
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

YOUR MIXTURE-OF-EXPERTS LLM IS SECRETLY AN
EMBEDDING MODEL FOR FREE

Anonymous authors
Paper under double-blind review

ABSTRACT

While large language models (LLMs) excel on generation tasks, their decoder-only
architecture often limits their potential as embedding models if no further repre-
sentation finetuning is applied. Does this contradict their claim of generalists? To
answer the question, we take a closer look at Mixture-of-Experts (MoE) LLMs.
Our study shows that the expert routers in MoE LLMs can serve as an off-the-shelf
embedding model with promising performance on a diverse class of embedding-
focused tasks, without requiring any finetuning. Moreover, our extensive analysis
shows that the MoE routing weights (RW) is complementary to the hidden state
(HS) of LLMs, a widely-used embedding. Compared to HS, we find that RW is
more robust to the choice of prompts and focuses on high-level semantics. Moti-
vated by the analysis, we propose MOEE combining RW and HS, which achieves
better performance than using either separately. Our exploration of their combi-
nation and prompting strategy shed several novel insights, e.g., a weighted sum
of RW and HS similarities outperforms the similarity on their concatenation. Our
experiments are conducted on 6 embedding tasks with 20 datasets from the Massive
Text Embedding Benchmark (MTEB). The results demonstrate the significant im-
provement brought by MOEE to LLM-based embedding without further finetuning.

1 INTRODUCTION

Classification Clustering Pair
Classification

Re-ranking STS Summarization

Pe
rfo

rm
an

ce

58.2 58.3

24.6
34.5

48.8

72.4

38.1

56.0 59.7

70.7

24.4
29.3

HS MoEE (ours)

Figure 1: Comparison of hidden state (HS) and MOEE (ours) on six types of tasks from the Massive
Text Embedding Benchmark (MTEB), where MOEE consistently outperforms HS on all tasks. Both
HS and MOEE are extracted from DeepSeekMoE-16B (Dai et al., 2024) without further finetuning.

Mixture-of-Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), as a versatile architecture
originally developed in the 1990s, can improve model generalization and reduce inference cost by
distributing tasks to specialized experts (Shazeer et al., 2017). Over time, MoE is gaining prominence
in fields such as natural language processing (Shen et al., 2023) and computer vision (Li et al., 2023;
Zong et al., 2024; Lin et al., 2024; Shi et al., 2024), especially attracting growing attention in the
development of large language models (LLMs) (Muennighoff et al., 2024a; Dai et al., 2024; Jiang
et al., 2024). A key component of MoE is the dynamic routers, which intelligently assign each input

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to the most relevant expert. This allows MoE to tailor its computations to the unique characteristics
of each input, optimizing both efficiency and accuracy.

However, most recent LLMs and MoE LLMs are built upon the decoder-only architecture trained for
autoregressive next-token prediction. While excelling on generative tasks, their final or intermediate
hidden state (HS) is not designed to capture the key features of input tokens and cover all their
information. Instead, HS can be biased towards the information of the next output token. Although
it is a common empirical practice to extract the last token’s hidden state (HS) as embedding (Wang
et al., 2024), it may even perform much poorer than smaller encoder models specifically trained
for embedding tasks (Lei et al., 2024; Muennighoff et al., 2024b). Take classification as an example,
inputs with subtly different semantics may be associated with the same label, so the last HS aiming
to predict the label may ignore the input difference. Although extra finetuning specifically for
representation learning (Lee et al., 2024; Muennighoff et al., 2024b) can greatly strengthen LLM’s
capability as an embedding model, it raises the question of whether pre-trained LLMs can be claimed
as generalists, given the broad application of embedding tasks.

(upper bound) 
new success cases from
combining HS and RW

failure cases
even after 

combination

Figure 2: Complementarity of DeepSeekMoE-
16B’s routing weights (RW) and hidden state
(HS) as embedding in the task of similarity
ranking on STS12 datasets. In the error analysis
of instances where at least one embedding fails1,
we report the proportion of (1) HS succeeds
✓and RW fails ✗; (2) HS fails and RW succeeds,
and (3) both RW and HS fail. In most cases, the
proportion of (1)+(2) exceeds (3), indicating the
complementarity of RW and HS.

Can we extract high-quality embedding directly
from LLMs without additional training? In this
paper, we find a Yes-answer to the question when
studying MoE LLMs. Our main discovery is that
the routers in MoE can serve as an off-the-shelf
embedding model and the produced routing
weights (RW) provide complementary infor-
mation to the widely used HS as embedding.
Compared to HS focusing on the final prediction
results from the input, RW reflects the interme-
diate reasoning choices of MoE on the input
for each layer of LLMs. Hence, as a byproduct
of the routing mechanism, RW completes the
input information missing in HS. As evidence,
our comparative analysis of RW and HS shows
that they reveal different clustering structures
and topics of inputs, while RW captures the
input’s underlying themes and semantic structures.
Moreover, we conducted an error analysis of the
embedding task instances on which either HS or
RW failed. As shown in Fig. 2, the proportion
of cases where one embedding succeeds and the
other fails exceeds 50%, indicating a large room
for improvement if combining RW and HS.

Motivated by the analysis, we propose the first attempt to combine RW and the widely-used HS
of MoE LLMs, resulting in a training-free, contextual-rich, and holistic embedding called “MoE
Embedding (MOEE)” that excels in embedding tasks. Specifically, we experiment with various
combination strategies and find that while simple concatenation of RW and HS (denoted by MOEE
(concat)) improves either of them, a weighted sum of the two similarities computed on RW and
HS separately (denoted by MOEE (sum)) often achieves the best results. The weighted sum of
similarities avoids the fusion and alignment between the two different types of embedding while
allowing us to balance output-dependent information with input-sensitive features, optimizing
performance across diverse tasks.

We conduct extension evaluations of MOEE and compare it with baselines on the Massive Text Embed-
ding Benchmark (MTEB) (Muennighoff et al., 2022), which covers a wide range of tasks designed to
test embedding quality. MOEE consistently outperforms embedding derived solely from HS or MoE’s
RW, as shown in Figure 1. Notably, MOEE (sum) achieves significant gains in tasks requiring an
in-depth understanding of the input, such as semantic textual similarity, classification, and clustering.

1Success/Failure is determined by how closely the ranking based on the embedding matches the ground truth,
with deviations beyond a threshold marked as failures.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The rest of the paper is organized as follows: §2 reviews related work on existing embedding methods
and MoE. §3 outlines our methodology for integrating RW of MoE with the widely-used HS embed-
ding. §4 reports experimental results on MTEB, highlighting MOEE’s advantages on performance
and interpretability. Finally, §5 discusses the implications and future research directions. Results
in the paper except §4 are conducted on DeepSeekMoE-16B (Dai et al., 2024) unless specified.

2 RELATED WORK

Training-Based Embedding (pre-LLM) Early work on sentence embedding, such as
SkipThought (Kiros et al., 2015), leveraged the distributional hypothesis by predicting surrounding
sentences from a given input. These methods typically employed sequence-to-sequence architectures,
following the success of Word2Vec (Mikolov, 2013). Recent advancements have shifted toward con-
trastive learning, which has gained prominence for its effectiveness in self-supervised representation
learning. Contrastive methods, such as SimCSE (Gao et al., 2021), exploit different views of the same
sentence through data augmentation or dropout, treating different outputs as positive pairs and negative
pairs as unrelated sentences. This approach helps models better capture semantic similarities by max-
imizing the similarity between positive pairs while minimizing it between negative ones. Contrastive
learning has been widely applied in sentence embedding due to its simplicity and competitive per-
formance (Wu et al., 2020; Wang et al., 2021; Meng et al., 2021). Other methods like InfoNCE (Oord
et al., 2018) and MoCo (He et al., 2020) have also contributed to the development of contrastive frame-
works, further enhancing embedding quality. While effective, these approaches rely on static architec-
tures that may overlook input variability. In contrast, MoE models dynamically route inputs through
specialized experts, producing more nuanced, context-aware embedding without additional training.

Training-Based Embedding with LLMs Recent advances in language modeling have demonstrated
the potential of LLMs to generate high-quality sentence embedding (Muennighoff et al., 2024b; Meng
et al., 2024). For instance, some methods, such as Sentence-T5 (Ni et al., 2021), employ contrastive
learning and are capable of generating embedding that rivals fine-tuned models, even with billions of
parameters. However, these methods often depend on complex pretraining and large-scale contrastive
objectives, limiting their flexibility for new tasks without retraining.

Training-Free Embedding with LLMs Training-free approaches seek to directly extract embedding
from pre-trained LLMs without the need for additional finetuning. While this process is relatively
straightforward for encoder-decoder models (Ni et al., 2021), it presents challenges for the more
common decoder-only LLMs, where deriving meaningful embedding is less intuitive. Current
approaches typically utilize the generated hidden state(s) of these models (Jiang et al., 2023). To
improve the quality of these embedding, prompt-based techniques have gained traction (Jiang
et al., 2022; Lei et al., 2024). One such method, Prompt with Explicit One Word Limitation
(PromptEOL) (Jiang et al., 2023), distills sentence meaning into a compact embedding by prompting
the model with the instruction: ‘This sentence: “[text]” means in one word: ’.

In pre-trained decoder-only LLMs, embedding is typically derived from the hidden state of the final
layer. Given an input sequence x = [x1, x2, . . . , xT ], let H(l) ∈ RT×d represent the hidden state
at the l-th layer, where T is the sequence length, d is the hidden state dimension, and l = 1, 2, . . . , L
is the layer index.

To extract a single embedding eHS that represents the entire input sequence, one approach is to use
the last token’s hidden state in the final layer, expressed as:

eHS = H
(L)
T ∈ Rd

Another approach is to apply pooling over all tokens in the last layer. For example, mean pooling
averages the hidden states as: 1

T

∑T
i=1 H

(L)
i . These methods provide flexibility based on task

requirements, with the resulting embedding capturing the context of the input sequence as modeled
by the LLM.

Mixture-of-Experts (MoE) MoE models have been predominantly used in multitask learning and
efficient large-scale training scenarios (Shazeer et al., 2017). However, their potential for generating
instance-level embedding has been underexplored. Our method leverages the routing decisions made
by MoE models to generate embedding that are sensitive to the input’s structure and semantics. This

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

results in more flexible and interpretable embedding compared to static models, without the overhead
of task-specific retraining.

3 MIXTURE-OF-EXPERTS EMBEDDING (MOEE)

Our approach leverages the dynamic routing mechanisms of pre-trained, decoder-only LLMs equipped
with MoE modules to generate enriched, input-sensitive embedding. This section details the key
steps of our methodology, including embedding extraction, expert routing across layers, and the final
integration of embedding—all achieved using pre-trained models without any additional training.

3.1 MOE ROUTING WEIGHTS (RW) AS EMBEDDING

Our approach capitalizes on the dynamic routing capabilities of MoE models embedded in pre-trained,
decoder-only LLMs. These MoE modules operate across multiple layers, enabling the model to
specialize in processing different aspects of the input at varying depths.

Each MoE model at layer l consists of N (l) experts, denoted by E
(l)
i , where i = 1, 2, . . . , N (l). Each

expert is a specialized sub-network that focuses on specific input characteristics at that layer, allowing
for a more granular understanding of the input as it passes through the network. However, the true
strength of this architecture lies in the dynamic routing mechanism, governed by a gating function
g(l)(H(l)) ∈ RN(l)

, which determines which experts will be activated at each layer based on the input.

This gating function outputs a probability distribution over the available experts in each layer, dynami-
cally selecting the most relevant ones for the current input. The routing weights g(l)i (H(l)) indicate the

contribution of each expert to the final output of layer l, formulated as:
∑N(l)

i=1 g
(l)
i (H(l))E

(l)
i (H(l)),

where
∑N(l)

i=1 g
(l)
i (H(l)) = 1, ensuring a weighted combination of experts. The gating function is

typically implemented as a softmax over a set of logits z(l)(H(l)), making the routing decision both
flexible and data-driven:

g
(l)
i (H(l)) =

exp(z
(l)
i (H(l)))∑N(l)

j=1 exp(z
(l)
j (H(l)))

.

By leveraging the routing weights from all layers, our approach captures a richer representation
of the input that accounts for both shallow and deep contextual features. This enables the model
to provide nuanced information at every level of abstraction, which is critical for tasks requiring
sensitivity to both low-level and high-level input details.

By concatenating the dynamic routing weights from all layers, we form a comprehensive routing-
based embedding eRW:

eRW = [g(1)(H(1));g(2)(H(2)); . . . ;g(L)(H(L))] ∈ R
∑L

l=1 N(l)

.

This embedding captures how the input is routed through different experts across all layers, offering
a holistic view of the model’s interaction with the input. Importantly, it reflects the full depth of the
model’s decision-making process, making it a powerful representation for downstream tasks where
diverse semantic and structural features of the input are essential.

3.2 COMPARATIVE & COMPLEMENTARY ANALYSIS OF ROUTING WEIGHTS & HIDDEN STATE

In this section, we investigate how routing weight (RW) embedding and hidden state (HS) embedding,
generated from MoE models, capture different aspects of input data. Understanding the distinct
roles these embedding play is crucial to determining how they complement each other. While HS
embedding from pre-trained LLMs provides a broad, context-driven representation of sentences,
they may overlook the nuanced, token-specific information that RW embedding can capture through
MoE’s dynamic routing.

This distinction suggests that RW and HS may excel in different contexts, potentially encoding
complementary information. To explore this, we first analyze their clustering behavior using k-means
clustering and perform a correlation analysis to quantify the differences between their respective
cluster structures. We then leverage the BERTopic framework (Grootendorst, 2022) to examine

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Correlation of the clustering re-
sults achieved on the routing weight (RW)
and hidden state (HS) embedding extracted
from MoE LLMs. Low scores indicate the
complementarity of RW and HS.

Metric Score (max value)

Adjusted Mutual
Information (AMI) 0.29 (1.00)

Normalized Mutual
Information (NMI) 0.29 (1.00)

Jaccard Similarity 0.06 (1.00)
Exact Matching (%) 45.54% (100.00%)

HS

Cluster 1 Cluster 2 Cluster 3

MoEE

Figure 3: Word clouds of the top-20 topics from 3
clusters achieved on RW and HS separately, highlighting
their captured distinct semantic features.

pr
om

pt
 1

pr
om

pt
 2

pr
om

pt
 3

pr
om

pt
 4

pr
om

pt
 5

pr
om

pt
 6

pr
om

pt
 7

pr
om

pt
 8

pr
om

pt
 9

pr
om

pt
 1

pr
om

pt
 2

pr
om

pt
 3

pr
om

pt
 4

pr
om

pt
 5

pr
om

pt
 6

pr
om

pt
 7

pr
om

pt
 8

pr
om

pt
 9

prompt 1
prompt 2
prompt 3
prompt 4
prompt 5
prompt 6
prompt 7
prompt 8
prompt 9
prompt 1
prompt 2
prompt 3
prompt 4
prompt 5
prompt 6
prompt 7
prompt 8
prompt 9

0.52 0.51

0.51 0.63

HS

RW

HS RW

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Heatmap of Spearman’s rank correlation between
RW and HS embedding achieved using nine different
prompts (defined in Table 1). The top-left (HS-HS) and
bottom-right (RW-RW) blocks show the correlations
between embedding when using different prompts, with
mean scores of 0.52 and 0.63 (excluding the diagonal
entries), respectively. This implies RW is more robust to
varying prompts than HS. The top-right and bottom-left
blocks reflect correlations between RW and HS when using
the same or different prompts, both with a mean score of
0.51. This lowest score indicates the complementarity
between RW and HS.

Table 2: Prompts used in Fig 4-5.

ID Prompt
1 This sentence: *sent* means in one

word:
2 In one word, describe the style of

the following sentence - *sent*:
3 In one word, describe the sentiment

of the following sentence (positive,
neutral, or negative) - *sent*:

4 In one word, describe the tone of
the following sentence - *sent* (e.g.,
formal, informal, humorous, seri-
ous):

5 In one word, describe the intent be-
hind the following sentence (e.g.,
request, suggestion, command) -
*sent*:

6 In one word, rate the complexity of
the following sentence (simple, mod-
erate, complex) - *sent*:

7 In one word, describe whether the
following sentence is subjective or
objective - *sent*:

8 In one word, describe the language
style of the following sentence (e.g.,
academic, conversational, literary) -
*sent*:

9 In one word, describe the grammat-
ical structure of the following sen-
tence (simple, compound, complex)
- *sent*:

the topics associated with each cluster, providing insights into the embedding’s capacity to capture
thematic content. Finally, we evaluate their performance in identifying semantically similar text
pairs, further confirming their complementary nature.

RW and HS embedding exhibit distinct clustering behaviors and encode different topics. Our
analysis shows that the clustering results from RW and HS embedding are markedly different. As
reflected in Table 1, the clustering metrics show moderate overlap (AMI and NMI at 0.29), but with
a low Jaccard Similarity of 0.06 and only 45.54% exact matching2 between clusters, underscoring
the distinct ways each method structures the data. This difference in clustering behavior is further
reflected in the topics captured by the embedding. As shown in Figure 3, the word clouds reveal that
the clusters from RW and HS embedding emphasize different thematic topics, highlighting how the
two methods capture divergent aspects of the input data.

2Exact matching refers to the proportion of data points that are grouped into identical clusters by two different
methods (in this case, RW and HS embeddings).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Complementary nature of RW and HS embedding. Previous analyses suggest that RW and HS
embedding capture different aspects of input data. To validate this hypothesis and quantify their
complementarity, we need to examine how these two embedding relate to one another. We approach
this by conducting a Spearman correlation analysis using the STS12 dataset, which contains 6,216
sentence pairs. For each pair, we generate embedding from both RW and HS and calculate the similar-
ity between the sentences to assess how each embedding captures semantic relationships. To ensure
that any observed differences are not caused by prompt variation, we employ nine distinct prompts
(listed in Table 2). As shown in Figure 4, notably, the correlation between RW and HS embedding is
the lowest across all comparisons, with a mean value of 0.51. This low correlation highlights that
RW and HS capture largely unrelated aspects of the data, reinforcing their complementary nature.
Further evidence supporting this complementarity is presented in the error analysis (Figure 2) and the
experimental results (Section 4).

3.3 THE PROPOSED MOE EMBEDDING (MOEE)

Building on the analysis of routing weight (RW) and hidden state (HS) embedding, we propose our
method MOEE, which combines RW and HS to form a more comprehensive embedding representa-
tion. We introduce two approaches for this combination as follows.

Concatenation-based Combination. In this method, the embedding generated by the hidden state
(eHS) and the routing weights (eRW) are concatenated to form the final embedding. This approach is
denoted as MOEE (concat), and the final embedding is computed as:

efinal = [eHS; eRW] ∈ RdHS+dRW ,

where dHS is the dimensionality of the hidden state embedding, and dRW is the dimensionality of
the routing weight embedding. This method preserves the distinct information captured by each
component while allowing downstream tasks to leverage the combined representation.

Weighted Sum Integration. The second method performs a weighted sum of the similarity scores
calculated from RW and HS embedding, denoted as MOEE (sum). For tasks like STS, given a
sentence pair (s1, s2), we first compute the similarity score between the two sentences using both
HS-based embedding and RW-based embedding independently, as eHS(s1), eHS(s2), eRW(s1), and
eRW(s2). Then, a weighted sum of the similarity scores is performed before comparing the result to
the ground truth:

simHS = cosine_similarity(eHS(s1), eHS(s2)),

simRW = cosine_similarity(eRW(s1), eRW(s2))

The final similarity score is then computed as:

simfinal = simHS + α · simRW,

where α is used as a hyperparameter to control the contribution of RW. To maximize the comple-
mentary strengths of HS and RW, we optimize α adaptively at test time. Specifically, α is tuned
using a gradient-based approach to maximize the Spearman rank correlation between simfinal and its
components (simHS and simRW) over samples for the given task. This process does not require ground
truth labels, focusing instead on enhancing complementarity between HS and RW. Once optimized,
α remains consistent for the given task and is applied uniformly during testing.

Finally, we compute the rank correlation (e.g., Spearman’s rank correlation) between the predicted
similarity scores simfinal and the ground truth similarity. This framework can be applied consistently
across other tasks, adapting the weighted sum to task-specific needs.

4 EXPERIMENTS

4.1 EVALUATION SETUP

We evaluate MOEE on 6 task categories from the MTEB, including Classification, Clustering, Pair
Classification, Re-ranking, Semantic Textual Similarity (STS), and Summarization. We focus on
Sentence-to-Sentence (S2S) tasks as they provide a direct and widely-used benchmark for embedding
quality. Multilingual datasets are excluded since most MoE LLMs are trained primarily on English

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

data. To control computational costs, we include all STS and Summarization tasks and select tasks
with manageable sample sizes from other categories: top-3 for Re-ranking and Classification, top-2
for Clustering, and top-2 for Pair Classification, based on task statistics in Muennighoff et al. (2022).
For consistent and fair comparisons, we adopt the MTEB evaluation framework and use task-specific
metrics: Accuracy (Classification), V-Measure (Clustering), Average Precision (Pair Classification),
Mean Average Precision (Re-ranking), nDCG (Retrieval), and Spearman’s correlation (STS and
Summarization).

Our experiments use three MoE models:
• DeepSeekMoE-16B (Dai et al., 2024): 28 layers, with 64 experts per layer.
• Qwen1.5-MoE-A2.7B (Team, 2024): 24 layers, each containing 60 experts.
• OLMoE-1B-7B (Muennighoff et al., 2024a): 16 layers, with 64 experts per layer.

All models use per-token routing, but MOEE uses the last token’s routing weights, which consistently
outperform averaging across all tokens. For the hidden state (HS) embeddings, we use the last-layer
hidden state of the last token. Ablation studies supporting this choice are provided in Section 4.3.

Baselines Our goal is to extract advanced embedding from MoE LLMs by combining hidden
state (HS) and routing weights (RW) without further training. To demonstrate the effectiveness of
MOEE, we compare it against both RW and HS individually, as well as to several self-supervised
and supervised methods that require training. We also assess performance across different prompt
strategies, specifically comparing methods without prompts and with PromptEOL (Jiang et al., 2023).

Table 3: Performance across MTEB Tasks without prompts, including Classification (CLF), Clustering
(Clust.), Pair Classification (Pair CLF), Re-ranking (Rerank), STS, and Summarization (Summ.).

MTEB Tasks CLF Clust. PairCLF Rerank STS Summ. Avg.

DeepSeekMoE-16B
Hidden State (HS) 44.79 25.87 44.34 38.13 34.54 24.51 35.36
Routing Weight (RW) 44.06 17.53 50.59 35.94 41.11 26.22 35.91
MOEE (concat) 44.93 24.15 51.88 41.20 46.82 31.17 40.03
MOEE (sum) 48.74 32.83 52.12 47.88 48.34 29.89 43.30

Qwen1.5-MoE-A2.7B
Hidden State (HS) 46.41 24.31 44.43 44.91 28.36 22.65 35.18
Routing Weight (RW) 38.99 10.55 42.26 33.53 23.97 27.44 29.46
MOEE (concat) 44.81 26.75 49.79 49.23 37.93 27.61 39.35
MOEE (sum) 50.70 31.35 51.87 49.82 45.75 24.00 42.25

OLMoE-1B-7B
Hidden State (HS) 44.23 23.79 47.56 45.60 35.44 20.94 36.26
Routing Weight (RW) 43.54 17.66 53.12 40.91 44.68 28.68 38.10
MOEE (concat) 44.62 22.83 51.64 46.58 48.84 31.67 41.03
MOEE (sum) 48.54 30.67 50.93 47.77 49.45 28.77 42.69

4.2 MAIN RESULTS

Our method demonstrates consistent performance improvements across a variety of MTEB tasks, as
shown in Tables 3 and 4. Results for datasets under each task type are detailed in Appendix A. MOEE
that combines routing weights with hidden state consistently outperforms both standalone methods
(RW and HS) in most cases, highlighting the complementary nature of these two components.

For tasks evaluated without prompts, the results show that MOEE (sum) achieves the highest average
performance across models, with notable improvements in tasks such as Classification, Re-ranking,
and STS. Specifically, DeepSeekMoE shows a substantial boost from 35.36 (HS) to 43.30 (MOEE
(sum)), a 22.45% improvement. This pattern holds across Qwen1.5-MoE and OLMoE, where MOEE
(sum) achieves consistent gains over both individual methods. When PromptEOL is introduced
(Table 4), we observe even greater performance gains, with 25.96% improvement for DeepSeekMoE.
Across all models, MOEE (sum) again leads to the best results, with OLMoE achieving the highest
overall average of 55.16 and Qwen1.5-MoE following closely at 55.04. While MOEE shows marginal
gains over HS in the Classification task, this is expected, as the final layer HS is more aligned with
output-specific features, which benefits classification.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance across MTEB Tasks when PromptEOL (Jiang et al., 2023) is applied to MoE.
Baselines marked with ⋆ are sourced from the MTEB leaderboard (Muennighoff et al., 2022) and
require training.

MTEB Tasks CLF Clust. PairCLF Rerank STS Summ. Avg.

Self-Supervised Methods
Glove⋆ (Pennington et al., 2014) 51.04 23.11 62.90 48.72 60.52 28.87 45.86
Komninos⋆ (Komninos & Manandhar, 2016) 50.21 24.96 66.63 50.03 61.73 30.49 47.34
BERT⋆ (Devlin, 2018) 52.36 23.48 66.10 48.47 52.89 29.82 45.52
SimCSE-BERT-unsup⋆ (Gao et al., 2021) 54.80 22.59 70.79 52.42 75.00 31.15 51.13

Supervised Methods
SimCSE-BERT-sup⋆ 58.98 29.49 75.82 53.61 79.97 23.31 53.53
coCondenser-msmarco⋆ (Gao & Callan, 2021) 53.89 32.85 74.56 60.08 76.41 29.50 54.55
SPECTER⋆ (Cohan et al., 2020) 42.59 27.94 56.24 55.87 60.68 27.66 45.16
LaBSE (Feng et al., 2020) 54.31 24.05 73.68 54.63 70.95 31.05 51.45
LASER2 42.54 14.01 70.52 46.99 64.52 26.80 44.23
SGPT-125M-nli (Muennighoff, 2022) 53.28 26.59 68.80 53.65 75.01 30.26 51.27

DeepSeekMoE-16B
Hidden State (HS) 58.24 24.64 48.76 38.13 59.66 24.38 42.30
Routing Weight (RW) 49.52 19.97 68.30 37.48 59.52 29.26 44.01
MOEE (concat) 54.21 26.10 72.44 53.31 67.59 28.89 50.42
MOEE (sum) 58.31 34.52 70.95 55.99 70.66 29.22 53.28

Qwen1.5-MoE-A2.7B
Hidden State (HS) 59.34 29.50 74.29 56.51 67.39 23.01 51.67
Routing Weight (RW) 47.84 16.74 64.85 43.55 51.71 27.74 42.07
MOEE (concat) 54.23 27.18 73.93 56.12 68.52 28.57 51.43
MOEE (sum) 59.57 38.33 72.21 56.25 72.78 31.09 55.04

OLMoE-1B-7B
Hidden State (HS) 58.18 32.83 72.10 58.31 72.91 27.96 53.72
Routing Weight (RW) 45.02 19.93 61.58 43.91 54.33 29.49 42.38
MOEE (concat) 52.59 33.92 71.85 56.69 71.13 30.21 52.73
MOEE (sum) 57.46 36.46 71.26 60.43 74.63 30.71 55.16

Although MOEE initially trails behind self-supervised and supervised methods without prompts,
the introduction of PromptEOL leads to a significant shift. As shown in Table 4, MOEE surpasses
supervised approaches like SimCSE and coCondenser, achieving superior performance without
requiring additional training. This underscores both its effectiveness and efficiency.

4.3 ABLATION STUDY

Table 5: Ablation study on different ways of using routing weights (RW) and hidden state (HS).

STS Datasets STS12 STS13 STS14 STS15 STS16 Avg.

DeepSeekMoE-16B
HS - last token, last layer 51.99 69.56 54.68 58.04 68.47 60.40
HS - last token, all layers 59.82 60.59 45.20 51.08 58.88 55.03
HS - all tokens, last layer 30.95 34.42 26.77 34.90 37.11 32.78
HS - all tokens, all layers 60.81 62.46 46.90 52.38 59.99 56.34

RW - last token 61.97 65.86 51.38 65.86 62.49 61.18
RW - all tokens 50.76 46.42 41.47 43.68 48.37 46.03

MOEE (best) 67.39 81.43 68.98 67.76 74.26 71.75

This ablation study investigates how different methods of extracting routing weights (RW) and hidden
state (HS) affect embedding quality across the STS12-16 datasets, with results presented in Table 5.

As detailed in Section 3.1, RW integrates routing decisions across all layers, capturing information at
multiple depths. In contrast, HS from only the last layer may miss important intermediate details.
Therefore, we evaluate the use of hidden states from all layers (HS - last token, all layers) to see if it
can match RW, which naturally leverages multi-layered information.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We also assess the impact of using only the last token versus averaging across all tokens. While the
last token often condenses crucial sequence information, mean pooling across all tokens may offer a
broader view by incorporating contributions from every token. Thus, we compare HS - last token
with HS - all tokens, and RW - last token with RW - all tokens. For multi-layer or multi-token cases,
mean pooling is applied.

Our results show that focusing on the last token, whether from HS or RW, consistently delivers the
best performance. This indicates that the last token captures the most critical semantic information,
while pooling across tokens or layers introduces noise. Notably, RW outperforms HS, underscoring
its superior ability to capture nuanced, dynamic information that HS alone cannot replicate.

4.4 A STABILITY COMPARISON OF RW AND HS USING DIFFERENT PROMPTS

STS12
STS13

STS14
STS15

STS16
0

10

20

30

40

50

60

70

80

Sp
ea

rm
an

(i)
DeepSeekMoE-16B

STS12
STS13

STS14
STS15

STS16

(ii)
Qwen1.5-MoE-A2.7B

STS12
STS13

STS14
STS15

STS16

(iii)
OLMoE-1B-7B

HS RW

Figure 5: Box plots of the performance of the two embedding methods (RW or HS) using nine
different prompts (listed in Table 2) on five STS datasets, evaluated on three MoE models: (i)
DeepSeekMoE, (ii) Qwen1.5-MoE, and (iii) OLMoE. The higher variance and wider spread of HS in
the box plots indicate its sensitivity to the prompt choice, while RW is more robust (lower variance)
with better mean performance.

Prompts are commonly used to boost the performance of embedding models across diverse
downstream tasks (Lei et al., 2024), as shown by the improved results of PromptEOL (Table 3)
compared to no prompts (Table 4). However, the effectiveness of these prompts can vary, and a
method’s robustness depends on its ability to handle these variations. To assess the prompt sensitivity
of RW and HS, we measure their Spearman correlation scores across STS12-16 datasets using 9
different prompts listed in Table 2. The analysis is performed on three MoE models: DeepSeekMoE,
Qwen1.5-MoE, and OLMoE, which differ in model size and architecture, allowing us to investigate
the generalizability of our findings. For each model, we compute the mean and variance of these
scores for each dataset, capturing how performance fluctuates under different prompt conditions
and whether the methods remain stable when exposed to prompt variations.

Figure 5 highlights the performance variance for both methods. HS exhibits significantly higher
variance, indicating that its performance is highly dependent on the specific prompt used. This
suggests that HS is more sensitive to prompt formulation, leading to inconsistent results that could
hinder its reliability in broader applications. Figure 4 (see Section 3.2) further supports this from
another perspective3, showing a smaller mean correlation of 0.52 for HS using different prompts,
reflecting a higher variance than RW.

In contrast, RW demonstrates greater stability, with consistently lower variance and narrower box
plots across all datasets, indicating its robustness to prompt choice. In Figure 4, RW also achieves
a higher mean correlation of 0.63 between different prompts, underscoring its ability to maintain
stable performance across different prompts. This makes MOEE a more reliable option for tasks
where prompt variability is expected.

3The Spearman correlation in Figure 5, as a performance metric, is between HS/RW and the ground truth,
while the Spearman correlation in Figure 4 is to compare different embedding.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Notably, Qwen1.5-MoE and OLMoE exhibit greater sensitivity to prompt variations compared to
DeepSeekMoE. Despite this, HS embeddings consistently demonstrate significantly higher variance
than RW embeddings across all tasks and models. This pattern of RW robustness holds consistently
across the three MoE models, reinforcing its stability in diverse settings.

4.5 CASE STUDY: WHEN HS OUTPERFORMS RW & VICE VERSA

Table 6: Semantically similar sentence pairs cor-
rectly predicted by HS embedding but not by RW
embedding. Differences between the sentences
are highlighted to show subtle variations that in-
fluence prediction outcomes.

Sentence 1 Sentence 2
1 the vote will take place

today at 5.30 p.m
the vote will take
place at 17h30

2 the standards are
scarcely comparable,
let alone transferable

the norms are hardly
comparable and still
less transferable

3 that provision could
open the door wide to
arbitrariness

this point of proce-
dure opens the door to
the arbitrary

4 A woman puts flour
on a piece of meat

A woman is putting
flour onto some meat.

5 the fishermen are
inactive, tired and
disappointed

fishermen are inactive,
tired and disappoint-
ment

Table 7: Semantically similar sentence pairs cor-
rectly predicted by RW embedding but not by
HS embedding.

Sentence 1 Sentence 2
1 He did, but the initia-

tive did not get very
far.

What happened is that the
initiative does not go very
far.

2 then perhaps we
could have avoided a
catastrophe

we might have been able to
prevent a disaster

3 it increases the power
of the big countries
at the expense of the
small countries

it has the effect of augment-
ing the potency of the big
countries to the detriment of
babies

4 festive social event,
celebration

an occasion on which peo-
ple can assemble for so-
cial interaction and enter-
tainment.

5 group of people de-
fined by a specific
profession

organization of performers
and associated personnel
(especially theatrical).

In this section, we analyze instances where HS embedding performs better than RW embedding
(Table 6), as well as cases where RW outperforms HS (Table 7). This helps identify the strengths and
weaknesses of each method and offers insights into when one may be preferred over the other.

From the results, HS embeddings excel in capturing formal linguistic consistency, particularly
when sentence structure undergoes only superficial changes. They effectively represent the overall
structure and meaning of sentences, making them useful in cases with minimal semantic variation.
In contrast, RW embedding performs better when handling paraphrasing, synonym use, and
nuanced stylistic shifts. The RW mechanism’s sensitivity to input variations allows it to capture
deeper contextual changes, even when the overall meaning of the sentence is preserved.

5 CONCLUSION

In this paper, we explore the untapped potential of MoE as effective embedding generators without
extra training. Our analysis reveals that RW derived from MoE models complements the widely-used
HS embedding, offering a deeper understanding of input semantics. By leveraging both RW and HS,
we propose MOEE, which significantly improves embedding performance across diverse tasks in
the MTEB benchmark. Our results demonstrate that combining RW and HS boosts generalization,
making MoE models versatile tools for embedding tasks. Future work would further explore how to
leverage MOEE adaptively for task-specific scenarios.

REFERENCES

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld. Specter:
Document-level representation learning using citation-informed transformers. arXiv preprint
arXiv:2004.07180, 2020.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic
bert sentence embedding. arXiv preprint arXiv:2007.01852, 2020.

Luyu Gao and Jamie Callan. Unsupervised corpus aware language model pre-training for dense
passage retrieval. arXiv preprint arXiv:2108.05540, 2021.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Denvy Deng, and Qi Zhang. Promptbert: Improving bert sentence embeddings
with prompts. arXiv preprint arXiv:2201.04337, 2022.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence
embeddings with large language models. arXiv preprint arXiv:2307.16645, 2023.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. Advances in neural information processing systems, 28,
2015.

Alexandros Komninos and Suresh Manandhar. Dependency based embeddings for sentence clas-
sification tasks. In Proceedings of the 2016 conference of the North American chapter of the
association for computational linguistics: human language technologies, pp. 1490–1500, 2016.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao, Chongyang Tao, and Andrew Yates. Meta-task
prompting elicits embedding from large language models. arXiv preprint arXiv:2402.18458, 2024.

Ziyue Li, Kan Ren, Xinyang Jiang, Yifei Shen, Haipeng Zhang, and Dongsheng Li. Simple:
Specialized model-sample matching for domain generalization. In The Eleventh International
Conference on Learning Representations, 2023.

Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Ghosh, Luke
Zettlemoyer, and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture of
modality-aware experts, 2024. URL https://arxiv.org/abs/2407.21770.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz.
Sfrembedding-mistral: enhance text retrieval with transfer learning. Salesforce AI Research
Blog, 3, 2024.

11

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2407.21770


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett, Jiawei Han, Xia Song, et al. Coco-lm:
Correcting and contrasting text sequences for language model pretraining. Advances in Neural
Information Processing Systems, 34:23102–23114, 2021.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. arXiv preprint
arXiv:2202.08904, 2022.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316, 2022. doi: 10.48550/ARXIV.2210.07316. URL
https://arxiv.org/abs/2210.07316.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024a.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. arXiv preprint arXiv:2402.09906,
2024b.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv preprint
arXiv:2108.08877, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret
Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A winning
combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

Min Shi, Fuxiao Liu, Shihao Wang, Shijia Liao, Subhashree Radhakrishnan, De-An Huang, Hongxu
Yin, Karan Sapra, Yaser Yacoob, Humphrey Shi, Bryan Catanzaro, Andrew Tao, Jan Kautz,
Zhiding Yu, and Guilin Liu. Eagle: Exploring the design space for multimodal llms with mixture
of encoders. arXiv:2408.15998, 2024.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters",
February 2024. URL https://qwenlm.github.io/blog/qwen-moe/.

Kexin Wang, Nils Reimers, and Iryna Gurevych. Tsdae: Using transformer-based sequential denoising
auto-encoder for unsupervised sentence embedding learning. arXiv preprint arXiv:2104.06979,
2021.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11897–11916, 2024.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma. Clear: Contrastive
learning for sentence representation. arXiv preprint arXiv:2012.15466, 2020.

Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu Song, Hao Shao, Dongzhi Jiang, Hongsheng
Li, and Yu Liu. Mova: Adapting mixture of vision experts to multimodal context, 2024. URL
https://arxiv.org/abs/2404.13046.

12

https://arxiv.org/abs/2210.07316
https://qwenlm.github.io/blog/qwen-moe/
https://arxiv.org/abs/2404.13046


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A MTEB RESULTS

We present detailed evaluation results of task types, including STS (Table 8), classification (Table 9),
pair classification (Table 10), clustering (Table 11), and re-ranking (Table 12) tasks. We show the
performance of our method across different models and prompts, and compares it to baseline methods
like Hidden State (HS) and Routing Weight (RW).

Table 8: Detailed Results of STS Tasks. The DeepSeekMoE, Qwen1.5-MoE, and OLMoE models
are evaluated on tasks from STS12 to STSBenchmark. The MOEE method (without and with
PromptEOL) significantly improves performance across most benchmarks.

Prompt STS12 STS13 STS14 STS15 STS16 BIOSSES SICK-R STSBenchmark

DeepSeekMoE-16b
Hidden State (HS) none 20.90 43.39 24.02 37.75 47.15 29.87 42.66 30.61
Routing Weight (RW) none 45.22 41.38 28.75 38.63 50.36 34.14 51.98 38.44
MOEE (concat) none 46.26 55.88 37.90 42.37 54.19 41.20 53.66 43.06
MOEE (sum) none 46.41 60.58 41.50 42.85 54.98 42.33 53.70 44.36
Hidden State (HS) PromptEOL 51.99 69.56 54.68 58.04 68.47 45.29 63.78 65.48
Routing Weight (RW) PromptEOL 61.97 65.86 51.38 65.86 62.49 53.97 57.93 56.68
MOEE (concat) PromptEOL 66.79 77.60 63.56 64.60 71.22 61.96 66.29 68.72
MOEE (sum) PromptEOL 67.39 81.43 68.98 67.76 74.26 62.09 69.98 73.41

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 8.39 25.23 15.76 22.08 38.11 28.69 51.73 36.88
Routing Weight (RW) none 27.96 18.89 13.88 17.11 36.29 25.40 29.42 22.80
MOEE (concat) none 33.36 36.30 24.68 25.86 47.16 39.06 53.92 43.09
MOEE (sum) none 35.72 47.29 31.51 31.00 50.61 53.40 62.35 54.11
Hidden State (HS) PromptEOL 55.05 77.48 63.63 73.60 73.49 61.42 67.01 67.42
Routing Weight (RW) PromptEOL 54.39 59.05 45.49 48.11 56.96 43.65 55.46 50.54
MOEE (concat) PromptEOL 64.44 77.38 64.05 67.18 71.48 64.87 69.01 69.71
MOEE (sum) PromptEOL 65.54 82.44 71.39 72.88 75.43 67.84 71.15 75.57

OLMoE-1B-7B
Hidden State (HS) none 21.53 41.47 22.71 39.88 51.49 44.11 39.98 22.36
Routing Weight (RW) none 47.16 43.92 32.62 43.87 51.91 44.30 52.89 40.77
MOEE (concat) none 48.82 52.69 37.48 46.80 56.06 54.58 52.24 42.02
MOEE (sum) none 49.59 54.19 38.87 47.27 56.11 54.58 52.82 42.16
Hidden State (HS) PromptEOL 65.51 81.86 69.37 77.64 77.19 73.54 66.62 71.51
Routing Weight (RW) PromptEOL 55.76 60.01 48.08 49.88 57.88 56.28 56.02 50.72
MOEE (concat) PromptEOL 67.35 80.13 68.42 68.76 73.35 73.02 67.51 70.47
MOEE (sum) PromptEOL 68.84 84.34 74.02 73.81 76.88 73.02 70.56 75.58

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 9: Detailed Results of Classification Tasks, including sentiment extraction, emotion classifi-
cation, and toxic conversations classification. The performance of different methods (Hidden State,
Routing Weight, and MOEE) with and without PromptEOL is shown.

Prompt
TweetSentiment-
Extraction-
Classification

Emotion-
Classification

Toxic-
Conversations-
Classification

DeepSeekMoE-16b
Hidden State (HS) none 49.14 27.55 57.69
Routing Weight (RW) none 52.37 26.49 53.32
MOEE (concat) none 52.64 28.02 54.12
MOEE (sum) none 50.32 27.52 68.39
Hidden State (HS) PromptEOL 60.13 49.11 65.47
Routing Weight (RW) PromptEOL 57.68 35.57 55.32
MOEE (concat) PromptEOL 61.12 45.59 55.93
MOEE (sum) PromptEOL 59.32 46.86 68.76

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 48.83 31.02 59.38
Routing Weight (RW) none 42.80 20.63 53.53
MOEE (concat) none 49.60 30.93 53.90
MOEE (sum) none 48.84 32.76 70.50
Hidden State (HS) PromptEOL 61.14 48.09 68.80
Routing Weight (RW) PromptEOL 55.33 33.82 54.37
MOEE (concat) PromptEOL 60.78 46.10 55.82
MOEE (sum) PromptEOL 60.72 47.97 70.03

OLMoE-1B-7B
Hidden State (HS) none 50.29 30.29 52.10
Routing Weight (RW) none 50.15 25.53 54.93
MOEE (concat) none 51.59 28.76 53.51
MOEE (sum) none 51.00 29.75 64.86
Hidden State (HS) PromptEOL 59.58 47.50 67.46
Routing Weight (RW) PromptEOL 52.79 28.51 53.75
MOEE (concat) PromptEOL 59.72 42.78 55.27
MOEE (sum) PromptEOL 59.92 45.63 66.84

Table 10: Pair classification task results on TwitterURLCorpus and TwitterSemEval2015.

Prompt TwitterURLCorpus TwitterSemEval2015

DeepSeekMoE-16b
Hidden State (HS) none 49.04 39.63
Routing Weight (RW) none 53.39 47.79
MOEE (concat) none 57.27 46.48
MOEE (sum) none 58.99 45.25
Hidden State (HS) PromptEOL 36.72 60.79
Routing Weight (RW) PromptEOL 76.58 60.01
MOEE (concat) PromptEOL 80.08 64.79
MOEE (sum) PromptEOL 79.20 62.70

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 45.71 43.14
Routing Weight (RW) none 48.78 35.74
MOEE (concat) none 53.74 45.83
MOEE (sum) none 57.78 45.95
Hidden State (HS) PromptEOL 82.50 66.07
Routing Weight (RW) PromptEOL 73.72 55.98
MOEE (concat) PromptEOL 82.34 65.51
MOEE (sum) PromptEOL 80.21 64.20

OLMoE-1B-7B
Hidden State (HS) none 55.07 40.04
Routing Weight (RW) none 54.25 51.99
MOEE (concat) none 56.97 46.31
MOEE (sum) none 57.03 44.82
Hidden State (HS) PromptEOL 82.32 61.87
Routing Weight (RW) PromptEOL 70.37 52.79
MOEE (concat) PromptEOL 82.32 61.38
MOEE (sum) PromptEOL 80.98 61.53

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 11: Clustering task results, showing performance on TwentyNewsgroupsClustering and Medrx-
ivClusteringS2S. MOEE (sum) consistently performs best without a prompt, while the MOEE method
with PromptEOL delivers substantial gains.

Prompt TwentyNewsgroupsClustering MedrxivClusteringS2S

DeepSeekMoE-16b
Hidden State (HS) none 25.62 26.11
Routing Weight (RW) none 15.33 19.72
MOEE (concat) none 22.94 25.35
MOEE (sum) none 31.44 34.22
Hidden State (HS) PromptEOL 27.02 22.26
Routing Weight (RW) PromptEOL 21.89 18.04
MOEE (concat) PromptEOL 29.13 23.06
MOEE (sum) PromptEOL 35.77 33.27

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 26.14 22.48
Routing Weight (RW) none 9.71 11.38
MOEE (concat) none 28.99 24.51
MOEE (sum) none 32.07 30.62
Hidden State (HS) PromptEOL 34.04 24.95
Routing Weight (RW) PromptEOL 16.94 16.54
MOEE (concat) PromptEOL 30.45 23.91
MOEE (sum) PromptEOL 42.05 34.60

OLMoE-1B-7B
Hidden State (HS) none 21.05 26.52
Routing Weight (RW) none 17.14 18.17
MOEE (concat) none 20.72 24.94
MOEE (sum) none 27.58 33.75
Hidden State (HS) PromptEOL 38.96 26.69
Routing Weight (RW) PromptEOL 22.13 17.72
MOEE (concat) PromptEOL 41.23 26.60
MOEE (sum) PromptEOL 38.58 34.33

Table 12: Re-ranking task results, showing performance on AskUbuntu, SciDocsRR, and StackOver-
flow duplicate questions re-ranking tasks.

Prompt AskUbuntuDupQuestions SciDocsRR StackOverflowDupQuestions

DeepSeekMoE-16b
Hidden State (HS) none 43.75 45.23 25.79
Routing Weight (RW) none 41.97 42.65 23.21
MOEE (concat) none 44.10 53.43 26.06
MOEE (sum) none 45.26 70.79 27.58
Hidden State (HS) PromptEOL 43.75 45.23 25.41
Routing Weight (RW) PromptEOL 46.57 42.65 23.21
MOEE (concat) PromptEOL 50.66 72.63 36.65
MOEE (sum) PromptEOL 52.93 76.17 38.88

Qwen1.5-MoE-A2.7B
Hidden State (HS) none 43.71 60.91 30.12
Routing Weight (RW) none 41.00 36.85 22.75
MOEE (concat) none 44.95 68.42 34.31
MOEE (sum) none 44.30 70.85 34.31
Hidden State (HS) PromptEOL 54.69 75.06 39.79
Routing Weight (RW) PromptEOL 44.65 55.03 30.96
MOEE (concat) PromptEOL 52.15 75.69 40.51
MOEE (sum) PromptEOL 51.30 74.53 42.91

OLMoE-1B-7B
Hidden State (HS) none 43.67 69.08 24.05
Routing Weight (RW) none 42.83 54.17 25.72
MOEE (concat) none 43.91 70.33 25.49
MOEE (sum) none 44.57 72.54 26.20
Hidden State (HS) PromptEOL 55.32 78.24 41.36
Routing Weight (RW) PromptEOL 45.11 55.43 31.20
MOEE (concat) PromptEOL 52.81 77.14 40.13
MOEE (sum) PromptEOL 56.68 81.19 43.41

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ANALYSIS: IMPACT OF TEXT LENGTH ON PROMPTEOL EMBEDDING
QUALITY

0

500

1000

1500

2000

(i)
Fr

eq
ue

nc
y

0.6

0.8

1.0

(ii
)

Av
er

ag
e 

Ac
cu

ra
cy

of
 H

S

0 20 40 60 80 100
Sentence Length

0.6

0.8

1.0

(ii
i)

Av
er

ag
e 

Ac
cu

ra
cy

of
 R

W

Figure 6: (i) Distribution of sentence lengths in the STS12-16 dataset, concentrated on short to
medium-length sequences. (ii) and (iii) show that sentence length has no significant negative impact
on the average accuracy of Hidden State (HS) and Routing Weights (RW) embeddings, respectively.

PromptEOL is designed to condense the meaning of a sentence into a single word, making it well-
suited for shorter sequences. However, its robustness for longer or more complex inputs raises impor-
tant questions. Specifically, does sequence length affect the quality of the embeddings? Addressing
this is crucial for evaluating PromptEOL’s effectiveness and identifying areas for improvement.

This analysis leverages the STS12-16 datasets, which provide diverse sentence pairs commonly used
in Sentence-to-Sentence (S2S) tasks. These datasets offer a representative sample of real-world
sentence lengths, making them ideal for studying the relationship between length and embedding
quality. We first examine the length distribution to understand the typical input range and then
analyze how sequence length correlates with embedding quality, measured by accuracy. Accuracy is
determined by how closely the embedding-based ranking aligns with the ground truth, with deviations
beyond a threshold considered correct.

Figure 6 (i) illustrates the length distribution in the STS12-16 datasets, with a concentration of
short to medium-length sequences and a median of approximately 25 tokens. Figure 6 (ii) and (iii)
shows the relationship between sentence length and average accuracy for HS and RW embeddings
generated using PromptEOL, respectively. The results indicate no significant negative correlation,
confirming that sentence length does not adversely affect embedding quality within the S2S context
for both Hidden State (HS) and Routing Weights (RW). These findings demonstrate that PromptEOL
effectively captures the semantic meaning of shorter sequences without being sensitive to variations
in length.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

However, for tasks involving longer sequences, such as Paragraph-to-Paragraph (P2P) embeddings,
challenges may emerge. Compressing extensive information into a single word may limit embedding
quality. Addressing this limitation—for instance, by segmenting longer texts or introducing multi-
token sinks—remains an important direction for future work.

17


	Introduction
	Related Work
	Mixture-of-Experts Embedding (MoEE)
	MoE Routing Weights (RW) as Embedding
	Comparative & Complementary Analysis of Routing Weights & Hidden State
	The Proposed MoE Embedding (MoEE)

	Experiments
	Evaluation Setup
	Main Results
	Ablation Study
	A Stability Comparison of RW and HS using different Prompts
	Case Study: When HS Outperforms RW & Vice Versa

	Conclusion
	MTEB results
	Analysis: Impact of Text Length on PromptEOL Embedding Quality

