.12 35.71 73.15
Qwen-VL-Chat 51.96 72.08 39.33 73.62 25.86 63.28 34.69 62.88 36.36 62.62 43.24 65.69 42.86 55.60 42.86 73.47
Gemini-2.5-Pro 69.27 85.95 64.04 81.32 58.62 78.70 55.10 75.18 68.18 82.72 56.76 78.37 89.29 85.62 50.00 78.25
GPT-4.1 77.09 90.22 70.79 86.21 67.24 83.84 59.18 77.77 79.55 91.44 64.86 83.24 89.29 91.90 64.29 84.97

Table 8: The performance of knowledge injection methods on News subset of MMEVOKE. ENT:
Entertainment; TEC: Tech; SCI: Science; TRA: Travel; FOO: Food; CLI: Climate; INV: Investing;
STY: Style.

Method
ENT TEC SCI TRA FOO CLI INV STY

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Vanilla 6.79 9.35 6.79 9.35 6.79 9.35 11.90 18.57 10.26 17.83 8.11 13.87 18.28 23.71 13.93 16.20
Full-FT 18.67 11.47 28.29 17.02 15.79 12.56 28.57 24.16 35.90 24.54 27.03 13.02 44.09 25.06 31.15 19.17
LoRA 16.98 15.70 27.63 25.96 8.77 18.73 23.81 29.91 20.51 18.83 16.22 18.02 34.41 28.13 19.67 19.45
MM-RAGText-Only 39.81 48.79 46.05 55.21 36.84 55.71 38.10 54.50 33.33 50.85 37.84 53.51 37.63 47.06 68.85 78.51
MM-RAGImage-Only 21.76 28.07 23.03 28.02 22.81 38.42 21.43 30.09 23.08 36.32 18.92 26.04 25.81 31.61 22.13 25.67
MM-RAGUniIR 52.16 63.67 42.11 51.77 33.33 52.89 47.62 62.83 41.03 57.78 35.14 53.06 38.71 48.23 59.84 67.32

Qwen-VL-Chat
Vanilla 6.79 9.90 14.47 16.10 8.77 14.95 9.52 16.59 10.26 16.24 10.81 12.07 23.66 29.27 13.11 16.19
Full-FT 11.27 14.64 17.11 18.79 8.77 13.78 14.29 23.89 17.95 27.35 18.92 21.42 35.48 38.34 16.39 19.18
LoRA 7.41 11.01 16.45 18.76 8.77 13.93 7.14 15.00 7.69 17.52 13.51 14.77 24.73 30.44 15.57 17.72
MM-RAGText-Only 31.48 38.00 46.71 51.27 42.11 48.99 38.10 50.56 20.51 39.66 35.14 46.65 43.01 52.75 60.66 66.14
MM-RAGImage-Only 20.06 24.82 22.37 27.06 33.33 42.59 21.43 31.67 20.51 27.35 24.32 31.40 30.11 36.37 19.67 23.81
MM-RAGUniIR 42.75 50.25 41.45 45.18 47.37 55.69 40.48 50.46 28.21 44.36 32.43 44.34 43.01 52.93 51.64 56.70

Commercial AI Web Search Engines
Gemini-2.0-Flash 24.69 29.98 38.82 46.00 15.79 22.97 16.67 30.40 23.08 30.52 10.81 19.28 38.71 45.72 30.33 32.60
Gemini-2.5-Pro 59.72 61.28 63.82 60.26 31.58 37.64 52.38 63.00 48.72 56.44 48.65 44.35 52.69 51.29 69.67 68.13
Perplexity AI 59.85 64.15 47.06 55.20 45.45 49.13 50.00 70.05 33.33 40.74 37.50 64.58 33.33 40.12 71.88 74.36
GPT-4.1 46.30 43.64 57.24 59.50 22.81 35.29 50.00 50.29 66.67 56.89 40.54 35.21 55.91 55.73 50.82 50.84

Sufficient Context
LLaVA-v1.5 65.12 78.31 63.82 77.61 47.37 66.30 57.14 72.37 51.28 76.58 51.35 63.07 60.22 72.83 75.41 85.18
Qwen-VL-Chat 61.42 68.99 62.50 72.69 43.86 63.14 45.24 58.56 51.28 64.66 48.65 56.68 53.76 65.04 68.03 75.70
Gemini-2.5-Pro 81.17 83.08 75.00 82.33 61.40 66.34 73.81 82.47 66.67 81.28 70.27 74.10 75.27 77.29 82.79 83.34
GPT-4.1 78.70 83.73 82.89 85.12 61.40 72.69 69.05 80.41 69.23 78.69 62.16 67.85 68.82 77.61 89.34 91.33

Tables 7 and 8 present richer experimental results of fine-grained subfields, further verifying the
significant domain specificity of existing knowledge injection methods and their inability to robustly
implement knowledge injection.

C.2 SEQUENTIAL FINE-TUNING

C.2.1 SEQUENTIAL FINE-TUNING BASED ON TASKS

Sequential Fine-Tuning refers to the process of incrementally training models on new tasks and
data. Specifically, model weights obtained from previous tasks and data are used to initialize model
parameters (Chen et al., 2025). In this section, we explore whether Sequential Fine-Tuning is more
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effective than One-Time Injection? We employed MMEVOKE for knowledge injection, randomly
dividing the data into subsets of 4, 8, and 12 tasks. We consider each subset as a task and use these
subsets to Sequential Fine-Tuning the model.

Sequential Fine-Tuning impede the effective injection of multimodal evolving knowledge. As
illustrated in Figure 14, the performance of LMMs exhibits a declining trend with progressive
Sequential Fine-Tuning based on tasks. This degradation primarily stems from the disruption of
previously fine-tuning parameters during each subsequent fine-tuning iteration. Consequently, the
overall performance of LMMs progressively deteriorates. Furthermore, our investigation into the
impact of Sequential Fine-Tuning steps revealed a negative correlation between the number of steps g
and LMMs performance, as evidenced by the values corresponding to the terminal points in each line
graph. These findings underscore the importance of minimizing Sequential Fine-Tuning in practical
applications to preserve model efficacy.

Figure 14: The results of LLaVA-v1.5 on Sequential Fine-Tuning based on Tasks. The data
DK and DQ are evenly divided into g ∈ {4, 8, 12} parts, namely DK =

{
d1k, d

2
k, . . . , d

n
k

}g

n=1
and

DQ =
{
d1q, d

2
q, . . . , d

n
q

}g

n=1
. Sequential Fine-Tuning based on tasks refer to the situation where if

the current m-th Sequential Fine-Tuning has ended, it indicates that the model is being trained on
d1k, d

2
k, . . . , d

m
k in sequence; and evaluated on

{
d1q ∪ d2q ∪ · · · ∪ dmq

}
.

C.2.2 SEQUENTIAL FINE-TUNING BASED ON SUBSETS

Figure 15: The results of LLaVA-v1.5 on Sequential Full-FT based on Subsets. Sequential
Full-FT based on subset refer to the situation where if the current m-th Sequential Full-FT has ended,
it indicates that the model is being trained on d1k, d

2
k, . . . , d

m
k in sequence; and evaluate sequentially

on one of d1q, d2q, . . . , dmq .

The results of Sequential Fine-Tuning based on subsets are shown in Figure 15 and 16. Each subgraph
displays the performance changes of the LMMs on the same subset as the Sequential Fine-Tuning
process progresses. It can be observed that whether using Full-FT or LoRA as training strategies,
as the number g of Sequential Fine-Tuning increases, the performance of the model on the same
subset shows a downward trend. This discovery further indicates that Sequential Fine-Tuning is not
conducive to injecting up-to-date knowledge into the LMMs.
Observations

Observation 2: Both sequential task and subset fine-tuning impede the efficacy of knowledge
injection, with performance degradation correlating with an increased number of tasks or
subsets.
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Figure 16: The results of LLaVA-v1.5 on Sequential LoRA based on Subsets. Sequential LoRA
based on subset refer to the situation where if the current m-th Sequential LoRA has ended, it indicates
that the model is being trained on d1k, d

2
k, . . . , d

m
k in sequence; and evaluate sequentially on one of

d1q, d
2
q, . . . , d

m
q .

C.3 ABLATION EXPERIMENTS IN MM-RAG

Retrieval strategy, Example Number, and Pool Size are critical factors influencing the performance
of MM-RAG, as demonstrated by the experimental results presented in Figure 17 and 18.

• Effect of Retrieval Strategy in MM-RAG. An interesting observation appears in the “News”
subgraph, where the Text-Only approach significantly outperforms the Image-Only strategy. The
reason for this difference is that textual information is more important for news understanding than
visual information, as valuable data cannot be retrieved solely through images. On the contrary, for
Entity knowledge, visual information is more valuable than textual information.

• Effect of Example Number in MM-RAG. We compared K ∈ {1, . . . , 5}, and in the first row
of Figure 17, the direct correlation between the performance of model and Example Number is
shown. Our experiment revealed a convincing trend that the model performs using a monotonically
increasing function of Example Number K for three retrieval strategies. This observation indicates
that an increase in the example number brings more diverse reference information, which has a
positive effect on the model’s understanding and utilization of evolving knowledge.

• Effect of Retrieval Pool Size in MM-RAG. Regarding the ablation experiment of pool size, our
setup is to randomly select 20% of the corresponding data from DQ and DK as DQ

20% and
DK

20%; For instance, when Pool Size = 20%, Retrieve Pool = DQ
20%; When Pool Size = 60%,

Retrieve Pool = DK
20% + DJ ,where DJ is a randomly selected 40% data from the DK \DK

20%.
The evaluation data is always DQ

20%. The experimental results, presented in the second row of
Figure 18, demonstrate an inverse correlation between MM-RAG’s performance and Pool Size.
This suggests that larger pool sizes hinder the retriever’s ability to identify relevant information, a
critical consideration for practical MM-RAG applications.

Figure 17: The results of LLaVA-v1.5’s ablation
study on MM-RAG about Retrieval Strategy
and Example Number analysis.

Figure 18: The results of LLaVA-v1.5’s ablation
study on MM-RAG about Retrieval Strategy
and Pool Size analysis.
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Observations

Observation 3: Cross-modal retrieval strategies, a larger number of examples, and a smaller
retrieval pool size all contribute to strengthening knowledge injection performance.

C.4 MORE QUALITATIVE RESULTS ABOUT MMEVOKE

Figure 19: Qualitative example of CNN News science knowledge.

Figure 20: Qualitative example of Wikipedia Entity automobile model knowledge.

C.5 ERROR ANALYSIS

Observing the qualitative examples in Figures 19, 20, and 21, we find that, as demonstrated by the
results in Table 6, existing knowledge injection methods perform poorly on MMEVOKE, with even
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sufficient context failing to achieve perfect performance. Here, we conduct a detailed analysis of
sufficient context.

Even when provided with sufficient context, the model still generates hallucinations. For instance, in
Figure 19, the response given by GPT-4.1 is entirely unrelated to the question and does not appear in
the sufficient context, representing a severe hallucination phenomenon. A similar hallucination issue
persists in Figure 20. These concrete results indicate that merely improving the sufficiency of context
is far from adequate—the model’s inherent reasoning and ability to utilize contextual information are
equally critical. Hallucination remains an urgent problem to be addressed.

Figure 21: Qualitative example of Wikipedia Entity video games knowledge.

Observations

Observation 4: Despite being provided with sufficient context, the model still exhibits severe
hallucinations.
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D MORE DETAILS ON CAPABILITY DEGRADATION

D.1 CAPABILITY DEGRADATION RANKING

Table 9: The degree of general capability degradation results. The displayed values are obtained
by calculating the mean based on the results in Table 3.

Method
Comprehensive OCR Multidisciplinary Instruction Multi-Round Mathematical Hallucination

Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓ Loss ↓ Rank ↓

Full-FT ↓33.40% 4 ↓13.85% 3 ↓9.63% 2 ↓61.93% 7 ↓50.59% 6 ↓6.20% 1 ↓35.98% 5
LoRA ↓25.24% 4 ↓19.32% 3 ↓15.20% 2 ↓55.28% 7 ↓48.05% 6 ↓5.76% 1 ↓37.25% 5

Knowledge Augmentation for Text
Knowledge Agnostic ↓16.60% 3 ↓15.51% 2 ↓11.87% 1 ↓65.48% 7 ↓59.76% 6 ↓25.16% 4 ↓34.21% 5
Knowledge Aware (+3) ↓14.62% 3 ↓5.36% 2 ↓3.78% 1 ↓64.36% 7 ↓60.03% 6 ↓17.48% 4 ↓20.89% 5

Knowledge Augmentation for Images
Knowledge Agnostic ↓16.95% 1 ↓19.58% 3 ↓17.44% 2 ↓67.41% 7 ↓59.46% 6 ↓22.60% 4 ↓38.07% 5
Knowledge Aware (+3) ↓24.58% 4 ↓12.75% 2 ↓4.88% 1 ↓72.85% 7 ↓59.73% 6 ↓28.91% 5 ↓24.06% 3

Knowledge Retention Methods
ReplayFull-FT

+10% ↓10.02% 4 ↓3.69% 3 ↑0.09% 1 ↓22.81% 6 ↓31.40% 7 ↓1.06% 2 ↓13.09% 5
ReplayLoRA

+10% ↓8.95% 5 ↓4.14% 3 ↓0.93% 2 ↓6.03% 4 ↓26.77% 7 ↓0.70% 1 ↓9.69% 6
EWC ↓24.65% 4 ↓14.96% 3 ↓8.89% 2 ↓55.09% 7 ↓49.34% 6 ↓5.83% 1 ↓31.38% 5
LwF ↓18.94% 4 ↓17.16% 3 ↓16.58% 2 ↓45.44% 6 ↓48.12% 7 ↓6.41% 1 ↓33.42% 5
MoELoRA ↓4.56% 4 ↓18.34% 6 ↓0.97% 1 ↓2.05% 3 ↓29.24% 7 ↓1.16% 2 ↓9.18% 5

Based on Table 3, we calculate the mean degradation levels for each capability dimension. Table 9
reveals that both Full-FT and LoRA exhibit a consistent ranking of capability degradation: Instruction
Following → Multi-Round QA → Hallucination → Comprehensive Evaluation → OCR → Mul-
tidisciplinary → Mathematical Reasoning. The identical ranking is also maintained in knowledge
retention. Only ReplayLoRA

+10% and MoELoRA show significantly alleviated degradation rankings in
instruction-following, rising to 4th and 3rd place respectively.

D.2 FINE-GRAINED DIMENSIONAL RESULTS ON GENERAL CAPABILITY TESTS

To effectively evaluate the specific capability degradation caused by knowledge injection in LMMs,
we utilized 12 benchmarks across 7 task categories:

1. MME (Fu et al., 2023) is a comprehensive evaluation benchmark designed to assess the perfor-
mance of LMMs across 14 distinct tasks, encompassing both perception and cognition abilities.
To ensure fair and accurate comparisons, MME provides concise, manually designed instruction-
answer pairs, eliminating the need for extensive prompt engineering.

2. MMBench (Liu et al., 2024c) is a bilingual benchmark designed to evaluate the comprehensive
capabilities of LMMs across multiple modalities. It offers a meticulously curated dataset with
over 3,000 multiple-choice questions covering 20 distinct ability dimensions, such as object
localization and social reasoning. Additionally, MMBench provides questions in both English and
Chinese, enabling comparative evaluations of LMM performance across these languages.

3. SEEDBench2 Plus (Li et al., 2024a) comprehensively evaluates LMMs’ understanding of text-
rich visuals (charts, maps, web pages). Comprising 2,300 multiple-choice questions across these
categories, it assesses reasoning capabilities in real-world scenarios where text and visuals inter-
twine—addressing gap for applications like document analysis and web content understanding.

4. OCRBench (Liu et al., 2023b) is a comprehensive evaluation benchmark designed to assess the
OCR)capabilities of LMMs. It encompasses 29 datasets across five key tasks: Text Recognition,
Scene Text-Centric VQA, Document-Oriented VQA, Key Information Extraction (KIE), and
Handwritten Mathematical Expression Recognition (HMER). The benchmark aims to provide
a thorough assessment of LMMs’ performance in various text-related visual tasks, highlighting
their strengths and weaknesses, particularly in handling multilingual text, handwritten text, non-
semantic text, and mathematical expressions.

5. MMMU (Yue et al., 2024) is a comprehensive benchmark designed to evaluate LMMs on tasks
that require college-level subject knowledge and deliberate reasoning. It comprises 11,500
meticulously curated multimodal questions sourced from college exams, quizzes, and textbooks,
spanning six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities
& Social Science, and Technology & Engineering. These questions cover 30 subjects and 183
subfields, featuring 30 diverse image types such as charts, music sheets, and chemical structures.
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6. MIA-Bench (Qian et al., 2024) is a benchmark designed to evaluate the ability of LMMs to adhere
strictly to complex instructions. It comprises a diverse set of 400 image-prompt pairs, each crafted
to challenge models’ compliance with layered instructions, requiring accurate and contextually.

7. MMDU (Liu et al., 2025b) is a comprehensive evaluation framework designed to assess the
capabilities of LMMs in handling multi-turn, multi-image dialog scenarios. It focuses on under-
standing complex interactions involving multiple images and sequential dialog turns, which are
critical for real-world applications like visual storytelling, medical diagnosis, and interactive AI
systems. The benchmark includes a diverse dataset with rich annotations, enabling models to
be fine-tuned and evaluated on tasks requiring contextual reasoning, image-text alignment, and
temporal coherence.

8. MathVista (Lu et al., 2024) evaluates foundation models’ mathematical reasoning in visual
contexts. It comprises 6,141 examples from 28 existing multimodal datasets, augmented with
three new datasets (IQTest, FunctionQA, PaperQA), requiring fine-grained visual understanding
and compositional reasoning.

9. MathVision (Wang et al., 2025) is a meticulously curated dataset comprising 3,040 high-quality
mathematical problems, each embedded within a visual context and sourced from real mathematics
competitions. This benchmark spans 16 distinct mathematical disciplines and is organized across
five levels of difficulty, offering a comprehensive platform to evaluate the mathematical reasoning
abilities of LMMs.

10. HallusionBench (Guan et al., 2024) is a comprehensive benchmark designed to evaluate LMMs
on their ability to accurately interpret and reason about visual data, specifically addressing issues
of language hallucination and visual illusion. It comprises 346 images paired with 1,129 questions
among visual dependent and visual supplement. The benchmark introduces a novel structure for
visual questions, enabling quantitative analysis of models’ response tendencies, logical consistency,
and various failure modes.

11. POPE (Li et al., 2023b) is a benchmark designed to systematically assess object hallucination
in LMMs. Object hallucination refers to the tendency of these models to generate descriptions
containing objects not present in the corresponding images. POPE addresses this issue by
implementing a polling-based query method that evaluates models’ accuracy in identifying the
existence of specific objects within images. This approach provides a more stable and flexible
evaluation of object hallucination, revealing that current LMMs often generate objects inconsistent
with the target images.

Figure 22: Fine-grained dimensional results on MME and MMBench.

According to Figures 22, 23, 24, 25, and 26, we conduct result analysis for each benchmark.

1. MME: Results on the MME benchmark indicate that both Full-FT and LoRA significantly degrade
LLaVA’s perception and cognition capabilities, with perception exhibiting a more pronounced
decline. We attribute this primarily to MMEVOKE’s focus on cognition tasks and its lack
of substantial perception content. While the replay method effectively mitigates forgetting in
perception abilities (e.g., outperforming Vanilla in Position tasks), it shows limited efficacy for
cognition (e.g., poor performance in Numerical Calculation and Text Translation). This disparity
likely stems from LLaVA’s original training data heavily emphasizing perception. Overall, EWC
and LwF are less effective at mitigating forgetting than MoELoRA, though all three methods
perform relatively well on the Text Translation task.
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2. MMBench: Experimental results show that both Full-FT and LoRA significantly degrade LLaVA’s
performance in the perceptually demanding Attribute Comparison task, while enabling superior
performance in the Physical Relationship task due to MMEVOKE’s relational data. For capability
degradation mitigation, Replay and MoELoRA remain most effective. Notably, the EWC method
underperforms even Full-FT and LoRA across 16 tasks (including Attribute Comparison, Attribute
Recognition, Celebrity Recognition, and Function Reasoning), directly indicating the instability
of this parameter-regularization approach.

Figure 23: Fine-grained dimensional results on SEEDBench2 Plus, OCRBench and MMMU.

3. SEEDBench2 Plus: Both Full-FT and LoRA reduce LLaVA’s performance on SEEDBench2 Plus,
with LoRA underperforming compared to Full-FT. Among knowledge retention methods, only
Replay outperforms the Vanilla approach in Web tasks.

4. OCRBench: Experimental result shows Full-FT and LoRA exhibit relatively less degradation in
OCR tasks, potentially due to their text-information focus, while outperforming Vanilla in Key
Information Extraction. However, LwF and MoELoRA demonstrate unstable degradation miti-
gation—underperforming Full-FT/LoRA in Text Recognition and Scene Text Centric VQA, yet
showing opposite trends to all other methods (Full-FT, LoRA, Replay, EWC) in Key Information
Extraction.

5. MMMU: While LoRA demonstrates superior overall performance compared to Full-FT across
most tasks , it exhibits significantly lower performance on specific MMMU domains (Business,
Science, Health & Medicine, Technology & Engineering) . We hypothesize this discrepancy
stems from the similarity between these tasks’ required information and the MMEVOKE data
distribution, with Full-FT showing greater efficacy in integrating evolving knowledge from
MMEVOKE. Concurrently, LwF consistently underperforms both Full-FT and LoRA across
multiple tasks, substantiating its inherent instability for mitigating capability degradation in
practical applications.

Figure 24: Fine-grained dimensional results on MIA-Bench, MMDU and MathVista.

6. MIA-Bench: Both Full-FT and LoRA exhibit substantial performance degradation on MIA-Bench
– particularly in the Perspective task (95.65% and 100% degradation respectively) – indicating
significant impairment of instruction-following capability attributable to the absence of instruc-
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tional content in MMEVOKE. degradation mitigation effectiveness varies substantially: EWC
shows minimal efficacy (particularly in Perspective with no measurable improvement), while LwF
provides only modest mitigation. Conversely, both MoELoRA and ReplayLoRA

+10% demonstrate supe-
rior capabilities, with ReplayLoRA

+10% achieving exceptional Perspective task performance surpassing
Vanilla.

7. MMDU: Both Full-FT and LoRA exhibit substantial degradation across multiple MMDU tasks,
primarily attributed to the absence of multi-round dialogue data in MMEVOKE. Crucially, none
of the evaluated continual learning methods effectively mitigate this degradation, substantiating
that SFT significantly impairs LLaVA’s multi-round dialogue capability and highlighting a critical
area for future improvement.

8. MathVista: Full-FT and LoRA exhibit relatively lower degradation rates, outperforming Vanilla
in reasoning tasks including Geometry Reasoning, Geometry Problem Solving, Figure Question
Answering, and Statistical Reasoning. While knowledge retention methods generally demonstrate
satisfactory degradation mitigation, they exhibit notable limitations in Logical Reasoning tasks,
likely attributable to the inherent complexity and elevated difficulty of such reasoning.

Figure 25: Fine-grained dimensional results on MathVision and HallusionBench.
9. MathVision: Both Full-FT and LoRA improve performance on MathVision, outperforming

Vanilla in Analytical Geometry, Counting, and Logical Reasoning tasks. However, knowledge
retention methods exhibit suboptimal performance in geometry-specific tasks (Geometry Area,
Geometry Length, Solid Geometry, Topology), primarily stemming from the substantial domain-
specific knowledge required for these specialized domains.

10. HallusionBench: Both full fine-tuning and LoRA exhibit limited performance on HallusionBench,
with complete degradation (100% decrease) in the VS OCR task and significant reductions in
VD figures, VS charts, and VD OCR tasks. Notably, EWC and LwF outperform Vanilla in
VD math and VS table tasks, while MoELoRA achieves exceptional performance in VS table.

Figure 26: Fine-grained dimensional results on POPE.
11. POPE: Both Full-FT and LoRA cause marginal performance degradation on POPE, potentially

attributable to the benchmark’s low complexity. Among all methods, only Replay outperforms
Vanilla in mitigating degradation, likely due to partial presence of POPE-related data in LLaVA’s
original training.
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D.3 MORE EXAMPLES OF VIOLATING INSTRUCTION

The example of violating instructions on MME

Prompt: Does this artwork belong to the type of historical?\nAnswer the question using a
single word or phrase.

Expected Answer: Yes or No.

Output: The Nuremberg Chronicle (German: N0̆0fcrnbergische Chronik) is the title of two
different medieval German chronicles, the one by Henricus (died after 1410) and the other by
Hartmann (died after 1420), both of Nuremberg. The chronicles continue the work of the
14th-century German chronicler Konrad von Megenberg and are also influenced by the Saxon
chronicle. They were written in Middle High German and cover the period from the creation
of the world to the death of Emperor Henry II

The example of violating instructions on MathVision

Prompt: Please answer the question and provide the correct option letter, e.g., A, B, C, D,
at the end. Question: Which of the figures shown bellow cannot be cut out of the figure
illustrated nearby? Choices: (A) A (B) B (C) C (D) D (E) E

Expected Answer: A or B or C or D or E.

Output: The Minesweeper puzzle is based on the game of Sudoku. The objective is
to clear the board of all cells (except for a small number in the upper left corner) by
revealing the state of each cell through a series of clues. Each clue indicates whether a
cell contains a number or a flag. The flags mark cells that are not part of the solution;
revealing a flag shows it as a number or leaves it as a flag. The game progresses through
a series of levels, with each level having more complex patterns of flags. The game ends
when all cells are revealed, and the player clears them all. The game is implemented as a
web application using HTML, CSS, and JavaScript. The logic for generating the puzzle
and checking solutions is implemented in JavaScript. The game is tested using the Bri-
enne testing framework. The game has been compared to the board game Dangerous Crossing.

The example of violating instructions on SEEDBench2 Plus

Prompt: How many sections can be accessed directly from the ”Homepage”? (A) 2 (B) 3 (C)
4 (D) 5

Expected Answer: A or B or C or D.

Output: 1. About Me 2. Projects 3. Contact

The example of violating instructions on POPE

Prompt: Is there a snowboard in the image? Answer the question using a single word or
phrase.

Expected Answer: Yes or No.

Output: A snowboard is a wide, flat board used for riding on snow, typically secured to the
rider’s feet with bindings.
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E MORE DETAILS ABOUT KNOWLEDGE AUGMENTATION ON MMEVOKE

E.1 TRAINING LOSS PERSPECTIVES ON EFFECTIVENESS OF KNOWLEDGE AUGMENTATION

Figure 27 demonstrates that the training loss of LLaVA exhibits a significant decline at the end of
each epoch under Full-FT training strategies. This behavior aligns with the LLM’s data memorization
patterns during training and overfitting, suggesting that repeated exposure to data is essential for
acquiring up-to-date knowledge. This further proves the necessity of knowledge augmentation in the
training phase, which present evolving knowledge in different variants to the model, facilitate the
model to store attribute knowledge on entities, and flexibly extract knowledge.

Figure 27: Training loss over time for LLaVA-v1.5 based on the Full-FT training strategy.

E.2 THE PERFORMANCE OF KNOWLEDGE AUGMENTATION IN GENERAL CAPABILITY TESTS

Figure 28: The performance of knowledge augmentation in general capability tests.

According to Figure 28, we have the following observations:
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• Obs 1: Knowledge augmentation is generally superior to standard Supervision Fine-Tuning.
Across all 12 general capability benchmarks evaluated, models enhanced with knowledge augmen-
tation, whether through text or images, demonstrated markedly superior performance compared
to the model trained with standard Supervised Fine-Tuning. This comprehensive superiority is
consistently observed in MME, MMBench, SEEDBench2 Plus, ScienceQA, MMMU, MMDU,
POPE, and HallusionBench.

• Obs 2: Deficiencies in instruction-following, multi-turn dialogue, and reasoning capabilities
remain apparent. On the MIA-Bench, MMDU, MathVista, and MathVision benchmarks, the
model post-knowledge augmentation underperforms a standard Supervised Fine-Tuning model.
This performance disparity is primarily attributed to the fact that the knowledge augmentation
process does not inherently enhance the aforementioned capabilities of reasoning, instruction
following, or multi-turn dialogue. Consequently, these areas represent critical directions for future
improvement and refinement.

• Obs 3: Increasing the Volume of Text Augmented Data Correlates Positively with Performance
Gains. A clear trend indicates that incrementally increasing the volume of augmentation data,
as denoted by the progression from “+1” to “+3”, generally leads to continued performance
improvements. This dose-response relationship is evident for text augmentation across most
benchmarks. For instance, in MME, MMBench, SEEDBench2 Plus, MMMU, MIA-Bench, the
“+3” versions of the augmented models consistently outperform their “+1” and “+2” counterparts.
This finding suggests that the model’s capabilities can be further enhanced through the sustained
integration of a larger and more diverse set of knowledge-rich data.
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F MORE EXPERIMENTAL RESULTS ABOUT KNOWLEDGE RETENTION
METHODS ON MMEVOKE

F.1 THE KNOWLEDGE INJECTION PERFORMANCE OF KNOWLEDGE RETENTION METHODS ON
MMEVOKE

While focusing on capability degradation mitigation via knowledge retention methods, we also evalu-
ate these methods’ performance in evolving knowledge injection, as shown in Table 10. Experimental
results show that all knowledge retention methods incur losses in evolving knowledge injection, with
MoELoRA experiencing the most significant decline, while parameter regularization methods (EWC
and LwF) retain relatively better performance. Future work could integrate the strengths of multiple
knowledge retention methods to design more comprehensive approaches.

Table 10: The knowledge injection performance of LLaVA-v1.5 regarding knowledge retention
methods on MMEVOKE. POL: Politics; SPO: Sports; BUS: Business; HEA: Health; CEL: Celebrity;
FIL: Film; ALB: Album; WRI: Written Work.

Method
ALL

News Entity

Avg POL SPO BUS HEA Avg CEL FIL ALB WRI

CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑ CEM ↑ F1 ↑

Without Knowledge Retention
Full-FT 18.02 15.17 21.35 16.34 12.92 10.99 22.49 20.88 27.31 20.95 19.84 16.47 14.37 13.88 13.11 16.93 12.39 13.16 12.17 7.66 20.34 8.43
LoRA 15.23 18.31 17.72 19.42 10.54 12.96 19.11 21.50 20.66 24.03 17.81 23.76 12.51 17.09 12.20 21.19 12.39 15.82 10.72 8.72 20.34 12.94

Pre-train data is available
ReplayFull-FT

+10% 11.07 18.03 13.53 19.60 6.87 12.88 14.39 19.58 15.13 22.89 15.38 24.31 8.37 16.31 8.69 18.11 11.48 16.53 4.93 12.57 13.56 16.44
ReplayLora

+10% 11.36 17.98 13.98 19.43 7.61 13.16 15.96 20.69 16.05 22.40 15.38 24.21 8.48 16.39 9.40 18.78 10.34 15.60 3.77 10.79 10.17 12.60

Pre-train data is unavailable
EWC 15.49 19.42 17.86 21.10 10.45 14.81 19.83 23.02 19.00 24.57 17.41 23.88 12.88 17.58 14.53 22.07 12.16 16.91 10.72 8.13 15.25 17.69
LwF 14.58 19.99 17.05 21.43 9.62 13.99 19.83 23.66 18.63 25.82 19.03 26.20 11.88 18.40 12.45 21.64 12.39 17.01 9.28 11.11 10.17 17.10
MoELoRA 7.12 12.60 10.06 15.42 4.22 9.42 7.74 12.58 13.47 19.69 12.15 21.33 3.89 9.51 4.42 11.43 3.41 7.95 3.19 4.87 10.17 15.51

Observations

Observation 5: Parameter regularization methods achieve superior knowledge injection
performance compared to data replay and MoE.

F.2 IS IT BETTER TO HAVE MORE DATA FOR REPLAY?

Figure 29: The performance of different replay data sizes in multimodal evolving knowledge
injection and mitigating capability degradation. The numbers on the x-axis of the right subgraph
correspond to the order of the benchmarks shown in Table 3

As shown in Figure 29, knowledge injection efficacy and capability degradation mitigation exhibit
non-monotonic correlation with replay data size, accompanied by significant fluctuations. Given the
computational cost escalation from data expansion, minimization of replay data size is recommended.

Observations

Observation 6: More replay data does not significantly strengthen knowledge adaptation and
retention.
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G PROMPT FOR GENERATION

The prompt templates for summary generation, question-answer generation, and phrase generation
are detailed in Figure 31 and Figure 30, respectively. All generation tasks were performed using
GPT-4o to ensure consistency and high-quality outputs.

Figure 30: Prompt for Generation of Questions and Answers.
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Figure 31: Prompt for Summary Generation.
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H KNOWLEDGE EDITING ON MMEVOKE

The knowledge base stored in Large Multimodal Models (LMMs) is essentially static, which leads to
outdated and inaccurate knowledge. Knowledge Editing (KE) is a technique widely used to efficiently
update the knowledge of large models (Zhang et al., 2024). For example, research explores how to
locate and edit factual associations in GPT and how to mass-edit memory in a Transformer (Meng
et al., 2022a;b). Knowledge Editing encompasses multiple methods and types, such as parameter-
modification-based and meta-learning approaches. Given that MMEVOKE is a multimodal and
evolving benchmark, recent research also extends into the fields of multimodal editing (Cheng et al.,
2023; Huang et al., 2024) and lifelong knowledge editing (Chen et al., 2024; Jiang et al., 2025).
Therefore, we also apply knowledge editing methods on MMEVOKE, and the experimental results
are shown in Table 8.

Table 11: The performance of knowledge editing on MMEVOKE.

#Edit FT-LLM FT-VIS RECIPE LTE LiveEdit

10 50.01 31.55 32.77 62.48 41.77
1000 42.51 29.63 31.40 52.59 42.15
2000 32.93 21.13 26.65 43.52 37.08
4000 28.14 13.54 16.54 32.88 36.97

I HUMAN STUDY ABOUT MMEVOKE

I.1 KNOWN ENTITIES WITH NEW OR CONFLICTING FACTS

As shown in Figure 32, we display the News data’s title and knowledge on a front-end webpage. We
then manually screen this data, judging whether it is a “new fact” or a “conflict fact” (fact update).
The final statistics, shown in Figure 33, include 4,149 new facts and 779 conflicting facts.

As shown in Table 12, our fine-grained analysis of knowledge injection performance reveals that
performance on conflicting facts is consistently lower. We believe this poor injection occurs because
the model resists conflicting information, likely stemming from a different cognition of its parameters.
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Table 12: Performance of entities with new facts and conflicting facts on MMEVOKE. NF represents
entities with new facts; CF represents entities with conflicting facts.

Method NF CF

CEM ↑ F1 ↑ CEM ↑ F1 ↑

LLaVA-v1.5
Full-FT 21.79 16.57 19.00 15.08
LoRA 18.25 19.76 14.89 17.64
MM-RAGText-Only 37.43 49.34 36.71 49.65
MM-RAGImage-Only 19.84 27.32 16.30 23.75
MM-RAGUniIR 40.42 53.45 38.51 51.92

Qwen-VL-Chat
Full-FT 13.59 18.47 12.07 16.92
LoRA 9.54 14.83 7.83 13.04
MM-RAGText-Only 31.77 41.75 30.17 37.90
MM-RAGImage-Only 18.32 25.61 15.15 22.74
MM-RAGUniIR 33.82 44.02 30.30 39.82

Commercial AI Web Search Engines
Gemini-2.0-Flash 22.36 28.61 20.10 26.89
Gemini-2.5-Pro 49.17 53.14 47.24 51.27
Perplexity AI 48.13 56.28 44.94 57.63
GPT-4.1 42.24 43.38 39.54 41.45

Sufficient Context
LLaVA-v1.5 56.83 72.39 56.48 72.28
Qwen-VL-Chat 50.28 63.77 48.40 61.55
Gemini-2.5-Pro 71.56 78.76 70.86 78.85
GPT-4.1 70.99 80.92 69.73 79.44
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Figure 32: Sample display of human study.

Figure 33: Statistical results for distinguishing between new or conflicting facts.

I.2 HUMAN STUDY ABOUT MANUAL SELECTION

Figure 34: Sample display of human study about manual selection.
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I.3 HUMAN STUDY ABOUT SUMMARIZATION

Figure 35: Case 1 of human study about summarization.

Figure 36: Case 2 of human study about summarization.
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I.4 HUMAN STUDY ABOUT TEXTUAL KNOWLEDGE-AWARE AUGMENTATION

Figure 37: Case 1 of human study about textual knowledge-aware augmentation.

Figure 38: Case 2 of human study about textual knowledge-aware augmentation.
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I.5 HUMAN STUDY ABOUT TEXTUAL KNOWLEDGE-AGNOSTIC AUGMENTATION

Figure 39: Case 1 of human study about textual knowledge-agnostic augmentation.

Figure 40: Case 2 of human study about textual knowledge-agnostic augmentation.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

J REASONING CONSISTENCY, HALLUCINATION REDUCTION, AND FACTUAL
GROUNDING

Reasoning Consistency

Question:
“Did the gunman successfully wound the person in the image during the campaign rally?
Answer with Yes or No.”
Expected:
“Yes”
Before Injection:
“No”
After Injection:
“Yes”

Question:
“Where did the gunman fire shots that resulted in a minor injury to the person in the im-
age? A. The arm B. The chest C. The ear D. The leg. Answer with the option’s letter
directly.”
Expected:
“C”
Before Injection:
“A”
After Injection:
“A”

Question:
“What injury did the person in the image sustain during the attempted assassination? An-
swer with a brief description.”
Expected:
“A wound on the ear”
Before Injection:
“a bullet wound in the abdomen”
After Injection:
“A minor injury to the ear”
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Hallucination Reduction 1

Question:
“What position was the human in the image appointed to in October 2024?”
Ground truth:
“Deputy minister”
Before Injection:
“President”
After Injection:
“President”

Question:
“Which team did the player in the image help defeat to win the World Series MVP?”
Ground truth:
“New York Yankees”
Before Injection:
“Red Sox”
After Injection:
“New York Yankees”

Question:
“What is the release date of the album in the image?”
Ground truth:
“31 May 2024”
Before Injection:
“2014”
After Injection:
“31 May 2024”
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Hallucination Reduction 2

Question:
“Which countries co-produced the film in the image?”
Ground truth:
“Belgium, Netherlands, Germany, Iraq”
Before Injection:
“Spain”
After Injection:
“Argentina, Spain, Qatar”

Question:
“Which summit is the leader in the image preparing for amid health scrutiny?”
Ground truth:
“NATO summit”
Before Injection:
“G20”
After Injection:
“G7 summit”

Question:
“Which division did the human in the image serve as commander of in the IDF?”
Ground truth:
“98th Paratroopers Division”
Before Injection:
“101”
After Injection:
“Galilee Formation”
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Factual Grounding 1

Question: “Please help me describe the content of the following news: ’Quinta Brunson
is first Black woman to win best comedic actress Emmy in over 40 years’.”
Injection knowledge: “This provides an overview of the news. Quinta Brunson made
history by winning the Emmy for best actress in a comedy series for her role in ’Ab-
bott Elementary,’ becoming the first Black woman to win this category since 1981.
Brunson, who also created and writes for the show, delivered an emotional accep-
tance speech at the Emmy Awards. She previously won in 2022 for outstanding writ-
ing in a comedy series. ’Abbott Elementary,’ a sitcom about teachers in a Philadel-
phia public school, is also nominated for an outstanding comedy series Emmy.”
Before Injection: “The news is about Quinta Brunson, an American actress, who has
made history by becoming the first Black woman to win the best comedic actress Emmy
in over 40 years. This achievement highlights her talent and contributions to the enter-
tainment industry, as well as the progress made in representation and diversity in the field.
Brunson is known for her roles in shows like ”A Black Lady Sketch Show” and ”The
Good Place,” and her success at the Emmys is a testament to her talent and hard work.”
After Injection: “This provides an overview of the news. Quinta Brunson made his-
tory by winning the Emmy for best actress in a comedy series for her role in ’Abbott
Elementary,’ becoming the first Black woman to win in this category in over 40 years.
Brunson, who also created and writes for the show, delivered an emotional accep-
tance speech at the Emmy Awards. She previously won in 2022 for outstanding writ-
ing in a comedy series. ’Abbott Elementary,’ a sitcom about teachers in a Philadel-
phia public school, is also nominated for an outstanding comedy series Emmy.”

Question: “Please help me describe the content of the following news: ’How the assassi-
nation attempt on Trump unfolded’.”
Injection knowledge: “During a campaign rally in Butler, Pennsylvania on July 13,
2024, a gunman attempted to assassinate former President Donald Trump, firing shots
that grazed Trump’s ear. Secret Service agents swiftly neutralized the shooter, Thomas
Matthew Crooks, but the incident resulted in one attendee’s death and two severe injuries.
The attack marks the first attempt on a current or former U.S. president since 1981. As
investigations continue into the security breach, Trump reassured supporters of his safety
while expressing condolences for the victims. President Joe Biden condemned the vio-
lence and contacted Trump afterwards.”
Before Injection: “The news article is about an attempted assassination on former Presi-
dent Donald Trump during a speech in 2021. The article provides details about the event,
including the shooter, the location, and the response of the Secret Service. It also dis-
cusses the impact of the incident on Trump’s campaign and the political climate at the
time. The article emphasizes the seriousness of the situation and the measures taken to
ensure the safety of the former president and the public.”
After Injection: “This provides an overview of the news. On June 13, 2024, near his
Mar-a-Lago club in Florida, a gunman attempted to assassinate Donald Trump, who
was at the time the presumptive Republican presidential nominee. The shooting, which oc-
curred during a golf tournament, resulted in injuries to Trump’s Secret Service protective
detail. The gunman, identified as Yuan Gong, was killed in the exchange. The incident
is being investigated by the FBI as an act of domestic terrorism, with Gong having ex-
pressed political motivations and targeting Trump due to his perceived influence on global
events.”
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Factual Grounding 2

Question: “Please help me describe the content of the following news: ’Schumer leads
congressional delegation to Ukraine to mark 2-year anniversary of Russian invasion’.”
Injection knowledge: “Senate Majority Leader Chuck Schumer leads a congressional
delegation to Ukraine, marking the second anniversary of the Russian invasion, and
urging U.S. House Republicans to pass a $95.3 billion foreign aid bill for Ukraine and Is-
rael. The delegation, including Democratic Senators Jack Reed, Michael Bennet, Richard
Blumenthal, and Maggie Hassan, meets with Ukrainian President Volodymyr Zelensky,
who emphasized Ukraine’s need for U.S. aid to win against Russia. Schumer presses
House Speaker Mike Johnson, highlighting the bill’s significance for NATO and European
security amid new U.S. sanctions on Russia.”
Before Injection: “The news is about a congressional delegation led by Senator Charles
Schumer visiting Ukraine to mark the two-year anniversary of the Russian invasion. The
delegation is expected to meet with Ukrainian President Petro Poroshenko and other offi-
cials to discuss the ongoing conflict and the United States’ support for Ukraine. The visit
aims to demonstrate solidarity and commitment to Ukraine’s sovereignty and territorial
integrity.”
After Injection: “This serves as a recap of the news. Senate Majority Leader Chuck
Schumer leads a congressional delegation to Ukraine, marking the second anniver-
sary of Russia’s invasion with a visit to Kyiv. They intend to reaffirm support for
Ukraine’s sovereignty and territorial integrity, as well as discussing humanitarian aid and
military assistance. The delegation includes House Speaker Mike Johnson, House Foreign
Affairs Committee Chairman Michael McCaul, and Representative Michael Waltz. This
visit coincides with the Feb. 24 anniversary of the invasion and a recent $95.3 billion
U.S.-Ukraine security aid deal.”

Question: “Please help me describe the content of the following news: ’Wayfair is open-
ing its first-ever physical furniture store’.”
Injection knowledge: “Wayfair is opening its first physical store on May 23 in Edens
Plaza, Wilmette, Illinois, aiming to boost sluggish sales amid high advertising costs. The
150,000-square-foot store will feature a restaurant, ’The Porch,’ mirroring Ikea’s concept.
This move responds to challenges faced in online retail, particularly the decline in demand
post-pandemic and persistent inflation affecting big-ticket item purchases. Wayfair’s CEO,
Niraj Shah, acknowledged over-hiring during the pandemic’s demand surge. This store
could enhance Wayfair’s market presence and support its online business by providing an
omnichannel shopping experience.”
Before Injection: “Wayfair, an online furniture retailer, is opening its first-ever physical
furniture store. The store will be located in Boston and will offer customers the opportu-
nity to see and touch the furniture before making a purchase. This move is an expansion
of Wayfair’s business model and aims to provide a more personalized shopping experience
for customers.”
After Injection: “This is a summary of the news. Wayfair, the online furniture retailer,
is venturing into brick-and-mortar with the opening of its first physical store in London.
This move aims to enhance customer experience by allowing visual product demonstra-
tions and foster a sense of community. The 100,000 sq ft store, located in the White
City area, is set to create 1,000 jobs. This expansion follows Wayfair’s previous physical
store experiments in Boston and New Jersey. The London store will showcase the com-
pany’s extensive furniture and home decor range.”
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Factual Grounding 3

Question: “Please help me describe the content of the following news: ’Provisional re-
sults in Rwanda’s presidential election show incumbent Paul Kagame winning in land-
slide’.”
Injection knowledge: “In Rwanda’s presidential election, provisional results show
incumbent Paul Kagame securing a landslide victory, likely extending his tenure to a
fourth term. The election witnessed a high voter turnout of 98%, with Kagame leading
with 99.15% of the votes counted. Despite accusations of government crackdowns,
Kagame emphasizes stability and regional development. The election also included votes
for Rwanda’s lower house of parliament. Political tensions persist, with some candidates
barred from running, while opposition figures report progress in gaining support.”
Before Injection: “ The news article reports that the provisional results of Rwanda’s
presidential election show incumbent Paul Kagame winning in a landslide. The article
does not provide further details about the margin of victory or the percentage of the vote
that Kagame received.”
After Injection: “This is a summary of the news. Incumbent Paul Kagame is likely to
secure a landslide victory in Rwanda’s presidential election, with provisional results
indicating a win with over 99% of votes counted. Kagame, who has led since 2000
and recently assumed the East African Community chair, is expected to start a third term.
His victory, amidst accusations of suppressing opposition, maintains stability in Rwanda
but faces criticism from the West for his stance on Ukraine and support for Russia. Re-
gional leaders congratulated Kagame on his win.”

Question: “Please help me describe the content of the following news: ’Elon Musk’s
Neuralink is seeking a second person to test its brain chip’.”
Injection knowledge: “Elon Musk’s Neuralink is seeking a second human trial par-
ticipant to test its brain chip, after the first trial with Noland Arbaugh encountered
performance issues. Despite the setback, Arbaugh, a quadriplegic, reports positive life
changes, controlling a computer cursor with the implant. Neuralink is aiming to help
people with paralysis and other conditions by connecting human brains to computers, and
is enrolling more candidates for its PRIME Study to assess the safety and functionality
of its device. Regulatory approval is required before broader market release.”
Before Injection: “The news article discusses Elon Musk’s company, Neuralink, and its
efforts to develop a brain chip. The company is currently seeking a second person to
test the brain chip, which is designed to improve communication between the brain and
computers. The article provides some background information on the technology and its
potential applications, as well as the challenges that the company faces in bringing the
product to market.”
After Injection: “This provides an overview of the news. Neuralink, Elon Musk’s brain-
computer interface company, is recruiting a second test subject for its PRIME Study,
following the successful implantation in Noland Arbaugh. The study aims to assess the
safety and functionality of Neuralink’s device, which aims to treat paralysis. Potential
participants must have a similar condition to Arbaugh and be willing to undergo a 90-day
evaluation period. The trial reflects Musk’s ambition to help people with limb paralysis
and other conditions, as he seeks to expand Neuralink’s capabilities beyond its current
focus on treating brain injuries.”
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Factual Grounding 4

Question: “Please help me describe the content of the following news: ’NHL players to
return to Olympics in 2026 and 2030’.”
Injection knowledge: “NHL players will return to the Olympics in 2026 and 2030,
participating after missing two Winter Games. The NHL, NHL Players Association,
and International Ice Hockey Federation agreed on their participation, with NHL
Commissioner Gary Bettman highlighting its importance. The 2026 Olympics will
be in Milan and Cortina d’Ampezzo, Italy, while the 2030 host is unannounced. This
marks the first Olympic appearance since 2014, with prior absences due to COVID-
19 and scheduling issues. Additionally, a new ”4 Nations Face-off” international
tournament will debut in 2025, featuring Canada, the U.S., Sweden, and Finland.”
Before Injection: “The news is about the National Hockey League (NHL) announcing
that its players will return to the Winter Olympics in 2026 and 2030. The NHL had previ-
ously decided not to send its players to the 2018 Winter Olympics in Pyeongchang, South
Korea, due to scheduling conflicts with the league’s regular season. The NHL’s decision
to rejoin the Olympic Games is a significant development, as it marks the first time since
1998 that the league’s top players will compete in the Olympics.”
After Injection: “This provides an overview of the news. NHL players will return to
the Olympics in 2026 in Italy and 2030, after missing two Winter Games. The NHL,
NHL Players Association, and International Ice Hockey Federation agreed on their
participation, with NHL Commissioner Gary Bettman highlighting its importance.
This marks the first Olympic appearance since 2014, with prior absences due to
COVID-19 and scheduling issues. Additionally, a new ’4 Nations Face-off’ tourna-
ment with Canada, the U.S., Sweden, and Finland is set for 2025.”

Question: “Please help me describe the content of the following news: ’Russian figure
skater Kamila Valieva banned for four years by Court of Arbitration for Sport’.”
Injection knowledge: “Russian figure skater Kamila Valieva, found guilty of an anti-
doping rule violation, has been handed a four-year ban by the Court of Arbitration
for Sport. The decision, backdated to December 2021, follows her positive test before
the 2022 Beijing Winter Olympics. The ban nullifies her competitive results, impacting
the team event standings. The ruling is praised by global anti-doping bodies, with future
medal reallocations dependent on the International Skating Union’s decisions. Despite
her claims of accidental ingestion of the banned substance, the ruling stands as final and
binding.”
Before Injection: “The news is about a Russian figure skater named Kamila Valieva who
has been banned from competing for four years by the Court of Arbitration for Sport
(CAS). The ban is due to a positive drug test result, which has resulted in the athlete
being disqualified from the 2020 Winter Youth Olympics. The CAS has also imposed a
fine on the Russian Skating Federation for not fulfilling its obligations under the World
Anti-Doping Code.”
After Injection: “The Court of Arbitration for Sport has banned Russian figure
skater Kamila Valieva for four years following her positive test for the banned drug
trimetazidine during the Beijing 2022 Winter Olympics. The decision, backdated to De-
cember 2022, means Valieva cannot compete until December 2026. The Russian Skating
Federation plans to appeal. Trimetazidine, intended for angina, can enhance endurance
and is prohibited by WADA. The ban overshadows the controversy surrounding Valieva’s
performances, which raised questions about her age. Despite claims of a conspiracy, evi-
dence of doping was confirmed by the Stockholm Laboratory.”

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Factual Grounding 5

Question: “Please help me describe the content of the following news: ’Iranian rapper
Toomaj Salehi sentenced to death for protesting’.”
Injection knowledge: “Iranian rapper Toomaj Salehi has been sentenced to death for
his role in the 2022 protests in Iran, as confirmed by his lawyer. The sentence was
upheld by a court in Isfahan, reversing the Supreme Court’s prior decision. Salehi,
who has been outspoken against the Iranian regime, was detained, allegedly tortured, and
spent 252 days in solitary confinement. His sentencing has garnered international
criticism, with calls for his release from the UN and the U.S. Special Envoy for Iran,
highlighting the regime’s repression following 22-year-old Mahsa Amini’s death.”
Before Injection: “The news article is about an Iranian rapper named Toomaj Salehi who
has been sentenced to death for protesting against the government. The article provides
details about his arrest, trial, and the charges against him. It also highlights the concerns
about the use of capital punishment in Iran and the impact of the sentence on the rapper’s
family and supporters.”
After Injection: “This provides an overview of the news. Toomaj Salehi, an Iranian
rapper and activist, has been sentenced to death for his role in the 2022 protests in
Iran, as confirmed by his lawyer. The sentence was upheld by a court in Isfahan,
reversing the Supreme Court’s prior decision. Salehi, who has been in custody for
over 15 months, was allegedly tortured into making a confession. His sentencing has
garnered international criticism, with calls for his release from the UN and the U.S.
Special Envoy for Iran, highlighting the regime’s repression following 22-year-old
Mahsa Amini’s death.”
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