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Abstract

Social learning, a cornerstone of cultural evolution, allows individuals to acquire
knowledge by observing and imitating others. Central to its efficacy is episodic
memory, which records specific behavioral sequences to facilitate learning. This
study examines the interrelation between social learning and episodic memory in
the context of collaborative foraging. Specifically, we examine how variations in
the frequency and fidelity of social learning impact collaborative foraging, and
how the length of behavioral sequences preserved in agents’ episodic memory
modulates these factors. To this end, we deploy Sequential Episodic Control agents
capable of sharing among them behavioral sequences stored in their episodic
memories. Our findings indicate that high-frequency, high-fidelity social learning
promotes more distributed and efficient resource collection, a benefit that remains
consistent regardless of the length of the shared episodic memories. In contrast,
low-fidelity social learning shows no advantages over non-social learning in terms
of resource acquisition. In addition, storing and disseminating longer episodic
memories contribute to enhanced performance up to a certain threshold, beyond
which increased memory capacity does not yield further benefits. Our findings
emphasize the crucial role of high-fidelity social learning in collaborative foraging,
and illuminate the intricate relationship between episodic memory capacity and the
quality and frequency of social learning. This work aims to highlight the potential
of neuro-computational models like episodic control algorithms in understand-
ing social learning and offers a new perspective for investigating the cognitive
mechanisms underlying open-ended cultural evolution.

1 Introduction

Social learning refers to the acquisition of knowledge, skills, and behaviors through observation and
imitation within a group, underpins many of the behaviors seen across various species, facilitating
the transmission of crucial information from one individual to another [1, 2]. It manifests in both
direct actions and subtler forms like verbal cues or media [3, 4, 5]. Several compelling examples of
social learning are evident within the domain of foraging, as illustrated by behaviors ranging from the
potato-washing of Japanese monkeys to the hunting methods of killer whales, and even the foraging
traditions in wild birds like the great tits [6, 7, 8, 9]. These examples are evidence of how learning
and behavior are molded by social factors across the animal kingdom.
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While many species exhibit collective foraging, humans stand out for their uniquely sophisticated
collaborative skills, notably sharing knowledge and resources extensively within their social groups
[10]. The genesis of such uniquely human collaboration is postulated by the interdependence
hypothesis, suggesting that ecological conditions experienced by early humans made them obligate
collaborative foragers, deepening their interdependence and fostering social learning [11, 12]. This
ability to learn socially and transfer knowledge inter-generationally has been central to human success,
leading to cumulative cultural evolution [13]. The essence of this evolution lies in its focus on high
fidelity storage and transmission of knowledge, since loss of accumulated information can lead to
significant challenges in rediscovery [14, 15]. Still, the precise cognitive mechanisms fueling this
high-fidelity social learning are an active area of exploration [16, 17, 18].

Within this context, we hypothesize that episodic memory plays a potentially pivotal role in the
cognitive scaffolding of high-fidelity social learning. Episodic memory, characterized by its capacity
to record and recall specific events and experiences, is crucial for the accurate imitation and adaptation
of observed behaviors [19]. This type of memory enables individuals to not only observe and replicate
actions but also to communicate them to others, enhancing the precision and adaptability of social
learning [20, 21, 22].

Despite their widespread use in the study of collective foraging and social learning, agent-based
models often lack the resolution to investigate specific cognitive processes such as episodic memory
[23, 24, 25, 26, 27]. Neuro-computational models, anchored in human and animal cognition, offer
a promising avenue for modeling individual and social learning, while also being able to quantify
cognitive aspects that remain elusive in conventional human studies or agent-based models, such
as the content of episodic memory [28, 29, 30, 31]. Computational models that integrate episodic
memory, such as episodic control algorithms, are particularly skilled at storing past events and rapidly
learning from these experiences [32, 33, 34]. This capability makes them especially suitable for
examining the dynamics of transmission and storage of information integral to cumulative cultural
evolution.

In this paper, we investigate the relationship between episodic memory and social learning in a
collaborative foraging task. We explore (Q1) the impact of episodic memory on social learning;
(Q2) the outcomes of variations in social learning frequency and fidelity on foraging effectiveness;
and (Q3) the influence of social learning fidelity on individual agent performance. We propose the
following hypotheses: (H1) the depth of episodic memory influences an agent’s behavioral efficiency;
(H2) high-fidelity social learning boosts collective foraging, but its low-fidelity counterpart may not
help or even hinder performance as frequency rises; (H3) sharing accurate information enhances
individual agent efficiency, ensuring equitable reward distribution, whereas misinformation offers
no advantage. To address these questions, we conduct experiments on a collaborative foraging task
using groups of Sequential Episodic Control agents [35, 36]. We evaluate the impact of episodic
memory length in social learning by manipulating key factors, including the transmission interval and
transmission noise. This approach helps us understand their effects on both individual and collective
resource gathering capacities. Our results shed light on the interplay between individual cognitive
mechanisms, social learning dynamics, and collective behavior.

2 Methods

2.1 Experimental setup

In our study, we simulate a collaborative foraging scenario on an 11x15 2D grid-world, containing
four agents, four fruits, and a nest (refer to Figure 1). Agents are rewarded when they deposit fruits
in the nest and can transfer fruits to other agents. An episode ends when all fruits are collected
or at 1000 timesteps, and each simulation runs a total of 5000 episodes. Agents possess limited
visibility, seeing only a 3x3 grid segment depending on their location and direction. The grid cells are
coded by attributes like object type, color, and information about other agents. An agent’s state st is
formed from these observed grid cell details, and their actions at are represented as integer numbers
indicating specific actions, such as turning or picking objects.
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Figure 1: Collaborative foraging task modelled in a 2D grid-world environment. The environment
contains four agents, four fruits (red circles), and a nest (green square). Agents are color-coded
triangles with a 3x3 viewing area.

2.2 Sequential Episodic Control

This study employs the Sequential Episodic Control (SEC) algorithm to model foraging agents
capable of storing past experienced events and learning from them [35, 36]. SEC is a type of
episodic control model designed to guide an agent’s behavior based on previously rewarding state-
action sequences, as opposed to classical episodic control algorithms that store state-action couplets
in isolation [34, 37, 38]. In turn, SEC considers state-action pairs as integrated representational
primitives and stores the complete sequence of state-action pairs leading to goal states, conserving
their serial order, a key feature of the hippocampal function [39, 40]. SEC functions in two phases:
storage and retrieval. During storage, recent state-action pairs are held in the STM, with the LTM
storing rewarding sequences. For retrieval, SEC accesses memories from LTM based on their
relevance to the current state. This relevance is determined by an eligibility score, which is calculated
based on how similar the current state is to the stored states in the LTM and how recently the memory
was retrieved (for a detailed mathematical description of the algorithm, see [36]). Then, algorithm
calculates the value of each potential action based on the eligibility score of the selected memories and
their associated discounted rewards. Finally, the algorithm generates a probability distribution over
the action space Q(s, a), from which it samples the action to be performed. Initially, the algorithm
explores actions randomly, but it becomes more selective as it accumulates more episodic memories.

Figure 2: Panel A: The SEC model diagram for the 2D foraging task. SEC has storage and retrieval
phases. In storage, agents store state-action (s, a) in short-term memory (STM). On receiving a
reward (r), STM content moves to long-term memory (LTM). In retrieval, agents use LTM to compute
the state-action value function (Q(s, a)) and select actions. Panel B: Social learning in SEC agents:
Agent 1 (blue) shares an episodic memory with Agent 2 (pink), who saves it in LTM.

We consider a set of four SEC agents interacting together and with the capacity to share past
experienced events with each other. We model social learning in episodic control as the transmission
of episodic memories between agents. In this context, the transmission of social information is
inherently local and decentralized, as agents can only share information with other agents present
within their field of view (see Figure 1). The episodic memories that are socially transmitted follow a
process of ’prioritized experience sharing’[31] (similar to prioritized experience replay [41]), whereby
memory sequences associated with higher reward values are shared more often. In other words, there
is a prioritization in the retrieval of sequential memories proportional to the reward value associated
with episodic memory. There is evidence of such a process of prioritization taking place during
memory retrieval and replay in the rodent hippocampus [42, 43, 44].
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Two main factors influence social learning in our model: transmission interval Ti and transmission
noise Tn. The transmission interval, Ti, represents the number of episodes between each transmission
of information between agents, thus dictating the frequency at which agents share episodic memories.
If Ti = 1, it means that agents can share information at every episode, while Ti = 50 implies that
they can only interact with each other every 50 episodes. On the other hand, transmission noise, Tn,
measures the likelihood of information distortion or loss during these transmissions. In other words, a
value of Tn = 0.1 means there is a 10% probability of information loss for each element composing
the episodic memory, following a process akin to mutation in genetic algorithms.

3 Results

In the context of this study, the ability to store longer episodic memories translates into more complex
behavioral sequences being shared and socially learned. Results show that episodic memory capacity
significantly impacts agent performance, a result consistent with previous research [35, 36]. For
instance, agents with their memory constrained to 10 units (STM = 10) earn fewer rewards, regardless
of their ability to socially learn from their peers (see Figure 3). However, more memory capacity does
not always lead to better results. Interestingly, agents with larger memory capacity (STM = 30) do
not perform better than those with an average capacity (STM = 20). These results suggest that there
is an optimal size for episodic memories that might vary with the particular task and environmental
configuration. Furthermore, the results show that memory capacity does not influence the distribution
of rewards among agents (3, right panels).

Figure 3: Performance results of SEC agents across different social learning conditions. Top: high-
fidelity social learning (Tn = 0), Bottom: low-fidelity social learning (Tn = 0.1). Panels show
average reward over time, total reward, and reward distribution ratio. Colors indicate social learning
interval: green (none, Ti = 0), blue (every 50 episodes, Ti = 50), royal blue (every 10 episodes,
Ti = 10), and continuous (Ti = 1). Left panels highlight Ti = 0 and Ti = 1 results.

During high-fidelity social interactions, as depicted in the top panels of Figure 3, we observed that
increasing the frequency of social transmissions generally led to higher reward acquisition. This is
true for the amount of rewards agents are able to collect each episode (Figure 3, top left) as well as
for the total accumulated reward across episodes (Figure 3, top center). Regarding total accumulated
reward, performance steadily increases along with the frequency of social interactions. This effect is
consistent within each memory condition. In other words, more frequent high-fidelity social learning
is beneficial for agents regardless of their memory capacity. In addition, social learning frequency
also affects how evenly distributed is the recollection of rewards are among the population of agents
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(Figure 3, top right). This frequency effect over the reward distribution remains constant across all
memory conditions.

Regarding the performance metrics associated with low-fidelity social learning, the data suggests that
such learning does not enhance the agents’ ability to obtain rewards, both within individual episodes
and overall (refer to Figure 3, bottom panels). Essentially, the outcomes from low-fidelity social
learning mirror those of non-social learning agents with similar memory capacities, irrespective of
how often social learning occurred. This starkly contrasts with the generally positive effect observed
in reward acquisition as the frequency of high-fidelity social learning increased (see Figure 3, top
panels). Furthermore, reward distribution is also negatively affected by low-fidelity social learning,
aligning it with levels observed in agents under a non-social learning paradigm across all frequency
conditions (Figure 3, bottom right).

4 Discussion

In this paper, we have investigated the interplay of social learning and episodic memory in collabora-
tive foraging using sequential episodic control agents. Our results indicate that high-fidelity social
learning leads to more efficient distribution of information between the group, resulting in improved
collective performance, as well in a more equitable contribution of each agent to the collective effort.
On the other hand, low-fidelity social learning offers no advantages over non-social learning in
terms of individual and collective resource recollection. A crucial insight of this study is that while
high-fidelity social learning is overall beneficial, its benefits are constrained by the cognitive capacity
of individual agents to store and share longer episodic memories. In future steps,we plan to delve
deeper into the agents’ mnemonic content and examine how it correlates with other studied factors.
To achieve this, we will use mnemonic metrics like diversity and alignment, as proposed in [31]. We
will also explore intermediate levels of transmission noise to understand better the transition between
low-fidelity and high-fidelity regimes in social learning.

Our study shows that high-fidelity social learning can improve individual and group resource recol-
lection in a collaborative foraging task. However, it is important to note that our findings might be
context-specific, derived from the particular properties of the presented foraging task, and therefore
may not encompass all aspects of collaborative foraging. Recent studies suggest that communication
noise and transmission errors in social learning can enhance collective problem-solving by maintain-
ing diversity within a group [45]. The diversity produced by low-fidelity social learning could be
advantageous in scenarios where resources are distributed across distant patches, as a group with
lower fidelity might explore more areas, potentially leading to better resource utilization. These
findings suggest that the relationship between the fidelity of social learning and the exploration-
exploitation trade-off of collective knowledge might be more complex, and might also depend on the
environmental constraints of each foraging context.

Similarly, in contexts resembling social dilemmas, as explored by [46], lower fidelity in social
learning could prevent overexploitation of resources and encourage a more sustainable approach. The
complexity of this issue is further illustrated in [25], where the balance between exploiting social
information and engaging in individual exploration is highlighted. Their findings suggest that while
social learning is beneficial in certain environments, its advantages are maximized when coupled
with significant individual exploration.

In light of these perspectives, our conclusions should not be directly applied to other foraging contexts.
Future research should explore how different levels of social learning fidelity impact group dynamics
in varied foraging scenarios and social dilemmas, to better understand the balance between fidelity,
exploration, and exploitation in collective foraging. Our study contributes to this ongoing discourse by
highlighting the nuanced interplay of individual cognitive mechanisms and social learning dynamics,
and have implications for enhancing coordination and efficiency in multi-agent systems. Furthermore,
neuro-computational models like SEC, offer a promising perspective to study open-ended cultural
evolution dynamics by capitalizing on the potential of episodic control models to bridge individual
cognitive properties with individual and collective behavior.
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