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ABSTRACT

Beyond mobile health devices, federated learning (FL) in healthcare often oc-
curs in cross-silo scenarios, revealing an underexplored area — the comparison of
FL, including personalized FL (PFL) models with pre-existing local models. The
fact that the majority of existing FL and PFL algorithms were originally designed
for cross-device FL settings leaves potential room for improvements in cross-silo
scenarios. Our study1 tests several PFL frameworks on real-world heterogeneous
electronic health records, and we also adapt an existing PFL framework, PerFed-
Avg, to cross-silo setting by allowing personalized local epochs in clients. Results
show that our modified PFL algorithm can benefit cross-silo clinical structured
data, and personalizing local epochs contributes to FL model performance.

1 INTRODUCTION & METHODS

The use of federated learning (FL) in healthcare research has gained popularity, fostering collabo-
rative research while ensuring patient privacy (Rieke et al., 2020). Although early FL adoption in
medicine primarily focused on unstructured data (Crowson et al., 2022), exploration of structured
data remains limited (Li et al., 2023a). Beyond differences in sample sizes and modeling strategies
compared to FL on unstructured data, FL for clinical structured data is expected to yield additional
meaningful results, surpassing those from pre-existing local models (Li et al., 2023a).

Personalized FL (PFL) aims to enhance algorithms through client-specific personalization (Tan
et al., 2021). However, existing PFL frameworks, primarily developed for cross-device settings and
validated with unstructured data (Matsuda et al., 2022), may not directly apply to many FL studies
on clinical structured data. For example, PFL algorithms like FedBN (Li et al., 2021), designed for
neural networks, may not align with the preferences for interpretable models, such as traditional sta-
tistical regressions (Li et al., 2023a). Therefore, empirical evaluations of PFL in cross-silo settings
are crucial for understanding its applicability to clinical structured data.

To address the gap, our study conducts empirical evaluations of PFL and the baseline FL framework,
FedAvg(McMahan et al., 2017), using real-world heterogeneous EHRs. Specifically, we focus on a
meta-learning-based PFL algorithm, Per-FedAvg (Fallah et al., 2020) and a Morea envelopes-based
PFL algorithm, pFedMe (T Dinh et al., 2020). Additionally, we propose Per-FedAvg†(Algorithm 1),
a modified version of Per-FedAvg adapted for cross-silo settings by allowing different local epochs
for each client. As highlighted by Wang et al. (2020) and Horváth et al. (2022), data imbalance
among clients can cause inconsistency in the rate of convergence due to differences in local updates.
While current PFL algorithms are unable to address this issue, we tackle it by allowing clients with
smaller sample sizes to undergo additional local epochs during training. The details outlining the
differences between Per-FedAvg† and Per-FedAvg are presented in Appendix A.1.

We evaluate the performance of Per-FedAvg†, the vanilla Per-FedAvg, pFedMe, and FedAvg with
local models to assess whether the FL frameworks could bring benefits to participating clients. The
experiments are conducted on two real-world heterogeneous EHR datasets: MIMIC-IV-ED (Johnson
et al., 2023) and SGH-ED (Liu et al., 2022), with further details available in Appendix A.2. The
outcome of interest in this study is inpatient mortality, and logistic regression (with a total of 15

1The code is publicly available at this GitHub link.
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variables, details provided in Appendix A.2) is implemented as the most prevalent model in clinical
structured data analysis within FL settings (Li et al., 2023a).

Algorithm 1: Per-FedAvg† Algorithm
Set E = [E1, ..., EK ] for K clients and initial parameter w0.
for each client k do

Split client’s training data into batches B of size B;
for each local epoch i from 1 to Ek do

for each batch b in B do
Perform Per-FedAvg SGD update;

end
end
Client k sends its updated parameter wk back to the server;

end
Server updates its model by averaging over received parameters: w =

∑
wk/K.

2 RESULTS & DISCUSSION

Table 1 summarizes top-performing models on the MIMIC dataset (client with smaller sample size),
excluding bPer-FedAvg† which targets optimizing performance for SGH. Experiment details are
provided in Appendix A.3. Our key observations are:

1. aPer-FedAvg†, bPer-FedAvg†, and Per-FedAvg outperform pFedMe in average testing AU-
ROC. Notably, the optimal learning rate for pFedMe differs significantly from that of Per-
FedAvg, aPer-FedAvg†, bPer-FedAvg†, and FedAvg.

2. aPer-FedAvg† outperforms Per-FedAvg on MIMIC, and bPer-FedAvg† outperforms Per-
FedAvg on SGH. The improvement on MIMIC is more significant than on SGH, aligning
with the observation (Appendix A.3) that SGH’s AUROC values have relatively smaller
fluctuations due to its larger sample size. For both aPer-FedAvg† and bPer-FedAvg†, the
performance increase on the target client is accompanied by a drop on the other client,
indicating a trade-off between personalization and generalization.

3. Both bPer-FedAvg† and Per-FedAvg benefit the MIMIC dataset (the target client), as
demonstrated by comparisons with local models. In contrast, FedAvg and pFedMe do
not exhibit such benefits.

Table 1: Performance of PFL and baseline models along with their fine-tuned hyperparameters. lr:
learning rate; T : global communication rounds; (E1,E2): (MIMIC local epoch, SGH local epoch).

Test AUROC(%) Parameters
MIMIC test SGH test Average lr T (E1,E2)

Local MIMIC 73.45% 81.83% 77.64% - - -
Local SGH 71.57% 86.15% 78.86% - - -
FedAvg 72.83% 86.19% 79.51% 0.5 30 (10,10)
pFedMe 71.69% 85.86% 78.77% 0.005 30 (10,10)
Per-FedAvg 73.51% 86.00% 79.76% 1 11 (10,10)
aPer-FedAvg† 74.14% 85.74% 79.94% 1 10 (13,10)
bPer-FedAvg† 73.14% 86.20% 79.67% 1 10 (10,4)

In this study, we investigated PFL’s effectiveness on clinical structured data in cross-silo FL settings.
Our findings show that both Per-FedAvg and our proposed method outperform pFedMe. Notably,
our Per-FedAvg† exhibits enhanced performance on both clients, especially on the client with a
smaller sample size.

Our results highlight the importance of increasing personalization through leveraging more local
information to consistently bring benefits to specific participating clients in cross-silo PFL. We an-
ticipate that our empirical findings could offer insights and serve as a source of inspiration for future
research directions in cross-silo PFL.
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A APPENDIX

A.1 ALGORITHM OF PER-FEDAVG†

The primary differentiation between Per-FedAvg† and Per-FedAvg arises from two key aspects:
firstly, the adaptation of local epochs, where the local epoch used by each client is allowed to be
different and fine-tuned to maximize the leverage of local information; and secondly, the omission
of the client random selection process in vanilla Per-FedAvg, as each client in cross-silo clinical
settings is anticipated to participate and benefit from FL. This simplification not only contributes
to more stable training process but also yields distinct theoretical outcomes compared to scenarios
involving partial client participation, as explored in previous work (Li et al., 2019).

A.2 DETAILS OF DATASETS

MIMIC-IV-ED is an open-source dataset of emergency department (ED) admissions at Beth Israel
Deaconess Medical Center between 2011 and 2019. We first construct a master dataset following the
pipeline proposed by Xie et al. (2022a). The dataset is then filtered to include only ED admissions
of Asian patients who were at least 21 years old. Observations with missing values are removed,
resulting in a final cohort of 9071 admissions. The SGH-ED dataset is a private dataset collected in
the ED of Singapore General Hospital and extracted from the SingHealth Electronic Health Intelli-
gence System. A waiver of consent was granted for EHRs data collection and retrospective analysis,
and the study has been approved by the Singapore Health Services’ Centralized Institutional Review
Board, with all data de-identified. The dataset is filtered to include only ED admissions of adult
Chinese patients in 2019. Observations with missing values are also removed, resulting in a final
cohort of 81,110 admissions.

The outcome of interest in this study is inpatient mortality. Based on existing works (Li et al., 2023b;
Xie et al., 2022b), we include 15 candidate variables commonly considered to be associated with
inpatient mortality as predictors. Specifically, we have included two demographic variables: age
and gender; five vital signs: pulse (beats/min), respiration (times/min), peripheral capillary oxygen
saturation (SpO2; %), diastolic blood pressure (mm Hg), systolic blood pressure (mm Hg); and
eight comorbidities: myocardial infarction, congestive heart failure, peripheral vascular disease,
stroke, chronic pulmonary disease, rheumatic disease, paralysis and kidney disease. Both datasets
are randomly split into training and testing sets at a ratio of 6:4.

A.3 EXPERIMENT DESIGN

In this study, the batch size B is consistently set to 128. The learning rate is chosen from the range
[0.005, 0.01, 0.05, 0.1, 0.5, 1] for both FL and PFL methods, with each method undergoing 30 global
rounds for every selected learning rate. The local epochs are fixed at 10 for both clients in FedAvg,
pFedMe, and vanilla Per-FedAvg.
aPer-FedAvg† and bPer-FedAvg† differ in their optimization goals: aPer-FedAvg† aims to optimize
performance on client MIMIC, while bPer-FedAvg† aims to optimize for client SGH. To find the
best (E1,E2) for Per-FedAvg†, we fix other hyperparameters (lr=1, T=10, B=128) and conduct the
following fine-tuning process. First, we fix E2=10 and experiment with (E1,E2) pairs: (5, 10), (7,
10), (9, 10), (10, 10), (11, 10), (12, 10), (13, 10), (15, 10), (20, 10), (25, 10), (30, 10), (40, 10), (50,
10), (70, 10), (100, 10), (140, 10). Second, we fix E1=10 and experiment with (E1, E2) pairs: (10,
2), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10, 10), (10, 12), (10, 15), (10, 20), (10, 25),
(10, 35), (10, 44), (10, 50), (10, 70).

Figure A.1 illustrates that the parameter combination (13, 10) yields the best performance on MIMIC
test data, as reported for aPer-FedAvg† in Table 1. Similarly, as depicted in Figure A.2, the pa-
rameter combination (10, 4) delivers the optimal performance on SGH test data, as reported for
bPer-FedAvg† in Table 1.
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Figure A.1: Performance of Per-FedAvg† across (E1,E2) with a fixed value of E2 = 10.
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Figure A.2: Performance of Per-FedAvg† across (E1,E2) with a fixed value of E1 = 10.
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