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Abstract

Pretraining DNA language models (DNALMSs) on
the full human genome is resource-intensive, yet
often considered necessary for strong downstream
performance. Inspired by recent findings in NLP
and long-context modeling, we explore an alterna-
tive: self-pretraining on task-specific, unlabeled
data. Using the BEND benchmark, we show that
DNALMs trained with self-pretraining match or
exceed the performance of models trained from
scratch under identical compute. While genome-
scale pretraining may still offer higher absolute
performance, task-specific self-pretraining pro-
vides a practical and compute-efficient strategy
for building stronger supervised baselines.

1. Introduction

DNA language models (DNALMs) (Ji et al., 2021; Dalla-
Torre et al., 2024; Nguyen et al., 2023) have emerged as pow-
erful tools for modeling and interpreting genomic sequences,
drawing inspiration from advances in natural language pro-
cessing (NLP). These models are typically pretrained on
large-scale genomic corpora—such as the human genome.

Recent benchmarks like BEND (Marin et al., 2024) high-
light that while DNALMs perform well on certain tasks,
they struggle with long-range dependencies and exhibit
inconsistent performance across biologically meaningful
benchmarks. At the same time, findings from long-
sequence modeling (Amos et al., 2024) suggest that self-
pretraining—pretraining on the downstream task data it-
self—followed by supervised fine-tuning can outperform
training from scratch, particularly for long-context tasks.

Motivated by these observations, we investigate whether
self-pretraining on task-specific genomic data can yield
stronger supervised models under limited compute. Us-
ing the BEND benchmark, we find that models trained with
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task-specific self-supervision match or exceed the perfor-
mance of scratch-trained counterparts across multiple tasks.
While not a substitute for genome-scale pretraining in all
settings, our results show that self-pretraining is a compute-
efficient strategy for improving downstream performance
and building stronger supervised baselines.

This approach is particularly appealing in genomics, where
sequences for a given task are abundant but labels are often
scarce. By leveraging task-specific unlabeled data, self-
pretraining enables models to learn domain-relevant patterns
before fine-tuning, improving performance with minimal
overhead.

We release the code, pretrained model and finetuned models
to support reproducibility’.

2. Related Work

A growing body of work has applied language modeling
to DNA sequences, resulting in several pretrained genomic
models. DNABERT (Ji et al., 2021) introduced masked lan-
guage modeling on k-mer tokenized data, showing utility for
motif discovery and promoter prediction. Later models like
the Nucleotide Transformer (Dalla-Torre et al., 2024) and
HyenaDNA (Nguyen et al., 2023) scaled to larger genomes
and longer contexts, improving performance on regulatory
genomics tasks. GENA-LM (Fishman et al., 2023) uses effi-
cient Transformer variants to model full-length sequences.
Caduceus (Schiff et al., 2024) further improves long-range
modeling by incorporating reverse complement symmetry
and scalable bidirectional blocks based on Mamba.

Beyond these pretrained models, recent work across NLP
and biology has begun to question the necessity of large-
scale pretraining for strong downstream performance. Kr-
ishna et al. (2023) demonstrate that language models pre-
trained solely on downstream data can match or exceed
models trained on large corpora such as BookWiki for tasks
like classification and QA. Similarly, Amos et al. (2024)
show that in long-sequence modeling, self-pretraining on
task data substantially narrows the gap between standard
Transformers and more complex architectures like S4 (Gu
et al., 2022) on Long Range Arena tasks (Tay et al., 2021),
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suggesting that task-specific pretraining can serve as an
effective inductive prior.

In the biological domain, Xu et al. (2025) report that foun-
dation models (FMs) in genomics often fail to outperform
well-tuned supervised baselines, despite significantly higher
computational costs. Supporting this, Vishniakov et al.
(2024) show that randomly initialized models can match
or even outperform pretrained genomic models across tasks
like enhancer and histone mark prediction. Our work builds
on these insights in the context of DNA language modeling
by focusing on strengthening supervised baselines through
self-pretraining—an approach that is both compute-efficient
and independent of large upstream corpora.

3. Tasks in BEND

We evaluate on four tasks from the BEND bench-
mark (Marin et al., 2024) (see Appendix Table 3 for an
overview).

Gene Finding. A multiclass sequence labeling task where
each nucleotide is labeled as exon, intron, splice site
(donor/acceptor, forward/reverse strand), or noncoding. De-
rived from GENCODE (Frankish et al., 2021) annotations,
this task evaluates both local and long-range understanding
of gene structure. Performance is measured with multiclass
MCC (Gorodkin, 2004).

Chromatin Accessibility Prediction. A multilabel classifi-
cation task where models predict DNase I hypersensitivity
across 125 human cell types from 512 bp sequences. La-
bels are derived from ENCODE DNase-seq data (ENCODE
Project Consortium, 2012), following preprocessing from
Kelley et al. (2016). Each label indicates whether the chro-
matin is open in a specific cell type. Evaluation is based on
average AUROC across labels.

Histone Modification Prediction. A multilabel task pre-
dicting the presence of 18 histone modifications from 512
bp sequences in the K562 cell line. Labels are based on
ENCODE ChIP-seq data for 11 histone marks across 18
replicates (ENCODE Project Consortium, 2012). Each label
indicates whether a particular mark is bound to the sequence.
AUROC is averaged across all histone marks.

CpG Methylation Prediction. A multilabel classification
task to predict the methylation status of CpG sites across 7
human cell lines using 512 bp windows centered on CpG
sites. Labels are derived from ENCODE bisulfite sequenc-
ing data (ENCODE Project Consortium, 2012). AUROC is
averaged over all cell lines.

4. Methods
4.1. Model and Pretraining Setup

We use a residual convolutional neural network (CNN) as a
shared encoder across tasks. The architecture, inspired by
ResNet (He et al., 2016) and the BEND benchmark (Marin
et al., 2024), consists of 30 convolutional layers (kernel size
9) with 512 hidden channels. Dilation doubles with each
layer (reset every 6 layers, max 32), and we use GELU
activation and LayerNorm.

During self-supervised pretraining, we attach a masked lan-
guage modeling (MLM) head to the encoder and train on
unlabeled DNA sequences. Inputs are one-hot encoded
over a vocabulary of size V = 7 (2, C, G, T, N, [MASK],
[PAD]). Tokens are masked independently with probabil-
ity Pmim = 0.15, using the standard 80/10/10 replace-
ment strategy. The MLM loss is computed as Lyv =
= iim,—1 108 Pa(w; | T), where m; indicates masked po-
sitions and 7 is the corrupted input.

4.2. Supervised Fine-Tuning and Training
Configuration

After pretraining, we replace the MLM head with a task-
specific predictor consisting of a two-layer CNN (stride 1,
ReLU activation) and a linear output layer. The model is
fine-tuned end-to-end on downstream tasks. We use cross-
entropy loss for single-label classification (e.g., gene find-
ing) and binary cross-entropy loss for multi-label tasks (e.g.,
chromatin accessibility, histone modifications, CpG methy-
lation).

All models are implemented in PyTorch and trained on a
mix of L40S and A100 GPUs, using code adapted from
the BEND benchmark. Pretraining is done on 4,780 gene-
finding samples over 20 epochs. Fine-tuning is performed
for 10 epochs on gene finding and 5 epochs on the other
tasks. The latter are trained for fewer epochs to reduce
compute, as they have larger training sets and longer per-
epoch runtimes.

4.3. Pretraining Corpus and Evaluation

We use gene-finding sequences for pretraining and reuse
the resulting encoder across all tasks. These sequences are
the longest in the BEND benchmark (1,433-14,000 bp),
enabling modeling of long-range dependencies. Although
labels are not used during pretraining, the sequences cover
biologically structured regions such as exons, introns, and
splice sites—features closely linked to regulatory activity
and downstream task relevance.
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Table 1. Performance of models trained from scratch, with self-
pretraining (SPT), and SPT with CRF. CRF improves gene finding
by modeling label transitions.

Gene Chromatin Histone CpG
finding accessi- modifi- Methyla-
bility cation tion
scratch 0.38 0.87 0.76 0.89
SPT 0.50 0.87 0.77 0.94

SPT + CRF  0.64 - - -

5. Results

We evaluate whether self-supervised pretraining on task-
specific data (SPT) improves downstream performance com-
pared to training from scratch (scratch). We begin with a
compute-matched comparison using the same ResNet archi-
tecture, and then benchmark SPT against expert methods
and genome-pretrained models from the BEND benchmark.

Compute-Matched Comparison. Table 1 shows that
SPT consistently achieves equal or better performance than
scratch under identical compute. Gains are especially no-
table for gene finding and CpG methylation, with absolute
improvements of 12 and 5 points, respectively. For chro-
matin accessibility and histone modification, both models
perform similarly—suggesting that these tasks are already
well-solved by supervised training, leaving limited room
for additional improvement via pretraining. Notably, even a
shallow CNN (Table 2, row “CNN”) performs competitively
on histone modification, indicating that this task may be
relatively insensitive to architectural depth or pretraining.

Improving Gene Finding via Sequence Labeling. In the
BEND benchmark, gene finding is framed as a per-base
classification task. To explore whether modeling label de-
pendencies improves performance, we augment our SPT
model with a neural linear-chain Conditional Random Field
(CRF) (Lample et al., 2016; Lafferty et al., 2001), drawing
inspiration from the structured HMM-based approach used
in AUGUSTUS (Rabiner, 1989; Stanke & Waack, 2003). The
CREF layer captures transition dynamics across sequence po-
sitions, promoting globally coherent predictions (e.g., valid
exon—intron boundaries). Using the torchcrf implemen-
tation,” we observe a substantial improvement: MCC in-
creases from 0.50 to 0.64 (Table 1). This gain suggests that
gene boundaries and exon-intron transitions benefit from
structured prediction, which enforces global label consis-
tency—something per-position classifiers cannot capture.
CRFs provide an inductive bias toward valid biological tran-
sitions, which may be especially helpful in low-data settings.
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Figure 1. Validation MCC on gene finding. The scratch model
plateaus early and does not match the self-pretrained model.
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Figure 2. Validation AUROC on the CpG methylation task over
training epochs.

Extended Training Comparison. To assess whether
longer training improves performance for scratch mod-
els, we train the scratch model on gene finding for 50
epochs—substantially more than the 10 used in our earlier
comparison. Our SPT model, by contrast, uses 20 epochs
of unsupervised pretraining followed by supervised fine-
tuning. As shown in Figure 1, the scratch model improves
initially but plateaus around epoch 13 and fails to match
the performance of the SPT model. A dashed horizontal
line indicates the best validation MCC achieved by the SPT
model, highlighting the efficiency of self-pretraining over
prolonged supervised training.

We now focus on CpG methylation, where SPT shows strong
gains as well.

Training Dynamics. Figure 2 shows validation AUROC
over training epochs. The performance gap between SPT
and scratch appears from the first epoch and persists
throughout, demonstrating the benefits of task-specific self-
pretraining.
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Table 2. Performance on selected BEND benchmark tasks. We compare expert methods, supervised baselines, genome-pretrained DNA
LMs, and our self-pretrained (SPT) models. SPT + CRF' augments the gene finding model with a linear-chain CRF decoder. Best results

for each task are shown in bold.

Gene finding Chromatin accessibility Histone modification = CpG Methylation

Expert method 0.80 0.85 0.74 0.93
AUGUSTUS BASSET BASSET BASSET

Fully supervised
ResNet 0.46 - - -
CNN 0.00 0.75 0.76 0.84
Pre-trained
ResNet-LM 0.36 0.82 0.77 0.87
AWD-LSTM 0.05 0.69 0.74 0.81
NT-H 0.41 0.74 0.76 0.88
NT-MS 0.68 0.79 0.78 0.92
NT-1000G 0.49 0.77 0.77 0.89
NT-V2 0.64 0.80 0.76 0.91
DNABERT 0.20 0.85 0.79 0.91
DNABERT-2 043 0.81 0.78 0.90
GENA-LM BERT 0.52 0.76 0.78 091
GENA-LM BigBird 0.39 0.82 0.76 0.91
HyenaDNA large 0.35 0.84 0.76 0.91
HyenaDNA tiny 0.10 0.78 0.76 0.86
GROVER 0.28 0.82 0.77 0.89
SPT 0.50 0.87 0.77 0.94
SPT + CRF' 0.64 - - -
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Figure 3. Maximum validation AUROC on CpG methylation using
different fractions of labeled data. The 25% self-pretrained (SPT)
model outperforms the 100% scratch model, while the 10% SPT
model performs slightly below.

Sample Efficiency To assess whether self-pretraining im-
proves sample efficiency, we train the SPT model on the
CpG methylation task using varying fractions of the labeled
training data: 10%, 25%, and 100%. The self-pretrained
encoder is kept fixed across all fine-tuning settings. As
shown in Figure 3, the SPT model trained with 25% of
the data already outperforms the scratch model trained on
100%. The 10% variant performs slightly below scratch but
still shows strong performance. These results highlight the

value of self-pretraining for enabling accurate predictions
in low-data regimes.

Comparison to Benchmark Models. We also compare
our SPT model to expert methods and genome-pretrained
DNA language models from the BEND benchmark (Marin
et al., 2024). These include expert tools (e.g., AUGUSTUS
(Stanke & Waack, 2003), BASSET (Kelley et al., 2016)),
supervised CNNs and ResNets, and large-scale pretrained
models such as DNABERT (Ji et al., 2021), Nucleotide
Transformer (Dalla-Torre et al., 2024), GENA-LM (Fishman
et al., 2023), and HyenaDNA (Nguyen et al., 2023).

Table 2 reproduces BEND benchmark results and adds our
SPT and SPT + CRF models. Despite using no genome-
scale pretraining, SPT outperforms all supervised-from-
scratch baselines (even when baselines are trained for up
to 100 epochs) and matches or exceeds many genome-
pretrained models. On the CpG methylation task, it achieves
the highest AUROC overall. On gene finding, further gains
are possible by treating the task as structured sequence label-
ing: adding a linear-chain CRF layer (SPT + CRF) boosts
performance to 0.64 MCC.

These results demonstrate that task-specific self-pretraining
can serve both as a strong supervised baseline and a practical
alternative to genome-scale pretraining—especially under
compute constraints.
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6. Conclusion

We demonstrate that self-supervised pretraining on task-
specific genomic data—using only unlabeled sequences
from the gene-finding task—can improve downstream per-
formance compared to models trained from scratch. Across
tasks in the BEND benchmark, self-pretraining consistently
yields stronger results under matched compute budgets.
While it may not always outperform genome-wide pretrain-
ing in absolute terms, our approach provides a practical
and compute-efficient alternative that establishes a stronger
supervised baseline for genomic modeling.

Impact Statement

This paper presents work whose goal is to improve the effi-
ciency and accessibility of machine learning for genomics
by exploring task-specific self-pretraining. While our meth-
ods may have downstream applications in health and biolog-
ical research, we do not foresee any immediate ethical or
societal risks that require specific attention. There are many
potential broader impacts of machine learning in genomics,
none of which we feel must be specifically highlighted here.
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Appendix
Table 3. Overview of four BEND benchmark tasks. Adapted from Marin et al. (2024).
Task Type # Samples  Lengthrange  Evaluation Metric  Source
Gene finding Nucleotide- 5,976 1,433-14,000 bp  4780/597/597 MCC GENCODE
wise Multiclass (Frankish et al.,
) 2021)
Chromatin accessibility ~ Sequence-wise 2,005,617 512 bp 1,354,042/ AUROC ENCODE (EN-
Multilabel 279,422/ CODE Project
(125) 372,153 Consortium,
2012)
Histone modification Sequence-wise 612,081 512 bp 70,801/ AUROC ENCODE (EN-
Multilabel (18) 120,567/ CODE Project
743,095 Consortium,
2012)
CpG methylation Sequence-wise 959,039 512 bp 109,717/ AUROC ENCODE (EN-
Multilabel (7) 106,227 CODE Project
Consortium,
2012)




