

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

COST-AWARE DYNAMIC TREE CONSTRUCTION FOR EFFICIENT LARGE LANGUAGE MODEL INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) face significant inference latency challenges stemming from their autoregressive design and large size. To address this, speculative decoding emerges as a solution, enabling the simultaneous generation and validation of multiple tokens. While recent approaches like EAGLE-2 and EAGLE-3 improve speculative decoding using dynamic tree structures, they often neglect the impact of crucial system variables such as GPU devices and batch sizes.

Therefore, we introduce a new dynamic tree decoding approach called CAST that takes into account inference costs, including factors such as GPU configurations and batch sizes, to dynamically refine the tree structure. Through comprehensive experimentation across six diverse tasks and utilizing six distinct LLMs, our methodology demonstrates remarkable results, achieving speeds up to 5.2 times faster than conventional decoding methods. Moreover, it generally outperforms existing state-of-the-art techniques from 5% to 20%.

1 INTRODUCTION

Large Language Models (LLMs) have showcased remarkable capabilities (OpenAI, 2023; Touvron et al., 2023) and are extensively applied across various domains. Nevertheless, the vast scale of their parameters, often exceeding hundreds of billions, presents notable challenges. This is particularly evident during the autoregressive text generation process, where generating each token involves referencing previous tokens, resulting in considerable latency. In real applications like chatbots, producing hundreds to thousands of tokens can render LLM inference slow and resource-intensive. This shows the need for better inference speedup methods.

To address this challenge, speculative decoding techniques (Leviathan et al., 2023; Chen et al., 2023) have emerged. These methods swiftly generate initial tokens and validate them concurrently, thereby diminishing inference latency by generating multiple tokens in a single forward pass. While traditional speculative decoding adopts a chain-structured draft, recent progressions have introduced tree-structured drafts to boost efficiency. For example, EAGLE (Li et al., 2024b) utilizes a static draft tree structure, incorporating a fixed number of candidates at each stage. However, this fixed approach overlooks the context-specific nature of token acceptance rates, contradicting the fundamental premise of speculative sampling that simpler tokens can be predicted by smaller models. Subsequently, EAGLE-2 (Li et al., 2024c) and EAGLE-3 (Li et al., 2025) leverage dynamic trees to further enhance performance.

While EAGLE-2 and EAGLE-3 have begun to harness the potential of dynamic tree structures, they fall short in adapting the structure based on crucial factors like GPU devices and batch sizes. Our proposed unified approach tackles this limitation by modeling the effects of variables such as device type and batch sizes as costs. The motivation behind our approach is that a higher number of tokens does not always equate to better performance. Taking into account the inference cost, there exists a critical value beyond which adding more tokens becomes inefficient, slowing down the overall process. Drawing on these insights, we introduce a novel cost-conscious strategy that dynamically determines the tree's depth, token count per layer, and the number of tokens to be validated by the target model. Integrating this inference cost-aware dynamic tree construction method with the cutting-edge technique EAGLE-2 or EAGLE-3 yields an advanced method: Cost-Aware Speculative Tree (CAST). This method adjusts the draft tree structure dynamically by balancing the trade-off between accepted token numbers and inference cost, resulting in accelerated speedups.

054 Our comprehensive evaluations span six distinct tasks: multi-turn conversation, code genera-
055 tion, mathematical reasoning, instruction following, summarization, and question answering. The
056 datasets utilized encompass MT-bench (Zheng et al., 2023), HumanEval (Chen et al., 2021), GSM8K
057 (Cobbe et al., 2021), Alpaca (Taori et al., 2023), CNN/Daily Mail (Nallapati et al., 2016), and Natu-
058 ral Questions (Kwiatkowski et al., 2019). We benchmark our method against state-of-the-art specu-
059 lative decoding techniques: standard speculative decoding (Joao Gante, 2023; Leviathan et al., 2023;
060 Chen et al., 2023), Medusa (Cai et al., 2024), PLD (Saxena, 2023), Lookahead (Fu et al., 2023), EA-
061 GLE (Li et al., 2024b), EAGLE-2 (Li et al., 2024c), and EAGLE-3 (Li et al., 2025). Experiments
062 are conducted across various LLM series with different batch sizes, including Vicuna, LLaMA3,
063 Qwen2, and distilled DeepSeek-R1. Our method consistently surpasses all baseline approaches,
064 achieving speedups of up to 5.2x and typically delivering speed enhancements ranging from 5% to
065 20% compared to the previous state-of-the-art method.
066

In summary, our paper offers the following contributions:

- 068 • We propose a new dynamic-tree-based speculative decoding method CAST based on the
069 trade-off between the number of tokens to be verified and the inference cost.
- 070 • The proposed method generalizes previous state-of-the-art methods EAGLE-2 and EAGLE-
071 3 and also systematically considers the impact of batching and GPU, which is less discussed
072 in the literature.
- 073 • We conduct extensive experiments among 6 tasks and 6 models. The proposed method
074 usually achieves 5 – 20% speedup than the previous SOTA method and up to 5.2x speedup
075 than the vanilla autoregressive method.

076 2 RELATED WORKS

079 **Speculative Decoding** The goal of speculative decoding is to accelerate LLM inference without
080 losing output quality. Its core idea is to separate proposal from verification: a lightweight draft
081 model suggests tokens, and the base LLM validates them. This shifts much of the workload to the
082 draft model while preserving consistency, reducing latency compared with conventional step-by-step
083 decoding.

084 Early work focused on greedy decoding. Stern et al. (2018) introduced blockwise decoding and
085 Sun et al. (2021) proposed instantaneous methods, both allowing multiple tokens per step. Later,
086 speculative sampling (Leviathan et al., 2023; Chen et al., 2023) extended the idea to non-greedy
087 settings, establishing its broad applicability.

088 Subsequent methods improved draft efficiency and base-model alignment. SpecInfer (Miao et al.,
089 2023) used draft-model ensembles and tree-mask attention. Medusa (Cai et al., 2024) leveraged
090 MLPs on internal states to predict multiple tokens. EAGLE (Li et al., 2024b) expanded tree pro-
091 posals for higher acceptance. Draft-and-Verify frameworks (Zhang et al., 2023; Hooper et al., 2023;
092 Yang et al., 2023; Monea et al., 2023; Li et al., 2024a; Yi et al., 2024; Liu et al., 2024; Sun et al.,
093 2024; Elhoushi et al., 2024; Svirschevski et al., 2024) introduced early exits and partial model reuse,
094 partitioning the LLM into fast generators and verifiers.

095 More recently, dynamic draft trees emerged. GLIDE and CAPE (Du et al., 2024) added fallback
096 branches for uncertain cases but limited expansion. EAGLE-2 (Li et al., 2024c) removed such
097 constraints for fully adaptive growth, while EAGLE-3 (Li et al., 2025) further relaxed training re-
098 strictions, yielding more effective speculative decoding.

099 **Batching Method** A complementary line of work studies how batching can be combined with
100 speculative decoding to better leverage GPUs. Existing methods mainly target the conventional
101 chain-based paradigm, while tree-structured batching remains largely unexplored.

103 Su et al. (2023) first analyzed how batch size affects chain-style decoding, revealing trade-offs be-
104 tween improved parallelism and synchronization overhead. Building on this, Qian et al. (2024)
105 proposed a strategy that parallelizes not only across batches but also along the draft-token axis,
106 enabling finer GPU utilization and higher throughput. Most recently, Wu et al. (2025) introduced
107 specialized techniques that further boost batched speculative decoding, demonstrating that careful
batching design can accelerate inference at scale.

108 **3 PRELIMINARY**

110 In this section, we will briefly recap some of the needed knowledge and notions in LLM inference.
 111 Let $x_{1:t} = (x_1, x_2, \dots, x_t)$ denote the language sequence. We will consider two autoregressive
 112 models as follows:

- 114 • **Target Model:** $P_T(x_{t+1} | x_{1:t})$, the high-quality, accurate model whose predictions we
 115 aim to approximate efficiently, which is usually a large model and has a bigger inference
 116 cost.
- 117 • **Draft Model:** $P_D(x_{t+1} | x_{1:t})$, a lightweight, fast model used to propose candidate tokens.

118 The objective is to sample from P_T more efficiently using P_D without compromising the quality of
 119 the output distribution.

121 **3.1 SPECULATIVE DECODING**

123 The motivation of speculative decoding (Leviathan et al., 2023; Chen et al., 2023) is that some tokens
 124 may be “easy” to predict and can use a smaller model to generate to make inference more efficient,
 125 and also the initial model is used to verify the correctness of the predictions.

126 Given context $x_{1:t}$, the draft model will first generate a sequence of d tokens autoregressive: $\hat{x}_{t+1} \sim P_D(\cdot | x_{1:t})$, $\hat{x}_{t+2} \sim P_D(\cdot | x_{1:t}, \hat{x}_{t+1}) \dots \hat{x}_{t+d} \sim P_D(\cdot | x_{1:t}, \hat{x}_{t+1:t+d-1})$. Let $\hat{x}_{t+1:t+d}$ denote
 127 the predicted draft sequence, the tokens are verified sequentially and once a token is accepted by the
 128 target model, we can drop the hat symbol.

129 Starting from $i = 1$. each token \hat{x}_{t+i} is verified by the target model as follows:

- 132 • Calculate the draft probability: $q_i := P_D(\hat{x}_{t+i} | x_{1:t+i-1})$.
- 133 • Calculate the target probability: $p_i := P_T(\hat{x}_{t+i} | x_{1:t+i-1})$.

135 A uniform random number $u_i \sim \text{Uniform}(0, 1)$ is drawn. The token is accepted if: $u_i \leq$
 136 $\min\left(1, \frac{p_i}{q_i}\right)$. Otherwise, we reject the remaining tokens and fall back to sampling from a residual
 137 distribution: $x_{t+i} \sim \tilde{P}_T(\cdot | x_{1:t+i-1})$. where $\tilde{P}_T = \text{norm}(\max(0, p - q))$.

138 It can be shown that the above procedures can ensure the overall output sequence is sampled from
 139 the target model distribution P_T (Leviathan et al., 2023).

142 **3.2 EAGLE**

144 The previously discussed speculative decoding method predicts the tokens in an autoregressive chain
 145 and verifies them sequentially. It has the disadvantage of once rejecting a token, all its subsequent
 146 tokens will also be discarded. EAGLE (Li et al., 2024b) improves speculative decoding by construct-
 147 ing a tree-structured draft and performing parallel verification, the tree structure makes the rejection
 148 process still retain some information by leaving the tokens in the rejected token’s sibling subtree
 149 un-discarded.

150 Unlike EAGLE (Li et al., 2024b), which uses a predefined static tree, EAGLE-2 (Li et al., 2024c)
 151 and EAGLE-3 (Li et al., 2025) improve speculative decoding by dynamically constructing a tree-
 152 structured draft using the confidence score. The dynamic structure makes the inference much more
 153 data-dependent and performs much better. We will then briefly discuss some of the details.

154 **3.2.1 TREE EXPANSION PHASE**

156 To organize the token sequence into a tree structure, one may have the following two definitions:

- 158 • Each node u corresponds to a token x_u and its preceding context c_u .
- 159 • The (confidence) value of a node is:

$$161 \quad v(u) = \prod_{w \in \text{path}(u)} P_D(x_w | c_w),$$

162 representing the confidence score by traveling along the draft path, and the root node will
163 have a probability of 1.
164

165 Starting from the root (initial context) node, EAGLE-2 (and EAGLE-3) dynamically expands the
166 draft tree layer by layer, and the tree will be of depth H :

167 1. At each level except the last layer, select top- K nodes with the highest $v(u)$.
168 2. For each selected node u , generate K child nodes by sampling from $P_D(\cdot | c_u)$.
169

170 3.2.2 TREE RERANKING PHASE

171 In the expansion stage, the goal is to further develop the draft tree by exploring deeper paths. However, because node values **can be seen** as acceptance probabilities lie between 0 and 1, they naturally
172 diminish with depth. To address this, a reranking over all candidate tokens will be performed, and
173 the top m tokens with the highest associated values will be selected. An important constraint is that
174 the value assigned to any node does not exceed that of its parent. Therefore, after reranking, it still
175 comprises a valid subtree within the original draft structure.
176

177 After selection, the subtree will be linearized into a flat sequence to produce the input for the verification
178 stage. To maintain compatibility with standard autoregressive decoding, the attention mask
179 will also be changed. Consequently, the attention mask is modified such that each token attends only
180 to its ancestors, preserving the hierarchical dependencies encoded in the tree.
181

182 4 METHOD

183 Though EAGLE-2 (EAGLE-3) has constructed a dynamic tree to increase the inference performance,
184 its construction rule is mostly based on heuristics and does not consider the intricate interplay of the
185 inference algorithm and GPU hardware, especially in the case of batched processing. When using
186 batching techniques, merely increasing the tree depth and node numbers may not always result in
187 better performance. This is because the GPU utilization has already increased by using batching, and
188 naively adopting the speculative decoding methods may result in competition in the GPU resources
189 and slow down the process.
190

191 Therefore, we should also consider the cost of inference during speculative decoding. Given a batch
192 of B samples, each with a context of length c , the inference time of inputting a length n sequence
193 will depends on B, c, n , which is denoted as $f(B, c, n)$. To save the time of inference, we can
194 precompute the time and maintain a lookup table. To save the computation and storage, we only
195 need to maintain the data of $f(B, c, n)$ for $c = kL$ ($k = 1, \dots, M$) and $n = 1, \dots, N$. And also
196 the associated select operator $\text{select}(c) = (\max(\lfloor \frac{c}{L} \rfloor, M - 1) + 1)L$.
197

198 Then, for each needed size B , one can maintain the following two lookup tables:
199

$$S_T(B) = \{f_T(B, c, n)\} \quad \text{and} \quad S_D(B) = \{f_D(B, c, n)\},$$

200 where f_T is for target model and f_D for draft model. For a given context length c , $S_D(B)[\text{select}(c)]$
201 will return an array of size N .
202

203 Given a batch of B samples, w.l.o.g. we can assume they have the same context length n_0 thanks to
204 the padding technique and denote them as $x_{1:n_0}^j$ ($j = 1, \dots, B$). As EAGLE has two stages, namely
205 the expansion stage and reranking stage, when constructing the draft tree, we will tackle these two
206 one by one.
207

208 4.1 DYNAMIC EXPANSION STAGE: BREADTH AND DEPTH PRUNING

209 The expansion stage of the draft tree construction involves two key dimensions: (1) the number of
210 nodes per layer, and (2) the total number of layers in the tree. These two components are inherently
211 coupled. An illustrative example can be found in Figure 2. We first focus on determining the number
212 of nodes to retain in each layer, a process we refer to as *breadth pruning*.
213

214 The primary objective is to minimize the average inference latency per sequence. To this end, we aim
215 to select draft tokens that are highly likely to be accepted by the target model. However, predicting

Figure 1: An illustrative example for the dynamic expansion stage, we use batch size as 1 for simplicity, general cases are tackled by averaging along batches. Each node will initially have 2 branches in the example.

an excessive number of tokens can increase overall latency, due to the additional computational cost. Thus, a tradeoff must be considered between the likelihood of token acceptance and the cost of incurring new predictions.

Empirically, the acceptance rate of a node u is strongly correlated with its confidence score $v(u)$ (Du et al., 2024; Li et al., 2024c), which we use as a proxy for acceptance probability. Drawing inspiration from utility theory in economics, we frame node selection as a utility maximization problem.

Specifically, for the i -th layer, we denote the confidence scores of the N_i candidate nodes (sorted in descending order) for each sample $j \in \{1, \dots, B\}$ as $v_i^{(j)}(s)$, where $s \in \{1, \dots, N_i\}$ and $v_i^{(j)}(1) \geq \dots \geq v_i^{(j)}(N_i)$. The cumulative utility of selecting the top k nodes is defined as:

$$u_k^{(i)} = \frac{1}{B} \sum_{j=1}^B \sum_{s=1}^k v_i^{(j)}(s). \quad (1)$$

Let n_j denote the number of nodes retained in layer j , for $j = 1, \dots, i-1$. The context length for layer i is then $\sum_{j=1}^{i-1} n_j$. The normalized cost of selecting k nodes at layer i , using the draft model relative to the target model cost, is computed as:

$$c_k^{(i)} = \frac{S_D(B)[\text{select}(\sum_{j=1}^{i-1} n_j)][k]}{S_T(B)[\text{select}(\sum_{j=1}^{i-1} n_j)][1]}. \quad (2)$$

In economic theory, utility functions are typically concave, exhibiting diminishing marginal utility. For a concave function $u(c)$ defined on \mathbb{R}_+ , the marginal utility $\frac{u(c)-u(c_0)}{c-c_0}$ decreases as c increases. Based on this principle, we introduce a threshold C_1 and retain nodes whose marginal utility exceeds this threshold. The initial number of nodes to be chosen in each layer will be determined by the top-K probability in the previous layer, similar to EAGLE.

Due to the discrete nature of our setting, the utility function may not be strictly concave. A robust selection strategy is summarized in Algorithm 1, which takes as input the utility sequence $\{u_k^{(i)}\}$, the associated cost sequence $\{c_k^{(i)}\}$, and the threshold C_1 , to determine the number of nodes n_i to retain at layer i . Notably, the node selection mechanisms in EAGLE-2 and EAGLE-3 can be viewed as special cases of this generalized formulation.

270 **Theorem 4.1.** *EAGLE-2 and EAGLE-3's selection algorithm in i -th layer is a special case of the*
 271 *proposed selection Algorithm by setting $c_j = \lambda j + \delta$ and $C_1 = \frac{\sum_{j=1}^B v_i^{(j)}(K)}{B\lambda}$.*

274 **Algorithm 1** Select Maximum Valid Index

276 1: **Input:** Arrays $u[1 \dots n], c[1 \dots n]$ strictly increasing; constant $C > 0$
 277 2: Initialize $mark[1 \dots n] \leftarrow 1$
 278 3: **for** $i = 1$ to n **do**
 279 4: **for** $j = i + 1$ to n **do**
 280 5: **if** $\frac{u[j] - u[i]}{c[j] - c[i]} < C$ **then**
 281 6: $mark[j] \leftarrow 0$
 282 7: **end if**
 283 8: **end for**
 284 9: **end for**
 285 10: **Output:** $\max\{j \mid mark[j] = 1\}$

287 Next, we consider *depth pruning*, which determines whether an additional layer $(i + 1)$ should be
 288 generated. This decision is based on the predictive relationship between successive layers. Let \mathcal{A}_i be
 289 a buffer that tracks predictive quality for layer i . We define: $\alpha_i = \text{Avg}(\mathcal{A}_i)$, where Avg denotes the
 290 average over the elements in \mathcal{A}_i . We proceed to generate layer $(i + 1)$ only if the following condition
 291 holds: $\alpha_i \cdot \frac{u_{n_i}^{(i)}}{c_{n_i}^{(i)}} \geq C_2$, where C_2 is a predefined threshold. Once this condition is satisfied and the
 292 number of nodes n_{i+1} has been determined via breadth pruning, we compute the confidence gain
 293 ratio: $\phi_i = \frac{u_{n_i+1}^{(i+1)}}{u_{n_i}^{(i)}}$. We then update the buffer \mathcal{A}_i using a first-in-first-out (FIFO) policy, maintaining
 294 up to R recent values of ϕ_i . Each buffer \mathcal{A}_i is initialized with the value $\{1\}$ to ensure stability in
 295 early layers.

296 4.2 DYNAMIC RERANKING STAGE

314 Figure 2: An illustrative example for the dynamic reranking stage.

315 After the dynamic expansion stage, a rooted draft tree is constructed, but with too many nodes that
 316 need to be further trimmed. We first consider collecting data samples and calculating each sample's
 317 accept length and the cumulative probability score v on the whole tree which is plotted in Figure 3.
 318 From the Figure, it is clear that the accept length and the cumulative probability shares a linear trend.
 319 Therefore, in order to maximize the accept length of each sample, one should make the cumulative
 320 probability as big as possible. Thus, choosing the nodes with top probability score is the right choice.
 321 Suppose after the dynamic expansion stage, the (batch averaged) score on the whole tree is sorted as
 322 $v(1) \geq \dots \geq v(N)$ (N is the minimum of $\sum_{i=0}^H n_i$ and a predefined hyperparameter m). By taking
 323 the inference cost into account, one can also use Algorithm 1 to determine the number of nodes to be

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: The correlation of accept length and cumulative probability.

verified by the target model by setting $u_k = \sum_{j=1}^k v(j)$ and $c_k = \frac{S_T(B)[\text{select}(n_0)][k]}{S_T(B)[\text{select}(n_0)][1]}$ with threshold constant C_3 .

5 EXPERIMENTS

Figure 4: The behavior of accept length and speedup ratio when varying the number of tokens to be verified by the target model using EAGLE-3.

Following prior works, we perform experiments on a variety of models across diverse sizes, including Vicuna-13B-v1.3 (V 13B) and Vicuna-33B-v1.3(V 33B)(Chiang et al., 2023),Llama-3.1-8B-Instruct(L31 8B) and Llama-3.3-70B-Instruct(L33 70B) (Meta, 2024), DeepSeek-R1-Distill-Llama-8B(DSL 8B), Qwen2-7B-Instruct(Q2 7B). Following the standard benchmark in this area, we conducted extensive evaluations across six different text generation tasks to show the applicability of our method under diverse scenarios, includng multi-turn conversation, code generation, mathematical reasoning, instruction following, summarization, and question answering, we used the MT-bench (Zheng et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021), Alpaca (Taori et al., 2023), CNN/Daily Mail (Nallapati et al., 2016), and Natural Questions (Kwiatkowski et al., 2019) datasets, respectively. In line with common practices in the community, we employed the same initial model weights for all tasks without any modifications. We will use the vanilla autoregressive decoding as the baseline for comparison, with a speedup ratio of 1.00x. Our method will be compared with the most state-of-the-art methods in speculative decoding and we will use their default hyperparameters, including standard speculative decoding (SpD) (Joao Gante, 2023; Leviathan et al., 2023; Chen et al., 2023), Medusa (Cai et al., 2024), PLD (Saxena, 2023), Lookahead (Fu et al., 2023), EAGLE (Li et al., 2024b), EAGLE-2 (Li et al., 2024c), and EAGLE-3 (Li et al., 2025). Under non-greedy setting, methods like Medusa relax acceptance condition, so we will not compare with method like this. Given that speedup ratios are hardware-dependent, we ensured fairness by testing all methods on identical devices, which are the Nvidia A800 GPUs. All experiments run relatively fast, usually less than one hour, even for large datasets, as only inference is performed. The experiments on more GPU types can be found in Appendix.

As we mainly consider the *lossless* acceleration technique that neither fine-tunes the original LLM nor alters its acceptance conditions. As a result, we focus on evaluating its acceleration performance

378 using the following metric. **Speedup Ratio:** The actual increase in speed compared to standard
 379 autoregressive decoding in a single run and verification round.
 380

381 We do not adopt the metric Average Acceptance Length (The average number of tokens generated
 382 per drafting-verification cycle, indicating how many tokens are accepted from the draft.). This is
 383 because this metric may be somewhat misleading, particular in the larger batch case. In Figure 4,
 384 one can see that as the maximum number of verified token number m is increasing, the accept length
 385 is increasing but sacrifices speedup when m is relatively larger.
 386

387 **5.1 SINGLE SAMPLE CASE**
 388
 389

390 Table 1: Comparison of Model Performance (Speedup Ratios) when batch size is 1.
 391

Model	Method	MT-bench	HumanEval	GSM8K	Alpaca	CNN/DM	Natural Ques.
Temperature=0							
V 13B	SpD	1.93x	2.23x	1.77x	1.76x	1.93x	1.66x
	PLD	1.58x	1.85x	1.68x	1.16x	2.42x	1.14x
	Medusa	2.07x	2.50x	2.23x	2.08x	1.71x	1.81x
	Lookahead	1.65x	1.71x	1.81x	1.46x	1.46x	1.36x
	EAGLE	2.61x	3.58x	3.08x	2.93x	2.80x	3.02x
	EAGLE-2	3.02x	4.06x	3.35x	3.25x	3.40x	3.13x
	EAGLE-3	3.70x	4.73x	4.00x	3.86x	3.68x	3.31x
L33 70B	CAST (Ours)	3.98x	5.18x	3.98x	3.80x	3.76x	3.40x
	EAGLE-3	4.13x	4.98x	4.63x	4.66x	3.50x	3.61x
	CAST (Ours)	4.23x	5.23x	4.65x	4.83x	3.56x	3.67x
	EAGLE-3	3.60x	4.27x	3.82x	4.00x	3.22x	3.06x
	CAST (Ours)	3.77x	4.51x	3.95x	3.98x	3.32x	3.22x
	EAGLE-3	3.47x	3.78x	3.68x	3.20x	2.90x	2.95x
	CAST (Ours)	3.63x	3.85x	3.98x	3.37x	3.02x	3.20x
Temperature=1							
V 13B	SpD	1.62x	1.72x	1.46x	1.52x	1.66x	1.43x
	EAGLE	2.42x	2.75x	2.37x	2.43x	2.34x	2.04x
	EAGLE-2	2.80x	3.22x	2.79x	2.71x	2.65x	2.27x
	EAGLE-3	3.28x	3.94x	3.39x	3.25x	3.23x	2.74x
	CAST (Ours)	3.51x	4.30x	3.76x	3.38x	3.32x	2.95x
L33 70B	EAGLE-3	3.96x	4.73x	4.37x	4.39x	3.42x	3.50x
	CAST (Ours)	4.19x	4.93x	4.51x	4.66x	3.50x	3.50x
L31 8B	EAGLE-3	2.77x	3.58x	3.05x	3.26x	2.57x	2.32x
	CAST (Ours)	3.06x	3.91x	3.36x	3.41x	2.89x	2.53x
DSL 8B	EAGLE-3	2.58x	3.15x	2.76x	2.42x	2.21x	2.37x
	CAST (Ours)	2.82x	3.43x	2.99x	2.65x	2.48x	2.66x

418 We begin our analysis by examining the usual setting in the literatures, namely when the batch size
 419 is 1. We term the proposed method as Cost-Aware Speculative Tree (CAST). To ensure a fair and
 420 rigorous comparison with existing methods, we adopt the same target model configuration used in
 421 comparision with the respective SOTA EAGLE family models. This alignment in experimental setup
 422 allows us to attribute any observed performance differences solely to the algorithmic innovations of
 423 CAST, rather than to variations in model size, training regime, or evaluation protocol.

424 The quantitative results are summarized in Table 1, which reports the speedup ratios achieved by
 425 CAST relative to prior baselines. As the table indicates, CAST usually yields higher speedup ratios
 426 across multiple evaluation tasks, underscoring its ability to more effectively utilize computational
 427 resources. This trend becomes increasingly evident as the size of the target model grows, suggesting
 428 that our method scales particularly well in large-model scenarios where efficiency considerations are
 429 most critical. The advantage of CAST is especially striking on the HumanEval benchmark, where
 430 a speedup of 5.23 is achieved. These results collectively highlight the potential of our method as
 431 a practical solution for accelerating speculative decoding pipelines, particularly in demanding real-
 world settings where inference latency and throughput remain key bottlenecks.

432 Table 2: Comparison of different methods across models and benchmarks when batch size is 8. All
 433 values are speedup ratios.

435 Model	436 Method	437 MT-Bench	438 HumanEval	439 GSM8K	440 Alpaca	441 CNN/DM	442 Natural Ques.
Temperature=0							
443 Q2 7B	EAGLE	1.18x	1.62x	1.76x	1.80x	0.84x	1.44x
	EAGLE-2	1.25x	1.49x	1.40x	1.48x	1.11x	1.10x
	CAST (Ours)	1.86x	2.16x	2.19x	2.06x	1.70x	1.72x
444 L31 8B	EAGLE	1.80x	2.14x	2.10x	2.09x	1.38x	1.76x
	EAGLE-2	1.39x	1.60x	1.59x	1.63x	1.03x	1.32x
	EAGLE-3	1.72x	1.97x	1.92x	2.16x	1.34x	1.72x
	CAST (Ours)	2.16x	2.62x	2.41x	2.62x	1.76x	2.11x
445 V 13B	EAGLE	1.63x	1.91x	1.79x	1.72x	1.37x	1.51x
	EAGLE-2	1.25x	1.42x	1.30x	1.28x	1.02x	1.03x
	EAGLE-3	1.59x	1.91x	1.67x	1.80x	1.37x	1.39x
	CAST (Ours)	2.48x	3.12x	2.61x	2.76x	1.97x	2.27x
446 V 33B	EAGLE	1.78x	2.09x	1.96x	1.75x	1.44x	1.47x
	EAGLE-2	1.27x	1.50x	1.37x	1.26x	1.05x	1.01x
	CAST (Ours)	2.12x	2.48x	2.21x	2.09x	1.79x	1.84x
Temperature=1							
450 Q2 7B	EAGLE	0.80x	1.06x	1.21x	1.15x	0.62x	1.00x
	EAGLE-2	0.93x	1.27x	1.30x	1.16x	0.83x	0.92x
	CAST (Ours)	1.50x	1.96x	1.94x	1.82x	1.40x	1.57x
453 L31 8B	EAGLE	1.24x	1.53x	1.47x	1.57x	1.06x	1.23x
	EAGLE-2	1.07x	1.48x	1.39x	1.47x	0.93x	1.07x
	EAGLE-3	1.25x	1.70x	1.67x	1.90x	1.13x	1.32x
	CAST (Ours)	1.73x	2.37x	2.26x	2.46x	1.69x	1.76x
456 V 13B	EAGLE	1.25x	1.39x	1.39x	1.34x	1.10x	1.11x
	EAGLE-2	1.14x	1.22x	1.22x	1.11x	0.94x	0.95x
	EAGLE-3	1.28x	1.56x	1.45x	1.34x	1.18x	1.28x
	CAST (Ours)	2.08x	2.51x	2.22x	2.11x	1.77x	2.16x
459 V 33B	EAGLE	1.48x	1.66x	1.64x	1.49x	1.20x	1.26x
	EAGLE-2	1.18x	1.37x	1.34x	1.14x	1.01x	0.97x
	CAST (Ours)	1.97x	2.16x	2.11x	1.95x	1.68x	1.79x

463 5.2 BATCHING CASE

464 When moving beyond the single-sample setting to scenarios where multiple samples are processed
 465 simultaneously, batching becomes a crucial factor in evaluating the practicality of speculative de-
 466 coding methods. In this regime, our study primarily focuses on comparisons with SOTA tree-based
 467 speculative decoding approaches, which represent the most competitive baselines in this line of
 468 research. Table 2 provides a comprehensive evaluation of CAST against these baselines under the
 469 batching setting where the batch size is fixed at 8. The evaluation spans a diverse collection of LLMs,
 470 benchmark tasks, and decoding temperatures, ensuring that the reported results reflect a broad and
 471 robust performance profile rather than being limited to a narrow set of conditions.

473 The empirical results reveal a clear and consistent advantage for CAST across the tested scenarios.
 474 Specifically, CAST achieves speedups of up to 3.12x in challenging tasks such as V13B-HumanEval
 475 at temperature 0, and up to 2.51x in V13B-MT-Bench at temperature 1. The results show the poten-
 476 tial of our method under the batching cases. On average, CAST achieves relative improvements in
 477 the range of 5% to 20%, reflecting tangible efficiency gains without compromising correctness.

478 6 CONCLUSION

481 In this work, we present a cost-aware dynamic tree-based speculative decoding method that adapts
 482 to system-level factors such as device type and batch size. By modeling the trade-off between accept
 483 length and inference speed, our method CAST dynamically adjusts the draft tree structure for more
 484 efficient decoding. Extensive experiments across diverse tasks and models demonstrate that our
 485 approach generally outperforms prior methods, achieving up to 5.2 speedup and 5 – 20% efficiency
 486 gains over the best baselines.

486 REFERENCES
487

488 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
489 Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv
490 preprint arXiv: 2401.10774*, 2024.

491 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
492 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
493 arXiv:2302.01318*, 2023.

494
495 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
496 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
497 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

498 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
499 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
500 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.

501
502 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
503 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
504 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

505
506 Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
507 Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
508 decoding. *arXiv preprint arXiv:2402.02082*, 2024.

509
510 Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
511 Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
512 exit inference and self-speculative decoding. *arXiv preprint arXiv:2404.16710*, 2024.

513
514 Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of llm
515 inference using lookahead decoding, November 2023. URL <https://lmsys.org/blog/2023-11-21-lookahead-decoding/>.

516
517 Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
518 and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding. *arXiv preprint
519 arXiv:2310.12072*, 2023.

520
521 Joao Gante. Assisted generation: a new direction toward low-latency text generation, 2023. URL
522 <https://huggingface.co/blog/assisted-generation>.

523 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
524 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
525 benchmark for question answering research. *Transactions of the Association for Computational
526 Linguistics*, 7:453–466, 2019.

527
528 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
529 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

530 Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, and Xi Victoria
531 Lin. Nearest neighbor speculative decoding for llm generation and attribution. *arXiv preprint
532 arXiv:2405.19325*, 2024a.

533
534 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
535 rethinking feature uncertainty. In *International Conference on Machine Learning*, 2024b.

536
537 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
538 models with dynamic draft trees. *arXiv preprint arXiv:2406.16858*, 2024c.

539
540 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceleration
of large language models via training-time test. *arXiv preprint arXiv:2503.01840*, 2025.

540 Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
 541 Lossless self-speculative decoding via double early exiting. *arXiv preprint arXiv:2404.18911*,
 542 2024.

543

544 Meta. LLaMA3. <https://github.com/pytorch-labs/gpt-fast/>, 2024.

545

546 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
 547 Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating
 548 generative LLM serving with speculative inference and token tree verification. *arXiv preprint*
 549 *arXiv:2305.09781*, 2023.

550

551 Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. *arXiv*
 552 *preprint arXiv:2311.13581*, 2023.

553

554 Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
 555 using sequence-to-sequence rnns and beyond. *arXiv preprint arXiv:1602.06023*, 2016.

556

557 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5), 2023.

558

559 Haifeng Qian, Sujan Kumar Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda,
 560 Ramesh Nallapati, Sudipta Sengupta, Xiaofei Ma, and Anoop Deoras. Bass: Batched attention-
 561 optimized speculative sampling. *arXiv preprint arXiv:2404.15778*, 2024.

562

563 Apoorv Saxena. Prompt lookup decoding, November 2023. URL <https://github.com/apoorvumang/prompt-lookup-decoding/>.

564

565 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
 566 gressive models. *Advances in Neural Information Processing Systems*, 31, 2018.

567

568 Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative decoding
 569 and batching in serving large language models. *arXiv preprint arXiv:2310.18813*, 2023.

570

571 Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
 572 acceleration of long sequence generation with hierarchical speculative decoding. *arXiv preprint*
 573 *arXiv:2404.11912*, 2024.

574

575 Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
 576 shallow aggressive decoding. *arXiv preprint arXiv:2106.04970*, 2021.

577

578 Ruslan Svirchevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
 579 Specexec: Massively parallel speculative decoding for interactive llm inference on consumer de-
 580 vices. *arXiv preprint arXiv:2406.02532*, 2024.

581

582 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 583 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 584 https://github.com/tatsu-lab/stanford_alpaca, 2023.

585

586 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 587 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 588 efficient foundation language models (2023). *arXiv preprint arXiv:2302.13971*, 2023.

589

590 Zhaoxuan Wu, Zijian Zhou, Arun Verma, Alok Prakash, Daniela Rus, and Bryan Kian Hsiang
 591 Low. Tetris: Optimal draft token selection for batch speculative decoding. *arXiv preprint*
 592 *arXiv:2502.15197*, 2025.

593

594 Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee. Pre-
 595 dictive pipelined decoding: A compute-latency trade-off for exact llm decoding. *arXiv preprint*
 596 *arXiv:2307.05908*, 2023.

597

598 Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
 599 verification: Accelerating large language model inference with smart parallel auto-correct decod-
 600 ing. *arXiv preprint arXiv:2402.11809*, 2024.

594 Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
595 verify: Lossless large language model acceleration via self-speculative decoding. *arXiv preprint*
596 *arXiv:2309.08168*, 2023.

597 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
598 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
599 chatbot arena. *arXiv preprint arXiv:2306.05685*, 2023.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Appendix

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimentation was involved. All datasets used, including MT-bench, HumanEval, GSM8K, Alpaca, CNN/Daily Mail, and Natural Questions, were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research process. No personally identifiable information was used, and no experiments were conducted that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The experimental setup, for example the model configurations, and hardware details, is described in detail in the paper. We have also provided a full description of the algorithm details, to assist others in reproducing our experiments.

Additionally, public datasets used in the paper, such as MT-bench, HumanEval, GSM8K, Alpaca, CNN/Daily Mail, and Natural Questions, are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the polishing of the manuscript. Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or experimental design. All research concepts, ideas, and analyses were developed and conducted by the authors. The contributions of the LLM were solely focused on improving the linguistic quality of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and does not contribute to plagiarism or scientific misconduct.

D PROOF

Theorem D.1. *EAGLE-2 and EAGLE-3's selection algorithm in i -th layer is a special case of the proposed selection Algorithm by setting $c_j = \lambda j + \delta$ and $C_1 = \frac{\sum_{j=1}^B v_i^{(j)}(K)}{B\lambda}$.*

Proof. Note $v_i^{(j)}(s)$ is decreasing about s and u is constructed by prefix sum. Then we know $\max_{j>k} \frac{u[j]-u[k]}{c[j]-c[k]} = \max_{j>k} \frac{1}{\lambda} \frac{u[j]-u[k]}{j-k} = \frac{u[k+1]-u[k]}{\lambda} = \frac{\sum_{j=1}^B v_i^{(j)}(k+1)}{B\lambda}$. By also noticing that the mean of a sequence is larger than its minimum, the maximum non-zero index will be K . \square

E MORE IMPLEMENTATION DETAILS

In this section, we will present more details of our implementation. And our method may have the potential limitation of pcomputing the inference cost.

702 In experiments conducted with a batch size of 1:
703

- 704 • The Llama-3.3-70B-Instruct and Vicuna-13B-v1.3 models utilized a threshold of 4.
- 705 • The Llama-3.1-8B-Instruct and DeepSeek-R1-Distill-Llama-8B models utilized a thresh-
706 old of 3.
- 707 • The Llama-3.3-70B-Instruct model was run in a dual-card environment (2x A800 GPUs),
708 while the other three models were run in a single-card environment (1x A800 GPU).
- 709 • For our improved algorithm, all models used the following parameters: depth=13, to-
710 tal_token=72, and top_k=12.
- 711 • EAGLE-3 employed its default parameters, namely depth=7 and top_k=10, with
712 total_token configured according to the specific model (refer to the appendix of the
713 EAGLE-3 paper for details).

715 In experiments conducted with a batch size of 8:
716

- 717 • We utilized a single-card A800 GPU environment.
- 718 • For our method, we uniformly applied a threshold of 2.5, a depth of 9, a top_k of 12, and a
719 total_token count of 72.
- 720 • For comparison, EAGLE, EAGLE-2, and EAGLE-3 were configured with their respective
721 default parameters.

723 For the ablation studies:
724

- 725 • Due to the involvement of large batch sizes, all experiments were conducted in a dual-card
726 environment (2x A800 GPUs).
- 727 • It is important to note that speedup ratios measured in single-card versus dual-card environ-
728 ments can exhibit a little difference.
- 729 • For more comprehensive hyperparameter settings, including specific values for each param-
730 eter and detailed reproduction methodologies, please consult our supplementary materials.

732 E.1 THE EFFECT OF BATCH SIZE

748 Figure 5: The speedup under different batch sizes on HumanEval.
749

750 Figure 5 presents a comparative analysis of speedup achieved by three speculative decoding algo-
751 rithms under various batch sizes EAGLE, EAGLE-3, and CAST as a function of batch size. We
752 observe that CAST consistently yields the highest speedup across all batch sizes, demonstrating
753 strong scalability and robustness to increasing batch sizes. It achieves a peak speedup exceeding
754 5x at batch size 1 and maintains over 2x speedup even at batch size 32. EAGLE-3 shows moderate
755 performance, outperforming EAGLE at smaller batch sizes but converging toward similar perfor-
756 mance as batch size increases. EAGLE, while providing stable gains at small batch sizes (e.g., 3.4x

756 speedup at batch size 1), suffers from a rapid drop in efficiency as batch size grows, eventually
757 offering marginal speedup (close to 1x) beyond batch size 32.
758

759 This trend illustrates a key limitation of baseline speculative decoding under large-batch settings
760 and highlights the effectiveness of CAST in mitigating this degradation. The improved performance
761 of CAST is attributed to its enhanced speculative mechanism, which more accurately predicts and
762 validates multiple tokens in parallel, thus reducing the need for fallback to the base model.
763

764 E.2 THE EFFECT OF EACH COMPONENT OF CAST

765 Table 3 presents the results of an ablation study on CAST, our enhanced speculative decoding al-
766 gorithm, which extends EAGLE-3 by progressively integrating three key optimization techniques:
767 Dynamic Reranking (DR), Depth Pruning (DP), and Breadth Pruning (BP). The baseline EAGLE-3
768 demonstrates strong initial performance but degrades significantly as batch size increases, falling
769 to 1.35x at batch size 16. Adding DR alone yields slight gains at larger batch sizes (e.g., 2.17x at
770 batch size 16), while incorporating DP further improves performance consistently across batch sizes.
771 The combination of DR + DP + BP (i.e., the full CAST system) achieves the best overall speedups,
772 culminating in a 4.14x speedup at batch size 1 and maintaining a robust 2.35x speedup at batch
773 size 16. Notably, each additional component contributes marginal gains, confirming the cumulative
774 effectiveness of the enhancements.
775

776 Table 3: Ablation study of CAST components.
777

Batch size	1	2	4	8	16
EAGLE3	3.99x	3.79x	2.98x	1.91x	1.35x
EAGLE3+DR	3.99x	3.74x	3.44x	2.77x	2.17x
EAGLE3+DR+DP	4.08x	3.82x	3.44x	2.84x	2.27x
EAGLE3+DR+BP	4.06x	3.80x	3.42x	2.79x	2.26x
CAST	4.14x	3.87x	3.48x	2.91x	2.35x

784 F MORE RESULTS ON DIFFERENT GPUS

785 We present more experimental results on H20 and 4090 to show the flexibility of our methods on
786 different GPU devices.
787

810
 811
 812
 813 Table 4: Performance comparison of EAGLE-3 and CAST (Ours) on a single H20 GPU with Batch
 814 Size 1. Values represent speedup factors.

Model	Method	MT-Bench	HumanEval	GSM8K	Alpaca	CNN/DM	Natural Ques.
Temperature=0							
L33 70B	EAGLE-3	5.28x	6.46x	5.86x	5.80x	4.28x	4.59x
	CAST (Ours)	5.40x	6.66x	5.86x	5.95x	4.35x	4.71x
V 13B	EAGLE-3	3.13x	3.76x	3.14x	3.22x	2.85x	2.65x
	CAST (Ours)	3.30x	4.27x	3.26x	3.25x	2.95x	2.73x
L31 8B	EAGLE-3	3.57x	3.94x	3.67x	3.84x	3.04x	2.99x
	CAST (Ours)	3.64x	4.24x	3.68x	3.90x	3.19x	3.16x
DSL 8B	EAGLE-3	3.34x	3.95x	3.83x	3.11x	2.82x	2.99x
	CAST (Ours)	3.50x	3.95x	4.13x	3.27x	2.96x	3.15x
Temperature=1							
L33 70B	EAGLE-3	5.09x	6.09x	5.56x	5.52x	4.17x	4.50x
	CAST (Ours)	5.21x	6.36x	5.68x	5.78x	4.26x	4.61x
V 13B	EAGLE-3	2.54x	3.25x	2.62x	2.65x	2.53x	2.33x
	CAST (Ours)	2.92x	3.57x	2.89x	2.89x	2.62x	2.52x
L31 8B	EAGLE-3	2.71x	3.68x	3.19x	3.18x	2.51x	2.28x
	CAST (Ours)	2.87x	3.73x	3.22x	3.16x	2.70x	2.45x
DSL 8B	EAGLE-3	2.65x	3.25x	2.83x	2.46x	2.15x	2.31x
	CAST (Ours)	2.78x	3.18x	3.16x	2.67x	2.35x	2.59x

837
 838
 839
 840
 841
 842 Table 5: Performance comparison of EAGLE-3 and CAST (Ours) on two RTX 4090 GPUs with
 843 Batch Size 1. Values represent speedup factors.

Model	Method	MT-Bench	HumanEval	GSM8K	Alpaca	CNN/DM	Natural Ques.
Temperature=0							
V 13B	EAGLE-3	4.28x	5.02x	4.17x	4.06x	3.90x	3.35x
	CAST (Ours)	4.54x	5.56x	4.38x	4.26x	4.07x	3.43x
L31 8B	EAGLE-3	3.83x	4.34x	3.98x	4.12x	3.34x	3.20x
	CAST (Ours)	3.97x	4.61x	4.08x	4.29x	3.40x	3.32x
DSL 8B	EAGLE-3	3.68x	4.11x	4.07x	3.31x	3.04x	3.10x
	CAST (Ours)	3.75x	4.15x	4.13x	3.43x	3.19x	3.22x
Temperature=1							
V 13B	EAGLE-3	3.48x	3.89x	3.47x	3.44x	3.51x	3.12x
	CAST (Ours)	3.78x	4.49x	3.90x	3.68x	3.60x	3.30x
L31 8B	EAGLE-3	2.81x	3.82x	3.32x	3.37x	2.63x	2.41x
	CAST (Ours)	3.14x	3.99x	3.55x	3.55x	2.92x	2.61x
DSL 8B	EAGLE-3	2.66x	3.38x	3.08x	2.50x	2.37x	2.46x
	CAST (Ours)	2.85x	3.52x	3.16x	2.72x	2.57x	2.69x