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ABSTRACT

Time-series causal discovery (TSCD) is a fundamental problem of machine learn-
ing. However, existing synthetic datasets cannot properly evaluate or predict
the algorithms’ performance on real data. This study introduces the CausalTime
pipeline to generate time-series that highly resemble the real data and with ground
truth causal graphs for quantitative performance evaluation. The pipeline starts
from real observations in a specific scenario and produces a matching benchmark
dataset. Firstly, we harness deep neural networks along with normalizing flow to
accurately capture realistic dynamics. Secondly, we extract hypothesized causal
graphs by performing importance analysis on the neural network or leveraging
prior knowledge. Thirdly, we derive the ground truth causal graphs by splitting
the causal model into causal term, residual term, and noise term. Lastly, using
the fitted network and the derived causal graph, we generate corresponding versa-
tile time-series proper for algorithm assessment. In the experiments, we validate
the fidelity of the generated data through qualitative and quantitative experiments,
followed by a benchmarking of existing TSCD algorithms using these generated
datasets. CausalTime offers a feasible solution to evaluating TSCD algorithms
in real applications and can be generalized to a wide range of fields. For easy
use of the proposed approach, we also provide a user-friendly website, hosted on
www.causaltime.cc.

1 INTRODUCTION

Inferring causal structures from time-series, i.e., time-series causal discovery (TSCD), is a funda-
mental problem in machine learning. It goes beyond prediction or forecasting by revealing the
complex interactions buried under multi-variate time-series. Recently, many algorithms have been
proposed (Löwe et al., 2022; Li et al., 2020; Wu et al., 2022; Brouwer et al., 2021) and achieved
satisfactory performance, i.e., the discovered causal graphs are close to the ground-truth counter-
parts. Under some settings, the causal discovery results are nearly perfect, with AUROC scores
approaching 1.

However, the benchmarks for TSCD algorithms do not suffice for the performance evaluation. First
of all, for the statistical significance of the quantitative evaluation results, the datasets need to be
improved in terms of quality and quantity. Next, the current datasets are limited to several fields and
do not cover wide application directions. More importantly, the datasets with ground-truth causal
graphs are synthesized and might deviate from the true data-generating process, so the scores may
not reflect the performance on real data (Reisach et al., 2021).

Despite the fact that recent works also propose better benchmarks for time-series causal discovery
(Lawrence et al., 2021; Runge et al., 2020), as well as static settings (Göbler et al., 2023; Cheval-
ley et al., 2023a;b), current TSCD algorithms often incorporate three types of datasets: Numerical
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datasets, e.g., VAR (vector auto-regression) and Lorenz-96 (Karimi & Paul, 2010), are simulated
using closed-form equations. Although some of these equations (Lorenz-96) are inspired by real
application scenarios, e.g., climate dynamics, they are over-simplified and have very limited gen-
eralizability to real-world applications (Runge et al., 2020). Quasi-real datasets are composed of
time-series generated with manually designed dynamics that mimic real counterparts under a certain
scenario. For example, DREAM3 (Prill et al., 2010) is a dataset simulated using gene expression
and regulation dynamics, and NetSim (Smith et al., 2011) is generated by simulating interactions
between human brain regions under observation of fMRI. The problem with this type of dataset is
that it only covers a few research areas with underlying mechanisms relatively clearly known. For
fields such as healthcare or finance, it is hard or even impossible to generate realistic time-series
with manually designed dynamics. Real datasets (such as MoCap (Tank et al., 2022), S&P 100
stock returns (Pamfil et al., 2020)) do not have the above-mentioned problem, but the dealbreaker
is that the ground truth causal graph is mostly inaccessible, and we have to resort to some ad hoc
explanations. As shown in Tab. 1, currently available benchmarking tools cannot support a com-
prehensive evaluation of the time-series causal discovery algorithm. Therefore, an approach for
generating benchmarks that highly mimic the real data in different scenarios and with true causal
graphs is highly demanded.

Table 1: Comparison of benchmarks for time-series causal discovery evaluation.
Datasets Numerical Quasi-real Real CausalTime (Ours)

Realistic Data Low Moderate Very High High
With True Causal Graph ! ! % !

Generalizable to Diverse Fields % % ! !

In this work, we propose a novel pipeline capable of generating realistic time-series along with a
ground truth causal graph and is generalizable to different fields, named CausalTime. The process
of generating time-series with a given causal graph can be implemented using the autoregression
model, however, pursuing a causal graph that matches the target time-series with high accuracy is
nontrivial, especially for the data with little prior knowledge about the underlying causal mecha-
nism. To address this issue, we propose to use a deep neural network to fit the observed data with
high accuracy, and then retrieve a causal graph from the network or from prior knowledge that
holds high data fidelity. Specifically, we first obtain a hypothesized causal graph by performing
importance analysis on the neural network or leveraging prior knowledge, and then split the func-
tional causal model into causal term, residual term, and noise term. The split model can naturally
generate time-series matching the original data observations well. It is worth noting that the re-
trieval of the causal graph is not a causal discovery process and does not necessarily uncover the
underlying causal relationship, but can produce realistic time-series to serve as the benchmark of
causal discovery algorithms. Our benchmark is open-source and user-friendly, we host our website
at www.causaltime.cc. Specifically, our contributions include:

• We propose CausalTime, a pipeline to generate realistic time-series with ground truth causal
graphs, which can be applied to diverse fields and provide new choices for evaluating TSCD
algorithms.

• We perform qualitative and quantitative experiments to validate that the generated time-series
preserves the characteristics of the original time-series.

• We evaluate several existing TSCD algorithms on the generated datasets, providing some guide-
lines for algorithm comparison, choice, as well as improvement.

2 RELATED WORKS

Causal Discovery. Causal Discovery (or Causal Structural Learning), including static settings
and dynamic time-series, has been a hot topic in machine learning and made big progress in the
past decades. The methods can be roughly categorized into multiple classes. (i) Constraint-based
approaches, such as PC (Spirtes & Glymour, 1991), FCI (Spirtes et al., 2000), and PCMCI (Runge
et al., 2019b; Runge, 2020; Gerhardus & Runge, 2020), build causal graphs by performing con-
ditional independence tests. (ii) Score-based learning algorithms which include penalized Neural
Ordinary Differential Eqn.s and acyclicity constraint (Bellot et al., 2022) (Pamfil et al., 2020). (iii)
Approaches based on Additive Noise Model (ANM) that infer causal graph based on additive noise
assumption (Shimizu et al., 2006; Hoyer et al., 2008). ANM is extended by Hoyer et al. (2008) to
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nonlinear models with almost any nonlinearities. (iv) Granger-causality-based approaches. Granger
causality was initially introduced by Granger (1969) who proposed to analyze the temporal causal
relationships by testing the help of a time-series on predicting another time-series. Recently, Deep
Neural Networks (NNs) have been widely applied to nonlinear Granger causality discovery. (Wu
et al., 2022; Tank et al., 2022; Khanna & Tan, 2020; Löwe et al., 2022; Cheng et al., 2023b). (v)
Convergent Cross Mapping (CCM) proposed by Sugihara et al. (2012) that reconstructs nonlinear
state space for nonseparable weakly connected dynamic systems. This approach is later extended to
situations of synchrony, confounding, or sporadic time-series (Ye et al., 2015; Benkő et al., 2020;
Brouwer et al., 2021). The rich literature in this direction requires effective quantitative evaluation
and progress in this direction also inspires designing new benchmarking methods. In this paper, we
propose to generate benchmark datasets using causal models.

Benchmarks for Causal Discovery. Benchmarking is of crucial importance for algorithm design
and applications. Researchers have proposed different datasets and evaluation metrics for causal
discovery under both static and time-series settings. (i) Static settings. Numerical, quai-real, and
real datasets are all widely used in static causal discovery. Numerical datasets include datasets simu-
lated using linear, polynomial, or triangular functions (Hoyer et al., 2008; Mooij et al., 2011; Spirtes
& Glymour, 1991; Zheng et al., 2018); Quai-real datasets are generated under physical laws (e.g.
double pendulum (Brouwer et al., 2021)) or realistic scenarios (e.g. synthetic twin birth datasets
(Geffner et al., 2022), alarm message system for patient monitoring (Scutari, 2010; Lippe et al.,
2021), neural activity data (Brouwer et al., 2021), and gene expression data (Van den Bulcke et al.,
2006)); Real datasets are less frequently used. Examples include “Old Faithful” dataset on volcano
eruptions (Hoyer et al., 2008), and expression levels of proteins and phospholipids in human im-
mune system cell (Zheng et al., 2018). Recently, Göbler et al. (2023) proposes a novel pipeline,
i.e., causalAssembly, generating realistic and complex assembly lines in a manufacturing scenario.
Chevalley et al. (2023a) and Chevalley et al. (2023b) on the other hand, provides CausalBench, a set
of benchmarks on real data from large-scale single-cell perturbation. Although causalAssembly and
CausalBench are carefully designed, they are restricted in certain research fields where the dynam-
ics can be easily replicated or the ground truth causal relationships can be acquired by performing
interventions. (ii) Time-series settings. In time-series settings, widely used numerical datasets
include VAR and Lorenz-96 (Tank et al., 2022; Cheng et al., 2023b; Khanna & Tan, 2020; Bellot
et al., 2022); quasi-real datasets include NetSim (Löwe et al., 2022), Dream-3 / Dream-4 (Tank et al.,
2022), and finance dataset simulated using Fama-French Three-Factor Model (Nauta et al., 2019);
real datasets include MoCap dataset for human motion data (Tank et al., 2022), S&P 100 stock data
(Pamfil et al., 2020), tropical climate data (Runge et al., 2019b), and complex ecosystem data (Sug-
ihara et al., 2012). Other than these datasets, there are several works providing novel benchmarks
with ground-truth causal graphs. CauseMe (Runge et al., 2020; 2019a) provides a platform1 for nu-
merical, quasi-real, as well as real datasets, which are mainly based on TSCD challenges on climate
scenarios. However, although the platform is well-designed and user-friendly, it did not alleviate the
tradeoff among fidelity, ground truth availability, and domain generalizability. For example, the nu-
merical datasets in CauseMe are still not realistic, and the ground truth causal graphs for real datasets
are still based on domain prior knowledge that may not be correct. (Lawrence et al., 2021) focuses
on generating time-series datasets that go beyond CauseMe. Their framework allows researchers to
generate numerous data with various properties flexibly. The ground-truth graphs for their gener-
ated datasets are exact, but the functional dependencies in Lawrence et al. (2021) are still manually
designed and may not reflect real dynamics in natural scenarios. As a result, their generated datasets
are still categorized into numerical datasets in Tab. 1, although with far higher flexibility.

Recently, neural networks have been extensively studied for their capability of generating time-series
Yoon et al. (2019); Jarrett et al. (2021); Pei et al. (2021); Kang et al. (2020); Zhang et al. (2018); Es-
teban et al. (2017). However, the time-series generated with these methods are improper for bench-
marking causal discovery, since causal graphs are not generated alongside the series. Therefore, we
propose a pipeline to generate realistic time-series along with the ground truth causal graphs.

1causeme.net
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Figure 1: Illustration of the CausalTime pipeline. We fit the observations from real scenarios with
NAR model, then split the model and reorganize the components to construct an actual causal graph
(ACG) that can generate time-series resembling the input observations. After visual and quantitative
quality control, the synthesized time-series and corresponding ACG serve as a benchmark to evaluate
the performance of TSCD algorithms in real applications.

3 THE PROPOSED TIME-SERIES GENERATION PIPELINE

Aiming at generating time-series that highly resemble observations from real scenarios, and with
ground truth causal graphs, we propose a general framework to generate a causal graph built from the
real observations and generate counterpart time-series that highly resemble these observations. The
whole pipeline consists of several key steps, as illustrated in Fig. 1. Although the real causal graph
for the original time-series is unknown, the built causal graph serves as the ground truth lying under
the generated version, and they together serve as a benchmark for the TSCD algorithms, shown
in Fig. 2. We would like to clarify that, our generation pipeline is based on several assumptions
that are common in causal discovery literature: markovian condition, faithfulness, sufficiency, no
instantaneous effect, and stationarity. We place the detailed discussion of these assumptions in
Supp. Section A.1.1 due to page limits.

3.1 CAUSAL MODEL

Causal models in time-series are frequently represented as graphical models (Vowels et al., 2021;
Spirtes et al., 2000). However, different from the classic Pearl’s causality (Pearl, 2009), spatio-
temporal structural dependency must be taken into account for time-series data. We denote a uni-
formly sampled observation of a dynamic system as X = {x1:T,i}Ni=1, in which xt is the sample
vector at time point t and consists of N variables {xt,i}, with t ∈ {1, ..., T} and i ∈ {1, ..., N}. The
structural causal model (SCM) for time-series (Runge et al., 2019b) is xt,i = fi (P(xt,i), ηt,i) , i =
1, 2, ..., N , where fi is any (potentially) nonlinear function, ηt,i denotes dynamic noise with mutual
independence, and P(xjt ) denotes the causal parents of xjt . This model is generalizable to most
scenarios, but may bring obstacles for our implementation. In this paper, we consider the nonlinear
autoregressive model (NAR), a slightly restricted class of SCM.

Nonlinear Autoregressive Model. We adopt the representation in many time-series causal discov-
ery algorithms ((Tank et al., 2022; Löwe et al., 2022; Cheng et al., 2023b)), as well as Lawrence
et al. (2021)’s time-series generation pipeline. In a Nonlinear Autoregressive Model (NAR), the
noise is assumed to be independent and additive, and each sampled variable xt,i is generated by the
following equation:

xt,i = fi (P(xt,i)) + ηt,i, i = 1, 2, ..., N. (1)

where P(·) denotes parents in causal graph. We further assume that the maximal time lags for
causal effects are limited. Then the model can be denoted as xt,i = fi

(
{xτ,j}xτ,j∈P(xt,i)

)
+ ηt,i.

Here t − τ ≤ τmax,∀xτ,j ∈ P(xt,i), and τmax denotes the maximal time lag. In causal discovery,
time-homogeneity (Gong et al., 2023) is often assumed, i.e., function fi and causal parents P is
irrelevant to time. By summarizing temporal dependencies, the summary graph for causal models

can be denoted with binary matrix A, where its element aji =
{
1, ∃τ, s.t., xτ,j ∈ P(xt,i)
0, otherwise

. The

dataset pair for causal discovery is ⟨X,A⟩. TSCD targets to recover matrix A given time-series
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X. However, since for most real time-series X, causal graph A is unknown, benchmarking causal
discovery algorithms with real time-series is generally inappropriate.

3.2 TIME-SERIES FITTING

After collecting real-time-series from diverse fields, we fit the dynamic process of multivariate time-
series with a deep neural network and normalizing flow.

Time-series Fitting with Causally Disentangled Neural Network (CDNN). To fit the ob-
served time-series with a deep neural network and introduce casual graphs into the network’s pre-
diction of output series, Tank et al. (2022); Khanna & Tan (2020); Cheng et al. (2023b) separate
the causal effects from the parents to each of individual output series using N separate MLPs
/ LSTMs, which is referred to as component-wise MLP / LSTM (cMLP / cLSTM). In this pa-
per, we follow (Cheng et al., 2023a)’s definition and refer to the component-wise neural net-
works as “causally disentangled neural networks” (CDNN), i.e., neural networks taking the form
fΘ(X,A) = [fΘ1

(X⊙ a:,1), ..., fΘn
(X⊙ a:,n)]

T , where A ∈ {0, 1}n×n and the operator ⊙ is

defined as fϕj
(X⊙ a:,j)

∆
= fϕj

({x1 · a1j , ...,xN · aNj}).
So far function fΘj

(·) acts as the neural network function used to approximate fj(·) in Eqn. (1).
Since we assume no prior on the underlying causal relationships, to extract the dynamics of the time-
series with high accuracy, we fit the generation process with all historical variables (with maximal
time lag τmax, which is discussed in Supp. Section A.1.1) and obtain a fully connected prediction
model. Specifically, we assume that

xt,i = fi (xt−τ :t−1,1, ...,xt−τ :t−1,N ) + ηt,i, i = 1, 2, ..., N. (2)

In the following, we omit the time dimension of xt−τ :t−1,j and denote it with xj . Using a CDNN,
we can approximate fi(·) with fΘi

(·). (Tank et al., 2022) and (Cheng et al., 2023b) implement
CDNN with component-wise MLP / LSTM (cMLP / cLSTM), but the structure is highly redundant
because it consists of N distinct neural networks.

Implementation of CDNN. The implementation of CDNN can vary. For example, Cheng et al.
(2023a) explores enhancing causal discovery with a message-passing-based neural network, which
is a special version of CDNN with extensive weight sharing. In this work, we utilize an LSTM-
based CDNN with a shared decoder (with implementation details shown in Supp. Section A.2).
Moreover, we perform scheduled sampling (Bengio et al., 2015) to alleviate the accumulated error
when performing autoregressive generation.

Noise Distribution Fitting by Normalizing Flow. After approximating the functional
term fi(·) with fΘi

(·), we then approximate noise term ηt,i with Normalizing Flow (NF)
(Kobyzev et al., 2021; Papamakarios et al., 2021). The main process is described as η̂t,i =
Tψi

(u), where u ∼ pu(u), in which Tψi
(·) is an invertible and differentiable transformation im-

plemented with neural network, pu(u) is the base distribution (normal distribution in our pipeline),
and pη̂i(η̂t,i) = pu(T

−1
ψi

(η̂t,i))
∂

∂η̂t,i
T−1
ψi

(η̂t,i). Then, the optimization problem can be formulated as

maxψi

∑N
t=1 log pu(T

−1
ψi

(ηt,i)) + log ∂
∂ηt,i

T−1
ψi

(ηt,i).

3.3 EXTRACTION OF HYPOTHETICAL CAUSAL GRAPH

In the fully connected prediction model, all N variables contribute to each prediction, which fits
the observations quite well but is over-complicated than the latent causal graph. We now proceed
to extract a hypothetical causal graph (HCG) H by identifying the most contributing variables in
the prediction model fΘi(·). We would like to clarify that, extracting HCG is not causal discovery,
and it instead targets to identify the contributing causal parents while preserving the fidelity of the
fitting model. Two options are included in our pipeline: i) HCG extraction with DeepSHAP; ii)
HCG extraction with prior knowledge.

HCG Extraction with DeepSHAP. Shapley values (Sundararajan & Najmi, 2020) are frequently
used to assign feature importance for regression models. It originates from cooperative game the-
ory (Kuhn & Tucker, 2016), and has recently been developed to interpret deep learning models
(DeepSHAP) (Lundberg & Lee, 2017; Chen et al., 2022). For each prediction model fΘi(·), the
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calculated importance of each input time-series xt−τ :t−1,j by DeepSHAP is ϕji. By assigning im-
portance values from each time-series j to i, we get the importance matrix Φ. After we set the
sparsity σ of a HCG, a threshold γ can be calculated with cumulative distribution, i.e., γ = F−1

ϕ (σ),
where Fϕ(·) is the cumulative distribution of ϕji if we assume all ϕji are i.i.d.
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Figure 2: Illustration of how
CausalTime gets a 2N × 2N shaped
sparse causal graph that exactly synthe-
sizes the desired data.

HCG Extraction with Prior Knowledge. Time-series
in some fields, e.g., weather or traffic, relationships be-
tween each variable are highly relevant to geometry dis-
tances. For example, air quality or traffic flows in a cer-
tain area can largely affect that in a nearby area. As a
result, geometry graphs can serve as hypothetical causal
graphs (HCGs) in these fields, we show the HCG calcu-
lation process in Supp. Section A.2 for this case.

The extracted HCGs is not the ground truth causal
graph of time-series X, because time-series X is not gen-
erated by the corresponding NAR or SCM model (shown
in Fig. 2). A trivial solution would be running auto-
regressive generation by setting input of non-causal terms
to zero, i.e.,

x̂t,i =fΘi
(x̂t−τ :t−1,1 · h1i, ..., x̂t−τ :t−1,N · hNi)

+ η̂t,i, i = 1, 2, ..., N.
(3)

where {hji} is the entries in the HCG H. However, the
fidelity of the fitting model fΘi

(·) in Eq. 3 is hampered by
only including a subset of the variables. In the following,
we introduce another way to generate time-series with an
actual causal graph, and most importantly, without losing fidelity.

3.4 SPLITTING THE NAR MODEL TO ACQUIRE ACTUAL CAUSAL GRAPH AND REALISTIC
TIME-SERIES

To acquire the Actual Causal Graphs (ACGs) and generate new time-series with high data fidelity,
we propose to split the NAR model taking the form of a fully connected prediction model into
causal term, residual term, and noise term. In this manner, we do not have to identify exact causal
relationships before generating new time-series, and hence avoid the dilemma of “using a TSCD
algorithm to build a synthetic dataset to test TSCD algorithms”. Specifically,

x̂t,i = fΘi
(x̂t−τ :t−1,1 · h1i, ..., x̂t−τ :t−1,N · hNi)︸ ︷︷ ︸

causal term

+ x̂R
t−1,i︸ ︷︷ ︸

residual term

+ η̂t,i︸︷︷︸
noise term

, (4)

where the residual term x̂R
t−1,i indicates the “causal effect” of non-parent time-series of time-series

i in HCG H. In other words, causal terms represent the “major parts” of causal effects, and the
residual term represents the remaining parts. Mathematically, x̂R

t−1,i is calculated as

x̂R
t−1,i = fΘi

(x̂t−τ :t−1,1, ..., x̂t−τ :t−1,N )− fΘi
(x̂t−τ :t−1,1 · h1i, ..., x̂t−τ :t−1,N · hNi) . (5)

and is then stored as an independent time-series. When treated as a generation model, xj → xR
i

contains instantaneous effects, however, which does not affect the causal discovery result of xj → xi
for most existing TSCD approaches, as we discussed in Supp. Section A.1.2. Indeed, combining
Eqn.s 4 and 5, all components of xt−1 are included to predict xt, i.e., “dense” prediction model.
However, the “dense” prediction models in our pipeline do not imply that the “natural” causal graphs
are dense. The exact form of the “natural” causal graph are unknown since we do not perform TSCD.

After randomly selecting an initial sequence Xt0−τmax:t0−1 from the original time-series X, xi and
xR
i is generated via the auto-regressive model, i.e., the prediction results from the previous time step

are used for generating the following time step. Our final generated time-series include all xi and
xR
i , i.e., a total of 2N time-series are generated, and the ACG Â is of size 2N × 2N :

X̂ =
{
X̂t0:t0+T ; X̂

R
t0:t0+T

}
, Â =

[
H JN
IN 0

]
2N×2N

(6)
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where JN is an all-one matrix, IN is an identity matrix, T is the total length of the generated time-
series. Although ground truth causal graphs for the original time-series are unknown, but for the
generated version the causal graph is known and unique, shown in Fig. 2.

With the prediction model fθi , normalizing flow model Tψi , and ACG A, we can obtain the final

dataset
〈
X̂, Â

〉
. X̂ is then feeded to TSCD algorithms to recover matrix A given time-series X̂.

4 EXPERIMENTS

In this section, we demonstrate the CausalTime dataset built with the proposed pipeline, visual-
ize and quantify the fidelity of the generated time-series, and then benchmark the performance of
existing TSCD algorithms on CausalTime.

4.1 STATISTICS OF THE BENCHMARK DATASETS

Theoretically, the proposed pipeline is generalizable to diverse fields. Here we generate 3 types of
benchmark time-series from weather, traffic, and healthcare scenarios respectively, as illustrated in
Fig. 3. As for the time-series of weather and traffic, relationships between two variables are highly
relevant to their geometric distances, i.e., there exists a prior graph, while there is no such prior in
the healthcare series. The detailed descriptions are in Supp. Section A.2.

Medical Dataset

Imputation

Electronic Health 
Records

Time Stamp 
Conversion

Variable
Selection

AQI Dataset Traffic Dataset

Figure 3: Visualization of three subsets in CausalTime. For AQI and Traffic, we overlay the ground
truth causal graphs onto the map.

4.2 FIDELITY OF THE GENERATED TIME-SERIES

To qualitatively and quantitatively analyze the fidelity of the generated time-series, we utilize PCA
Bryant & Yarnold (1995) and t-SNE van der Maaten & Hinton (2008) dimension reduction visu-
alization, neural-network-based discriminative score, and MMD score of real and synthetic feature
vectors to evaluate whether our generated time-series is realistic.

Visualization via Dimension Reduction. To judge the fidelity of the generated time-series, we
project the time-series features to a two-dimensional space, and assess their similarity by comparing
the dimension reduction results. After splitting the original and generated time-series into short
sequences (length of 5), we perform dimension reduction via linear (PCA) and nonlinear (t-SNE)
approaches on three generated datasets and visualize the difference explicitly, as shown in Fig. 4.
One can observe that the distributions of the original and generated series are highly overlapped,
and the similarity is especially prominent for AQI and Traffic datasets (i.e., the 1st, 2nd, 4th, and
5th columns). These results visually validate that our generated datasets are indeed realistic across
a variety of fields.
(a) (b)

Figure 4: Visualization of the similarity between generated and original time-series in a low dimen-
sional (2D) space, where original and generated series are shown in blue and red, respectively. (a)
and (b) plots the two components of PCA and t-SNE on three datasets.

Discriminative Score / MMD Score. Other than visualization in low dimensional space,
we further assess the generation quality, i.e., evaluate the similarity between the original and
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generated time-series, quantitatively using a neural-network-based discriminator and the MMD
score. For the neural-network-based discriminator, by labeling the original time-series as pos-
itive samples and the generated time-series as negative ones, we train an LSTM classifier and
then report the discriminative score in terms of |AUROC − 0.5| on the test set. MMD is
a frequently used metric to evaluate the similarity of two distributions (Gretton et al., 2006).

It is estimated with M̂MD
2

u = 1
n(n−1)

∑n
i=1

∑n
j ̸=iK(xi, xj) − 2

mn

∑n
i=1

∑m
j=1 K(xi, yj) +

1
m(m−1)

∑m
i=1

∑m
j ̸=iK(yi, yj), where K is the radial basis function (RBF) kernel. MMD gives

another quantitative evaluation of the similarity without the need to train another neural network, as
listed in the bottom row of Tab. 2. It is observed that the generated dataset is similar to the origi-
nal ones, since the discriminative score is very close to zero (i.e., neural networks cannot distinguish
generated samples from original samples), and the MMD score is relatively low. Other than discrim-
inative score and MMD, we also utilize cross-correlation scores and perform additive experiments,
which is shown in Supp. Section A.3.

Table 2: Quantitative assessment of the similarity between the generated and original time-series in
terms of discriminative score and MMD. We show the ablation study in the table as well.

Datasets Discriminative Score MMD
AQI Traffic Medical AQI Traffic Medical

Additive Gaussian Noise 0.488 ± 0.001 0.499 ± 0.000 0.445 ± 0.003 0.533 ± 0.091 0.716 ± 0.011 0.480 ± 0.057

w/o Noise Term 0.361 ± 0.008 0.391 ± 0.006 0.346 ± 0.001 0.454 ± 0.025 0.717 ± 0.007 0.453 ± 0.029

Fit w/o Residual Term 0.309 ± 0.010 0.500 ± 0.000 0.482 ± 0.005 0.474 ± 0.033 0.858 ± 0.020 0.520 ± 0.023

Generate w/o Residual Term 0.361 ± 0.014 0.371 ± 0.003 0.348 ± 0.014 0.431 ± 0.055 0.657 ± 0.016 0.489 ± 0.037

Full Model 0.054 ± 0.025 0.039 ± 0.020 0.017 ± 0.027 0.246 ± 0.029 0.215 ± 0.013 0.461 ± 0.033

Ablation Study. Using the above two quantitative scores, we also perform ablation studies to
justify the effectiveness of our design. In the time-series fitting, we use normalizing flow to fit
the noise distributions. To validate its effectiveness, we replace normalizing flow with (a) additive
Gaussian noise (with parameters estimated from real series) and (b) no noise. Further, to validate
that our pipeline reserves the real dynamics by splitting the causal model into causal term, residual
term, and noise term, we add two alternatives that do not include the residual term when (c) fitting
the NAR model or (d) generating new data, besides the above two settings.

The results are shown in Tab. 2, which shows that the full model produces time-series that mimic the
original time-series best, in terms of both discriminative score and MMD score. The only exception
is the slightly lower MMD under settings “w/o Noise” on medical datasets. It is worth noting that our
discrimination scores are close to zero, i.e., neural networks cannot discriminate almost all generated
time-series from original versions.

4.3 PERFORMANCE OF STATE-OF-THE-ART CAUSAL DISCOVERY ALGORITHMS

To quantify the performances of different causal discovery algorithms, here we calculate their AU-
ROC and AUPRC with respect to the ground truth causal graph. We do not evaluate the accuracy of
the discovered causal graph Ã with respect to its ground-truth Â, because there exists instantaneous
effects in xj → xR

i (see Supp. Section A.1.2). Instead, we ignore the blocks IN ,JN and 0 in Eqn.
6), and compare H̃ with respect to H,

Baseline TSCD Algorithms. We benchmarked the performance of 13 recent or representative
causal discovery methods on our CausalTime datasets, including: i) Granger-causality-based ap-
proach: Granger Causality (GC, (Granger, 1969)), Neural Granger Causality (NGC, (Tank et al.,
2022)), economy-SRU (eSRU, (Khanna & Tan, 2020)), Scalable Causal Graph Learning (SCGL,
(Xu et al., 2019)), Temporal Causal Discovery Framework (TCDF, (Nauta et al., 2019)), CUTS
(Cheng et al., 2023b), CUTS+ (Cheng et al., 2023a) upgrading CUTS to high dimensional time-
series. ii) Constraint-based approaches: PCMCI (Runge et al., 2019b), SVAR, NTS-NOTEARS
(shown as N.NTS, (Sun et al., 2023)), and Rhino (Gong et al., 2022), iii) CCM-based approaches:
Latent Convergent Cross Mapping (LCCM, (Brouwer et al., 2021)), and iv) Other approaches: Neu-
ral Graphical Model (NGM, (Bellot et al., 2022)), which employs neural ordinary differential equa-
tions to handle irregular time-series data. To ensure fairness, we searched for the best set of hyperpa-
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rameters for these baseline algorithms on the validation dataset, and tested performances on testing
sets for 5 random seeds per experiment.

Table 3: Performance benchmarking of baseline TSCD algorithms on our CausalTime datasets. We
highlight the best and the second best in bold and with underlining, respectively.

Methods AUROC AUPRC
AQI Traffic Medical AQI Traffic Medical

GC 0.4538 ± 0.0377 0.4191 ± 0.0310 0.5737 ± 0.0338 0.6347 ± 0.0158 0.2789 ± 0.0018 0.4213 ± 0.0281

SVAR 0.6225 ± 0.0406 0.6329 ± 0.0047 0.7130 ± 0.0188 0.7903 ± 0.0175 0.5845 ± 0.0021 0.6774 ± 0.0358

N.NTS 0.5729 ± 0.0229 0.6329 ± 0.0335 0.5019 ± 0.0682 0.7100 ± 0.0228 0.5770 ± 0.0542 0.4567 ± 0.0162

PCMCI 0.5272 ± 0.0744 0.5422 ± 0.0737 0.6991 ± 0.0111 0.6734 ± 0.0372 0.3474 ± 0.0581 0.5082 ± 0.0177

Rhino 0.6700 ± 0.0983 0.6274 ± 0.0185 0.6520 ± 0.0212 0.7593 ± 0.0755 0.3772 ± 0.0093 0.4897 ± 0.0321

CUTS 0.6013 ± 0.0038 0.6238 ± 0.0179 0.3739 ± 0.0297 0.5096 ± 0.0362 0.1525 ± 0.0226 0.1537 ± 0.0039

CUTS+ 0.8928 ± 0.0213 0.6175 ± 0.0752 0.8202 ± 0.0173 0.7983 ± 0.0875 0.6367 ± 0.1197 0.5481 ± 0.1349

NGC 0.7172 ± 0.0076 0.6032 ± 0.0056 0.5744 ± 0.0096 0.7177 ± 0.0069 0.3583 ± 0.0495 0.4637 ± 0.0121

NGM 0.6728 ± 0.0164 0.4660 ± 0.0144 0.5551 ± 0.0154 0.4786 ± 0.0196 0.2826 ± 0.0098 0.4697 ± 0.0166

LCCM 0.8565 ± 0.0653 0.5545 ± 0.0254 0.8013 ± 0.0218 0.9260 ± 0.0246 0.5907 ± 0.0475 0.7554 ± 0.0235

eSRU 0.8229 ± 0.0317 0.5987 ± 0.0192 0.7559 ± 0.0365 0.7223 ± 0.0317 0.4886 ± 0.0338 0.7352 ± 0.0600

SCGL 0.4915 ± 0.0476 0.5927 ± 0.0553 0.5019 ± 0.0224 0.3584 ± 0.0281 0.4544 ± 0.0315 0.4833 ± 0.0185

TCDF 0.4148 ± 0.0207 0.5029 ± 0.0041 0.6329 ± 0.0384 0.6527 ± 0.0087 0.3637 ± 0.0048 0.5544 ± 0.0313

Results and Analysis. From the scores in Tab. 3, one can see that among these algorithms,
CUTS+ and LCCM perform the best, and most of the TSCD algorithms do not get AUROC > 0.9.
The low accuracies tell that current TSCD algorithms still have a long way to go before being put
into practice and indicate the necessity of designing more advanced algorithms with high feasibility
to real data. Interestingly, a few results demonstrate AUROC < 0.5, which means that we get
inverted classifications. Constraint-based approaches such as PCMCI achieve high performance on
synthetic datasets (especially linear cases, (Cheng et al., 2023b)) but perform worse on realistic data.
This is probably due to the difficulty of conducting conditional independence tests in nonlinear or
realistic scenarios. Granger-causality-based approaches such as CUTS+ perform the best because
of their neural network-based architecture. However, these methods, such as CUTS, CUTS+, NGC,
eSRU, have limitations since they rely on the assumptions of causal sufficiency and no instantaneous
effects. CCM-based approach LCCM performs surprisingly well although the performance is not
that good in synthetic datasets (reported in Cheng et al. (2023b)). This proves that learning Neural-
ODE-based latent processes greatly helps the application of Convergent Cross Mapping. Besides,
compared with the reported results in previous work (Cheng et al., 2023b; Tank et al., 2022), one
can notice that the scores on our CausalTime dataset are significantly lower than those on synthetic
datasets (e.g., VAR and Lorenz-96), on which some TSCD algorithms achieve scores close to 1. This
implies that the existing synthetic datasets are insufficient to evaluate the algorithm performance on
real data and calls for building new benchmarks to advance the development in this field.

Additional Information. We place theoretical analysis and assumptions in Supp. Section A.1,
implementation details along with hyperparameters for each of our key steps in Section A.2, ad-
ditional experimental results (including a comparison of various CDNN implementations, ablation
study for scheduled sampling, and experimental results for cross-correlation scores and with missing
entries or confounding) in Section A.3, and algorithmic representation in Section 1.

5 CONCLUSIONS

We propose CausalTime, a novel pipeline to generate realistic time-series with ground truth causal
graphs, which can be used to assess the performance of TSCD algorithms in real scenarios and
can also be generalizable to diverse fields. Our CausalTime contributes to the causal-discovery
community by enabling upgraded algorithm evaluation under diverse realistic settings, which would
advance both the design and applications of TSCD algorithms. Our work can be further developed
in multiple aspects. Firstly, replacing NAR with the SCM model can extend CausalTime to a richer
set of causal models; secondly, we plan to take into account the multi-scale causal effects that
widely exist in realistic time-series. Our future works include i) Creating a more realistic time-
series by incorporating prior knowledge of certain dynamic processes, multi-scale associations, or
instantaneous effects. ii) Investigation of an augmented TSCD algorithm with reliable results on real
time-series data.
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REPRODUCIBILITY STATEMENT

For the purpose of reproducibility, we include the source code on GitHub (https://github.
com/jarrycyx/UNN). The generated CausalTime datasets are shared at www.causaltime.
cc. Moreover, we provide all hyperparameters used for all methods in Appendix Section A.2. All
experiments are deployed on a server with Intel Core CPU and NVIDIA RTX3090 GPU.
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A.1 THEORY

A.1.1 ASSUMPTIONS AND LIMITATIONS

CausalTime is a realistic benchmark to test various TSCD algorithms. As a result, we choose to
include the most common assumptions, e.g., Markovian Condition, Causal Faithfulness, No instan-
taneous effects, Causal Sufficiency, and Causal Stationarity.

Markovian Condition. The joint distribution can be factorized into P (x) =
∏
i P (xi|P(xi)), i.e.,

every variable is independent of all its nondescendants, conditional on its parents.

Causal Faithfulness. A causal model that accurately reflects the independence relations present in
the data.

Causal Sufficiency. (or no latent confounder) All common causes of all variables are observed. This
assumption is potentially very strong since we cannot observe “all causes in the world” because it
may include infinite variables. However, this assumption is important for a variety of literature.

No Instantaneous Effect. (Or Temporal Priority (Assaad et al., 2022)) The cause occurred before its
effect in the time-series. This assumption can be satisfied if the sampling frequency is higher than the
causal effects. However, this assumption may be strong because the sampling frequency of many real
time-series is not high enough. In CausalTime, testing on methods that support instantaneous effects,
like Rhino and DYNOTEARS Gong et al. (2022); Pamfil et al. (2020) is still possible by testing only
the time-lagging parts. However, it is indeed a limitation that we cannot test the instantaneous part.

Causal Stationarity. All the causal relationships remain constant throughout time. With this as-
sumption, full time causal graph can be summarized into a windowed causal graph (Assaad et al.,
2022).

In AQI and Traffic datasets, causal relationships are highly relevant to geometry distances, since
nearby stations have mutual influences, so the extracted HCG and the subsequent ACG are directly
from distance graphs, which align with common sense and are widely used Cini et al. (2022); Wu
et al. (2019). In medical datasets, the HCG is extracted with DeepSHAP since it is hard to build
reliable graphs from only prior knowledge. Although Shapley values might not exactly match with
causality, Shapley-value-based approaches are widely used in the field of medicine and are shown
to capture features with actual important relationships Hyland et al. (2020); Thorsen-Meyer et al.
(2020). Consequently, the extracted graphs in our three subsets are built on existing extensive studies
and are expected to be close to those found in nature.
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A.1.2 INSTANTANEOUS EFFECT OF RESIDUAL TERM

In section 3.4, we propose to split the NAR model into causal term, residual term, and noise term,
where the residual term xR

t−1 is generated with

x̂R
t−1,i = fΘi (x̂t−τ :t−1,1, ..., x̂t−τ :t−1,N )− fΘi (x̂t−τ :t−1,1 · h1i, ..., x̂t−τ :t−1,N · hNi) (7)

As a result, instantaneous effects exist in this generation equation, i.e., in xj → xR
i but not in

xj → xi, ∀i, j. This is not a problem when tested on TSCD algorithms with compatibility with
instantaneous effects. In the following, we discuss the consequences when tested on TSCD algo-
rithms without compatibility to instantaneous effects, e.g., Granger Causality, Convergent Cross
Mapping, and PCMCI (Runge et al., 2023). For most cases, this does not affect causal discovery
results between all xj . Though they may draw a wrong conclusion of xj ↛ xR

i , this is not the part
we compare to ground truth in the evaluation (Section 4.3).

Granger Causality. Granger Causality determines causal relationships by testing if a time-series
helps the prediction of another time-series. In this case, the causal discovery results of xj → xi are
not affected since instantaneous effects of xj → xR

i do not affect whether the time-series xj helps
to predict the time-series xi, ∀i, j.

Constraint-based Causal Discovery. These line of works is based on conditional independence
tests, i.e., if xt0,j → xt,i, then xt0,j ⊥̸⊥ xt,i|Xt−τ :t−1\{xt0,j}, where t − τ ≤ t0 < t (Runge
et al., 2019b; Runge, 2020). This relationship is unaffected when considering instantaneous effect
of xt,j → xR

t,i, since all paths from xt0,j to xt,i through xR
t,k are blocked by conditioning on xR

t,k,
∀i, j, k, as is shown in Fig. 5.

CCM-based Causal Discovery. CCM detects if time-series x causes time-series y by examine
whether time indices of nearby points on the y manifold can be used to identify nearby points on x
(Sugihara et al., 2012; Brouwer et al., 2021). In this case, the examination of whether xj → xi is
not affected by xR

k , ∀i, j, k.
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Figure 5: Illustration of instantaneous effects of xj → xR
i . All paths from xt0,j to xt,i through xR

t,k

are blocked by conditioning on xR
t,k, ∀i, j, k.

A.1.3 CAUSALITY IN THE GENERATED TIME-SERIES

The intention of CausalTime is to generate time-series (i) with a unique ground truth causal graph
for benchmarking and (ii) highly resembles the distributions of real data for evaluating the algorithm
performance on real data. We achieve this in three steps:

1. Extracting HCG in Section 3.3. Here HCG is not the ground truth causal graph since it only
reflects the “major part” of the causal relationship.

2. Split the NAR model into causal terms, residual terms, and noise terms. Here causal terms also
represent the “major parts” of the causal relationships, and residual term represents the remaining
parts.

3. Treat the residual terms x̂R as independent time-series. As a result, there exists 2N instead of the
original N time-series. And the graph (ACG) becomes 2N × 2N , as in Eqn. 6. This process can
be visualized in Fig. 2.
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In this manner, we can assure that x̂t,i is still generated by exactly the original NAR model since
combining Eqn.s 6 and 7 we get the original NAR form. Also, ACG is the ground truth causal graph
since we treat the residual terms x̂Ras independent time-series. Hence, ground truth causal graphs
for the original time-series are unknown, but for the generated version the causal graph is known
and unique, i.e., the ACG. As a result, we avoid facing the dilemma of “using a TSCD algorithm to
build a synthetic dataset to test TSCD algorithms”. We show this relationship in Fig. 2.

A.2 IMPLEMENTATION DETAILS

Original Time-series. In CausalTime, we generate 3 types of benchmark time-series from
weather, traffic, and healthcare scenarios respectively. The original time-series are

1. Air Quality Index (AQI) is a subset of several air quality features from 36 monitoring stations
spread across Chinese cities2, with an hourly measurement over one year. We consider the PM2.5
pollution index in the dataset. The total length of the dataset is L = 8760 and the number of nodes
is N = 36. We acquire the prior graph by computing the pairwise distances between sensors
(Supp. Section A.2).

2. Traffic subset is built from the time-series collected by traffic sensors in the San Francisco Bay
Area3. The total length of the dataset is L = 52116 and we include 20 nodes, i.e., N = 20. The
prior graph is also calculated with the geographical distance (Supp. Section A.2).

3. Medical subset is from MIMIC-4, which is a database that provides critical care data for over
40,000 patients admitted to intensive care units (Johnson et al., 2023). We select 20 most fre-
quently tested vital signs and “chartevents” from 1000 patients, which are then transformed into
time-series where each time point represents a 2-hour interval. The missing entries are imputed
using the nearest interpolation. For this dataset, a prior graph is unavailable because of the ex-
tremely complex dynamics.

Network Structures and Training. The implementation of CDNN can vary and cMLP / cLSTM
is not the only choice. For example, Cheng et al. (2023a) explores enhancing causal discovery with a
message-passing-based neural network, which is a special version of CDNN with extensive weight
sharing. However, the fitting accuracy of CDNN is less explored. Sharing partial weights may
alleviate the structural redundancy problem. Moreover, the performance with more recent structures
is unknown, e.g. Transformer. In the following, this work investigates various implementations of
CDNN when they are applied to fit causal models.

Specifically, three kinds of backbones combining three network sharing policies are applied, i.e.,
MLP, LSTM, Transformer combining no sharing, shared encoder, and shared decoder. For MLP, the
encoder and decoder are both MLP. For LSTM, we assign an LSTM encoder and an MLP decoder.
For the Transformer, we assign a Transformer encoder and MLP decoder. We show the structure for
no sharing, shared encoder, and shared decoder in Fig. 6, with a three-variable example. The test
results for prediction using these architectures are shown in Tab. 6.

Encoder

Share Encoder

Encoder

Encoder

Masking Decoder

Decoder

Decoder

Encoder

No Weight Sharing

Encoder

Encoder

Masking
Decoder

Decoder
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Masking
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Figure 6: Illustration of network structures of CDNN.

2https://www.microsoft.com/en-us/research/project/urban-computing/
3https://pems.dot.ca.gov/
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Table 4: Hyper parameters for time-series fitting.

Module Parameter AQI Traffic Medical

LSTM Encoder
Layers 2 2 2
Hidden 128 128 128
Heads 4 4 4

MLP Encoder
Layers 3 3 3
Hidden 128 128 128

Transformer Encoder
Hidden 128 128 128
Heads 4 4 4

Decoder
Layers 3 3 3
Hidden 128 128 128

Training
Learning Rate 0.01 0.001 0.003

Optimizer Adam Adam Adam
Input Window 20 20 20

Normalizing Flow
Layers 5 5 5
Hidden 128 64 64

Normalizing Flow. We implement normalizing flow using its open-source repository4. We use
normal distributions as base distributions. For transformations, we use simple combinations of linear
and nonlinear layers, with parameters shown in Tab. 4.

DeepSHAP. We use the official implementation of DeepSHAP5. Specifically, we use its “DeepEx-
plainer” module to explain the time-series prediction model which is trained with a fully connected
graph. Note that this prediction model is a CDNN, which enables a pairwise explanation of feature
i’s importance to the prediction of j. The explained samples are randomly selected from a train set
of real time-series, and the final feature importance graph Φ is acquired by taking the average values
of all samples. To convert to binarized HCG, we select a threshold to get a sparsity of 15% (i.e.,
15% of the elements in HCG are labeled as 1).

Prior Graph Extraction. For datasets with prior knowledge, e.g., AQI and Traffic, relationships
between each variable are highly relevant to geometry distances. Consequently, we extract HCG
from the geographic distances between nodes using a thresholded Gaussian kernel, i.e.,

wij =

{
1, dist(i, j) ≤ σ

0, otherwise
(8)

we select σ based on geographical distances (which is ≈ 40 km for AQI dataset and for Traffic
dataset, we use the “dist graph” from https://github.com/liyaguang/DCRNN/tree/
master).

Dimension Reduction. For the implementation of t-SNE and PCA, we use scikit-learn6 package.
To solve the dimension reduction in an acceptable time, we split the generated time-series into short
sequences (with lengths of 5) and flattened them for the input of dimension reduction.

Autoregressive Generation. After fitting the time-series with neural networks and normalizing
flow, and acquiring the ground-truth causal graph by splitting the causal model, we generate a new
time-series autoregressively. Although we utilize scheduled sampling to avoid the accumulation of
the generation error, the total time step must be limited to a relatively small one. Actually, our
generated time length is 40 for these three datasets. For each of them, we generate 500 samples, i.e.,
a total of 20000 time steps for each dataset.

4https://github.com/VincentStimper/normalizing-flows
5https://github.com/shap/shap
6https://scikit-learn.org/
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Table 5: Hyperparameters settings of the baseline causal discovery and data imputation algorithms.

Methods Params. AQI Traffic Medical

PCMCI τmax 5 5 5
PCα 0.05 0.05 0.05

NGC
Learning rate 0.05 0.05 0.05

λridge 0.01 0.01 0.01
λ 0.02 → 0.2 0.02 → 0.2 0.02 → 0.2

eSRU

µ1 0.1 0.1 0.7
Learning rate 0.01 0.01 0.001

Batch size 40 40 40
Epochs 50 50 50

SCGL
τ 10 10 10

Batch size 32 32 32
Window 3 3 3

LCCM
Epochs 50 50 50

Batch size 10 10 10
Hidden size 20 20 20

NGM
Steps 200 200 200

Horizon 5 5 5
GL reg 0.05 0.05 0.05

TCDF τ 10 10 10
Epoch num 1000 1000 1000

Learning rate 0.01 0.01 0.01

CUTS
Input step 20 20 20

λ 0.1 0.1 0.1
τ 0.1 → 1 0.1 → 1 0.1 → 1

CUTS+
Input step 1 1 1

λ 0.01 0.01 0.01
τ 0.1 → 1 0.1 → 1 0.1 → 1

TSCD Algorithm Evaluation. Since our generated time-series are relatively short and contain
several samples, we alter existing approaches by enabling TSCD from multiple observations (i.e.
multiple time-series). For neural-network-based or optimization-based approaches such as CUTS,
CUTS+, NGC, and TCDF, we alter their dataloader module to prevent cross-sample data fetching.
For PCMCI, we use its variant JPCMCI+ which permits the input of multiple time-series. For re-
maining TSCD algorithms that do not support multiple time-series, we use zero-padding to isolate
each sample. We list the original implementations of our included TSCD algorithms in the follow-
ing:

• PCMCI. The code is from https://github.com/jakobrunge/tigramite.
• NGC. The code is from https://github.com/iancovert/Neural-GC. We use the

cMLP network because according to the original paper (Tank et al., 2022) cMLP achieves better
performance, except for Dream-3 dataset.

• eSRU. The code is from https://github.com/sakhanna/SRU for GCI.
• SCGL. The code is downloaded from the link shared in its original paper (Xu et al., 2019).
• LCCM. The code is from https://github.com/edebrouwer/latentCCM.
• NGM. The code is from https://github.com/alexisbellot/Graphical-modelling-
continuous-time.

• CUTS / CUTS+. The code is from https://github.com/jarrycyx/UNN.
• TCDF. The code is from https://github.com/M-Nauta/TCDF.

Discriminative Network. To implement the discrimination score in time-series quality control,
we train separate neural networks for each dataset to classify the original from the generated time-
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Table 6: Comparison of predictive MSE with different implementations of CDNN. The experiments
are performed on AQI datasets.

Backbone MLP LSTM Transformer

Weight Sharing
No Sharing 0.0511± 0.0009 0.0017± 0.0002 0.0061± 0002

Shared Encoder 0.0248± 0.0033 0.0048± 0.0002 0.0056± 0.0001
Shared Decoder 0.0254± 0.0024 0.0014 ± 0.0002 0.0060± 0.0002

series. We use a 2-layered LSTM a with hidden size of 8, the training is performed with a learning
rate of 1e-4 and a total of 30 epochs.

A.3 ADDITIONAL RESULTS

A.3.1 TIME-SERIES FITTING

In Section 3.2, we show that CDNN can be used to fit causal models with adjacency matrix A.
By splitting each network into two parts, i.e., encoder and decoder, 9 combinations (MLP, LSTM,
Transformer combining shared encoder, shared decoder, and no weight sharing) are considered in
the experiments. By comparing fitting accuracy (or prediction accuracy) on the AQI dataset, we
observe that LSTM with a shared decoder performs the best among 9 implementations.

A.3.2 SCHEDULED SAMPLING

To validate if scheduled sampling is effective in the training process, we perform an ablation study
on three datasets with different autoregressive prediction steps. We observe in Tab. 7 that, by
incorporating scheduled sampling, the cumulative error decreases, and the decrement is large with
higher autoregressive steps. This demonstrates that scheduled sampling does decrease accumulative
error for the fitting model, which is beneficial for the following generation process.

Table 7: Comparison of prediction MSE with and without scheduled sampling policy. The compar-
isons are performed with different autoregressive prediction steps n in terms of MSE.

Step AQI Traffic Medical
w w/o w w/o w w/o

n = 2 0.0129 0.0123 0.0124 0.0124 0.0082 0.0082
n = 5 0.0348 0.0329 0.0279 0.0282 0.0136 0.0155
n = 10 0.0351 0.0377 0.0312 0.0354 0.0181 0.0193
n = 20 0.0331 0.034 0.0318 0.0331 0.0144 0.0174

A.3.3 CROSS CORRELATION SCORES FOR TIME-SERIES GENERATION

Despite the discriminative score and MMD score, we further compare the similarity of generated
data to original versions in terms of cross-correlation scores. Specifically, we calculate the correla-
tion between real and generated feature vectors, and then report the sum of the absolute differences
between them, which is similar to Jarrett et al. (2021)’s calculation process. We show the results
along with the ablation study in Tab. 8.

A.3.4 VARIABILITY OF THE EXTRACTED HCG

For Medical dataset, the HCG is extracted with DeepSHAP and the result may vary with different
seed. In Fig. 7 we show the extracted HCG with 5 different seeds, which shows that the variability
is relatively small. The average standard deviation is 0.104. The adjacency matrices of three ACGs
of CausalTime are shown in Fig. 8.
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Table 8: Quantitative assessment of the similarity between the generated and original time-series in
terms of cross-correlation scores. We show the ablation study in the table as well.

Datasets Cross Correlation Score
AQI Traffic Medical

Additive Gaussian Noise 43.74 ± 11.55 198.30 ± 4.00 18.91 ± 2.17

w/o Noise Term 50.04 ± 4.79 194.44 ± 5.02 20.77 ± 4.40

Fit w/o Residual Term 49.04 ± 7.01 238.38 ± 4.90 21.94 ± 3.45

Generate w/o Residual Term 40.62 ± 24.73 164.14 ± 3.04 23.53 ± 3.12

Full Model 39.75 ± 5.24 60.37 ± 2.88 22.37 ± 1.59

Figure 7: Variability of the extracted HCG.

A.3.5 TSCD EVALUATION WITH MISSING ENTRIES AND LATENT CONFOUNDING

Missing entries or latent confounding are common in real world TSCD. We simulate these issues
on our synthetic data, by dropping some observations at certain missing rates or leaving out certain
nodes to create hidden confounding. Specifically, we

• Set random missing rates for the generated dataset, i.e., missing completely at random (MCAR),
which is the most common missing scenario (Geffner et al., 2022). Specifically, we use a bi-
value observation mask ot,i to label the missing entries. Each data point in the observations are
missing with a certain probability pi, here in our experiments it follows Bernoulli distribution
ot,i ∼ Ber(1 − pi). Then the time-series with missing data is tested on existing approaches that
work with missing entries, i.e., CUTS, CUTS+, LCCM, NGM. We set missing rate to p = 0.3 and
the result is shown in Tab. 9.

• Leave out certain nodes to create hidden confounding, like Nauta et al. (2019)’s approach. And test
existing approaches on the hidden confounding version of CausalTime. Specifically, we deleted
node no. 1,17,27,23 for AQI dataset, 7,17 for Traffic dataset, and 6, 9 for Medical dataset. Then
we generate new versions of the original ACG. The results are shown in Tab. 10. However,
since almost all existing TSCD algorithms struggle to get accurate causal discovery results on
CausalTime, it is hard to draw any conclusion by focusing on certain nodes in the confounding
version of CausalTime.

Table 9: Performance of TSCD algorithms in the presense of missing data.

Methods AUROC AUPRC
AQI Traffic Medical AQI Traffic Medical

CUTS 0.5953 ± 0.0018 0.5574 ± 0.0185 0.7864 ± 0.0400 0.6547 ± 0.0045 0.7086 ± 0.0644 0.7672 ± 0.0074

CUTS+ 0.8830 ± 0.0168 0.5071 ± 0.0374 0.7296 ± 0.0155 0.7429 ± 0.0150 0.5193 ± 0.0476 0.6774 ± 0.0134

NGM 0.5341 ± 0.0218 0.6048 ± 0.0206 0.4328 ± 0.191 0.7159 ± 0.0453 0.4596 ± 0.0342 0.5657 ± 0.0163

LCCM 0.7768 ± 0.0054 0.5321 ± 0.0354 0.7877 ± 0.0661 0.8317 ± 0.0035 0.5296 ± 0.0147 0.7699 ± 0.1175

A.4 ALGORITHMIC REPRESENTATION FOR CAUSALTIME PIPELINE

We show the detailed algorithmic representation of our proposed data generation pipeline in Algo-
rithm A.4, where we exclude quality control and TSCD evaluation steps.
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Figure 8: Adjacency matrices of three ACGs in CausalTime.

Table 10: Performance benchmarking of baseline TSCD algorithms on our CausalTime datasets in
the presense of hidden confounding.

Methods AUROC AUPRC
AQI Traffic Medical AQI Traffic Medical

GC 0.4680 ± 0.0366 0.4414 ± 0.0375 0.5997 ± 0.0568 0.6664 ±0.0150 0.3160 ± 0.0054 0.5398 ± 0.0470

SVAR 0.6207 ± 0.0465 0.63627 ± 0.0891 0.7478 ±0.0282 0.8053 ± 0.0228 0.6186 ± 0.0481 0.7733 ± 0.0267

N.NTS 0.4630 ± 0.0181 0.5238 ± 0.1268 0.4886 ± 0.0349 0.6524 ± 0.0111 0.4165 ± 0.0416 0.4786 ± 0.0203

PCMCI 0.5865 ± 0.0673 0.6031 ± 0.0089 0.7877 ± 0.0231 0.7385 ± 0.0284 0.3988 ± 0.0412 0.6248 ± 0.0148

Rhino 0.7028 ± 0.0816 0.6327 ± 0.0233 0.6688 ± 0.0386 0.7966 ± 0.0548 0.4286 ± 0.0218 0.5926 ± 0.0268

CUTS 0.6557 ± 0.0191 0.7026 ± 0.0175 0.8184 ± 0.0069 0.6550 ± 0.0096 0.7958 ± 0.0088 0.7886 ± 0.0071

CUTS+ 0.8944 ± 0.0167 0.6596 ± 0.0156 0.85507 ± 0.03069 0.8062 ± 0.0245 0.7633 ± 0.0052 0.7585 ± 0.0036

NGC 0.6077 ± 0.0067 0.6081 ± 0.0107 0.5637 ± 0.0023 0.7460 ± 0.0048 0.4356 ± 0.0125 0.542 ± 0.0052

NGM 0.5059 ± 0.0246 0.5540 ± 0.0278 0.5565 ± 0.0268 0.7092 ± 0.0146 0.3886 ± 0.0185 0.5552 ± 0.0319

LCCM 0.9281 ± 0.0153 0.6395 ± 0.0432 0.8185 ± 0.0329 0.9648 ± 0.0088 0.6018 ± 0.0233 0.8465 ± 0.0255

eSRU 0.7473 ± 0.0438 0.6792 ± 0.0194 0.8401 ± 0.0365 0.8634 ± 0.0271 0.5336 ± 0.0157 0.8360 ± 0.0653

SCGL 0.5504 ± 0.0375 0.6434 ±0.0497 0.4854 ± 0.0194 0.3982 ± 0.0297 0.6009 ± 0.0173 0.5107 ± 0.0296

TCDF 0.5248 ± 0.0173 0.5743 ± 0.0271 0.6995 ± 0.0243 0.7344 ± 0.0036 0.4553 ± 0.0039 0.6375 ± 0.0145
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Algorithm 1 Pipeline for CausalTime Generation (Excluding quality control and TSCD evaluation)
Input: Time-series dataset X = {x1:L,1, ...,x1:L,N}with length L; (Optional) graph Hp generated

with prior knowledge; generation length L̂.
Output: Paired time-series causal discovery (TSCD) dataset

〈
X̂, Â

〉
.

Initilize parameter set {Θi}Ni=1, {Ψi}Ni=1

# Time-series Fitting
for n1 Epochs do

Update {Θi}Ni=1 with Algorithm 2 (Prediction Model Fitting).
end for
for n1 Epochs do

Update {Ψi}Ni=1 with Algorithm 3 (Noise Distribution Fitting).
end for
# HCG Extraction
if Exists prior knowledge Hp then
H← Hp

else
H← {DeepSHAP (fΘi(·))}

N
i=1

end if
H← I(H > γ), where calculation of γ is discussed in Section 3.
# Time-series Generation with ACG
Generate actual causal graph Â with Eqn. 6, select initial sequence X̂0:τ−1 randomly from origi-
nal time-series X.
for t = τ top L̂ do

for i = 1 top N do
Generate x̂t,i and x̂R

t,i with Eqn. 4 and 5, where η̂t,i is sampled from TΨi
(u).

end for
end for
return Generated TSCD dataset

〈
X̂, Â

〉
.

Algorithm 2 Prediction Model Fitting
Input: Time-series dataset {x1:L,1, ...,x1:L,N} with length L; parameter set {Θi}Ni=1.

Output: Paired time-series causal discovery (TSCD) dataset
〈
X̂, Â

〉
.

for i = 1 top N do
Perform prediction with x̂t,i ← fΘi (xt−τ :t−1,1, ...,xt−τ :t−1,N ) + ηt,i
Calculate loss function with MSE(X̂,X)

Update {Θi}Ni=1 with Adam optimizer
end for
return Discovered causal adjacency matrix Â where each elements is ãi,j .

Algorithm 3 Noise Distribution Fitting
Input: Time-series dataset {x1:L,1, ...,x1:L,N} with length L; Parameter set {Θi}Ni=1, {Ψi}Ni=1.

Output: Paired time-series causal discovery (TSCD) dataset
〈
X̂, Â

〉
.

for i = 1 top N do
Perform prediction with x̂t,i ← fΘi (xt−τ :t−1,1, ...,xt−τ :t−1,N ) + ηt,i.
Calculate real noise ηt,i ← xt,i − x̂t,i.
Calculate likelihood pηi(ηt,i)← pu(T

−1
ψi

(ηt,i))
∂

∂ηt,i
T−1
ψi

(ηt,i).
Update {Ψi}Ni=1 with Adam optimizer.

end for
return Discovered causal adjacency matrix Â where each elements is ãi,j .
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