
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

COST-AWARE DYNAMIC TREE CONSTRUCTION FOR
EFFICIENT LARGE LANGUAGE MODEL INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) face significant inference latency challenges
stemming from their autoregressive design and large size. To address this, specula-
tive decoding emerges as a solution, enabling the simultaneous generation and val-
idation of multiple tokens. While recent approaches like EAGLE-2 and EAGLE-3
improve speculative decoding using dynamic tree structures, they often neglect
the impact of crucial system variables such as GPU devices and batch sizes.
Therefore, we introduce a new dynamic tree decoding approach called CAST that
takes into account inference costs, including factors such as GPU configurations
and batch sizes, to dynamically refine the tree structure. Through comprehen-
sive experimentation across six diverse tasks and utilizing six distinct LLMs, our
methodology demonstrates remarkable results, achieving speeds up to 5.2 times
faster than conventional decoding methods. Moreover, it generally outperforms
existing state-of-the-art techniques from 5% to 20%.

1 INTRODUCTION

Large Language Models (LLMs) have showcased remarkable capabilities (OpenAI, 2023; Touvron
et al., 2023) and are extensively applied across various domains. Nevertheless, the vast scale of their
parameters, often exceeding hundreds of billions, presents notable challenges. This is particularly
evident during the autoregressive text generation process, where generating each token involves
referencing previous tokens, resulting in considerable latency. In real applications like chatbots,
producing hundreds to thousands of tokens can render LLM inference slow and resource-intensive.
This shows the need for better inference speedup methods.

To address this challenge, speculative decoding techniques (Leviathan et al., 2023; Chen et al., 2023)
have emerged. These methods swiftly generate initial tokens and validate them concurrently, thereby
diminishing inference latency by generating multiple tokens in a single forward pass. While tradi-
tional speculative decoding adopts a chain-structured draft, recent progressions have introduced
tree-structured drafts to boost efficiency. For example, EAGLE (Li et al., 2024b) utilizes a static
draft tree structure, incorporating a fixed number of candidates at each stage. However, this fixed
approach overlooks the context-specific nature of token acceptance rates, contradicting the funda-
mental premise of speculative sampling that simpler tokens can be predicted by smaller models.
Subsequently, EAGLE-2 (Li et al., 2024c) and EAGLE-3 (Li et al., 2025) leverage dynamic trees to
further enhance performance.

While EAGLE-2 and EAGLE-3 have begun to harness the potential of dynamic tree structures, they
fall short in adapting the structure based on crucial factors like GPU devices and batch sizes. Our
proposed unified approach tackles this limitation by modeling the effects of variables such as device
type and batch sizes as costs. The motivation behind our approach is that a higher number of tokens
does not always equate to better performance. Taking into account the inference cost, there exists
a critical value beyond which adding more tokens becomes inefficient, slowing down the overall
process. Drawing on these insights, we introduce a novel cost-conscious strategy that dynamically
determines the tree’s depth, token count per layer, and the number of tokens to be validated by
the target model. Integrating this inference cost-aware dynamic tree construction method with the
cutting-edge technique EAGLE-2 or EAGLE-3 yields an advanced method: Cost-Aware Speculative
Tree (CAST). This method adjusts the draft tree structure dynamically by balancing the trade-off
between accepted token numbers and inference cost, resulting in accelerated speedups.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Our comprehensive evaluations span six distinct tasks: multi-turn conversation, code genera-
tion, mathematical reasoning, instruction following, summarization, and question answering. The
datasets utilized encompass MT-bench (Zheng et al., 2023), HumanEval (Chen et al., 2021), GSM8K
(Cobbe et al., 2021), Alpaca (Taori et al., 2023), CNN/Daily Mail (Nallapati et al., 2016), and Natu-
ral Questions (Kwiatkowski et al., 2019). We benchmark our method against state-of-the-art specu-
lative decoding techniques: standard speculative decoding (Joao Gante, 2023; Leviathan et al., 2023;
Chen et al., 2023), Medusa (Cai et al., 2024), PLD (Saxena, 2023), Lookahead (Fu et al., 2023), EA-
GLE (Li et al., 2024b), EAGLE-2 (Li et al., 2024c), and EAGLE-3 (Li et al., 2025). Experiments
are conducted across various LLM series with different batch sizes, including Vicuna, LLaMA3,
Qwen2, and distilled DeepSeek-R1. Our method consistently surpasses all baseline approaches,
achieving speedups of up to 5.2x and typically delivering speed enhancements ranging from 5% to
20% compared to the previous state-of-the-art method.

In summary, our paper offers the following contributions:

• We propose a new dynamic-tree-based speculative decoding method CAST based on the
trade-off between the number of tokens to be verified and the inference cost.

• The proposed method generalizes previous state-of-the-art methods EAGLE-2 and EAGLE-
3 and also systematically considers the impact of batching and GPU, which is less discussed
in the literature.
• We conduct extensive experiments among 6 tasks and 6 models. The proposed method

usually achieves 5− 20% speedup than the previous SOTA method and up to 5.2x speedup
than the vanilla autoregressive method.

2 RELATED WORKS

Speculative Decoding The goal of speculative decoding is to accelerate LLM inference without
losing output quality. Its core idea is to separate proposal from verification: a lightweight draft
model suggests tokens, and the base LLM validates them. This shifts much of the workload to the
draft model while preserving consistency, reducing latency compared with conventional step-by-step
decoding.

Early work focused on greedy decoding. Stern et al. (2018) introduced blockwise decoding and
Sun et al. (2021) proposed instantaneous methods, both allowing multiple tokens per step. Later,
speculative sampling (Leviathan et al., 2023; Chen et al., 2023) extended the idea to non-greedy
settings, establishing its broad applicability.

Subsequent methods improved draft efficiency and base-model alignment. SpecInfer (Miao et al.,
2023) used draft-model ensembles and tree-mask attention. Medusa (Cai et al., 2024) leveraged
MLPs on internal states to predict multiple tokens. EAGLE (Li et al., 2024b) expanded tree pro-
posals for higher acceptance. Draft-and-Verify frameworks (Zhang et al., 2023; Hooper et al., 2023;
Yang et al., 2023; Monea et al., 2023; Li et al., 2024a; Yi et al., 2024; Liu et al., 2024; Sun et al.,
2024; Elhoushi et al., 2024; Svirschevski et al., 2024) introduced early exits and partial model reuse,
partitioning the LLM into fast generators and verifiers.

More recently, dynamic draft trees emerged. GLIDE and CAPE (Du et al., 2024) added fallback
branches for uncertain cases but limited expansion. EAGLE-2 (Li et al., 2024c) removed such
constraints for fully adaptive growth, while EAGLE-3 (Li et al., 2025) further relaxed training re-
strictions, yielding more effective speculative decoding.

Batching Method A complementary line of work studies how batching can be combined with
speculative decoding to better leverage GPUs. Existing methods mainly target the conventional
chain-based paradigm, while tree-structured batching remains largely unexplored.

Su et al. (2023) first analyzed how batch size affects chain-style decoding, revealing trade-offs be-
tween improved parallelism and synchronization overhead. Building on this, Qian et al. (2024)
proposed a strategy that parallelizes not only across batches but also along the draft-token axis,
enabling finer GPU utilization and higher throughput. Most recently, Wu et al. (2025) introduced
specialized techniques that further boost batched speculative decoding, demonstrating that careful
batching design can accelerate inference at scale.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

3 PRELIMINARY

In this section, we will briefly recap some of the needed knowledge and notions in LLM inference.
Let x1:t = (x1, x2, . . . , xt) denote the language sequence. We will consider two autoregressive
models as follows:

• Target Model: PT (xt+1 | x1:t), the high-quality, accurate model whose predictions we
aim to approximate efficiently, which is usually a large model and has a bigger inference
cost.

• Draft Model: PD(xt+1 | x1:t), a lightweight, fast model used to propose candidate tokens.

The objective is to sample from PT more efficiently using PD without compromising the quality of
the output distribution.

3.1 SPECULATIVE DECODING

The motivation of speculative decoding (Leviathan et al., 2023; Chen et al., 2023) is that some tokens
may be “easy” to predict and can use a smaller model to generate to make inference more efficient,
and also the initial model is used to verify the correctness of the predictions.

Given context x1:t, the draft model will first generate a sequence of d tokens autoregressive: x̂t+1 ∼
PD(· | x1:t), x̂t+2 ∼ PD(· | x1:t, x̂t+1) · · · x̂t+d ∼ PD(· | x1:t, x̂t+1:t+d−1). Let x̂t+1:t+d denote
the predicted draft sequence, the tokens are verified sequentially and once a token is accepted by the
target model, we can drop the hat symbol.

Starting from i = 1. each token x̂t+i is verified by the target model as follows:

• Calculate the draft probability: qi := PD(x̂t+i | x1:t+i−1).
• Calculate the target probability: pi := PT (x̂t+i | x1:t+i−1).

A uniform random number ui ∼ Uniform(0, 1) is drawn. The token is accepted if: ui ≤
min

(
1, pi

qi

)
. Otherwise, we reject the remaining tokens and fall back to sampling from a resid-

ual distribution: xt+i ∼ P̃T (· | x1:t+i−1). where P̃T = norm(max(0, p− q)).

It can be shown that the above procedures can ensure the overall output sequence is sampled from
the target model distribution PT (Leviathan et al., 2023).

3.2 EAGLE

The previously discussed speculative decoding method predicts the tokens in an autoregressive chain
and verifies them sequentially. It has the disadvantage of once rejecting a token, all its subsequent
tokens will also be discarded. EAGLE (Li et al., 2024b) improves speculative decoding by construct-
ing a tree-structured draft and performing parallel verification, the tree structure makes the rejection
process still retain some information by leaving the tokens in the rejected token’s sibling subtree
un-discarded.

Unlike EAGLE (Li et al., 2024b), which uses a predefined static tree, EAGLE-2 (Li et al., 2024c)
and EAGLE-3 (Li et al., 2025) improve speculative decoding by dynamically constructing a tree-
structured draft using the confidence score. The dynamic structure makes the inference much more
data-dependent and performs much better. We will then briefly discuss some of the details.

3.2.1 TREE EXPANSION PHASE

To organize the token sequence into a tree structure, one may have the following two definitions:

• Each node u corresponds to a token xu and its preceding context cu.
• The (confidence) value of a node is:

v(u) =
∏

w∈path(u)

PD(xw | cw),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

representing the confidence score by traveling along the draft path, and the root node will
have a probability of 1.

Starting from the root (initial context) node, EAGLE-2 (and EAGLE-3) dynamically expands the
draft tree layer by layer, and the tree will be of depth H:

1. At each level except the last layer, select top-K nodes with the highest v(u).
2. For each selected node u, generate K child nodes by sampling from PD(· | cu).

3.2.2 TREE RERANKING PHASE

In the expansion stage, the goal is to further develop the draft tree by exploring deeper paths. How-
ever, because node values can be seen as acceptance probabilitieslie between 0 and 1, they naturally
diminish with depth. To address this, a reranking over all candidate tokens will be performed, and
the top m tokens with the highest associated values will be selected. An important constraint is that
the value assigned to any node does not exceed that of its parent. Therefore, after reranking, it still
comprises a valid subtree within the original draft structure.

After selection, the subtree will be linearized into a flat sequence to produce the input for the veri-
fication stage. To maintain compatibility with standard autoregressive decoding, the attention mask
will also be changed. Consequently, the attention mask is modified such that each token attends only
to its ancestors, preserving the hierarchical dependencies encoded in the tree.

4 METHOD

Though EAGLE-2 (EAGLE-3) has constructed a dynamic tree to increase the inference performance,
its construction rule is mostly based on heuristics and does not consider the intricate interplay of the
inference algorithm and GPU hardware, especially in the case of batched processing. When using
batching techniques, merely increasing the tree depth and node numbers may not always result in
better performance. This is because the GPU utilization has already increased by using batching, and
naively adopting the speculative decoding methods may result in competition in the GPU resources
and slow down the process.

Therefore, we should also consider the cost of inference during speculative decoding. Given a batch
of B samples, each with a context of length c, the inference time of inputting a length n sequence
will depends on B, c, n, which is denoted as f(B, c, n). To save the time of inference, we can
precompute the time and maintain a lookup table. To save the computation and storage, we only
need to maintain the data of f(B, c, n) for c = kL (k = 1. · · · ,M) and n = 1, · · · , N . And also
the associated select operator select(c) = (max(⌊ cL⌋,M − 1) + 1)L.

Then, for each needed size B, one can maintain the following two lookup tables:

ST (B) = {fT (B, c, n)} and SD(B) = {fD(B, c, n)},

where fT is for target model and fD for draft model. For a given context length c, SD(B)[select(c)]
will return an array of size N .

Given a batch of B samples, w.l.o.g. we can assume they have the same context length n0 thanks to
the padding technique and denote them as xj

1:n0
(j = 1, · · · , B). As EAGLE has two stages, namely

the expansion stage and reranking stage, when constructing the draft tree, we will tackle these two
one by one.

4.1 DYNAMIC EXPANSION STAGE: BREADTH AND DEPTH PRUNING

The expansion stage of the draft tree construction involves two key dimensions: (1) the number of
nodes per layer, and (2) the total number of layers in the tree. These two components are inherently
coupled. An illustrative example can be found in Figure 2. We first focus on determining the number
of nodes to retain in each layer, a process we refer to as breadth pruning.

The primary objective is to minimize the average inference latency per sequence. To this end, we aim
to select draft tokens that are highly likely to be accepted by the target model. However, predicting

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

1.00

0.70 0.20

0.56 0.07 0.18 0.02

0.56 0.74 0.81 0.83

Algorithm 1Cost

0.70 0.20

0.56 0.07 0.18 0.02

buffer �

0.81

Avg
Cost

Generate the next layer or not

No

Stop generate

Yes��

(a) breadth pruning (b) depth pruning

0.02

Figure 1: An illustrative example for the dynamic expansion stage, we use batch size as 1 for
simplicity, general cases are tackled by averaging along batches. Each node will initially have 2
branches in the example.

an excessive number of tokens can increase overall latency, due to the additional computational cost.
Thus, a tradeoff must be considered between the likelihood of token acceptance and the cost of
incurring new predictions.

Empirically, the acceptance rate of a node u is strongly correlated with its confidence score v(u) (Du
et al., 2024; Li et al., 2024c), which we use as a proxy for acceptance probability. Drawing inspira-
tion from utility theory in economics, we frame node selection as a utility maximization problem.

Specifically, for the i-th layer, we denote the confidence scores of the Ni candidate nodes (sorted in
descending order) for each sample j ∈ {1, . . . , B} as v(j)i (s), where s ∈ {1, . . . , Ni} and v

(j)
i (1) ≥

· · · ≥ v
(j)
i (Ni). The cumulative utility of selecting the top k nodes is defined as:

u
(i)
k =

1

B

B∑
j=1

k∑
s=1

v
(j)
i (s). (1)

Let nj denote the number of nodes retained in layer j, for j = 1, . . . , i − 1. The context length for
layer i is then

∑i−1
j=1 nj . The normalized cost of selecting k nodes at layer i, using the draft model

relative to the target model cost, is computed as:

c
(i)
k =

SD(B)[select(
∑i−1

j=1 nj)][k]

ST (B)[select(
∑i−1

j=1 nj)][1]
. (2)

In economic theory, utility functions are typically concave, exhibiting diminishing marginal utility.
For a concave function u(c) defined on R+, the marginal utility u(c)−u(c0)

c−c0
decreases as c increases.

Based on this principle, we introduce a threshold C1 and retain nodes whose marginal utility exceeds
this threshold. The intial number of nodes to be chosen in each layer will be determined by the top-K
probability in the previous layer, similar to EAGLE.

Due to the discrete nature of our setting, the utility function may not be strictly concave. A robust
selection strategy is summarized in Algorithm 1, which takes as input the utility sequence {u(i)

k }, the
associated cost sequence {c(i)k }, and the threshold C1, to determine the number of nodes ni to retain
at layer i. Notably, the node selection mechanisms in EAGLE-2 and EAGLE-3 can be viewed as
special cases of this generalized formulation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Theorem 4.1. EAGLE-2 and EAGLE-3’s selection algorithm in i-th layer is a special case of the

proposed selection Algorithm by setting cj = λj + δ and C1 =
∑B

j=1 v
(j)
i (K)

Bλ .

Algorithm 1 Select Maximum Valid Index

1: Input: Arrays u[1 . . . n], c[1 . . . n] strictly increasing; constant C > 0
2: Initialize mark[1 . . . n]← 1
3: for i = 1 to n do
4: for j = i+ 1 to n do

5: if
u[j]− u[i]

c[j]− c[i]
< C then

6: mark[j]← 0
7: end if
8: end for
9: end for

10: Output: max{j | mark[j] = 1}

Next, we consider depth pruning, which determines whether an additional layer (i + 1) should be
generated. This decision is based on the predictive relationship between successive layers. LetAi be
a buffer that tracks predictive quality for layer i. We define: αi = Avg(Ai), where Avg denotes the
average over the elements inAi. We proceed to generate layer (i+1) only if the following condition

holds: αi ·
u(i)
ni

c
(i)
ni

≥ C2, where C2 is a predefined threshold. Once this condition is satisfied and the

number of nodes ni+1 has been determined via breadth pruning, we compute the confidence gain

ratio: ϕi =
u(i+1)
ni+1

u
(i)
ni

. We then update the bufferAi using a first-in-first-out (FIFO) policy, maintaining

up to R recent values of ϕi. Each buffer Ai is initialized with the value {1} to ensure stability in
early layers.

4.2 DYNAMIC RERANKING STAGE

Figure 2: An illustrative example for the dynamic reranking stage.

After the dynamic expansion stage, a rooted draft tree is constructed, but with too many nodes that
need to be further trimmed. We first consider collecting data samples and calculating each sample’s
accept length and the cumulative probability score v on the whole tree which is plotted in Figure 3.
From the Figure, it is clear that the accept length and the cumulative probability shares a linear trend.
Therefore, in order to maximize the accept length of each sample, one should make the cumulative
probability as big as possible. Thus, choosing the nodes with top probability score is the right choice.
Suppose after the dynamic expansion stage, the (batch averaged) score on the whole tree is sorted as
v(1) ≥ · · · ≥ v(N) (N is the minimum of

∑H
i=0 ni and a predefined hyperparameter m). By taking

the inference cost into account, one can also use Algorithm 1 to determine the number of nodes to be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

(a) EAGLE-2 (b) EAGLE-3

Figure 3: The correlation of accept length and cumulative probability.

verified by the target model by setting uk =
∑k

j=1 v(j) and ck = ST (B)[select(n0)][k]
ST (B)[select(n0)][1]

with threshold
constant C3.

5 EXPERIMENTS

(a) Accept Length (b) Speedup Ratio

Figure 4: The behavior of accept length and speedup ratio when varying the number of tokens to be
verified by the target model using EAGLE-3.

Following prior works, we perform experiments on a variety of models across diverse sizes, includ-
ing Vicuna-13B-v1.3 (V 13B) and Vicuna-33B-v1.3(V 33B)(Chiang et al., 2023),Llama-3.1-8B-
Instruct(L31 8B) and Llama-3.3-70B-Instruct(L33 70B) (Meta, 2024), DeepSeek-R1-Distill-Llama-
8B(DSL 8B), Qwen2-7B-Instruct(Q2 7B). Following the standard benchmark in this area, we con-
ducted extensive evaluations across six different text generation tasks to show the applicability of
our method under diverse scenarios, includng multi-turn conversation, code generation, mathemati-
cal reasoning, instruction following, summarization, and question answering, we used the MT-bench
(Zheng et al., 2023), HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021), Alpaca (Taori
et al., 2023), CNN/Daily Mail (Nallapati et al., 2016), and Natural Questions (Kwiatkowski et al.,
2019) datasets, respectively. In line with common practices in the community, we employed the
same initial model weights for all tasks without any modifications. We will use the vanilla autore-
gressive decoding as the baseline for comparison, with a speedup ratio of 1.00x. Our method will be
compared with the most state-of-the-art methods in speculative decoding and we will use their de-
fault hyperparameters, including standard speculative decoding (SpD) (Joao Gante, 2023; Leviathan
et al., 2023; Chen et al., 2023), Medusa (Cai et al., 2024), PLD (Saxena, 2023), Lookahead (Fu
et al., 2023), EAGLE (Li et al., 2024b), EAGLE-2 (Li et al., 2024c), and EAGLE-3 (Li et al., 2025).
Under non-greedy setting, methods like Medusa relax acceptance condition, so we will not compare
with method like this. Given that speedup ratios are hardware-dependent, we ensured fairness by
testing all methods on identical devices, which are the Nvidia A800 GPUs. All experiments run
relatively fast, usually less than one hour, even for large datasets, as only inference is performed.
The experiments on more GPU types can be found in Appendix.

As we mainly consider the lossless acceleration technique that neither fine-tunes the original LLM
nor alters its acceptance conditions. As a result, we focus on evaluating its acceleration performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

using the following metric. Speedup Ratio: The actual increase in speed compared to standard
autoregressive decoding in a single run and verification round.

We do not adopt the metric Average Acceptance Length (The average number of tokens generated
per drafting-verification cycle, indicating how many tokens are accepted from the draft.). This is
because this metric may be somewhat misleading, particular in the larger batch case. In Figure 4,
one can see that as the maximum number of verified token number m is increasing, the accept length
is increasing but sacrifices speedup when m is relatively larger.

5.1 SINGLE SAMPLE CASE

Table 1: Comparison of Model Performance (Speedup Ratios) when batch size is 1.

Model Method MT-bench HumanEval GSM8K Alpaca CNN/DM Natural Ques.

Temperature=0

V 13B
SpD 1.93x 2.23x 1.77x 1.76x 1.93x 1.66x
PLD 1.58x 1.85x 1.68x 1.16x 2.42x 1.14x
Medusa 2.07x 2.50x 2.23x 2.08x 1.71x 1.81x
Lookahead 1.65x 1.71x 1.81x 1.46x 1.46x 1.36x
EAGLE 2.61x 3.58x 3.08x 2.93x 2.80x 3.02x
EAGLE-2 3.02x 4.06x 3.35x 3.25x 3.40x 3.13x
EAGLE-3 3.70x 4.73x 4.00x 3.86x 3.68x 3.31x
CAST (Ours) 3.98x 5.18x 3.98x 3.80x 3.76x 3.40x

L33 70B
EAGLE-3 4.13x 4.98x 4.63x 4.66x 3.50x 3.61x
CAST (Ours) 4.23x 5.23x 4.65x 4.83x 3.56x 3.67x

L31 8B
EAGLE-3 3.60x 4.27x 3.82x 4.00x 3.22x 3.06x
CAST (Ours) 3.77x 4.51x 3.95x 3.98x 3.32x 3.22x

DSL 8B
EAGLE-3 3.47x 3.78x 3.68x 3.20x 2.90x 2.95x
CAST (Ours) 3.63x 3.85x 3.98x 3.37x 3.02x 3.20x

Temperature=1

V 13B
SpD 1.62x 1.72x 1.46x 1.52x 1.66x 1.43x
EAGLE 2.42x 2.75x 2.37x 2.43x 2.34x 2.04x
EAGLE-2 2.80x 3.22x 2.79x 2.71x 2.65x 2.27x
EAGLE-3 3.28x 3.94x 3.39x 3.25x 3.23x 2.74x
CAST (Ours) 3.51x 4.30x 3.76x 3.38x 3.32x 2.95x

L33 70B
EAGLE-3 3.96x 4.73x 4.37x 4.39x 3.42x 3.50x
CAST (Ours) 4.19x 4.93x 4.51x 4.66x 3.50x 3.50x

L31 8B
EAGLE-3 2.77x 3.58x 3.05x 3.26x 2.57x 2.32x
CAST (Ours) 3.06x 3.91x 3.36x 3.41x 2.89x 2.53x

DSL 8B
EAGLE-3 2.58x 3.15x 2.76x 2.42x 2.21x 2.37x
CAST (Ours) 2.82x 3.43x 2.99x 2.65x 2.48x 2.66x

We begin our analysis by examining the usual setting in the literatures, namely when the batch size
is 1. We term the proposed method as Cost-Aware Speculative Tree (CAST). To ensure a fair and
rigorous comparison with existing methods, we adopt the same target model configuration used in
comparision with the respective SOTA EAGLE family models. This alignment in experimental setup
allows us to attribute any observed performance differences solely to the algorithmic innovations of
CAST, rather than to variations in model size, training regime, or evaluation protocol.

The quantitative results are summarized in Table 1, which reports the speedup ratios achieved by
CAST relative to prior baselines. As the table indicates, CAST usually yields higher speedup ratios
across multiple evaluation tasks, underscoring its ability to more effectively utilize computational
resources. This trend becomes increasingly evident as the size of the target model grows, suggesting
that our method scales particularly well in large-model scenarios where efficiency considerations are
most critical. The advantage of CAST is especially striking on the HumanEval benchmark, where
a speedup of 5.23 is achieved. These results collectively highlight the potential of our method as
a practical solution for accelerating speculative decoding pipelines, particularly in demanding real-
world settings where inference latency and throughput remain key bottlenecks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Comparison of different methods across models and benchmarks when batch size is 8. All
values are speedup ratios.

Model Method MT-Bench HumanEval GSM8K Alpaca CNN/DM Natural Ques.

Temperature=0

Q2 7B
EAGLE 1.18x 1.62x 1.76x 1.80x 0.84x 1.44x
EAGLE-2 1.25x 1.49x 1.40x 1.48x 1.11x 1.10x
CAST (Ours) 1.86x 2.16x 2.19x 2.06x 1.70x 1.72x

L31 8B

EAGLE 1.80x 2.14x 2.10x 2.09x 1.38x 1.76x
EAGLE-2 1.39x 1.60x 1.59x 1.63x 1.03x 1.32x
EAGLE-3 1.72x 1.97x 1.92x 2.16x 1.34x 1.72x
CAST (Ours) 2.16x 2.62x 2.41x 2.62x 1.76x 2.11x

V 13B

EAGLE 1.63x 1.91x 1.79x 1.72x 1.37x 1.51x
EAGLE-2 1.25x 1.42x 1.30x 1.28x 1.02x 1.03x
EAGLE-3 1.59x 1.91x 1.67x 1.80x 1.37x 1.39x
CAST (Ours) 2.48x 3.12x 2.61x 2.76x 1.97x 2.27x

V 33B
EAGLE 1.78x 2.09x 1.96x 1.75x 1.44x 1.47x
EAGLE-2 1.27x 1.50x 1.37x 1.26x 1.05x 1.01x
CAST (Ours) 2.12x 2.48x 2.21x 2.09x 1.79x 1.84x

Temperature=1

Q2 7B
EAGLE 0.80x 1.06x 1.21x 1.15x 0.62x 1.00x
EAGLE-2 0.93x 1.27x 1.30x 1.16x 0.83x 0.92x
CAST (Ours) 1.50x 1.96x 1.94x 1.82x 1.40x 1.57x

L31 8B

EAGLE 1.24x 1.53x 1.47x 1.57x 1.06x 1.23x
EAGLE-2 1.07x 1.48x 1.39x 1.47x 0.93x 1.07x
EAGLE-3 1.25x 1.70x 1.67x 1.90x 1.13x 1.32x
CAST (Ours) 1.73x 2.37x 2.26x 2.46x 1.69x 1.76x

V 13B

EAGLE 1.25x 1.39x 1.39x 1.34x 1.10x 1.11x
EAGLE-2 1.14x 1.22x 1.22x 1.11x 0.94x 0.95x
EAGLE-3 1.28x 1.56x 1.45x 1.34x 1.18x 1.28x
CAST (Ours) 2.08x 2.51x 2.22x 2.11x 1.77x 2.16x

V 33B
EAGLE 1.48x 1.66x 1.64x 1.49x 1.20x 1.26x
EAGLE-2 1.18x 1.37x 1.34x 1.14x 1.01x 0.97x
CAST (Ours) 1.97x 2.16x 2.11x 1.95x 1.68x 1.79x

5.2 BATCHING CASE

When moving beyond the single-sample setting to scenarios where multiple samples are processed
simultaneously, batching becomes a crucial factor in evaluating the practicality of speculative de-
coding methods. In this regime, our study primarily focuses on comparisons with SOTA tree-based
speculative decoding approaches, which represent the most competitive baselines in this line of
research. Table 2 provides a comprehensive evaluation of CAST against these baselines under the
batching setting where the batch size is fixed at 8. The evaluation spans a diverse collection of LLMs,
benchmark tasks, and decoding temperatures, ensuring that the reported results reflect a broad and
robust performance profile rather than being limited to a narrow set of conditions.

The empirical results reveal a clear and consistent advantage for CAST across the tested scenarios.
Specifically, CAST achieves speedups of up to 3.12x in challenging tasks such as V13B-HumanEval
at temperature 0, and up to 2.51x in V13B-MT-Bench at temperature 1. The results show the poten-
tial of our method under the batching cases. On average, CAST achieves relative improvements in
the range of 5% to 20%, reflecting tangible efficiency gains without compromising correctness.

6 CONCLUSION

In this work, we present a cost-aware dynamic tree-based speculative decoding method that adapts
to system-level factors such as device type and batch size. By modeling the trade-off between accept
length and inference speed, our method CAST dynamically adjusts the draft tree structure for more
efficient decoding. Extensive experiments across diverse tasks and models demonstrate that our
approach generally outperforms prior methods, achieving up to 5.2 speedup and 5− 20% efficiency
gains over the best baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Breaking the sequential dependency of llm
inference using lookahead decoding, November 2023. URL https://lmsys.org/blog/
2023-11-21-lookahead-decoding/.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding. arXiv preprint
arXiv:2310.12072, 2023.

Joao Gante. Assisted generation: a new direction toward low-latency text generation, 2023. URL
https://huggingface.co/blog/assisted-generation.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, and Xi Victoria
Lin. Nearest neighbor speculative decoding for llm generation and attribution. arXiv preprint
arXiv:2405.19325, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://huggingface.co/blog/assisted-generation

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024.

Meta. LLaMA3. https://github.com/pytorch-labs/gpt-fast/, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. SpecInfer: Accelerating
generative LLM serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Haifeng Qian, Sujan Kumar Gonugondla, Sungsoo Ha, Mingyue Shang, Sanjay Krishna Gouda,
Ramesh Nallapati, Sudipta Sengupta, Xiaofei Ma, and Anoop Deoras. Bass: Batched attention-
optimized speculative sampling. arXiv preprint arXiv:2404.15778, 2024.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative decoding
and batching in serving large language models. arXiv preprint arXiv:2310.18813, 2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
shallow aggressive decoding. arXiv preprint arXiv:2106.04970, 2021.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer de-
vices. arXiv preprint arXiv:2406.02532, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models (2023). arXiv preprint arXiv:2302.13971, 2023.

Zhaoxuan Wu, Zijian Zhou, Arun Verma, Alok Prakash, Daniela Rus, and Bryan Kian Hsiang
Low. Tetris: Optimal draft token selection for batch speculative decoding. arXiv preprint
arXiv:2502.15197, 2025.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee. Pre-
dictive pipelined decoding: A compute-latency trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908, 2023.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation meets
verification: Accelerating large language model inference with smart parallel auto-correct decod-
ing. arXiv preprint arXiv:2402.11809, 2024.

11

https://github.com/pytorch-labs/gpt-fast/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/tatsu-lab/stanford_alpaca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Appendix

A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including MT-bench, HumanEval, GSM8K, Alpaca,
CNN/Daily Mail, and Natural Questions, were sourced in compliance with relevant usage guidelines,
ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory outcomes
in our research process. No personally identifiable information was used, and no experiments were
conducted that could raise privacy or security concerns. We are committed to maintaining trans-
parency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
experimental setup, for example the model configurations, and hardware details, is described in
detail in the paper. We have also provided a full description of the algorithm details, to assist others
in reproducing our experiments.

Additionally, public datasets used in the paper, such as MT-bench, HumanEval, GSM8K, Alpaca,
CNN/Daily Mail, and Natural Questions, are publicly available, ensuring consistent and repro-
ducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the polishing of the manuscript. Specifically,
we used an LLM to assist in refining the language, improving readability, and ensuring clarity in
various sections of the paper. The model helped with tasks such as sentence rephrasing, grammar
checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

D PROOF

Theorem D.1. EAGLE-2 and EAGLE-3’s selection algorithm in i-th layer is a special case of the

proposed selection Algorithm by setting cj = λj + δ and C1 =
∑B

j=1 v
(j)
i (K)

Bλ .

Proof. Note v
(j)
i (s) is decreasing about s and u is constructed by prefix sum. Then we know

maxj>k
u[j]−u[k]
c[j]−c[k] = maxj>k

1
λ

u[j]−u[k]
j−k = u[k+1]−u[k]

λ =
∑B

j=1 v
(j)
i (k+1)

Bλ . By also noticing that
the mean of a sequence is larger than its minimum, the maximum non-zero index will be K.

E MORE IMPLEMENTATION DETAILS

In this section, we will present more details of our implementation. And our method may have the
potential limitation of pecomputing the inference cost.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

In experiments conducted with a batch size of 1:

• The Llama-3.3-70B-Instruct and Vicuna-13B-v1.3 models utilized a threshold of 4.
• The Llama-3.1-8B-Instruct and DeepSeek-R1-Distill-Llama-8B models utilized a thresh-

old of 3.
• The Llama-3.3-70B-Instruct model was run in a dual-card environment (2x A800 GPUs),

while the other three models were run in a single-card environment (1x A800 GPU).
• For our improved algorithm, all models used the following parameters: depth=13, to-

tal_token=72, and top_k=12.
• EAGLE-3 employed its default parameters, namely depth=7 and top_k=10, with
total_token configured according to the specific model (refer to the appendix of the
EAGLE-3 paper for details).

In experiments conducted with a batch size of 8:

• We utilized a single-card A800 GPU environment.
• For our method, we uniformly applied a threshold of 2.5, a depth of 9, a top_k of 12, and a
total_token count of 72.

• For comparison, EAGLE, EAGLE-2, and EAGLE-3 were configured with their respective
default parameters.

For the ablation studies:

• Due to the involvement of large batch sizes, all experiments were conducted in a dual-card
environment (2x A800 GPUs).

• It is important to note that speedup ratios measured in single-card versus dual-card environ-
ments can exhibit a little difference.

• For more comprehensive hyperparameter settings, including specific values for each param-
eter and detailed reproduction methodologies, please consult our supplementary materials.

E.1 THE EFFECT OF BATCH SIZE

Figure 5: The speedup under different batch sizes on HumanEval.

Figure 5 presents a comparative analysis of speedup achieved by three speculative decoding algo-
rithms under various batch sizesEAGLE, EAGLE-3, and CASTas a function of batch size. We
observe that CAST consistently yields the highest speedup across all batch sizes, demonstrating
strong scalability and robustness to increasing batch sizes. It achieves a peak speedup exceeding
5x at batch size 1 and maintains over 2x speedup even at batch size 32. EAGLE-3 shows moderate
performance, outperforming EAGLE at smaller batch sizes but converging toward similar perfor-
mance as batch size increases. EAGLE, while providing stable gains at small batch sizes (e.g., 3.4x

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

speedup at batch size 1), suffers from a rapid drop in efficiency as batch size grows, eventually
offering marginal speedup (close to 1x) beyond batch size 32.

This trend illustrates a key limitation of baseline speculative decoding under large-batch settings
and highlights the effectiveness of CAST in mitigating this degradation. The improved performance
of CAST is attributed to its enhanced speculative mechanism, which more accurately predicts and
validates multiple tokens in parallel, thus reducing the need for fallback to the base model.

E.2 THE EFFECT OF EACH COMPONENT OF CAST

Table 3 presents the results of an ablation study on CAST, our enhanced speculative decoding al-
gorithm, which extends EAGLE-3 by progressively integrating three key optimization techniques:
Dynamic Reranking (DR), Depth Pruning (DP), and Breadth Pruning (BP). The baseline EAGLE-3
demonstrates strong initial performance but degrades significantly as batch size increases, falling
to 1.35x at batch size 16. Adding DR alone yields slight gains at larger batch sizes (e.g., 2.17x at
batch size 16), while incorporating DP further improves performance consistently across batch sizes.
The combination of DR + DP + BP (i.e., the full CAST system) achieves the best overall speedups,
culminating in a 4.14x speedup at batch size 1 and maintaining a robust 2.35x speedup at batch
size 16. Notably, each additional component contributes marginal gains, confirming the cumulative
effectiveness of the enhancements.

Table 3: Ablation study of CAST components.

Batch size 1 2 4 8 16

EAGLE3 3.99x 3.79x 2.98x 1.91x 1.35x
EAGLE3+DR 3.99x 3.74x 3.44x 2.77x 2.17x
EAGLE3+DR+DP 4.08x 3.82x 3.44x 2.84x 2.27x
EAGLE3+DR+BP 4.06x 3.80x 3.42x 2.79x 2.26x
CAST 4.14x 3.87x 3.48x 2.91x 2.35x

F MORE RESULTS ON DIFFERENT GPUS

We present more experimental results on H20 and 4090 to show the flexibility of our methods on
different GPU devices.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 4: Performance comparison of EAGLE-3 and CAST (Ours) on a single H20 GPU with Batch
Size 1. Values represent speedup factors.

Model Method MT-Bench HumanEval GSM8K Alpaca CNN/DM Natural Ques.

Temperature=0

L33 70B
EAGLE-3 5.28x 6.46x 5.86x 5.80x 4.28x 4.59x
CAST (Ours) 5.40x 6.66x 5.86x 5.95x 4.35x 4.71x

V 13B
EAGLE-3 3.13x 3.76x 3.14x 3.22x 2.85x 2.65x
CAST (Ours) 3.30x 4.27x 3.26x 3.25x 2.95x 2.73x

L31 8B
EAGLE-3 3.57x 3.94x 3.67x 3.84x 3.04x 2.99x
CAST (Ours) 3.64x 4.24x 3.68x 3.90x 3.19x 3.16x

DSL 8B
EAGLE-3 3.34x 3.95x 3.83x 3.11x 2.82x 2.99x
CAST (Ours) 3.50x 3.95x 4.13x 3.27x 2.96x 3.15x

Temperature=1

L33 70B
EAGLE-3 5.09x 6.09x 5.56x 5.52x 4.17x 4.50x
CAST (Ours) 5.21x 6.36x 5.68x 5.78x 4.26x 4.61x

V 13B
EAGLE-3 2.54x 3.25x 2.62x 2.65x 2.53x 2.33x
CAST (Ours) 2.92x 3.57x 2.89x 2.89x 2.62x 2.52x

L31 8B
EAGLE-3 2.71x 3.68x 3.19x 3.18x 2.51x 2.28x
CAST (Ours) 2.87x 3.73x 3.22x 3.16x 2.70x 2.45x

DSL 8B
EAGLE-3 2.65x 3.25x 2.83x 2.46x 2.15x 2.31x
CAST (Ours) 2.78x 3.18x 3.16x 2.67x 2.35x 2.59x

Table 5: Performance comparison of EAGLE-3 and CAST (Ours) on two RTX 4090 GPUs with
Batch Size 1. Values represent speedup factors.

Model Method MT-Bench HumanEval GSM8K Alpaca CNN/DM Natural Ques.

Temperature=0

V 13B
EAGLE-3 4.28x 5.02x 4.17x 4.06x 3.90x 3.35x
CAST (Ours) 4.54x 5.56x 4.38x 4.26x 4.07x 3.43x

L31 8B
EAGLE-3 3.83x 4.34x 3.98x 4.12x 3.34x 3.20x
CAST (Ours) 3.97x 4.61x 4.08x 4.29x 3.40x 3.32x

DSL 8B
EAGLE-3 3.68x 4.11x 4.07x 3.31x 3.04x 3.10x
CAST (Ours) 3.75x 4.15x 4.13x 3.43x 3.19x 3.22x

Temperature=1

V 13B
EAGLE-3 3.48x 3.89x 3.47x 3.44x 3.51x 3.12x
CAST (Ours) 3.78x 4.49x 3.90x 3.68x 3.60x 3.30x

L31 8B
EAGLE-3 2.81x 3.82x 3.32x 3.37x 2.63x 2.41x
CAST (Ours) 3.14x 3.99x 3.55x 3.55x 2.92x 2.61x

DSL 8B
EAGLE-3 2.66x 3.38x 3.08x 2.50x 2.37x 2.46x
CAST (Ours) 2.85x 3.52x 3.16x 2.72x 2.57x 2.69x

16

	Introduction
	Related Works
	Preliminary
	Speculative Decoding
	EAGLE
	Tree Expansion Phase
	Tree Reranking Phase

	Method
	Dynamic Expansion Stage: Breadth and Depth Pruning
	Dynamic Reranking Stage

	Experiments
	Single Sample Case
	Batching Case

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Proof
	More Implementation Details
	The Effect of Batch Size
	The Effect of Each Component of CAST

	More Results on different GPUs

