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Abstract
There are a thousand ways to caption an image.
Contrastive Language Pretraining (CLIP) on the
other hand, works by mapping an image and its
caption to a single vector—limiting how well
CLIP-like models can represent the diverse ways
to describe an image. In this work, we introduce
Llip, Latent Language Image Pretraining, which
models the diversity of captions that could match
an image. Llip’s vision encoder outputs a set of
visual features that are mixed into a final repre-
sentation by conditioning on information derived
from the text. We show that Llip outperforms non-
contextualized baselines like CLIP and SigLIP on
a variety of tasks even with large-scale encoders.
Llip improves zero-shot classification by an aver-
age of 2.9% zero-shot classification benchmarks
with a ViT-G/14 encoder. Specifically, Llip attains
a zero-shot top-1 accuracy of 83.5% on ImageNet
outperforming a similarly sized CLIP by 1.4%.
We also demonstrate improvement on zero-shot
retrieval on MS-COCO by 6.0%. We provide a
comprehensive analysis of the components intro-
duced by the method and demonstrate that Llip
leads to richer visual representations.

1. Introduction
Contrastive Language-Image Pre-training (CLIP; Radford
et al. (2021)) combined with a large-scale weakly super-
vised dataset has become the standard Visual Language Pre-
training (VLP) approach to learn visual representation (Li
et al., 2021; 2023e; Sun et al., 2023; Zhai et al., 2023;
Xu et al., 2023). Due to its generality, CLIP representa-
tions are now used for many downstream tasks such as
zero-shot classification (Radford et al., 2021), image gen-
eration (Ramesh et al., 2021) and visual question answer-

*Equal contribution 1FAIR at Meta 2Mila, Université de
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ing (Li et al., 2023b; Moon et al., 2023).

At its core, CLIP aims to learn an image representation that
is invariant to the caption diversity (see Figure 1a). CLIP
uses a visual encoder and a text encoder to independently
map visual and text inputs into a common representation
space. The joint encoders are trained with a contrastive
objective that maximizes the similarity of representations
extracted from the same image-text pair while pushing away
the representations from other examples (Radford et al.,
2021). This training criterion encourages the representa-
tion of an image to exactly match the representation of its
corresponding text description. Further, if different text de-
scriptions are associated with an image, CLIP contrastive
objective will push both text representations toward the
same visual representation.

Yet, there is an information imbalance between the visual
and text modality as visual content is often more rich than
its text description (Foucault, 1990). Multiple diverse text
captions can be equally valid descriptions of a given im-
age, each one focusing on a different visual aspect. For
example, depending on context, someone could describe the
animal from the image shown in Figure 1a while another
person could instead highlight the location where the pic-
ture was taken. Both are valid descriptions of the image
and, arguably, different descriptions may capture different
visual properties of the image. A training objective of a
vision-language model should therefore aim at capturing the
diversity of possible text descriptions to model the richness
of the visual input.

In this work, we propose to explicitly model the fact that
many different captions, and therefore representations, are
plausible for a given image. To enable the prediction of
different representations from a fixed image, we implement
the image to text representation function as a one-to-many
mapping. Conceptually, we augment our visual encoder
with a latent variable that captures contextual information.
Given this extra conditioning, our visual encoder can out-
put different representations for different contexts. In our
approach, the contextual latent is inferred directly from the
target caption, which is then used to modulate the visual
representation.

Specifically, our visual encoder is implemented by a vi-
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Figure 1: We propose Llip, Latent Language Image Pretraining, to model the diversity of matching captions for
a given image. (a) Conceptual visualization of CLIP (left) and Llip (right) architectures. CLIP independently encodes
visual features (shown in circles) and text features (shown in squares) which are pulled closer together by maximizing
the cosine similarity objective L. The single image feature vector of CLIP has to compromise between all matching text
features (illustrated in the feature manifold at the bottom of the Figure). Llip outputs a set of visual mixture tokens which are
combined into a final visual feature vector conditioned on the context derived from the caption. Llip’s visual representations
can more accurately represent each caption. (b) Zero-shot top-1 transfer accuracy averaged over 22 established classification
benchmarks (see section 6.1) against Giga FLOPs for inference (estimated on the ImageNet zero-shot classification task) for
encoders of various sizes. Llip outperforms the Visual Language Pretraining baselines. Llip was trained on the same data as
MetaCLIP (Xu et al., 2023).

sual transformer that outputs K learnable mixture tokens
in addition to the visual tokens. The goal of the mixture
tokens is to capture the different visual aspects of an in-
put. We then make use of a cross-attention mechanism that
infers the mixture token weights as a function of the text
caption. The weighted mixture defines our contextual rep-
resentation that is contrasted with text representations. We
show that this simple modification of CLIP leads to signif-
icant improvement of the visual representation quality as
illustrated in Figure 1b as well as a more rich visual rep-
resentation (see Figure 5). We refer to our approach as
Latent Language Image Pre-training (Llip).

To demonstrate the value of our approach, we pretrain a fam-
ily of vision transformer (ViT) encoders (Dosovitskiy et al.,
2020) on the recent MetaCLIP (Xu et al., 2023) dataset and
compare our approach on various zero-shot classification
and text retrieval tasks. Through an empirical evaluation
and control experiments we found that:

• On zero-shot transfer classification, Llip consistently
outperforms CLIP pretraining for architecture of simi-
lar size on a large set of benchmarks. In particular, a
VIT-G/14 encoder trained with Llip achieves a top-1
accuracy of 83.5% on the ImageNet 0-shot task outper-
forming a VIT-G/14 trained with CLIP by 1.4%.

• On zero-shot image-text and text-image retrieval, Llip
consistently outperforms CLIP pretraining on COCO
by 6.0% image-to-text retrieval.

2. Related work
Invariant representation. Invariance-based representation
learning such as contrastive approaches aims at learning
encoders that map two related inputs to the same point in
representation space. This paradigm is commonly used
in self-supervised learning (SSL) using a joint-embedding
architecture (Bromley et al., 1993) where the two related
inputs are two transformations of the same image (Purush-
walkam & Gupta, 2020; Misra & van der Maaten, 2020;
Chen et al., 2020a). In this case, the goal is to learn an
invariant representation to a set of predefined image trans-
formations that preserve the semantic content of the im-
ages (Chen et al., 2020a; Assran et al., 2022; Purushwalkam
& Gupta, 2020; Misra & van der Maaten, 2020; Chen et al.,
2020a; Oquab et al., 2023). While SSL methods can choose
which invariance to promote through the choice of the trans-
formations, it is not the case in vision-language pretraining
as the two inputs of the encoders are from different modali-
ties, i.e. an image and its text description. We hypothesize
that enforcing invariance between image and text is not a
desirable training objective as many text descriptions, cap-
turing different visual aspects, could correspond to a given
image.

Predictive representation. Another line of works in
SSL learns representation without relying on invariant loss
with the use of a joint-embedding predictive architectures
(JEPA) (LeCun, 2022; Baevski et al., 2022; Assran et al.,
2023; Bardes et al., 2024). Given a pair of related inputs
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Figure 2: Summary of the method Llip. (a) Schema of Llip’s computation of the loss. An image encoder outputs K
mixture tokens (K = 2 in the schema). The mixture tokens are given to a cross-attention module as keys and values along
with the text encoding that is given as the query. The visual representation to be contrasted with the text target is conditioned
on the text itself, allowing the model to produce a different visual representation depending on the caption. (b) Llip uses a
contrastive objective and requires encoding the visual representation with the text targets to compute the loss.

x and t, JEPA approaches learn by predicting the represen-
tation of t from x conditioned on a context variable that
indicates the transformation between x and t. In practice,
this idea has been explored in mask-modeling formulation
where the conditioning indicates the position of t (Baevski
et al., 2022; Assran et al., 2023). Our approach Llip uses a
similar learning principle in the context of vision-language
pretraining. Our goal is to predict a text representation from
the image input (see Figure 2a). One key difference with
previous works is that we don’t have a direct access to the
conditioning variable which specifies the relative transfor-
mation from an image to its caption, Llip has to infer it
using the text description.

Vision-Language Pretraining. A wide variety of prior
works explored vision-language pretraining. Jia et al.
(2021); Ilharco et al. (2021); Li et al. (2023d); Sun et al.
(2023); Zhai et al. (2023); Fini et al. (2023); Mu et al. (2021)
propose alternative contrastive-based Vision-Language Pre-
training methods. Some VLP methods incorporate frozen
feature extractors for image or text encoders (Zhai et al.,
2022; Li et al., 2023c; Moayeri et al., 2023). Other ap-
proaches use instruction tuning (Liu et al., 2023), context
(Zhou et al., 2022), and grounding objectives (Zhang et al.,
2021; Li et al., 2022b; Dou et al., 2022) that require addi-
tional training data for supervision. Gao et al. (2022); Desai
et al. (2024) tackle the lack of a one-to-one-correspondence
between web-crawled images and captions by incorporat-
ing a hierarchical loss. All these prior works encourage
invariance between image and text. Beyond contrastive pre-
training, Wang et al. (2022b;a); Yu et al. (2022); Li et al.
(2022a; 2023a); Dou et al. (2022) incorporate a decoder with

a captioning loss into vision-language models in addition
to the contrastive objective. Chen et al. (2020b); Li et al.
(2021; 2020; 2022a) among others use an early or hybrid
fusion of visual and text features using vision-grounded text
encoder, i.e. cross-attention layers in the text encoder that
attend to the output image patch tokens, which improves
performance on downstream tasks but comes at a signifi-
cantly increased computation cost. In our work we instead
only apply a cross-attention operation to the output of vision
and text encoders, and use it to mix the final visual represen-
tation vector from the mixing tokens and context inferred
from the caption. In general, our approach is different from
previous works in that it learns to model the diverse captions
for an image solely with a contrastive objective.

3. Latent Language Image Pre-training
This section describes our proposed method: Latent Lan-
guage Image Pretraining. Llip learns to output a visual
representation that is conditioned on a text caption. Thus,
an image have a different representation depending on the
caption considered during the inference. Our approach re-
lies on two architectural components (see Figure 2): a visual
encoder that outputs K visual mixtures components, and a
cross-attention module that selects how to weight the differ-
ent mixture components based on the text representation.

Visual mixture tokens. The image encoder is parame-
terized as a Vision Transformer (ViT) (Dosovitskiy et al.,
2020) which processes K learnable tokens along with each
patch of the image (Darcet et al., 2023). Those learnable
tokens are referred as the visual mixture tokens. The pa-
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rameterization of our text encoder follows the CLIP’s text
encoder (Radford et al., 2021) and outputs a single vector
representation.

Contextualization. Llip conditions the visual represen-
tation using the text representation through a multi-head
cross-attention mechanism.

Let (xi, ti) be an image and a text caption from a dataset.
We assume that xi and tj are a positive pair if i = j. Other-
wise, they are a negative pair. An image encoder xi 7→ hi

maps an image to K visual mixture tokens hi with hk
i for

k ∈ [K] being the kth mixture tokens. A text encoder
tj 7→ gj maps a caption to a text feature vector.

We denote the index of each head of a multi-head cross-
attention module as m ∈ [M ]. The cross-attention queries
are a projection of the text representation gj : Qm

j :=
gj ·Wm

Q . The cross-attention keys and values are the pro-
jections of the visual mixture tokens: Kmk

i := hk
i ·Wmk

K
and Vmk

i := hk
i ·Wmk

V . The keys, queries and values of the
attention are all vectors in Rd/m as defined in Vaswani et al.
(2023). The mixing weights for head m are defined as:

Φm
ij := στ ((Qm

j · Kmk
i )Kk=1), (1)

with στ being a softmax with temperature τ computed over

the K mixture tokens: στ (z) :=
ezk/τ∑K
i=1 e

zi/τ
∀k ∈ [K].

From the mixing weights and V , we compute the contextu-
alized visual representation:

zij := Concat

( K∑
k=1

Φmk
ij · Vmk

ij

)M

m=1

 ·WO, (2)

where WO is a learnable projection matrix in Rd×d.

Similarly we project the text representation z′j := gtj ·WT

where WT is learnable projection matrix of the text features.
Both representation are normalized as previously done in
CLIP when computing the objective function: ẑij =

zij
||zij ||2

and ẑ′j =
z′j

||z′j ||2
.

Pretraining. For pretraining, we consider the SigLIP (Zhai
et al., 2023) objective due to its memory efficiency. We
modify SigLIP’s objective using our contextualized visual
representation and propose the following loss:

LLlip :=
1

N

N∑
i=1

log
1

1 + e(−aẑii·ẑ′
i+b)

+

1

N

N∑
i=1

N∑
j=1;i̸=j

log
1

1 + e(aẑij ·ẑ
′
j−b)

,

(3)

where a and b are learnable parameters, N is the size of
the mini-batch, ẑ′j is the text representation obtained from

caption j and ẑij is the visual representation obtained from
mixing the visual mixture tokens of image i with the text
features of caption j.

Avoiding a shortcut solution. Contextualizing the visual
features with the target caption can introduce a shortcut
solution: the network ignores xi and solely relies on ti
to minimize its objective. The negative samples of the
contrastive objective in equation 3 prevent that shortcut
solution. While, the caption ti is a positive caption for xi,
the same caption is also a negative caption for a different
sample xj . Therefore, relying only on ti is not a valid
solution because the objective also minimizes the similarity
for pairs of negative samples, i.e. it pushes away ẑji from
ẑj .

Inference. The final visual representation depends on a
caption. Consequently each image has to be encoded with
all target captions as illustrated in Figure 2b, both for pre-
training and zero-shot evaluation. Fortunately, the fusion of
the image and text is lightweight as it occurs in the output
layer. The additional compute and memory cost is constant
for a fixed number of mixture tokens K as we scale up the
size of the encoder (See Figure 8a).

Inference for zero-shot classification in Llip is analogous to
CLIP’s implementation. For a given image xi, we have C
possible caption labels tj , j ∈ [C]. We encode each image
xi with each caption label tj obtaining contextualized visual
features zij . Then we compute the cosine similarity between
the normalized visual features ẑij and text features ẑ′j , and
define the predicted label as the one with the highest cosine
similarity between the contextualized image features and
the text features.

4. Experimental Setup
Our empirical analysis over the next sections has three main
objectives. First, we aim to demonstrate the contribution of
each modification added by Llip via controlled experiments.
Second, we illustrate the value of Llip in comparison to
other contrastive VLP methods on a set of standard zero-shot
benchmarks commonly used in the literature. Finally, we
provide an comprehensive analysis of Llip representations
and hyper-parameters. Before discussing our results, we
describe our experimental setup.

We perform our experiments on 5 models: ViT-B/32,
ViT-B/16, ViT-L/14, ViT-H/14 and ViT-G/14. ViT-B/32
stands for a base Vision Transformer with image patch of
size 32 and ViT-L/14 is a large Vision Transformer with
patch of size 14 (see Dosovitskiy et al. (2020) for implemen-
tation details). To capture the visual variability in images,
our method appends K additional learnable tokens to the
input sequence of transformers, similarly to Darcet et al.
(2023). We refer to those extra tokens as mixture tokens
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and we denote the model with K mixture tokens by LlipK .
For all of our experiments, we crop and resize images to
224× 224.

We pre-train our models with the AdamW opti-
mizer (Kingma & Ba, 2017; Loshchilov & Hutter, 2017)
with β2 = 0.95 as done by Zhai et al. (2023) to stabilize
the pre-training. We use a learnable scale parameter a along
with a learnable bias b for our objective following the initial-
ization of Zhai et al. (2023). Otherwise, all other training
decisions closely follow the ones used by Radford et al.
(2021); Xu et al. (2023). For all of the Llip experiments, we
fix M = 8 the number of heads in the cross-attention. Un-
less mentioned otherwise, the cross-attention’s temperature
τ = 5.

Our models were trained on the Common Crawl data curated
using the methodology presented in Xu et al. (2023). We
use a dataset of 2.5B image-text pairs collected using the
same parameters that was used in Xu et al. (2023). As done
in Radford et al. (2021); Xu et al. (2023) we pre-train our
model for a total amount of 12.8B pairs of image-text seen
with a batch size of 32,768.

To increase the training efficiency, we leverage compilation
and mixed-precision in PyTorch (Paszke et al., 2019). We
use gradient checkpointing for computing the activations
of the visual representations to reduce the memory during
pre-training. The ViT-B and ViT-L models were trained on
128 V100 and A100 respectively. The larger models were
trained on 256 A100 80GB GPUs.

5. From SigLIP to Llip
To assess the impact of the contextualization of Llip, we
explore how the performance evolves when gradually modi-
fying an existing SigLIP baseline toward Llip. Our starting
baseline SigLIP pre-training with a ViT-B/32 and the Meta-
CLIP dataset. We introduce three intermediate baselines –
each corresponding to an intervention on the previous base-
line – that gradually interpolate between SigLIP and Llip in
the way the visual representation is computed. We present
their respective performances on ImageNet zero-shot top-1
accuracy in Figure 3.

SigLIP. We reproduce SigLIP pre-training with our setup.
The zero-shot accuracy on ImageNet is similar to the accu-
racy of 67.6 reported by MetaCLIP (Xu et al., 2023).

+ Register. We increase the amount of learned tokens from
1 to 64 in SigLIP, but only use the first learned token to
compute SigLIP objective as done in Darcet et al. (2023)
(they refer to additional tokens as registers). This procedure
does not improve the ImageNet top-1 accuracy.

+ Average. Next, we explore the effect of tokens mixing.
We compute equal-weighted average of all of the 64 learned
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Figure 3: Decomposing the effects of Llip’s ingredients.
Ablation of the added components of Llip compared to
SigLIP and their effect on zero-shot ImageNet transfer accu-
racy. Every models are trained with a ViT-B/32. From left
to right, we evaluate: 1) Re-implemented SigLIP baseline,
2) adding additional 63 mixture tokens (+Registers (Darcet
et al., 2023)) which are not used in the final representation,
3) using uniform mixing of the learnable tokens (+Average),
4) non-uniform mixing of the tokens (+Learned average), 5)
context-conditional mixing of the tokens (Llip64). Condi-
tioning the mixing weights of the tokens on the text feature
achieves the best performance.

tokens and use the resulting vector to compute the objec-
tive. We find that averaging the learned tokens leads to a
significant improvement over the baseline. Adding extra
learned tokens and uniform mixing is an effective method
to improve VLP.

+ Learned Average. We introduce non-uniform mixing to
aggregate the mixture tokens. We apply a cross-attention
operation as described in equation 2 except the query is
a learned vector shared across all samples instead of the
text caption. We don’t find a significant difference between
uniform and non-uniform mixing of the learned tokens.

Llip. Finally, we contrast the aforementioned baselines
with Llip where the mixing weights now depend on the
text features, i.e. the query token for the cross attention is a
function of the text representation. Llip shows significant
improvement over the average baseline in zero-shot Top-1
ImageNet accuracy.

We find that strong performance of Llip comes from mixing
visual features conditioned on the text features.

6. Zero-shot Evaluations
In this section, we evaluate the performance of Llip on
zero-shot classification and retrievals benchmarks. We
first present an apples-to-apples comparison between
CLIP, SigLIP and Llip for various backbone sizes. We
train all of the models with the MetaCLIP dataset and

5



Modeling Caption Diversity in Vision-Language Pretraining

Table 1: Zero-shot classification benchmarks when pretraining on the MetaCLIP dataset on ViT-B/32, ViT-B/16,
ViT-L/14, ViT-H/14 and ViT-G/14. We compare Llip to CLIP and SigLIP for several backbones with different scales. We
pre-train all the models with the MetaCLIP dataset and use the same pre-training recipe. Llip outperforms MetaCLIP across
most benchmarks. ∗: Denotes that we reproduced the baseline with our setup. MetaCLIP numbers are reported from: 1: (Xu
et al., 2023).
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MetaCLIP1 62.8 67.6 82.7 95.2 77.7 67.8 66.8 77.4 27.0 90.9 92.8 69.9 42.7 96.3 39.2 58.9 51.1 66.3 50.0 17.7 29.3 67.5 47.6
SigLIP∗ 63.5 67.3 81.8 94.8 77.1 68.9 66.5 78.7 29.0 88.9 93.0 70.3 41.9 96.8 52.3 58.8 47.4 64.7 54.8 17.0 30.9 69.5 46.9
Llip64 67.5 70.4 84.1 95.5 80.8 71.5 68.6 82.2 34.9 92.3 92.9 74.8 66.3 97.5 53.6 58.8 49.9 67.5 64.5 20.7 37.8 71.6 48.5
ViT-B/16
MetaCLIP1 66.2 72.1 88.3 95.7 79.0 71.4 68.5 82.9 30.3 91.7 93.3 73.9 66.1 98.4 46.6 62.1 51.1 71.1 50.5 22.7 16.6 73.0 50.4
SigLIP∗ 67.1 72.3 88.5 96.0 79.0 74.1 68.5 83.5 33.8 92.2 94.2 72.5 63.3 98.5 40.8 60.3 50.1 68.6 55.5 22.0 38.2 74.3 50.4
Llip64 69.7 75.3 89.0 95.7 81.4 75.0 70.9 88.2 41.5 93.5 94.7 74.9 79.6 98.5 54.0 63.7 56.7 67.6 53.1 25.7 24.9 77.6 51.7
ViT-L/14
MetaCLIP1 72.8 79.2 93.5 97.6 84.2 80.1 73.7 88.7 44.4 94.7 95.5 81.8 64.4 99.3 56.3 68.3 58.7 74.6 66.5 34.0 29.7 81.7 55.6
SigLIP∗ 73.9 79.4 93.2 97.6 84.0 82.3 72.0 90.7 51.9 95.5 95.7 83.1 67.4 99.2 67.3 69.2 58.0 74.4 55.6 33.3 37.4 82.4 55.5
Llip32 74.7 80.9 93.6 98.0 86.8 81.2 74.4 91.7 55.1 96.0 95.2 81.4 68.0 99.3 68.8 69.8 59.8 77.3 54.7 36.4 34.8 84.5 56.1
ViT-H/14
MetaCLIP1 75.5 80.5 94.2 98.0 86.4 83.4 74.1 90.0 50.2 95.4 95.6 85.1 72.7 99.4 62.5 72.4 66.3 74.6 65.8 37.2 38.2 82.2 56.2
Llip64 77.7 82.7 95.1 97.9 87.2 86.2 75.0 92.4 61.3 96.0 95.8 86.4 86.6 99.4 70.8 72.8 62.4 74.2 68.6 41.3 33.6 86.2 57.2
ViT-G/14
MetaCLIP1 76.8 82.1 94.9 98.5 88.6 84.0 74.7 90.9 52.7 96.1 95.7 89.5 78.1 99.5 61.6 72.6 73.7 75.5 65.6 41.5 31.0 85.6 56.6
Llip64 79.7 83.5 95.6 98.5 89.5 86.8 76.5 93.6 67.4 96.7 95.8 89.5 89.9 99.5 72.5 75.7 70.7 77.7 71.9 45.6 31.1 88.0 57.9

we fix the hyper-parameters to the one found in prior
works (Zhai et al., 2023; Xu et al., 2023). We observe that
Llip consistently outperforms the baselines for every model
sizes on both zero-shot classification transfer and zero-shot
retrieval.

Next, we compare our approach with various baselines
such as CLIP (Radford et al., 2021), OpenCLIP (Cherti
et al., 2023), SigLIP (Zhai et al., 2023), MetaCLIP (Xu
et al., 2023), CLIPA (Li et al., 2023d), Data Filtering Net-
work (Fang et al., 2024) that all implement a variant of con-
strastive learning and EVA-CLIP (Sun et al., 2023) which
combines contrastive objective with input masking.

6.1. Llip improves zero-shot performance for a fixed
pre-training setup

In this subsection, we evaluate Llip and compare it to the
CLIP and SigLIP contrastive approaches. All methods use
the same training dataset.

We evaluate Llip on a wide variety of classification bench-
marks. The classification benchmarks contain tasks on
object classification (ImageNet (Recht et al., 2019), CI-
FAR (Krizhevsky, 2010), CUB (Li et al., 2003), Food-101
(Bossard et al., 2014), STL-10 (Coates et al., 2010), caltech-
101 (Li et al., 2003), MNIST (LeCun & Cortes, 2010)),
fine-grained classification (SUN397 (Xiao et al., 2010),
Cars (Krause et al., 2013), Aircraft (Maji et al., 2013), Pets
(Parkhi et al., 2012), Flowers (Nilsback & Zisserman, 2008),
GTRSB (Stallkamp et al., 2011), Country211 (Radford et al.,
2021)), non-natural images (DTD (Cimpoi et al., 2013),

EuroSAT (Helber et al., 2019), RESIS45 (Cheng et al.,
2017), PCAM (Ye et al., 2020)) and video classification
(KITTI (Geiger et al., 2012), UCF101 (Soomro et al., 2012))
and attribute recognition (MIT-States (Isola et al., 2015)).

In Table 1 demonstrates that Llip outperforms CLIP and
SigLIP when controlling for the training data distribution.
On a ViT-B/32, Llip outperforms SigLIP by 4.7% in average.
On a ViT-G/14, Llip outperforms MetaCLIP by 2.9% in
average. Table 2 also shows that Llip outperforms CLIP and
SigLIP on the Flickr30k and MSCOCO zero-shot retrieval
tasks. Llip outperforms a CLIP based model on MSCOCO
text retrieval by 4% with a ViT-B/16 and 6% with a ViT-
G/14. Llip observes similar improvement on MSCOCO
image retrieval with a gain of 4.2% with a ViT-B/16 and
4.6% with a ViT-G/14.

6.2. Llip comparision with previous contrastive
pre-training baselines

We now compare Llip with previously reported numbers
in the literature of contrastive visual language pre-training.
While these numbers are obtained with different model ar-
chitectures, training recipes and datasets, we observe that
Llip is a competitive method.

ImageNet. We investigate Llip’s zero-shot transfer perfor-
mance on the ImageNet classification task (Russakovsky
et al., 2015). We report the top-1 accuracy of Llip with a
ViT-G/14 and the best reported numbers from OpenCLIP,
CLIP, CLIPA-v2, SigLIP, MetaCLIP and DFN in Figure 4.
Llip outperforms most previous approaches. In particular,
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Table 2: Zero-shot retrieval on Flickr30k (Young et al., 2014) and MSCOCO (Lin et al., 2014). Comparison of zero-shot
retrieval performances of Llip with the SigLIP and MetaCLIP baselines. All methods are pre-trained with the same dataset
and use the same pre-training recipe. We compare both Image to Text and Text to Image retrievals. Llip demonstrate
consistent gain for both MSCOCO and Flicker30k. ∗: Reproduced number with our setup. MetaCLIP results are reported
from: 1: (Xu et al., 2023).

Image→Text Text→Image
Flickr30K MSCOCO Flickr30K MSCOCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ViT-B/16:
MetaCLIP1 85.9 97.3 98.9 59.4 80.6 87.9 70.5 90.7 94.6 41.4 67.2 77.0
SigLIP∗ 85.4 97.1 98.6 59.7 82.1 89.1 69.6 90.0 94.1 42.0 67.3 77.0
Llip64 90.1 98.5 99.6 63.4 84.3 90.3 75.1 92.8 96.2 45.6 70.8 79.7
ViT-L/14:
MetaCLIP1 90.4 98.5 99.1 64.5 85.0 91.3 76.2 93.5 96.4 47.1 71.4 80.3
SigLIP∗ 91.5 98.1 99.4 65.4 85.1 91.1 76.5 94.3 96.6 48.1 72.3 80.6
Llip32 93.2 99.0 99.4 68.1 87.6 92.5 79.9 95.0 97.4 50.6 74.7 82.8
ViT-H/14:
MetaCLIP1 91.6 98.6 99.7 66.2 86.2 91.9 78.0 94.6 96.9 48.8 73.2 81.4
Llip64 94.0 99.4 99.9 71.6 89.3 94.0 82.8 96.0 98.0 53.9 77.0 84.2
ViT-G/14:
MetaCLIP1 91.2 98.7 99.7 66.7 86.6 92.3 80.0 94.5 97.0 49.6 73.8 81.9
Llip64 94.8 99.7 100 72.7 90.1 94.4 82.5 96.0 97.9 54.2 77.1 84.5

Table 3: Comparison of zero-shot classification. We compare Llip (ViT-G/14) to the best reported number of EVA-
CLIP (ViT-E/14), OpenCLIP (ViT-G/14) and MetaCLIP (ViT-G/14) baselines on 22 classifications tasks involving object
classification (e.g. ImageNet, CIFAR), fine-grained classification (e.g. Cars, Aircraft, Flowers), non-natural images (e.g.
DTD, EuroSAT, PCAM). Llip obtains the best average performance across baselines and improves the best performance in
19 out of the 22 classification tasks. We only consider baselines that reports performance on the same tasks or that provide
model weights. 1: (Sun et al., 2023); 2: (Cherti et al., 2023); 3: (Xu et al., 2023).
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ViT-E/14:
EVA-CLIP1 75.6 82.0 94.9 99.3 93.1 85.8 75.1 94.6 54.1 95.8 90.5 84.5 74.7 99.0 67.7 68.2 75.8 75.6 63.7 35.7 12.4 83.1 56.7
ViT-G/14:
OpenCLIP2 73.5 80.1 93.1 98.2 87.5 84.4 74.5 94.5 49.7 95.2 86.4 81.5 71.6 98.5 62.5 69.0 70.0 72.6 63.6 33.8 15.6 80.5 54.5
MetaCLIP3 76.8 82.1 94.9 98.5 88.6 84.0 74.7 90.9 52.7 96.1 95.7 89.5 78.1 99.5 61.6 72.6 73.7 75.5 65.6 41.5 31.0 85.6 56.6
Llip64 79.7 83.5 95.6 98.5 89.5 86.8 76.5 93.6 67.4 96.7 95.8 89.5 89.9 99.5 72.5 75.7 70.7 77.7 71.9 45.6 31.1 88.0 57.9

our method shows a gain +0.3% over SigLIP while pro-
cessing 4× less samples during pre-training and a gain of
2.5% over EVA-CLIP that is pre-trained with a ViT-E/14
backbone that has 2.5× more parameters that the ViT-G/14.
While DFN obtains a higher zero-shot top-1 accuracy than
Llip, it is trained on a larger datasets of 5B curated samples
and uses 378 instead of 224 as input image resolution. We
conjecture that Llip may also benefit from higher quality
data, but we leave such analysis to future works.

Closest in the setting of our work is MetaCLIP which trains
a joint-embedding architecture using contrastive loss on the
a similar pre-training dataset. Llip outperforms MetaCLIP
VIT-G/14 by +1.4%, highlighting the benefit of modelling
the caption diversity.

Other image classification tasks. To demonstrate the gener-
icity of the learned representation with Llip, we measure
performances across 22 standard zero-shot classification
benchmarks that are usually reported in the literature in
Table 3. We compare our approach with OpenCLIP, Meta-

CLIP and EVA-CLIP which all report results on the same
set of tasks or release their model weights allowing us to
evaluate and compare with these models. Results show
that Llip obtains the best average performance across base-
lines. It reaches the the best performance in 19 out of the
22 classification tasks.

7. Analysis of Llip
Representation expressivity. We evaluate the expressivity
of the learned visual features by computing the singular
values of the covariance matrix of the visual features as
done in Jing et al. (2022). This method was proposed to
probe the dimensionality collapse in self-supervised pre-
trained methods and also measures the expressiveness of
learned representations (Hua et al., 2021).

In particular, we compare SigLIP, SigLIP with learned query
(see Section 5) and Llip64. We collect the embedding vec-
tors of 5000 samples from ImageNet’s validation set ran-
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Figure 4: ImageNet zero-shot transfer classification. We
compare a VIT-G/14 trained with Llip64 with various vision-
language baselines. We select the best reported number
for every methods. Llip outperforms most of the vision-
language pretraining baselines on ImageNet. Llip outper-
forms most of the. DFN, which is the only methods outper-
forming Llip, is trained on a larger datasets of 5B curated
samples and use 378 instead of 224 as input image resolu-
tion. We report the imagenet performance of the baselines
from: 1: (Cherti et al., 2023); 2: (Radford et al., 2021); 3: (Li
et al., 2023d); 4: (Sun et al., 2023); 5: (Zhai et al., 2023);
6: (Xu et al., 2023); 7 (Fang et al., 2024).

domly chosen. For SigLIP with learned query and Llip, we
concatenate the 64 mixture tokens along the batch dimen-
sion. Then we compute the singular value spectrum of the
feature covariance matrix (Jing et al., 2022) that we plot in
log scale in Figure 5. Llip show slower decay in the singular
value spectrum than the two baselines which indicates a
larger variability of the features.

Llip hyperparameters. Llip introduces two hyper-
parameters: the number of mixture tokens and the tem-
perature of the softmax of the cross-attention module. In
Figure 6 we show the result of our study on both parameters
conducted with a ViT-B/32.

Number of mixtures tokens. In Figure 6a, we find that
increasing the number of mixture tokens consistently im-
proves ImageNet’s top-1 accuracy without changing the
model size. Moreover, as illustrated in Figure 1b, Llip’s
performance also scales with the model size. Llip enables
three axes to scale the model: increasing the encoder’s size,
decreasing image patch size or increasing the number of
mixture tokens.

Effect of softmax temperature. In Figure 6b, we also
explore the effect of the softmax temperature. The temper-
ature controls the sharpness of the softmax’s output distri-
bution. In each case we use the same temperature during
training and inference. Higher temperatures lead to logits
with higher magnitudes leading to sharper activations. Llip
tends to be robust to a range of temperature values but its
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Figure 5: Llip’s representation is more expressive than
the non-contextualized SigLIP baselines. Singular value
spectrum of the covariance matrix of the visual features
of a ViT-B/32 using different pre-training objectives. The
embedding vectors are taken at the output of the visual
encoder. SigLIP with a learned query baseline adds 64
mixture tokens and learns how to average them using a cross-
attention with a learnable query vector. We concatenate
the 64 mixture tokens along the batch dimension for the
learned query baseline and Llip. Llip show slower decay in
the singular value spectrum than the two baselines which
indicates a larger variability of the features.
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Figure 6: Analysis of Llip’s hyperparameters on down-
stream zero-shot top-1 ImageNet accuracy for a ViT-B/32
visual encoder. We explore the effect of the number of
mixture tokens and the temperature of the softmax in the
cross-attention. For (a), we set the attention temperature to
8. For (b), we fix the number of mixture tokens K = 64.
Increasing the number of mixture tokens improves down-
stream performance. Llip’s performance is robust to temper-
ature values, but a large temperature leads to a degradation
in accuracy.

performance degrades for large temperatures.

8. Conclusion
In this work, we propose Llip – a contrastive vision-
language pre-training model with contextualization of vi-
sual features to model the diversity of possible captions
that could match a given image. We show that a simple
approach for deriving context from the text caption and con-
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ditioning visual features leads to richer representations and
better downstream zero-shot performance on a wide variety
of classifications and retrieval benchmarks. Our detailed ab-
lation studies show the benefits of each components of Llip
and its robustness to hyperparameters. We hope the strength
of the model on downstream tasks and its simplicity will
inspire the adoption of this approach in broader scenarios.
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Appendix

A. Training setup and hyperparameters
We compare our training setup in Table 4 where we compare the training datasets, the amount of samples seen and the batch
size across the methods. Llip uses the same dataset as MetaCLIP and the same batch size and amount of samples seen as
MetaCLIP and CLIP. Notably, it sees less samples than the other baselines and uses a smaller dataset than SigLIP.

Table 4: Training protocol of the baselines and Llip: the dataset used, the number of samples seen during training and the
batch size.

data samples seen batch size
CLIP WIT-400M 12.8B 32K
SigLIP WebLI-10B 40B 32K
OpenCLIP LAION-2B 39B 160K
MetaCLIP MetaCLIP-2.5B 12.8B 32K
EVA CLIP LAION-2B 11B+9B 144K
Llip MetaCLIP-2.5B 12.8B 32K

The hyperparameters that we used for our method are precisely the same hyper-parameters that were used for training
MetaCLIP and CLIP with the only exception of the beta2 parameter of Adam set to 0.95, the initialization of the scale and
the additional bias is -10 as in SigLIP.

For zero-shot evaluation, an image has to be encoded with the target caption. Since every targets is encoded with every
images and we do not know a priori which is the right target, the ground truth target cannot leak in the prediction. To reduce
the compute and memory overhead in zero-shot classification, we average the text predictions and the cross-attention queries
over the template axis.

B. Additional Results
B.1. Robustness

In Table 5 we show additional results on robustness benchmarks including out-of-distribution ImageNet variants across
model sizes. We also show performance on geographic diversity broken down by region and model type as well as attributes
from MIT States in Table 6. We find while the larger Llip model was not tuned based on the temperature parameter, when
properly tuned Llip outperforms the baselines across all DollarStreet regions with a smaller encoder.

Table 5: Robustness results on ViT-B/32, ViT-B/16 and ViT-L/14.

Average Val V2 Sketch R W A
ViT-B/32
SigLIP 57.8 67.3 59.1 56.2 76.7 58.4 28.9
Llip128 62.8 71.2 62.9 60.6 82.6 62.9 36.3
ViT-B/16
SigLIP 66.0 72.1 65.0 61.2 84.0 65.4 48.3
Llip64 69.7 75.3 68.3 63.8 86.6 69.2 55.0
ViT-L/14
MetaCLIP* 76.6 79.2 72.5 68.9 91.8 75.4 72.0
Llip32 79.1 80.9 74.8 70.5 93.6 78.0 76.7

B.2. Scene and video understanding.

In Table 7, we focus specifically on scene and video understanding. We compare MetaCLIP to Llip on two scene
understanding tasks (CLEVRCount, SUN397) and two video understanding tasks (KITTI, UCF101). We find the gains of
Llip are more pronounced on video understanding tasks where the model obtains +5.0% on KITTI and +2.8% on UCF101.
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Table 6: Diversity across geographies.

Africa Asia Europe Americas Overall Top5
ViT-B/16:
MetaCLIP 70.38 80.85 84.12 82.17 79.65
SigLIP 74.21 80.02 84.45 82.08 79.94
Llip64 74.38 81.26 85.45 83.17 80.93
ViT-L/14:
MetaCLIP 79.23 85.66 88.42 87.87 85.26
Llip32 76.94 84.44 86.33 85.61 83.55

Table 7: Scene and video understanding. We compare MetaCLIP to Llip on two scene understanding tasks (CLEVRCount,
SUN397) and two video Understanding tasks. Both models use a ViT-L/14 encoder. While Llip is competitive on both type
of tasks, results show that the gain of Llip are more pronounced on video understanding tasks. MetaCLIP performance is
reported from: 1: (Xu et al., 2023).

Scene Understanding Video Understanding
CLEVR SUN397 Avg KITTI UCF101 Avg

MetaCLIP1 25.9 73.6 49.8 29.6 81.6 55.6
Llip32 25.5 74.3 49.9 34.7 84.5 59.6

B.3. Using image tokens in the cross-attention

While the input to Llip’s vision encoder is always P image tokens and K additional visual mixture tokens, in the standard
version of Llip we only use the outputs of the visual mixture tokens in the cross-attention (equation 2). In this experiment,
we also included the outputs of the image patch tokens at the last layer of ViT together with the visual mixture tokens in the
cross-attention (so P +K tokens are used in total).

We use Llip with ViT-B/32 for which we have P = 49 image patch tokens, and we report results on ImageNet zero-shot
classification varying the number of visual mixture tokens K in Figure 7. We train the model with temperature τ = 1. We
can see a similar trend as in Figure 6: the model performance increases with the higher number of the mixture tokens K.

Moreover, Llip with a smaller number of additional visual mixture tokens K = 32 (see Figure 6) is more effective than Llip
using P = 49 image patch tokens and K = 1 mixture token (note that in the latter case the total number of tokens used in
the cross-attention is higher, however, the number of additional mixture tokens used affects the performance more). We
hypothesize that additional learnable tokens enable learning more expressive features leading to stronger performance.
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Figure 7: Using image patch tokens together with additional visual mixture tokens in Llip. We report zero-shot
top-1 ImageNet accuracy against the number of visual mixture tokens for a ViT-B/32 visual encoder. We train Llip with
temperature τ = 1. Similarly to results in Figure 6, increasing the number of mixture tokens improves downstream
performance.
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(a) Zero-shot ImageNet accuracy top-1 accuracy against the infer-
ence time of inferring one ImageNet sample for vision encoders
of various sizes.
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(b) Effect of increasing the number of mixture tokens on the es-
timated amount of compute required for pre-training a ViT-G/14
backbone using the training recipe of (Radford et al., 2021). We
find that the biggest additional cost of pre-training Llip comes
from the additional mixture tokens in the vision transformer. The
cost of computing the objective function is negligible.

Figure 8: Analysis of the compute overhead of using Llip’s contextualization for (a) zero-shot inference vs. ImageNet’s
zero-shot transfer accuracy and (b) estimated pre-training GPU hours of Llip compared to CLIP.

B.4. Comparison of the compute time vs accuracy of Llip with CLIP

Inference time Figure 1b shows that the additional number of FLOPs for making an ImageNet prediction with Llip becomes
marginal compared to CLIP as we scale up the encoder size. The same conclusion may be made with respect to the inference
time for making an ImageNet prediction. In Figure 8a, we report the inference time for IN1K’s 0-shot (1000 prompts per
image) Llip’s inference time is slightly higher than CLIP for the same model size, while having 1.7% improvement on
0-shot IN1K with a ViT-L/14, 2.2% with a ViT-H/14 and 1.4% with a ViT-G/14. Additionally Llip outperforms larger CLIP
models while requiring a significantly lower inference time.

Pre-training GPU hours In Figure 8b, we present the amount of GPU hours that it takes for pre-training Llip and MetaCLIP
for different number of mixture tokens. For estimating the amount of GPU hours, we compute the number of samples
processed per hour on one A-100. We extrapolate the amount of samples processed per hour to obtain time it takes to
process 12.8B samples.

While we see an increasing cost for pre-training Llip, this increase is not due to the objective of Llip. The cost of pre-training
CLIP and Llip with the ViT-G/14 is almost identical when we fix the amount of mixture tokens processed by the vision
transformer. Thus, the additional cost does not come from the contextualization per se, but the additional computation of the
mixture tokens.
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