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Abstract

In this paper, we propose a new dense retrieval001
model which learns diverse document repre-002
sentations with deep query interactions. Our003
model encodes each document with a set of gen-004
erated pseudo-queries to get query-informed,005
multi-view document representations. It not006
only enjoys high inference efficiency like the007
vanilla dual-encoder models, but also enables008
deep query-document interactions in document009
encoding and provides multi-faceted represen-010
tations to better match different queries. Ex-011
periments on several benchmarks demonstrate012
the effectiveness of the proposed method, out-013
performing strong dual encoder baselines.014

1 Introduction015

Document retrieval plays an important role in in-016

formation retrieval (IR) tasks such as web search017

and open domain question answering (Chen et al.,018

2017). Early works such as BM25-based retriever019

(Robertson and Zaragoza, 2009) rely on lexical020

term matching to calculate the relevance of a pair021

of texts. Recently, neural network based dense re-022

trieval (Karpukhin et al., 2020) has gained traction023

in research community. Dense retrieval learns a024

neural encoder to map queries and documents into025

a dense, low-dimensional vector space, and is less026

vulnerable to term mismatch problem compared to027

lexical match-based approaches.028

There are two architectures to model the rel-029

evance between queries and documents. Dual030

encoder architecture encodes query and docu-031

ment separately into fixed-dimensional vectors032

(Karpukhin et al., 2020), where the similarity be-033

tween query and document is usually instantiated034

as a dot product or cosine similarity between their035

vectors. As there are no interactions between query036

and document, dual encoder approach permits ef-037

ficient inference with vector space search on pre-038

computed document vectors. Cross encoder ar-039

chitecture feeds the concatenation of a query and040

document pair into one encoder to calculate its rele- 041

vance score (Nogueira and Cho, 2019). Compared 042

to dual encoder, cross encoder is more accurate due 043

to the deep interaction between query and docu- 044

ment, but comes with computation costs infeasi- 045

ble for first-stage retrieval. It is highly desirable 046

to design a retrieval model which can match the 047

performance of the cross encoder approach while 048

maintaining the inference efficiency of the dual 049

encoder approach. 050

To this end, previous works mainly focus on two 051

directions: late-interaction and distillation. The 052

first solution is to design a hybrid architecture, 053

where the early layers act as a dual encoder while 054

the late layers work like a cross encoder (MacA- 055

vaney et al., 2020; Khattab and Zaharia, 2020; 056

Humeau et al., 2020). Its effectiveness comes with 057

the cost of retrieval latency due to the computa- 058

tion involved with late layers. Another solution is 059

knowledge distillation (Hinton et al., 2015), using 060

the cross encoder to augment the training data (Qu 061

et al., 2021; Ren et al., 2021), or distilling the rank- 062

ing scores or attention matrices of a more powerful 063

cross encoder reranker to a dual encoder retriever 064

(Hofstätter et al., 2021; Ren et al., 2021; Lu et al., 065

2022). 066

In this paper, we propose to achieve this goal 067

by pre-computing the interaction-based represen- 068

tations. As depicted in Figure 1c, the document 069

representations are obtained by feeding the con- 070

catenation of query and document through a cross 071

encoder while the query representation is obtained 072

in the same way as in the vanilla dual encoder. For 073

every document, we use a query generation model 074

to generate several queries which will each con- 075

catenate with the document to obtain a separate 076

document representation. 077

Our model has the following advantages. Firstly, 078

we can obtain document representation with deep 079

query interactions without much additional infer- 080

ence cost. Additionally, we can naturally get multi- 081
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view document representations (Luan et al., 2021;082

Tang et al., 2021; Zhang et al., 2022) by treating083

the query as explicit view extractor.084

We follow the popular contrastive learning085

paradigm for learning such representations. Experi-086

ments on several retrieval benchmarks demonstrate087

the effectiveness of the proposed approach.088

To summarize, our main contributions are as089

follows:090

• We propose a new model architecture for091

dense retrieval, which can benefit from deep092

query-document interaction with low infer-093

ence latency and learn multi-view docu-094

ment representations to better match different095

queries.096

• We show the effectiveness of this model over097

various baselines by experiments on several098

large-scale retrieval benchmarks.099

2 Related Work100

2.1 Dense Retrieval101

Dense passage retrieval (DPR) (Karpukhin et al.,102

2020) learns a two-tower BERT encoder to repre-103

sent question and passage as vectors and takes their104

dot product as relevance score. The training of105

such dense retrievers can be optimized with more106

sophisticated negative sampling strategy (Xiong107

et al., 2021; Qu et al., 2021; Hofstätter et al., 2021;108

Zhan et al., 2021; Yang et al., 2021), or knowledge109

distillation from a more powerful cross-encoder110

teacher (Qu et al., 2021; Ren et al., 2021; Hofstät-111

ter et al., 2021; Lu et al., 2022).112

Recently, some work have been devoted to trad-113

ing off the efficiency and effectiveness with a late-114

interaction architecture. Humeau et al. (2020) com-115

press the query context into multiple dense vectors116

with a Poly-Encoder architecture. The relevance117

score is modeled by a attention-weighted sum of118

individual matching scores. Tang et al. (2021) fur-119

ther improve the multi-encoding scheme through120

k-means clustering over all document tokens’ em-121

beddings. ColBERT (Khattab and Zaharia, 2020)122

learns word level representations for both query123

and document and calculates the relevance score124

with a MaxSim operation followed by a sum pool-125

ing aggregator. Although powerful, they cannot126

fully utilize the maximum inner product search127

(MIPS). In contrast, we employ a pre-interaction128

mechanism combined with a max pooler which is129

compatible with MIPS.130

Multi-vector encoding is essential in these late- 131

interaction models, but is also gradually borrowed 132

to learn effective dense retrieval models. Luan et al. 133

(2021) represent each document with its first k 134

token embeddings. To learn multi-view document 135

representations, Zhang et al. (2022) substitute the 136

[CLS] token with k special [VIE] tokens as view 137

extractors and propose a local contrastive loss with 138

annealing temperature between different views. In 139

comparison, our model learns diverse document 140

representations through interactions with different 141

queries. 142

2.2 Query Generation 143

Query generation (QG) is originally introduced 144

to the IR community as a document expansion 145

technique (Nogueira et al., 2019). Nogueira and 146

Lin (2019) show that appending the T5-generated 147

queries to the document before building the in- 148

verted index can bring substantial improvements 149

over BM25. More recently, Mallia et al. (2021) use 150

generated queries as term expansion to learn better 151

sparse representations for documents. 152

In the context of dense retrieval, query genera- 153

tion is usually used for domain adaptation in data 154

scarcity scenarios. For example, Ma et al. (2020) 155

use QG model trained on general domain to gen- 156

erate synthetic queries on target domain for model 157

training. To reduce noise in generated data, Wang 158

et al. (2022) further introduce a cross encoder for 159

pseudo labeling. Different from the previous work, 160

we mainly use the generated queries to learn query- 161

informed document representations. 162

3 Method 163

3.1 Task Definition 164

Given a query q and a collection of N docu- 165

ments D = {d1, d2, ..., di, ..., dN}, a retriever aims 166

to find a set of K relevant documents D+ = 167

{di1 , di2 , ..., dij , ..., diK},1 by ranking the docu- 168

ment in the corpus D according to its relevance 169

score with respect to the query q, for next stage 170

re-ranking or downstream applications. 171

3.2 Dual Encoder 172

We first introduce the dual encoder (DE) architec- 173

ture for dense retrieval. In this framework, a query 174

encoder DEq and a document encoder DEd are 175

used to encode the query and document into low- 176

dimensional vectors, respectively. To measure their 177

1Usually K ≪ N .
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Figure 1: Illustration of different matching paradigms with different architectures.

relevance, a lightweight dot product between the178

two vectors is usually adopted to enable fast search,179

s(q, d) = DEq(q) ·DEd(d). (1)180

The common design choice for the encoders181

is using multi-layer Transformers (Vaswani et al.,182

2017) initialized from pre-trained language models183

(PLMs), such as BERT (Devlin et al., 2019). How184

to get the representation from BERT is also an inter-185

esting question but beyond the scope of this paper.186

For simplicity, we directly take the [CLS] vector187

at the final layer as the text representation. The two188

encoders can share or use separate parameters. We189

tie the encoder parameters in main experiments but190

also provide results of untied parameters in ablation191

study.192

3.3 Cross Encoder193

The cross encoder (CE) takes the concatenation of194

query and document as input and uses deep neural195

network to model their deep interactions. Given a196

pair of query and document consisting of multiple197

tokens, we feed their concatenation through a cross198

encoder to get the interaction-aware representation,199

r = CE(q + d). (2)200

Then a multi-layer perceptron (MLP) is applied201

on top of the interaction-aware representation to202

predict the relevance score,203

s(q, d) = MLP (r). (3)204

The cross encoder is also usually instanced as a205

multi-layer Transformer network initialized from206

BERT. It can model term-level interactions between207

query and document, providing more fine-grained208

relevance estimation.209

3.4 Dual Cross Encoder 210

We present our dual cross encoder where the docu- 211

ment encoder acts as a cross encoder whereas the 212

query encoder works like a dual encoder. Specifi- 213

cally, the query representation and document rep- 214

resentation with query interaction are calculated 215

as 216

q = DEq(q), (4) 217
218

d = CEd(q + d). (5) 219

Their similarity is measured by a dot product like 220

in the vanilla dual encoder, 221

s(q, d) = q · d. (6) 222

Query Generation. Note that the query from 223

the query encoder side and document encoder side 224

do not necessarily have to be the same since we 225

only have access to the gold query for documents 226

appearing in the training set. It is impractical to 227

manually write potential queries for each document 228

in the whole corpus. Hence, we use a T5 model 229

(Raffel et al., 2020) fine-tuned on the doc-to-query 230

task to generate queries for each document. We 231

empirically adopt 10 queries decoded with top-k 232

sampling strategy (Fan et al., 2018) to encourage 233

the query generation diversity. 234

The advantages of this architecture are two-fold. 235

On the one hand, it can model the query-document 236

interaction in the pre-computed document repre- 237

sentations. On the other hand, it can enjoy the 238

retrieval efficiency of the vanilla dual encoder by 239

pre-computing the interaction-aware document rep- 240

resentations. 241

3.5 Training 242

The conventional way to train a dense retriever 243

requires a set of (q, d+, d−) pairs. The model is 244
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trained by optimizing the contrastive loss,245

L(q, d+,D−) = − log
es(q,d+)∑

d∈{d+}∪D−

es(q,d)
, (7)246

where D− contains a set of negative documents d−247

for query q. Following Karpukhin et al. (2020),248

we include both BM25 hard negatives and in-batch249

negatives in D−.250

Constructing Positives and Negatives. Fusing251

query information into document representation re-252

quires redefining the positive and negative pairs.253

For a given query q, our framework potentially per-254

mits four types of positive and negatives, namely,255

(q++d+), (q++d−), (q−+d+) and (q−+d−). To256

train our model, we convert the traditional positive257

and negative pair from the training set into that in258

our framework with the mapping function259

f : (q, d+, d−) 7→ (q, q + d+, q + d−), (8)260

where the + is the concatenation operation used in261

cross encoder. This mapping leads to the positive262

of type (q+ + d+) and the following two types of263

negatives. We leave the exploration of other types264

of negatives to future work.265

Hard Negatives. The negative documents d− are266

usually randomly sampled from BM25 top-ranked267

documents. After the mapping function defined268

above, these negatives fall in the type of negative269

(q+ + d−), which serve as hard negatives in our270

framework. This type of negatives can teach the271

model to learn more fine-grained information, as272

d− is usually topically related to the gold query but273

cannot exactly answer the query. It also prevents274

our model from learning the shortcut, i.e., only275

learning matching signals from the query side and276

ignoring the document side information.277

In-Batch Negatives. To improve the training effi-278

ciency, we also adopt in-batch negatives to train our279

model. In our framework, the in-batch negatives280

belong to the negative type (q− + d−). This type281

of negatives is simple and can enable the model to282

learn topic-level discrimination ability.283

Data Augmentation. Regarding the generated284

queries as weakly annotated data, we can first pre-285

train our model on these noisy data as a warm-up286

stage and then fine-tune it on the human-annotated287

high-quality training set.288

3.6 Inference 289

Index We encode the corpus following the same 290

format as Equation 5, to get multi-view document 291

representations with deep query interactions. 292

Denoting di
j as the i-th view of the j-th docu- 293

ment dj ∈ D, we have 294

qij ∼ PQG(q|dj), (9) 295

296
di
j = CEd(q

i
j + dj), (10) 297

where PQG(q|d) denotes the query generation 298

model, i ∈ {1, ..., k} and j ∈ {1, ..., N}. 299

Retrieval When a query comes, we encode it 300

with the query encoder to get its contextualized 301

representation q as in Equation 4. We adopted 302

multi-vector encodings for a document dj , the rele- 303

vance score between the query q and the document 304

dj is taken as the max pooling of its different views’ 305

scores, 306

s(q, dj) = max
i

qTdi
j . (11) 307

This operation is compatible with MIPS for effi- 308

ciency optimization,2 309

p = argmax
d

qTd. (12) 310

4 Experiment 311

In this section, we evaluate our model on different 312

retrieval benchmarks and compare it with various 313

baselines. 314

4.1 Datasets 315

We conduct experiments on the following retrieval 316

benchmarks. 317

MS MARCO is a retrieval benchmark that orig- 318

inates from a machine reading comprehension 319

dataset containing real user queries collected from 320

Bing search and passages from web collection (Ba- 321

jaj et al., 2016). We evaluate our model on the 322

passage retrieval task. The corpus contains about 323

8.8M passages. The training set consists of about 324

500k annotated query-document pairs. The dev set 325

has 6980 annotated queries. Since the test set is 326

not publicly available, we evaluate on the dev set 327

following previous work. 328

TREC Deep Learning (DL) tracks provide test 329

sets with more elaborate annotations to evaluate the 330

real capacity of ranking models. We evaluate on the 331

2Note that to get top-K documents, we first retrieve 10K
documents to ensure that we have at least K documents after
pooling.
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2019 and 2020 test set (Craswell et al., 2020b,a).332

The 2019 test set contains 43 annotated queries333

and the 2020 test set contains 54 annotated queries.334

Both of them share the same corpus with the MS335

MARCO passage retrieval benchmark.336

4.2 Evaluation Metrics337

Following previous work, we mainly evaluate the338

retrieval performance on MS MARCO passage re-339

trieval benchmark with MRR@10 but also report340

the score of Recall@1000. For datasets from TREC341

DL tracks, we evaluate with nDCG@10.342

4.3 Baselines343

We mainly compare our model against the DPR344

(Karpukhin et al., 2020) baseline with a dual en-345

coder architecture, but also report results of the346

following models most related to ours.347

• BM25 (Robertson and Zaragoza, 2009) is the348

traditional lexical retriever.349

• DocT5Query (Nogueira and Lin, 2019) ap-350

pends generated queries to the document be-351

fore building the inverted index of BM25.352

• DeepImpact (Mallia et al., 2021) learns sparse353

representation for documents using generated354

queries as expanded terms.355

• ANCE (Xiong et al., 2021) trains the DPR356

model with iterative hard negative mining357

strategy. We include this baseline since this358

technique is used in ME-BERT and DRPQ.359

• ME-BERT (Luan et al., 2021) utilizes the first360

k token embeddings as multi-vector encod-361

ings for documents and adopts max pooling362

for score aggregation.363

• DRPQ (Tang et al., 2021) improves over ME-364

BERT by performing a k-means over all to-365

kens’ embeddings and utilizing a attention-366

based score aggregator.367

• ColBERT (Khattab and Zaharia, 2020) repre-368

sents query and document at token-level and369

uses a MaxSim pooler followed by a sum ag-370

gregator to calculate the relevance score.371

4.4 Implementation372

We implement our model based on the tevatron373

toolkit (Gao et al., 2022). For a fair comparison374

with our model, we re-implement the DPR baseline 375

using the same set of hyperparameters. 376

We train all the models on 8 NVIDIA Telsa V100 377

GPUs with 32GB memory. We initialize all the en- 378

coders with bert-base-uncased. The max 379

sequence length is 16 for query and 128 for pas- 380

sage. The number of positive and negative passages 381

follows a ratio of 1:7 for each sample. We set the 382

batch size to 32. We use both officially provided 383

BM25 negatives and in-batch negatives to train the 384

models. We use Adam optimizer with the learning 385

rate of 5 × 10−6, linear decay with 10% warmup 386

steps. 387

In the preliminary study without data augmenta- 388

tion, we train both models for 10 epochs. To make 389

full use of generated queries, we first pre-train the 390

models for 10 epochs on the corpus with a batch 391

size of 256 and only in-batch negatives, and then 392

fine-tune the models for 20 epochs till convergence 393

on the training set. We haven’t tuned other hyper- 394

parameters. The pre-training stage takes about 15 395

hours and the fine-tuning stage takes about 8 hours. 396

During inference, we use IndexFlatIP of the 397

faiss library (Johnson et al., 2021) to index the 398

corpus and perform an exact search. 399

4.5 Results 400

Table 1 illustrates the evaluation results of our 401

model and the baselines. 402

We first compare our model against the DPR 403

dual encoder baseline. We can observe sub- 404

stantial improvements in terms of MRR@10 and 405

nDCG@10 across all these datasets, which demon- 406

strate the effectiveness of our approach. The Re- 407

call@1k also exhibits a slight improvement. 408

Our approach is also competitive with other base- 409

lines. On MS MARCO, it surpasses other baselines 410

and is comparable to ColBERT, while being more 411

efficient. On TREC DL 19, the results are compa- 412

rable to ME-BERT, which used a more powerful 413

large-size model as backbone and the hard negative 414

mining technique of ANCE. On TREC DL 20, our 415

model even outperforms the ColBERT model. 416

4.6 Ablation Study 417

We conduct ablation studies on our model design 418

choice. 419

4.6.1 Effect of Data Augmentation 420

We used the generated queries as data augmentation 421

for pre-training. We ablate on the effect of pre- 422

training in this section. The results of different 423
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Model PLM
MS MARCO TREC DL 19 TREC DL 20

MRR@10 Recall@1k nDCG@10 nDCG@10
Sparse

BM25 - 18.4 85.3 50.6 48.0
DocT5Query - 27.7 94.7 64.8 61.9
DeepImpact BERTbase 32.6 94.8 69.5 65.1

Dense
DPR BERTbase 31.4 95.3 59.0 62.1

ANCE RoBERTabase 33.0 95.9 64.8 -
ME-BERT BERTlarge 33.4 - 68.7 -

DRPQ BERTbase 34.5 96.4 - -
ColBERT BERTbase 36.0 96.8 69.4 67.6

Ours BERTbase 36.0 96.4 68.3 68.9

Table 1: Evaluation results on MS MARCO passage retrieval benchmark and TREC DL track. DocT5Query and
DeepImpact can be seen as the sparse counterparts of our model. Both ME-BERT and DRPQ learn multi-vector
encodings for documents, and have used the hard negative mining technique proposed in ANCE. ColBERT learns
term-level representations of both query and document for late interaction. Results not available are marked as ‘-’.

training stages on MS MARCO dev set are shown424

in Table 2.425

MRR@10 Pretrain Finetune Full
DPR 25.6 31.4 34.2
Ours 26.1 33.2 36.0

Table 2: Ablation of different training stages on MS
MARCO dev set. Pretrain: only use generated data for
training; Finetune: only use data from training set for
training; Full: Pretrain + Finetune.

We can see that using generated data for pre-426

training gives a MRR@10 score comparable to427

DocT5Query but lower than directly fine-tuning428

using data from the training set. The top-k sam-429

pling decoding strategy in query generation may430

introduce some noise, which explains why the pre-431

training underperforms directly fine-tuning with432

high-quality data. However, the pre-training stage433

is still beneficial for the fine-tuning stage.434

The results on TREC DL track are shown in Ta-435

ble 3. Our model still consistently outperforms the436

dual encoder baseline under different settings. The437

improvements are more significant on this bench-438

mark since the annotation is more complete. No-439

tably, our model without data augmentation is com-440

parable to the DPR baseline with data augmentation441

on this benchmark.442

4.6.2 Effect of Sharing Parameters443

Sharing the encoder parameters can reduce the444

number of model parameters to half. We tie our445

nDCG@10 DL 19 DL 20
w/o Data Augmentation
DPR 59.0 62.1
Ours 63.0 67.6
w/ Data Augmentation
DPR 63.1 66.5
Ours 68.3 68.9

Table 3: Results on TREC DL track under different
settings.

encoder parameters in main experiments but also 446

provide ablation of untied encoder parameters in 447

Table 4 to study its effect. 448

MRR@10 tie untie
DPR 31.4 31.7
Ours 33.2 33.8

Table 4: Results of tie / untie encoder parameters on MS
MARCO dev set.

We can observe that using two sets of encoder 449

parameters gives slightly better performance but 450

not so significantly. Using separate encoders brings 451

more improvements to our model, which is normal 452

since the nature of two encoders in our model is 453

more asymmetric than that in the vanilla dual en- 454

coder. 455
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5 Analysis456

Our experimental results in the previous section457

demonstrate that it is indeed beneficial to incorpo-458

rate query interactions into the document represen-459

tations. The generated queries are crucial to the460

success of our model. In this section, we analyse461

the influence of query quality and query diversity462

to the retrieval performance.463

5.1 On the Query Quality464

The number of queries is an important factor in465

our framework. Too few queries have low diversity466

while too many queries will sacrifice efficiency.467

Thus we provide an analysis here to study its effect.468

We evaluate the query generation performance on469

the dev set of MS MARCO and reveal its relation470

with the retrieval performance.471

To measure the generation quality, we calculate472

the maximum ROUGE-L score between generated473

queries and the gold query on the dev set. For re-474

trieval performance, we report the MRR@10. Fig-475

ure 2 illustrates the evolution of the two metrics476

with different number of queries.3477
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Figure 2: The evolution of ROUGE-L and MRR@10 on
MS MARCO dev set when varying number of queries
from 1 to 10.

We can see that as the number of queries grows,478

the retrieval performance becomes better because479

of the improved generation quality. The correlation480

between the two metrics is shown in Figure 3. The481

Pearson coefficient is 0.9958, indicating a strong482

positive correlation. Keep increasing the number483

of queries will consistently improve the retrieval484

performance but more marginally.485

3Please refer to Table 6 in Appendix A for exact numbers.
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Figure 3: Correlation between generation and retrieval
performance on MS MARCO dev set.

5.2 On the Query Diversity 486

Intuitively, more diverse queries can potentially 487

hit more types of queries. We used top-k sampling 488

strategy to encourage the query generation diversity. 489

However, whether and to what extent the generated 490

queries are diverse remains unclear. To this end, we 491

adopt the self-BLEU (Zhu et al., 2018) to measure 492

the query generation diversity for a document. 493

We partition the documents of MS MARCO dev 494

set to subsets of different query diversity accord- 495

ing to their self-BLEU-4 score and measure the 496

retrieval performance on these subsets. The statis- 497

tics are shown in Figure 4. First, we observe that 498

most of the documents have high query generation 499

diversity thanks to the top-k sampling strategy (see 500

Figure 4a). Second, the retrieval performance drops 501

with higher diversity (see Figure 4b). One possible 502

reason is that the QG model will generate more 503

diverse queries when it doesn’t know the right one. 504

As such, higher diversity indicates lower quality 505

(see Figure 4c) and the retrieval performance drops 506

with lower generation quality (see Figure 3). It 507

would be desirable to design a diversity metric that 508

takes into account the generation quality. 509

5.3 Case Study 510

We conduct a case study on the dev set to intuitively 511

compare our model and the dual encoder baseline, 512

as well as to illustrate the QG performance. 513

Table 5 shows an example drawn from the MS 514

MARCO dev set. Our model can retrieve the cor- 515

rect passage by generating the right query. DPR 516

retrieves a hard negative passage where the con- 517

tent is corresponding to the query keywords but 518

can not correctly answer the query. By generat- 519

ing queries, our model can better distinguish the 520
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Figure 4: Statistics of query diversity on MS MARCO dev set. We divided the diversity into 5 levels based on an
average division of the self-BLEU-4 score.

Query how old is canada
Ours Rank 1 Canada was finally established as a country in 1867. It is 148 years old as of

July 1 2015. Canada has been a country for 147 years. The first attempt at
colonization occurred in 1000 A.D. by the Norsemen. There was no further
European exploration until 1497 A.D. when the Italian sailor John Cabot came
along. It then started being inhabited by more Europeans.

Generated Queries

when was canada established
when was canada discovered
what year was canada founded
how long has canada been a country
how old is canada

DPR Rank 1 it depends where you live but in Canada you have to be at least 16 years old.

Generated Queries

what is the legal age to be in canada
how old do you have to be to live in canada
how old do you have to be to enter canada as a citizen
at what age can i go to canada to study in canada
what is the minimum age to join the military

Table 5: Case Study on MS MARCO dev set.

difference among document meanings.521

6 Discussion522

The ranking task is usually approached with a two-523

stage pipeline: retrieve-then-rerank. The two stages524

usually use different architectures due to the effec-525

tiveness and efficiency trade-off. Dual encoder is526

more efficient for retrieval, while cross encoder is527

more powerful for reranking. How to take advan-528

tage of each other’s strengths for mutual improve-529

ments is a hot topic of research. We propose a new530

dual cross encoder architecture to benefit from both531

with a pre-interaction mechanism.532

One limitation of our framework is that there533

exists a discrepancy between training and inference.534

We used the gold query to train the model but do535

not have access to the gold query during inference.536

Generating more queries would bridge this gap, but537

at the cost of efficiency. We wish to close this gap538

with improved training strategy or improved query 539

generation quality in the future. 540

7 Conclusion 541

We proposed a novel dense retrieval model to 542

bridge the gap between dual encoder and cross 543

encoder. In our framework, the document repre- 544

sentations are obtained by pre-interacting with a 545

set of generated pseudo-queries through a cross en- 546

coder. Our approach enables multi-view document 547

representation with deep query interaction while 548

maintaining the inference efficiency of the dual en- 549

coder approach. We demonstrated its effectiveness 550

compared to dual encoder baseline via experiments 551

on various retrieval benchmarks. In the future work, 552

we would like to explore how to better incorporate 553

generated queries for model training and how to 554

improve the query generation quality for better re- 555

trieval performance. 556

8



References557

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,558
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-559
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir560
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,561
and Tong Wang. 2016. Ms marco: A human gener-562
ated machine reading comprehension dataset.563

Danqi Chen, Adam Fisch, Jason Weston, and Antoine564
Bordes. 2017. Reading Wikipedia to answer open-565
domain questions. In Proceedings of the 55th Annual566
Meeting of the Association for Computational Lin-567
guistics (Volume 1: Long Papers), pages 1870–1879,568
Vancouver, Canada. Association for Computational569
Linguistics.570

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and571
Daniel Campos. 2020a. Overview of the TREC 2020572
deep learning track. In Proceedings of the Twenty-573
Ninth Text REtrieval Conference, TREC 2020, Virtual574
Event [Gaithersburg, Maryland, USA], November575
16-20, 2020, volume 1266 of NIST Special Publica-576
tion. National Institute of Standards and Technology577
(NIST).578

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel579
Campos, and Ellen M. Voorhees. 2020b. Overview580
of the TREC 2019 deep learning track. CoRR,581
abs/2003.07820.582

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and583
Kristina Toutanova. 2019. BERT: Pre-training of584
deep bidirectional transformers for language under-585
standing. In Proceedings of the 2019 Conference of586
the North American Chapter of the Association for587
Computational Linguistics: Human Language Tech-588
nologies, Volume 1 (Long and Short Papers), pages589
4171–4186, Minneapolis, Minnesota. Association for590
Computational Linguistics.591

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.592
Hierarchical neural story generation. In Proceedings593
of the 56th Annual Meeting of the Association for594
Computational Linguistics (Volume 1: Long Papers),595
pages 889–898, Melbourne, Australia. Association596
for Computational Linguistics.597

Luyu Gao, Xueguang Ma, Jimmy J. Lin, and Jamie598
Callan. 2022. Tevatron: An efficient and flexible599
toolkit for dense retrieval. ArXiv, abs/2203.05765.600

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.601
2015. Distilling the knowledge in a neural network.602
CoRR, abs/1503.02531.603

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong604
Yang, Jimmy Lin, and Allan Hanbury. 2021. Effi-605
ciently teaching an effective dense retriever with bal-606
anced topic aware sampling. In SIGIR ’21: The 44th607
International ACM SIGIR Conference on Research608
and Development in Information Retrieval, Virtual609
Event, Canada, July 11-15, 2021, pages 113–122.610
ACM.611

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, 612
and Jason Weston. 2020. Poly-encoders: Architec- 613
tures and pre-training strategies for fast and accurate 614
multi-sentence scoring. In International Conference 615
on Learning Representations. 616

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. 617
Billion-scale similarity search with gpus. IEEE 618
Transactions on Big Data, 7(3):535–547. 619

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 620
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 621
Wen-tau Yih. 2020. Dense passage retrieval for open- 622
domain question answering. In Proceedings of the 623
2020 Conference on Empirical Methods in Natural 624
Language Processing (EMNLP), pages 6769–6781, 625
Online. Association for Computational Linguistics. 626

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef- 627
ficient and effective passage search via contextual- 628
ized late interaction over BERT. In Proceedings of 629
the 43rd International ACM SIGIR conference on 630
research and development in Information Retrieval, 631
SIGIR 2020, Virtual Event, China, July 25-30, 2020, 632
pages 39–48. ACM. 633

Yuxiang Lu, Yiding Liu, Jiaxiang Liu, Yunsheng Shi, 634
Zhengjie Huang, Shikun Feng, Yu Sun, Hao Tian, 635
Hua Wu, Shuaiqiang Wang, Dawei Yin, and Haifeng 636
Wang. 2022. Ernie-search: Bridging cross-encoder 637
with dual-encoder via self on-the-fly distillation for 638
dense passage retrieval. CoRR, abs/2205.09153. 639

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and 640
Michael Collins. 2021. Sparse, dense, and attentional 641
representations for text retrieval. Transactions of the 642
Association for Computational Linguistics, 9:329– 643
345. 644

Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan 645
McDonald. 2020. Zero-shot neural passage retrieval 646
via domain-targeted synthetic question generation. 647
arXiv preprint arXiv:2004.14503. 648

Sean MacAvaney, Franco Maria Nardini, Raffaele 649
Perego, Nicola Tonellotto, Nazli Goharian, and Ophir 650
Frieder. 2020. Efficient document re-ranking for 651
transformers by precomputing term representations. 652
In Proceedings of the 43rd International ACM SIGIR 653
conference on research and development in Infor- 654
mation Retrieval, SIGIR 2020, Virtual Event, China, 655
July 25-30, 2020, pages 49–58. ACM. 656

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola 657
Tonellotto. 2021. Learning passage impacts for in- 658
verted indexes. In SIGIR ’21: The 44th International 659
ACM SIGIR Conference on Research and Develop- 660
ment in Information Retrieval, Virtual Event, Canada, 661
July 11-15, 2021, pages 1723–1727. ACM. 662

Rodrigo Nogueira and Jimmy Lin. 2019. From 663
doc2query to doctttttquery. 664

Rodrigo Frassetto Nogueira and Kyunghyun Cho. 665
2019. Passage re-ranking with BERT. CoRR, 666
abs/1901.04085. 667

9

https://doi.org/10.48550/ARXIV.1611.09268
https://doi.org/10.48550/ARXIV.1611.09268
https://doi.org/10.48550/ARXIV.1611.09268
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
http://arxiv.org/abs/2003.07820
http://arxiv.org/abs/2003.07820
http://arxiv.org/abs/2003.07820
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1082
http://arxiv.org/abs/1503.02531
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.48550/arXiv.2205.09153
https://doi.org/10.48550/arXiv.2205.09153
https://doi.org/10.48550/arXiv.2205.09153
https://doi.org/10.48550/arXiv.2205.09153
https://doi.org/10.48550/arXiv.2205.09153
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
http://arxiv.org/abs/1901.04085


Rodrigo Frassetto Nogueira, Wei Yang, Jimmy Lin, and668
Kyunghyun Cho. 2019. Document expansion by669
query prediction. CoRR, abs/1904.08375.670

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang671
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and672
Haifeng Wang. 2021. RocketQA: An optimized train-673
ing approach to dense passage retrieval for open-674
domain question answering. In Proceedings of the675
2021 Conference of the North American Chapter of676
the Association for Computational Linguistics: Hu-677
man Language Technologies, pages 5835–5847, On-678
line. Association for Computational Linguistics.679

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-680
ine Lee, Sharan Narang, Michael Matena, Yanqi681
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the682
limits of transfer learning with a unified text-to-text683
transformer. Journal of Machine Learning Research,684
21(140):1–67.685

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,686
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong687
Wen. 2021. RocketQAv2: A joint training method688
for dense passage retrieval and passage re-ranking.689
In Proceedings of the 2021 Conference on Empiri-690
cal Methods in Natural Language Processing, pages691
2825–2835, Online and Punta Cana, Dominican Re-692
public. Association for Computational Linguistics.693

Stephen E. Robertson and Hugo Zaragoza. 2009. The694
probabilistic relevance framework: BM25 and be-695
yond. Found. Trends Inf. Retr., 3(4):333–389.696

Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang697
Wang, Fuzheng Zhang, and Wei Wu. 2021. Improv-698
ing document representations by generating pseudo699
query embeddings for dense retrieval. In Proceed-700
ings of the 59th Annual Meeting of the Association for701
Computational Linguistics and the 11th International702
Joint Conference on Natural Language Processing703
(Volume 1: Long Papers), pages 5054–5064, Online.704
Association for Computational Linguistics.705

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob706
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz707
Kaiser, and Illia Polosukhin. 2017. Attention is all708
you need. In Advances in Neural Information Pro-709
cessing Systems, volume 30. Curran Associates, Inc.710

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna711
Gurevych. 2022. GPL: Generative pseudo labeling712
for unsupervised domain adaptation of dense retrieval.713
In Proceedings of the 2022 Conference of the North714
American Chapter of the Association for Computa-715
tional Linguistics: Human Language Technologies,716
pages 2345–2360, Seattle, United States. Association717
for Computational Linguistics.718

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,719
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and720
Arnold Overwijk. 2021. Approximate nearest neigh-721
bor negative contrastive learning for dense text re-722
trieval. In International Conference on Learning723
Representations.724

Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang, and 725
Linjun Yang. 2021. xMoCo: Cross momentum con- 726
trastive learning for open-domain question answering. 727
In Proceedings of the 59th Annual Meeting of the 728
Association for Computational Linguistics and the 729
11th International Joint Conference on Natural Lan- 730
guage Processing (Volume 1: Long Papers), pages 731
6120–6129, Online. Association for Computational 732
Linguistics. 733

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min 734
Zhang, and Shaoping Ma. 2021. Optimizing dense 735
retrieval model training with hard negatives. In SI- 736
GIR ’21: The 44th International ACM SIGIR Confer- 737
ence on Research and Development in Information 738
Retrieval, Virtual Event, Canada, July 11-15, 2021, 739
pages 1503–1512. ACM. 740

Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang, 741
and Nan Duan. 2022. Multi-view document repre- 742
sentation learning for open-domain dense retrieval. 743
In Proceedings of the 60th Annual Meeting of the 744
Association for Computational Linguistics (Volume 745
1: Long Papers), pages 5990–6000, Dublin, Ireland. 746
Association for Computational Linguistics. 747

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan 748
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A 749
benchmarking platform for text generation models. 750
In The 41st International ACM SIGIR Conference on 751
Research & Development in Information Retrieval, 752
SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, 753
pages 1097–1100. ACM. 754

A Appendix 755

k ROUGE-L MRR@10
1 42.49 27.74
2 50.93 30.09
3 55.67 31.15
4 58.45 31.66
5 60.63 31.92
6 62.28 32.38
7 63.57 32.67
8 64.62 32.88
9 65.46 32.96
10 66.22 33.23

Table 6: Results of generation and retrieval perfor-
mance on MS MARCO dev set when varying number
of queries (correspond to Figure 2 and Figure 3).
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