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Abstract

In this paper, we propose a new dense retrieval
model which learns diverse document repre-
sentations with deep query interactions. Our
model encodes each document with a set of gen-
erated pseudo-queries to get query-informed,
multi-view document representations. It not
only enjoys high inference efficiency like the
vanilla dual-encoder models, but also enables
deep query-document interactions in document
encoding and provides multi-faceted represen-
tations to better match different queries. Ex-
periments on several benchmarks demonstrate
the effectiveness of the proposed method, out-
performing strong dual encoder baselines.

1 Introduction

Document retrieval plays an important role in in-
formation retrieval (IR) tasks such as web search
and open domain question answering (Chen et al.,
2017). Early works such as BM25-based retriever
(Robertson and Zaragoza, 2009) rely on lexical
term matching to calculate the relevance of a pair
of texts. Recently, neural network based dense re-
trieval (Karpukhin et al., 2020) has gained traction
in research community. Dense retrieval learns a
neural encoder to map queries and documents into
a dense, low-dimensional vector space, and is less
vulnerable to term mismatch problem compared to
lexical match-based approaches.

There are two architectures to model the rel-
evance between queries and documents. Dual
encoder architecture encodes query and docu-
ment separately into fixed-dimensional vectors
(Karpukhin et al., 2020), where the similarity be-
tween query and document is usually instantiated
as a dot product or cosine similarity between their
vectors. As there are no interactions between query
and document, dual encoder approach permits ef-
ficient inference with vector space search on pre-
computed document vectors. Cross encoder ar-
chitecture feeds the concatenation of a query and

document pair into one encoder to calculate its rele-
vance score (Nogueira and Cho, 2019). Compared
to dual encoder, cross encoder is more accurate due
to the deep interaction between query and docu-
ment, but comes with computation costs infeasi-
ble for first-stage retrieval. It is highly desirable
to design a retrieval model which can match the
performance of the cross encoder approach while
maintaining the inference efficiency of the dual
encoder approach.

To this end, previous works mainly focus on two
directions: late-interaction and distillation. The
first solution is to design a hybrid architecture,
where the early layers act as a dual encoder while
the late layers work like a cross encoder (MacA-
vaney et al., 2020; Khattab and Zaharia, 2020;
Humeau et al., 2020). Its effectiveness comes with
the cost of retrieval latency due to the computa-
tion involved with late layers. Another solution is
knowledge distillation (Hinton et al., 2015), using
the cross encoder to augment the training data (Qu
et al., 2021; Ren et al., 2021), or distilling the rank-
ing scores or attention matrices of a more powerful
cross encoder reranker to a dual encoder retriever
(Hofstitter et al., 2021; Ren et al., 2021; Lu et al.,
2022).

In this paper, we propose to achieve this goal
by pre-computing the interaction-based represen-
tations. As depicted in Figure 1c, the document
representations are obtained by feeding the con-
catenation of query and document through a cross
encoder while the query representation is obtained
in the same way as in the vanilla dual encoder. For
every document, we use a query generation model
to generate several queries which will each con-
catenate with the document to obtain a separate
document representation.

Our model has the following advantages. Firstly,
we can obtain document representation with deep
query interactions without much additional infer-
ence cost. Additionally, we can naturally get multi-



view document representations (Luan et al., 2021;
Tang et al., 2021; Zhang et al., 2022) by treating
the query as explicit view extractor.

We follow the popular contrastive learning
paradigm for learning such representations. Experi-
ments on several retrieval benchmarks demonstrate
the effectiveness of the proposed approach.

To summarize, our main contributions are as
follows:

* We propose a new model architecture for
dense retrieval, which can benefit from deep
query-document interaction with low infer-
ence latency and learn multi-view docu-
ment representations to better match different
queries.

* We show the effectiveness of this model over
various baselines by experiments on several
large-scale retrieval benchmarks.

2 Related Work

2.1 Dense Retrieval

Dense passage retrieval (DPR) (Karpukhin et al.,
2020) learns a two-tower BERT encoder to repre-
sent question and passage as vectors and takes their
dot product as relevance score. The training of
such dense retrievers can be optimized with more
sophisticated negative sampling strategy (Xiong
et al., 2021; Qu et al., 2021; Hofstitter et al., 2021;
Zhan et al., 2021; Yang et al., 2021), or knowledge
distillation from a more powerful cross-encoder
teacher (Qu et al., 2021; Ren et al., 2021; Hofstit-
ter et al., 2021; Lu et al., 2022).

Recently, some work have been devoted to trad-
ing off the efficiency and effectiveness with a late-
interaction architecture. Humeau et al. (2020) com-
press the query context into multiple dense vectors
with a Poly-Encoder architecture. The relevance
score is modeled by a attention-weighted sum of
individual matching scores. Tang et al. (2021) fur-
ther improve the multi-encoding scheme through
k-means clustering over all document tokens’ em-
beddings. ColBERT (Khattab and Zaharia, 2020)
learns word level representations for both query
and document and calculates the relevance score
with a MaxSim operation followed by a sum pool-
ing aggregator. Although powerful, they cannot
fully utilize the maximum inner product search
(MIPS). In contrast, we employ a pre-interaction
mechanism combined with a max pooler which is
compatible with MIPS.

Multi-vector encoding is essential in these late-

interaction models, but is also gradually borrowed
to learn effective dense retrieval models. Luan et al.
(2021) represent each document with its first k&
token embeddings. To learn multi-view document
representations, Zhang et al. (2022) substitute the
[CLS] token with k special [VIE] tokens as view
extractors and propose a local contrastive loss with
annealing temperature between different views. In
comparison, our model learns diverse document
representations through interactions with different
queries.

2.2 Query Generation

Query generation (QG) is originally introduced
to the IR community as a document expansion
technique (Nogueira et al., 2019). Nogueira and
Lin (2019) show that appending the T5-generated
queries to the document before building the in-
verted index can bring substantial improvements
over BM25. More recently, Mallia et al. (2021) use
generated queries as term expansion to learn better
sparse representations for documents.

In the context of dense retrieval, query genera-
tion is usually used for domain adaptation in data
scarcity scenarios. For example, Ma et al. (2020)
use QG model trained on general domain to gen-
erate synthetic queries on target domain for model
training. To reduce noise in generated data, Wang
et al. (2022) further introduce a cross encoder for
pseudo labeling. Different from the previous work,
we mainly use the generated queries to learn query-
informed document representations.

3 Method
3.1 Task Definition

Given a query ¢ and a collection of N docu-
ments D = {dy,ds, ..., d;, ..., dN }, a retriever aims
to find a set of K relevant documents D, =
{di,, diy, ... di,, ...,d;c },' by ranking the docu-
ment in the corpus D according to its relevance
score with respect to the query ¢, for next stage
re-ranking or downstream applications.

3.2 Dual Encoder

We first introduce the dual encoder (DE) architec-
ture for dense retrieval. In this framework, a query
encoder DFE,; and a document encoder DE,; are
used to encode the query and document into low-
dimensional vectors, respectively. To measure their

'Usually K < N.
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Figure 1: Ilustration of different matching paradigms with different architectures.

relevance, a lightweight dot product between the
two vectors is usually adopted to enable fast search,
s(¢.d) = DEy(q) - DEs(d). (1)
The common design choice for the encoders
is using multi-layer Transformers (Vaswani et al.,
2017) initialized from pre-trained language models
(PLMs), such as BERT (Devlin et al., 2019). How
to get the representation from BERT is also an inter-
esting question but beyond the scope of this paper.
For simplicity, we directly take the [CLS] vector
at the final layer as the text representation. The two
encoders can share or use separate parameters. We
tie the encoder parameters in main experiments but
also provide results of untied parameters in ablation
study.

3.3 Cross Encoder

The cross encoder (CE) takes the concatenation of
query and document as input and uses deep neural
network to model their deep interactions. Given a
pair of query and document consisting of multiple
tokens, we feed their concatenation through a cross
encoder to get the interaction-aware representation,

r=CE(q+d). (2)
Then a multi-layer perceptron (MLP) is applied
on top of the interaction-aware representation to
predict the relevance score,
s(q,d) = MLP(r). 3)
The cross encoder is also usually instanced as a
multi-layer Transformer network initialized from
BERT. It can model term-level interactions between
query and document, providing more fine-grained
relevance estimation.

3.4 Dual Cross Encoder

We present our dual cross encoder where the docu-
ment encoder acts as a cross encoder whereas the
query encoder works like a dual encoder. Specifi-
cally, the query representation and document rep-
resentation with query interaction are calculated
as

C)
®

Their similarity is measured by a dot product like
in the vanilla dual encoder,

q = DEq(Q)>
d= CEd(q—i-d).

Query Generation. Note that the query from
the query encoder side and document encoder side
do not necessarily have to be the same since we
only have access to the gold query for documents
appearing in the training set. It is impractical to
manually write potential queries for each document
in the whole corpus. Hence, we use a T5 model
(Raffel et al., 2020) fine-tuned on the doc-to-query
task to generate queries for each document. We
empirically adopt 10 queries decoded with top-k
sampling strategy (Fan et al., 2018) to encourage
the query generation diversity.

The advantages of this architecture are two-fold.
On the one hand, it can model the query-document
interaction in the pre-computed document repre-
sentations. On the other hand, it can enjoy the
retrieval efficiency of the vanilla dual encoder by
pre-computing the interaction-aware document rep-
resentations.

3.5 Training

The conventional way to train a dense retriever
requires a set of (q,d;,d_) pairs. The model is



trained by optimizing the contrastive loss,
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where D_ contains a set of negative documents d_
for query q. Following Karpukhin et al. (2020),
we include both BM25 hard negatives and in-batch
negatives in D_.

Constructing Positives and Negatives. Fusing
query information into document representation re-
quires redefining the positive and negative pairs.
For a given query ¢, our framework potentially per-
mits four types of positive and negatives, namely,
(q++dy), (q++d-),(g-+dy) and (g—+d-). To
train our model, we convert the traditional positive
and negative pair from the training set into that in
our framework with the mapping function

f : (Q7d+7d—) = (q7Q+ d+7Q+ d—)v (8)

where the + is the concatenation operation used in
cross encoder. This mapping leads to the positive
of type (g+ + d4) and the following two types of
negatives. We leave the exploration of other types
of negatives to future work.

Hard Negatives. The negative documents d_ are
usually randomly sampled from BM25 top-ranked
documents. After the mapping function defined
above, these negatives fall in the type of negative
(g+ + d—), which serve as hard negatives in our
framework. This type of negatives can teach the
model to learn more fine-grained information, as
d_ is usually topically related to the gold query but
cannot exactly answer the query. It also prevents
our model from learning the shortcut, i.e., only
learning matching signals from the query side and
ignoring the document side information.

In-Batch Negatives. To improve the training effi-
ciency, we also adopt in-batch negatives to train our
model. In our framework, the in-batch negatives
belong to the negative type (¢— + d_). This type
of negatives is simple and can enable the model to
learn topic-level discrimination ability.

Data Augmentation. Regarding the generated
queries as weakly annotated data, we can first pre-
train our model on these noisy data as a warm-up
stage and then fine-tune it on the human-annotated
high-quality training set.

3.6 Inference

Index We encode the corpus following the same
format as Equation 5, to get multi-view document
representations with deep query interactions.

Denoting d, as the i-th view of the j-th docu-
ment d; € D, we have

g5 ~ Pga(ald;), ©)

d; = CEq(q; + dj), (10)

where Poc(q|d) denotes the query generation
model, i € {1,...,k}and j € {1,...,N}.

Retrieval When a query comes, we encode it
with the query encoder to get its contextualized
representation q as in Equation 4. We adopted
multi-vector encodings for a document d;, the rele-
vance score between the query ¢ and the document
d; is taken as the max pooling of its different views’
scores,

an

This operation is compatible with MIPS for effi-
ciency optimization,’

s(q,dj) = max qué.

p = arg max q’d. (12)

4 Experiment

In this section, we evaluate our model on different
retrieval benchmarks and compare it with various
baselines.

4.1 Datasets

We conduct experiments on the following retrieval
benchmarks.

MS MARCO is a retrieval benchmark that orig-
inates from a machine reading comprehension
dataset containing real user queries collected from
Bing search and passages from web collection (Ba-
jaj et al., 2016). We evaluate our model on the
passage retrieval task. The corpus contains about
8.8M passages. The training set consists of about
500k annotated query-document pairs. The dev set
has 6980 annotated queries. Since the test set is
not publicly available, we evaluate on the dev set
following previous work.

TREC Deep Learning (DL) tracks provide test
sets with more elaborate annotations to evaluate the
real capacity of ranking models. We evaluate on the

“Note that to get top-K documents, we first retrieve 10K

documents to ensure that we have at least K documents after
pooling.



2019 and 2020 test set (Craswell et al., 2020b,a).
The 2019 test set contains 43 annotated queries
and the 2020 test set contains 54 annotated queries.
Both of them share the same corpus with the MS
MARCO passage retrieval benchmark.

4.2 Evaluation Metrics

Following previous work, we mainly evaluate the
retrieval performance on MS MARCO passage re-
trieval benchmark with MRR @ 10 but also report
the score of Recall@1000. For datasets from TREC
DL tracks, we evaluate with nDCG@10.

4.3 Baselines

We mainly compare our model against the DPR
(Karpukhin et al., 2020) baseline with a dual en-
coder architecture, but also report results of the
following models most related to ours.

* BM25 (Robertson and Zaragoza, 2009) is the
traditional lexical retriever.

* DocT5Query (Nogueira and Lin, 2019) ap-
pends generated queries to the document be-
fore building the inverted index of BM25.

* Deeplmpact (Mallia et al., 2021) learns sparse
representation for documents using generated
queries as expanded terms.

* ANCE (Xiong et al., 2021) trains the DPR
model with iterative hard negative mining
strategy. We include this baseline since this
technique is used in ME-BERT and DRPQ.

* ME-BERT (Luan et al., 2021) utilizes the first
k token embeddings as multi-vector encod-
ings for documents and adopts max pooling
for score aggregation.

* DRPQ (Tang et al., 2021) improves over ME-
BERT by performing a k-means over all to-
kens’ embeddings and utilizing a attention-
based score aggregator.

* ColBERT (Khattab and Zaharia, 2020) repre-
sents query and document at token-level and
uses a MaxSim pooler followed by a sum ag-
gregator to calculate the relevance score.

4.4 Implementation

We implement our model based on the tevatron
toolkit (Gao et al., 2022). For a fair comparison

with our model, we re-implement the DPR baseline
using the same set of hyperparameters.

We train all the models on 8 NVIDIA Telsa V100
GPUs with 32GB memory. We initialize all the en-
coders with bert-base-uncased. The max
sequence length is 16 for query and 128 for pas-
sage. The number of positive and negative passages
follows a ratio of 1:7 for each sample. We set the
batch size to 32. We use both officially provided
BM25 negatives and in-batch negatives to train the
models. We use Adam optimizer with the learning
rate of 5 x 1075, linear decay with 10% warmup
steps.

In the preliminary study without data augmenta-
tion, we train both models for 10 epochs. To make
full use of generated queries, we first pre-train the
models for 10 epochs on the corpus with a batch
size of 256 and only in-batch negatives, and then
fine-tune the models for 20 epochs till convergence
on the training set. We haven’t tuned other hyper-
parameters. The pre-training stage takes about 15
hours and the fine-tuning stage takes about 8 hours.

During inference, we use IndexFlat IP of the
faiss library (Johnson et al., 2021) to index the
corpus and perform an exact search.

4.5 Results

Table 1 illustrates the evaluation results of our
model and the baselines.

We first compare our model against the DPR
dual encoder baseline. We can observe sub-
stantial improvements in terms of MRR @10 and
nDCG@ 10 across all these datasets, which demon-
strate the effectiveness of our approach. The Re-
call@1k also exhibits a slight improvement.

Our approach is also competitive with other base-
lines. On MS MARCO, it surpasses other baselines
and is comparable to ColBERT, while being more
efficient. On TREC DL 19, the results are compa-
rable to ME-BERT, which used a more powerful
large-size model as backbone and the hard negative
mining technique of ANCE. On TREC DL 20, our
model even outperforms the CoIBERT model.

4.6 Ablation Study
We conduct ablation studies on our model design

choice.

4.6.1 Effect of Data Augmentation

We used the generated queries as data augmentation
for pre-training. We ablate on the effect of pre-
training in this section. The results of different



Model PLM MS MARCO TREC DL 19 | TREC DL 20
MRR@10 Recall@lk | nDCG@10 nDCG@10
Sparse
BM25 - 18.4 85.3 50.6 48.0
DocT5Query - 27.7 94.7 64.8 61.9
Deeplmpact BERT s 32.6 94.8 69.5 65.1
Dense
DPR BERT} s 314 95.3 59.0 62.1
ANCE RoBERTay¢ 33.0 95.9 64.8 -
ME-BERT BERT 4 ge 334 - 68.7 -
DRPQ BERT}qse 34.5 96.4 - -
ColBERT BERT} s 36.0 96.8 69.4 67.6
Ours BERT}se 36.0 96.4 68.3 68.9

Table 1: Evaluation results on MS MARCO passage retrieval benchmark and TREC DL track. DocT5Query and
DeepImpact can be seen as the sparse counterparts of our model. Both ME-BERT and DRPQ learn multi-vector
encodings for documents, and have used the hard negative mining technique proposed in ANCE. ColBERT learns
term-level representations of both query and document for late interaction. Results not available are marked as ‘-’.

training stages on MS MARCO dev set are shown
in Table 2.

MRR @10 | Pretrain | Finetune | Full
DPR 25.6 314 34.2
Ours 26.1 33.2 36.0

Table 2: Ablation of different training stages on MS
MARCO dev set. Pretrain: only use generated data for
training; Finetune: only use data from training set for
training; Full: Pretrain + Finetune.

We can see that using generated data for pre-
training gives a MRR@10 score comparable to
DocT5Query but lower than directly fine-tuning
using data from the training set. The top-k sam-
pling decoding strategy in query generation may
introduce some noise, which explains why the pre-
training underperforms directly fine-tuning with
high-quality data. However, the pre-training stage
is still beneficial for the fine-tuning stage.

The results on TREC DL track are shown in Ta-
ble 3. Our model still consistently outperforms the
dual encoder baseline under different settings. The
improvements are more significant on this bench-
mark since the annotation is more complete. No-
tably, our model without data augmentation is com-
parable to the DPR baseline with data augmentation
on this benchmark.

4.6.2 Effect of Sharing Parameters

Sharing the encoder parameters can reduce the
number of model parameters to half. We tie our

nDCG@10 | DL 19 DL 20
w/o Data Augmentation
DPR 59.0 62.1
Ours 63.0 67.6
w/ Data Augmentation
DPR 63.1 66.5
Ours 68.3 68.9

Table 3: Results on TREC DL track under different
settings.

encoder parameters in main experiments but also
provide ablation of untied encoder parameters in
Table 4 to study its effect.

MRR@10 | tie untie
DPR 314 31.7
Ours 332 33.8

Table 4: Results of tie / untie encoder parameters on MS
MARCO dev set.

We can observe that using two sets of encoder
parameters gives slightly better performance but
not so significantly. Using separate encoders brings
more improvements to our model, which is normal
since the nature of two encoders in our model is
more asymmetric than that in the vanilla dual en-
coder.



5 Analysis

Our experimental results in the previous section
demonstrate that it is indeed beneficial to incorpo-
rate query interactions into the document represen-
tations. The generated queries are crucial to the
success of our model. In this section, we analyse
the influence of query quality and query diversity
to the retrieval performance.

5.1 On the Query Quality

The number of queries is an important factor in
our framework. Too few queries have low diversity
while too many queries will sacrifice efficiency.
Thus we provide an analysis here to study its effect.
We evaluate the query generation performance on
the dev set of MS MARCO and reveal its relation
with the retrieval performance.

To measure the generation quality, we calculate
the maximum ROUGE-L score between generated
queries and the gold query on the dev set. For re-
trieval performance, we report the MRR@10. Fig-
ure 2 illustrates the evolution of the two metrics
with different number of queries.?
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Figure 2: The evolution of ROUGE-L and MRR@10 on
MS MARCO dev set when varying number of queries
from 1 to 10.

We can see that as the number of queries grows,
the retrieval performance becomes better because
of the improved generation quality. The correlation
between the two metrics is shown in Figure 3. The
Pearson coefficient is 0.9958, indicating a strong
positive correlation. Keep increasing the number
of queries will consistently improve the retrieval
performance but more marginally.

3Please refer to Table 6 in Appendix A for exact numbers.
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Figure 3: Correlation between generation and retrieval
performance on MS MARCO dev set.

5.2 On the Query Diversity

Intuitively, more diverse queries can potentially
hit more types of queries. We used top-k£ sampling
strategy to encourage the query generation diversity.
However, whether and to what extent the generated
queries are diverse remains unclear. To this end, we
adopt the self-BLEU (Zhu et al., 2018) to measure
the query generation diversity for a document.

We partition the documents of MS MARCO dev
set to subsets of different query diversity accord-
ing to their self-BLEU-4 score and measure the
retrieval performance on these subsets. The statis-
tics are shown in Figure 4. First, we observe that
most of the documents have high query generation
diversity thanks to the top-k sampling strategy (see
Figure 4a). Second, the retrieval performance drops
with higher diversity (see Figure 4b). One possible
reason is that the QG model will generate more
diverse queries when it doesn’t know the right one.
As such, higher diversity indicates lower quality
(see Figure 4c) and the retrieval performance drops
with lower generation quality (see Figure 3). It
would be desirable to design a diversity metric that
takes into account the generation quality.

5.3 Case Study

We conduct a case study on the dev set to intuitively
compare our model and the dual encoder baseline,
as well as to illustrate the QG performance.

Table 5 shows an example drawn from the MS
MARCO dev set. Our model can retrieve the cor-
rect passage by generating the right query. DPR
retrieves a hard negative passage where the con-
tent is corresponding to the query keywords but
can not correctly answer the query. By generat-
ing queries, our model can better distinguish the
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(a) Diversity distribution.

(b) Retrieval v.s. Diversity.

(c) Quality v.s. Diversity.

Figure 4: Statistics of query diversity on MS MARCO dev set. We divided the diversity into 5 levels based on an

average division of the self-BLEU-4 score.

Query how old is canada

Ours Rank 1

Canada was finally established as a country in 1867. It is 148 years old as of
July 1 2015. Canada has been a country for 147 years. The first attempt at
colonization occurred in 1000 A.D. by the Norsemen. There was no further
European exploration until 1497 A.D. when the Italian sailor John Cabot came

along. It then started being inhabited by more Europeans.

Generated Queries

when was canada established
when was canada discovered
what year was canada founded

how old is canada

how long has canada been a country

DPR Rank 1

it depends where you live but in Canada you have to be at least 16 years old.

Generated Queries

what is the legal age to be in canada

how old do you have to be to live in canada

how old do you have to be to enter canada as a citizen
at what age can i go to canada to study in canada
what is the minimum age to join the military

Table 5: Case Study on MS MARCO dev set.

difference among document meanings.

6 Discussion

The ranking task is usually approached with a two-
stage pipeline: retrieve-then-rerank. The two stages
usually use different architectures due to the effec-
tiveness and efficiency trade-off. Dual encoder is
more efficient for retrieval, while cross encoder is
more powerful for reranking. How to take advan-
tage of each other’s strengths for mutual improve-
ments is a hot topic of research. We propose a new
dual cross encoder architecture to benefit from both
with a pre-interaction mechanism.

One limitation of our framework is that there
exists a discrepancy between training and inference.
We used the gold query to train the model but do
not have access to the gold query during inference.
Generating more queries would bridge this gap, but
at the cost of efficiency. We wish to close this gap

with improved training strategy or improved query
generation quality in the future.

7 Conclusion

We proposed a novel dense retrieval model to
bridge the gap between dual encoder and cross
encoder. In our framework, the document repre-
sentations are obtained by pre-interacting with a
set of generated pseudo-queries through a cross en-
coder. Our approach enables multi-view document
representation with deep query interaction while
maintaining the inference efficiency of the dual en-
coder approach. We demonstrated its effectiveness
compared to dual encoder baseline via experiments
on various retrieval benchmarks. In the future work,
we would like to explore how to better incorporate
generated queries for model training and how to
improve the query generation quality for better re-
trieval performance.
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A Appendix

k | ROUGE-L MRR@10
1 42.49 27.74
2 50.93 30.09
3 55.67 31.15
4 58.45 31.66
5 60.63 31.92
6 62.28 32.38
7 63.57 32.67
8 64.62 32.88
9 65.46 32.96
10 66.22 33.23

Table 6: Results of generation and retrieval perfor-
mance on MS MARCO dev set when varying number
of queries (correspond to Figure 2 and Figure 3).
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