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Abstract
Visual Prompting (VP) has emerged as a promising technique for efficient knowledge transfer. As new foundation
model families (like Mamba) get introduced and VP pipelines such as AutoVP reach greater maturity, we find
a growing need for a systematic evaluation of current approaches. In this work, we assess the performance
of the latest models, comparing them to earlier architectures and alternative fine-tuning methods, to better
understand the progress, challenges and opportunities in the field of efficient fine-tuning under resource limitations.
Towards this goal, this paper provides a concise empirical overview of the interactions among foundation model
families (Attention-, Convolution-, and Mamba-based) and transfer paradigms: VP, Linear Probing (LP), and
Full Finetuning (FFT). Our work builds up on previous findings by broadening the selection of evaluated models,
tuning hyperparameters, and techniques. In the interest of delivering practical guidelines for the user, we also
explore application of prevalent regularization techniques to boost performance in the context of VP.

1. Introduction
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Figure 1: ImageNet1k-pretrain and average VP
top-1 accuracy over the tasks described in Sec-
tion 3. We follow the recipe of Tsao et al. (2024).
All models are tuned to best. Dotted line is linear
regression, full results in Table 1.

Efficient transfer of pretraining knowledge to new tasks and domains
is an essential requirement for successful downstream applicability of
foundation models. As the AI landscape continues to grow – spanning
diverse architectures and design choices – so do options for fine-tuning,
including new pipelines for Visual Prompting (VP), Linear Probing
(LP), and Full Finetuning (FFT). For a review of these methods, please
refer to Section 2. Given this rapid expansion, it is critical to systemat-
ically and regularly assess how different architectural choices interact
with various transfer learning methods. In this work, we present an un-
biased evaluation of VP across several prominent model architectures,
analyze how performance correlates with pretraining accuracy, and
discuss potential performance and compute tradeoffs when comparing
to other finetuning methods on challenging tasks.

1. Compared to earlier results (Misra et al., 2024) for ILM-VP (Chen et al., 2023), we found that vision transformers and
Mamba-based (Gu & Dao, 2023) models perform similarly – with only a slight edge for the former – under latest VP
practice (Tsao et al., 2024). However, when selecting a model for VP, ConvNext appears to be the best choice from our
selection (Figure 1). References and a short description for these models are presented in Section 3.

2. State-of-the-art VP practice can underperform (overfit) on data scarce tasks compared to LP and FFT – see Table 2:
when access to the model is given and memory is the only constraint, LP appears to be overall the best performing
paradigm (Table 4). In the FFT and especially in the LP setup, we found Mamba to be the best choice.

3. It is natural to ask at this point if VP performance can be improved via regularization. We found that prevalent
regularization techniques can boost generalization, whilst still underperforming FFT. We noticed that most gains can
be observed when applying regularization to the label mapping weights, as opposed to the prompt.
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VMAMBA-T 94.89 80.53 91.67 86.75 67.17 95.72 69.25 88.07 84.25 82.60
MAMBAOUT-T 95.07 81.36 89.58 88.27 67.73 95.70 71.26 89.14 84.76 82.70
MAMBAVISION-T 95.44 80.89 92.55 87.74 66.26 96.56 71.56 90.91 85.24 82.30
SWIN-T 94.28 80.32 92.34 88.95 66.37 96.31 72.99 88.83 85.05 81.50
MAMBAVISION-S 95.97 82.37 90.71 86.93 66.58 96.62 74.18 91.57 85.61 83.30
MAMBAVISION-B 96.54 83.88 91.79 88.79 65.64 96.63 75.65 91.22 86.27 84.20
CONVNEXT-B 96.42 84.44 94.15 90.28 70.77 96.61 75.10 92.04 87.48 84.10
VMAMBA-B 96.58 76.90 93.67 90.56 67.87 94.14 75.52 91.35 85.82 83.90
DEIT-B 96.52 83.59 93.51 91.57 66.54 96.85 72.13 90.01 86.34 81.80
VIT-B 95.52 78.18 90.74 89.54 62.13 96.80 70.84 89.97 84.21 81.10
SWIN-B 95.45 81.55 93.35 86.19 68.47 96.59 74.26 89.95 85.73 84.50
CORR. IMAGENET 0.49 0.31 0.35 -0.23 0.66 -0.23 0.73 0.53 0.60

Table 1: Top-1 accuracy after training with AutoVP using fully connected label mapping. µ denotes the average fine-tuning
performance. The last column represents the ImageNet pretrain accuracy. The bottom row reports the correlation coefficient
between the corresponding column and the ImageNet pretrain accuracy.

2. Background
Benchmarking Visual Prompting. VP, first introduced as Adversarial Reprogramming (Elsayed et al., 2018), leverages
the idea of utilizing a universal input perturbation to transfer a pretrained model to a new domain or task. The term Prompting
originates from language modeling (Guo et al., 2017; Lester et al., 2021) and was later adapted to the vision domain (Bahng
et al., 2022). VP keeps the pretrained source model entirely frozen and therefore differs from other techniques (see next
paragraph) that may require internal access. Indeed, this characteristic allows finetuning in settings where the access to
model weights is not given (Chen et al., 2021), e.g. when using a model only available via API (Tsai et al., 2020).

AutoVP, Tsao et al. (2024) introduced improvements of the VP methodology as well as a unified benchmark for VP. The
introduced improvements include the possibility of resizing the prompt as well as a new Label Mapping (LM) technique:
Fully Connected Label Mapping (FCLM). FCLM is realized by a fully connected layer of dimensions CS × CT , CS being
the number of source classes and CT the number of target classes. While there exists reserach on the combination of new
foundation models and VP (Chen et al., 2023; Tsao et al., 2024; Misra et al., 2024), these works are either limited in model
selection or didn’t tune hyperparameters, making the results ambiguous to interpret. In this work, we evaluate a selection
of ImageNet1k pretrained foundation models (Sec. 3) using AutoVP (Tsao et al., 2024) on a common set of downstream
image-classification tasks and in addition to performance (Tab. 1 and Fig. 1) also investigate on the behavior of models w.r.t.
the resizing of the prompt (Tab. 5 and Fig. 2).

VP LP FFT
MAMBAVISION-B 65.64 75.11 75.16
CONVNEXT-B 70.77 72.07 74.36
VMAMBA-B 67.87 68.30 74.42
DEIT-B 66.54 67.77 72.93
VIT-B 62.13 63.51 69.31
SWIN-B 68.47 68.40 74.79

Table 2: Top 1 test-performance in % of various
base-models on DTD using different Transfer Learning
paradigms. Learning rate and weight decay are tuned.
Mamba shows a clear advantage in LP.

Full fine-tuning and linear probing. Based on the im-
provements of AutoVP, we conduct a comparison of FFT,
LP (described next) and VP on the data scarce DTD
dataset (Cimpoi et al., 2014), which showed to be the
most challenging task in the benchmark. We investigate
a subset of the models evaluated in Tab. 1, while tuning
learning rate and weight decay to ensure optimal perfor-
mance for each method. LP freezes the pretrained model,
whilst only replacing and training a new classifier with the
idea of leveraging the existing feature representations at
the penultimate layer of a model (Alain & Bengio, 2018).
In contrast to full finetuning, LP drastically reduces the
amount of trainable parameters as well as hardware requirements. Last, in our implementation of FFT, we account for the
new number of output classes and we replaced the classifier and trained a new classifier from scratch (Chen et al., 2023). In
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contrast to LP or VP, no model parameters are frozen. While this unlocks stronger results, it also requires larger compute
and memory (Tab.4) compared to the other approaches. Exploring the application of LoRA (Hu et al., 2022) could also
provide valuable insights and is left for future work.

Regularizing Visual Prompting. We noticed models showed signs of overfitting when being transferred to DTD using
VP – as testified by Table 2, where all models reached ≥ 99% training accuracy despite suboptimal test performance
compared to LP or FFT. This poses the question on how to effectively regularize VP. This task is particularly interesting,
as common regularization methods are motivated by a different learning paradigm. We investigated a set of common
regularization approaches while also ablating on targeting regularizing only to a subset of the optimized parameters in
VP: either prompt or Label Mapping parameters. Specifically, we evaluated performance of Dropout (Hinton et al., 2012),
L1-/L2-regularization, Sharpness-aware minimization (SAM) (Foret et al., 2020) and Autoaugment (Cubuk et al., 2019).

3. Experimental setup
The tasks are selected in accordance with earlier evaluations on VP (Chen et al., 2023; Tsao et al., 2024), consisting of
CIFAR10/100 (Krizhevsky et al., 2009) Flowers102 (Nilsback & Zisserman, 2008),GTSRB(Houben et al., 2013), DTD
(Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012).
The models we use are VMamba1 (Liu et al., 2024), MambaOut2 (Yu & Wang, 2025), MambaVision3 (Hatamizadeh &
Kautz, 2024), SwinT4 (Liu et al., 2021), ConvNext4 (Liu et al., 2022), ViT4 (Kolesnikov et al., 2021) and DeiT5(Touvron
et al., 2021). In all cases, the ImageNet (Deng et al., 2009) pretrained weights are utilized.

• Our initial set of experiments (Table 1 and Section 4.1) involves training the previously introduced models – belonging
to drastically different architecture families – on the AutoVP Benchmark (Tsao et al., 2024). For detailed information
regarding hyperparameter tuning, please refer to Appendix 5.1.

• Our second series of experiments (Section 4.2) entails a comparative evaluation of LP, VP, and FFT on a subset of the
introduced models. These fine-tuning paradigms are compared on the DTD dataset, as it appears to be the most challenging
task with limited training data.

• Our third set of experiments (Section 4.3) focuses on the regularization of VP. To assess regularization strategies on VP,
we evaluate VMamba-B on the DTD Dataset (with Vanilla-VP performance obtainable from Table 1), utilizing a fixed
learning rate of 0.001. Dropout and L1/L2 regularization are implemented both across the entire model or specifically
targeted to either the mapping or the prompt parameters.

All runs from the first and second set of experiments are using a single Nvidia A100 GPU. The remaining experiments are
utilizing either Nvidia Tesla V100 or Nvidia Quadro RTX 6000 GPUs.

4. Results
4.1. VP levels model performances
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Figure 2: Mean prompt size of the best performing
run, with the initial prompt scaling being 1. Mean
and standard deviation calculated over the tasks
introduced in Sec. 3.

Tab. 1 presents the model performances alongside the correlation
between model performance and pretraining ImageNet accuracy. In
general, raw ImageNet pretraining accuracy presents itself to be a
determining factor for model performance, as validated by the reported
correlation coefficient. Nonetheless, certain tasks exhibit weak or even
negative correlation.

ConvNext achieves the highest overall performance and dominated
the majority of tasks. Yet, some tasks are more sensitive to model
choice than others: while on CIFAR10 and EuroSAT performance
differences are marginal, on DTD, the right selection of pretrained
model is crucial.

1Imported from the VMamba repository (https://github.com/MzeroMiko/VMamba)
2Imported from the MambaOut repository (https://github.com/yuweihao/MambaOut)
3Imported from the MambaVision repository (https://github.com/NVlabs/MambaVision)
4Imported using torchvision (maintainers & contributors, 2016)
5Imported using timm (Wightman, 2019)
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Our last investigation concerns the comparison with VP methods prior to Tsao et al. (2024), and in particular with ILM-
VP (Chen et al., 2023), tested also by Misra et al. (2024). In contrast to ILM-VP, the variance in performance between
different model architectures is significantly reduced. Using AutoVP on the Flowers102 dataset increases the performance
of VMamba by 54.77% in comparison to ILM-VP, where it only reaches 38.9%. In comparison, ViT-B already achieves
83.1% under ILM-VP and is outperformed by VMamba under AutoVP.
Towards understanding these differences due to the VP technique, we investigate the prompt-resizing feature of AutoVP.
As depicted in Fig.2, the capability to resize the prompt is not exploited uniformly across models. ConvNext, which on
average performs best, retains the initial configuration, while Swin-B exhibits considerable variation in prompt size. Models
differing only by size (e.g., MambaVision, VMamba) tend to have similar behavior, while Swin Transformer behaves as an
outlier with Swin-T maintaining the initial prompt size and Swin-B showing variation. Detailed results can be found in
Appendix 5.1.

4.2. Comparison training paradigms

# PARAM. GPU-MEM (GB) EPOCHTIME (S)
VP 197,576 12.5 39.8
LP 48,175 11.2 36.1

FFT 87,601,967 72.3 49.2

Table 3: VP refers to AutoVP with fully connected label map-
ping and adjustable prompt size. GPU-Mem describes the peak
allocated GPU Memory. Reported Runtime is the median over
all runs. All reported numbers refer to the use of VMamba-B
on the DTD dataset.

The evaluation of different finetuning techniques must
consider the distinct computational requirements for
training models of significant size. The precise calcu-
lation of trainable model parameters for the different
approaches is contingent on numerous factors, including
the selected model, input dimensions, and the number of
target classes. For this comparison we assume VMamba-
B being applied to the DTD dataset with 47 target classes. For VP, inputs are resized using a learnable prompt size, while
for LP and FFT they are resized to the input size 224× 224. Furthermore, while the trainable parameters of all approaches
depend on the number of target classes, VP is also reliant on the input dimensions and the number of source classes in the
pretrained model while LP also depends on the feature dimension of the penultimate layer. Consequently, the reported
numbers need to be interpreted within the context of the specific choice of pretrained model and task. As showcased in
Tab. 4, for the specific setting described above, LP proves to be the most lightweight finetuning method, with VP being
only slightly more hardware demanding. By requiring only about 15% of the GPU-memory required for FFT, the field of
application is drastically broadened by, in contrast to FFT, being able to e.g. run on a Nvidia Tesla V100 GPU. The results
(Tab. 2) stand in contrast to previous findings (Zheng et al., 2023), indicating that, on small datasets, a smaller number of
trainable parameters is beneficial and VP should be preferred over FFT. It is also noteworthy that ConvNext underperforms
Mamba on FFT whilst drastically outperforming them on VP.

4.3. Regularization of VP
REFERENCE 67.87
DROPOUT 68.73
L1 ON PROMPT 69.42
L1 ON MAPPING 69.37
L2 ON PROMPT 68.84
L2 ON MAPPING 70.31
AUTOAUGMENT 68.65
SAM 69.31

Table 4: AutoVP performances of
VMamba-B using different regulariza-
tion mechanics. First row reports the
unregularized VP performance.

Applying L1 regularization to either the prompt generation or the Label Mapping
leads to almost similar enhancements. Conversely, for L2 regularization, regulariz-
ing the Label Mapping is substantially more effective than regularizing the prompt.
The automatic augmentation schemes from Cubuk et al. (2019), which are derived
from ImageNet, SVHN, and CIFAR10, increased performance, however to the
smallest degree. VMamba also benefits from the utilization of SAM as well as
from applying Dropout to the Label Mapping.

Although regularization helps in enhancing VP performance, in particular when
applied to the Label Mapping, a significant discrepancy with FFT performance (Ta-
ble 2) still exists, highlighting that overfitting on VP cannot be fully addressed through traditional regularization methods.
Also, no single regularization method can completely close the performance gap between VMamba and ConvNext.

Conclusion
Although AutoVP has significantly enhanced the capabilities of VPs, it can underperform compared to LP and FFT in
contexts with limited data availability, also in the presence of regularization. When employing VP, our results show that
performance is correlated with pretraining accuracy, but depends on model architecture, with ConvNext being the best
option in our setup. Future investigations might include a comparison with low-rank adapters, and comparisons of LP and
VP on other data-scarce tasks.
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5. Appendix
5.1. Benchmarking Visual Prompting
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Figure 3: Flowers102 performance of VMamba-
T for combinations of ILM and FCLM with and
without enabled resizing

The Experiments from 4.1 followed the AutoVP recipe (Tsao et al.,
2024) with:

• Learning rates of [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1,
0.3]

• 2 different seeds and no regularization applied.

• Initial image-scale of 1.0 with prompt scaling enabled

• 50 epochs

The reported accuracy is the maximum test accuracy over the run.

As depicted in Fig. 3, the enhanced performance of VMamba can be attributed to FCLM rather than to the resizable prompt.
Surprisingly, for the specific runs, prompt resizing even degraded the performance. Runs comparing the different Mapping
approaches were conducted with learning rates [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3] with one seed.
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VMAMBA-T 0.990 0.999 0.996 1.047 0.999 1.083 1.000 0.999 1.014 0.031
MAMBAOUT-T 1.000 0.999 0.999 3.674 0.997 0.691 1.254 2.275 1.486 0.938
MAMBAVISION-T 0.995 0.998 1.401 3.111 2.195 0.927 1.182 2.342 1.644 0.756
SWINT-T 0.986 1.001 0.999 0.995 0.999 0.950 1.000 1.196 1.016 0.070
MAMBAVISION-S 0.927 1.006 2.930 1.105 0.997 1.006 1.238 1.942 1.394 0.656
MAMBAVISION-B 1.003 1.006 1.002 3.912 2.362 0.994 1.386 1.574 1.655 0.960
CONVNEXT-B 0.994 1.001 0.999 0.991 0.998 0.985 1.000 1.001 0.996 0.005
VMAMBA-B 1.004 1.021 0.997 0.863 0.999 0.927 1.000 0.998 0.976 0.050
DEIT-B 1.011 1.000 0.998 0.792 1.000 0.569 1.000 1.562 0.991 0.261
VIT-B 1.004 0.856 1.090 0.998 1.349 1.000 2.332 2.190 1.352 0.542
SWIN-B 1.003 0.997 1.001 4.798 0.999 1.003 1.214 1.542 1.569 1.233

Table 5: Prompt scaling of the best run for the respective model-task combination

Tab. 5 provides detailed results regarding the Prompt resizing for different Model-task combinations. The reported number
is the prompt size after the last training epoch w.r.t. the initial instantiation.
An interesting observation is that while some tasks generally lead to a stronger resizing (e.g. GTSRB results in an average
prompt size of 2.026 times the initial calibration), 5 out of the 11 models observed also reduce the prompt size.

5.2. Comparing Knowledge Transfer Methods

LP and FFT were implemented by adapting https://github.com/kuangliu/pytorch-cifar. The results for VP were obtained
using the setup described in 5.1.

The models were all evaluated on FFT and LP using the combinations of the learning rates [0.0001, 0.0003, 0.001, 0.003,
0.01, 0.03, 0.1, 0.3] and weight decays [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3]. All models were trained for 200
epochs on one seed.

RandomRotation((10)), Colorjitter(brightness=0.05,contrast=0.05,saturation=0.05)
and RandomAffine(degrees=5,translate=(0.1,0.1),scale=(0.9,1.1)) were used as input perturba-
tions.
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For LP and FFT, the linear layer of the classification head was replaced to account for the correct number of output classes.
For VP, the rest of the model was frozen and only the new classifier was trained.

5.3. Regularizing Visual Prompting

The Experiments from 4.3 used the best performing learning rate of 0.001.

• Dropout was applied with p-values of [0.05, 0.1, 0.2, 0.4] on the Label Mapping.

• L1 and L2 regularization were both run with λ-values of [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3] on either
the prompt or the Label Mapping.

• Autoaugment was used by applying the precomputed schemes for ImageNet, SVHN and CIFAR10.

• For SAM, ρ of [0.001, 0.003, 0.005, 0.008 and 0.01] were used.

8


