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Abstract

Classification of large and dense networks based on topology is very difficult due to the
computational challenges of extracting meaningful topological features from real-world net-
works. In this paper we present a computationally tractable approach to topological clas-
sification of networks by using principled theory from persistent homology and optimal
transport to define a novel vector representation for topological features. The proposed
vector space is based on the Wasserstein distance between persistence barcodes. The 1-
skeleton of the network graph is employed to obtain 1-dimensional persistence barcodes
that represent connected components and cycles. These barcodes and the corresponding
Wasserstein distance can be computed very efficiently. The effectiveness of the proposed
vector space is demonstrated using support vector machines to classify brain networks.
This extended abstract is adapted from the extended work reported in Songdechakraiwut
et al. (2022).
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1. Introduction

Connected components and cycles are the most dominant and fundamental topological
features of real networks. Many networks naturally organize into modules or connected
components (Bullmore and Sporns, 2009; Honey et al., 2007). Similarly, cycle structure is
ubiquitous and is often interpreted in terms of information propagation, redundancy and
feedback loops (Kwon and Cho, 2007; Ozbudak et al., 2005; Weiner et al., 2002).

Here we present a novel topological vector space (TopVS) that embeds persistence bar-
codes for connected components and cycles. TopVS preserves the underlying distance in the
original space of persistence barcodes while existing methods do not (Carrière and Bauer,
2019). The p-norm distance in TopVS is equivalent to the p-Wasserstein distance in the
original barcode space. This equivalence allows the computation of summary statistics such
as the mean of persistence barcodes to be easily performed in TopVS. The utility of TopVS
is illustrated by classifying measured functional brain networks associated with different
levels of arousal during administration of general anesthesia. TopVS performs very well
compared to other topology-based approaches.
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Figure 1: (a) Four-node network G decomposes into its maximum spanning tree (MST) and
a subnetwork with non-MST edge weights. (b) As the filtration value increases,
the number of connected components β0 monotonically increases while the num-
ber of cycles β1 monotonically decreases.

2. Topological Space with Wasserstein Distance

Graph Filtration Define a network as an undirected weighted graph G = (V,w) with a
set of nodes V , and a weighted adjacency matrixw = (wij). The number of nodes is denoted
by |V |. Define a binary graph Gϵ with the identical node set V by thresholding the edge
weights so that an edge between nodes i and j exists if wij > ϵ. The binary graph is viewed
as a simplicial complex consisting of only nodes and edges, that is, a 1-skeleton (Munkres,
2018). As ϵ increases, more and more edges are removed from the network G. Thus, we
have a nested sequence of 1-skeletons: Gϵ0 ⊇ Gϵ1 ⊇ · · · ⊇ Gϵk , where ϵ0 ≤ ϵ1 ≤ · · · ≤ ϵk are
called filtration values. This sequence of 1-skeletons is called a graph filtration.

One Dimensional Persistence Barcodes Persistent homology keeps track of the birth
and death of topological features over filtration values ϵ. A topological feature that is born
at a filtration bi and persists up to a filtration di, is represented as a 2-dimensional point
(bi, di) in a plane. A set of all the points {(bi, di)} is called persistence barcode (Ghrist,
2008). In the 1-skeleton, the only non-trivial topological features are connected compo-
nents (0-dimensional topological features) and cycles (1-dimensional topological features).
As ϵ increases, the number of connected components β0(Gϵ) and cycles β1(Gϵ) are mono-
tonically increasing and decreasing, respectively (Songdechakraiwut et al., 2021). Thus,
the representation of the connected components can be simplified to a collection of sorted

birth values B(G) = {bi}|V |−1
i=1 . Similarly, we can simplify the representation of the cycles

as a collection of sorted death values D(G) = {di}. The example network of Figure 1 has
B(G) = {e3, e5, e6} and D(G) = {e1, e2, e4}.

Wasserstein Distance Simplification TheWasserstein distance between the 1-dimensional
barcodes of the graph filtration can be obtained using a closed-form solution. Let Gi be a
network. Its underlying probability density function on the persistence barcodes for con-
nected components is defined in the form of Dirac masses (Turner et al., 2014) as

fGi,B(x) :=
1

|B(Gi)|
∑

b∈B(Gi)

δ(x− b)
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where δ(x − b) is a Dirac delta centered at the point b. Then the empirical distribution is
the integration of fGi,B as

FGi,B(x) =
1

|B(Gi)|
∑

b∈B(Gi)

1b≤x

where 1b≤x is an indicator function taking the value 1 if b ≤ x, and 0 otherwise. A
pseudoinverse of FGi,B is defined as F−1

Gi,B
(z) = inf{b ∈ R |FGi,B(b) ≥ z}, i.e., F−1

Gi,B
(z)

is the smallest b for which FGi,B(b) ≥ z. Then the empirical Wasserstein distance for
connected components has a closed-form solution in terms of pseudoinverses as

Wp,B(G1, G2) =
(∫ 1

0
|F−1

G1,B
(z)− F−1

G2,B
(z)|p dz

)1/p
.

Similarly, the Wasserstein distance for cycles Wp,D(G1, G2) is defined in terms of empirical
distributions for death sets D(G1) and D(G2).

The empirical Wasserstein distances Wp,B and Wp,D are approximated by computing the

Lebesgue integration numerically as follows. Let B̂(G1) = {F−1
G1,B

(1/m), ..., F−1
G1,B

(m/m)}
and D̂(G1) = {F−1

G1,D
(1/n), ..., F−1

G1,D
(n/n)} be pseudoinverses of network G1 sampled with

partitions of equal intervals. Let B̂(G2) and D̂(G2) be sampled pseudoinverses of network
G2 with the same partitions of m and n, respectively. Then the approximated Wasserstein

distances are given by Ŵp,B(G1, G2) =
(

1
mp

∑m
k=1

∣∣F−1
G1,B

(k/m) − F−1
G2,B

(k/m)
∣∣p)1/p

and

Ŵp,D(G1, G2) =
(

1
np

∑n
k=1

∣∣F−1
G1,D

(k/n)− F−1
G2,D

(k/n)
∣∣p)1/p

.

Vector Representation of Persistence Barcodes A collection of 1-dimensional per-
sistence barcodes together with the Wasserstein distance is a metric space. 1-dimensional
persistence barcodes can be embedded into a vector space that preserves the Wasserstein
metric on the original space of persistence barcodes as follows. Let G1, G2, ..., GN be N
observed networks possibly with different node sizes. Let F−1

Gi,B
be a pseudoinverse of net-

work Gi. The vector representation of a persistence barcode for connected components
in network Gi is defined as a vector of the pseudoinverse sampled at 1/m, 2/m, ...,m/m.

That is, vB,i :=
(
F−1
Gi,B

(1/m), F−1
Gi,B

(2/m), ..., F−1
Gi,B

(m/m)
)⊤

. A collection of these vec-

tors MB = {vB,i}Ni=1 with the p-norm || · ||p induces the p-norm metric dp,B given by

dp,B(vB,i,vB,j) = ||vB,i − vB,j ||p = mŴp,B. Thus, for p = 1 the proposed vector space
describes Manhattan distance, p = 2 Euclidean distance, and p → ∞ the maximum met-
ric, which in turn correspond to the earth mover’s distance (W1) (Rubner et al., 2000),
2-Wasserstein distance (W2), and the bottleneck distance (W∞) (Kerber et al., 2017), re-
spectively, in the original space of persistence barcodes. Similarly, we can define a vector
space of persistence barcodes for cycles MD = {vD,i}Ni=1 with the p-norm metric dp,D. The
normed vector space (MB, dp,B) describes topological space of connected components in
networks, while (MD, dp,D) describes topological space of cycles in networks.

The topology of a network viewed as a 1-skeleton is completely characterized by con-
nected components and cycles. Thus, we can fully describe the network topology using
both MB and MD as follows. Let MB × MD = {(vB,i,vD,i) |vB,i ∈ MB,vD,i ∈ MD} be
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Figure 2: Accuracy classifying brain networks within individual subjects. The last column
displays the average accuracy obtained across all subjects. The center markers
and bars depict the means and standard deviations obtained over 100 trials.

the Cartesian product between MB and MD so the vectors in MB ×MD are the concatena-
tions of vB,i and vD,i. For this product space to represent meaningful topology of network
Gi, the vectors vB,i and vD,i must be a network decomposition, as illustrated in Figure 1.
Thus vB,i and vD,i are constructed by sampling their psudoinverses with m = V − 1 and

n = 1 + V(V−3)
2 , respectively, where V is a free parameter indicating a reference network

size. The metrics dp,B and dp,D can be put together to form a p-product metric dp,× on
MB ×MD as

dp,×
(
(vB,i,vD,i), (vB,j ,vD,j)

)
=

(
[dp,B(vB,i,vB,j)]

p + [dp,D(vD,i,vD,j)]
p
)1/p

=
(
[mŴp,B]

p + [nŴp,D]
p
)1/p

,

where (vB,i,vD,i), (vB,j ,vD,j) ∈ MB × MD, m = V − 1 and n = 1 + V(V−3)
2 . Thus, dp,×

is a weighted combination of p-Wasserstein distances, and is simply the p-norm metric
between vectors constructed by concatenating vB,i and vD,i. The normed vector space
(MB ×MD, dp,×) is termed topological vector space (TopVS). A direct consequence of the
equality is that the mean of persistence barcodes under the approximated Wasserstein
distance is equivalent to the sample mean vector in TopVS. In addition, the proposed
vector representation is highly interpretable because persistence barcodes can be easily
reconstructed from vectors by separating sorted births and deaths.

3. Application to Functional Brain Networks

Dataset We evaluate our method using a brain network dataset from the anesthesia study
reported by Banks et al. (2020) (see Appendix A for details). The measured brain networks
are based on eleven neurosurgical patients during administration of increasing doses of the
general anesthetic propofol prior to surgery. Each segment is labeled as one of the three
arousal states: pre-drug wake, sedated but responsive to command, or unresponsive.

Classification performance evaluation We compare the classification performance of
the proposed TopVS relative to that of several state-of-the-art methods. While nearly any
classifier may be used with TopVS, here we illustrate results using the C-support vector
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machine (SVM) (Chang and Lin, 2011) with the linear kernel, which maximizes Wasserstein
distance-based margin. The performance of TopVS is compared to ten other methods
for persistence barcodes, graph kernels and graph neural networks including persistence
image (PI) (Adams et al., 2017), sliced Wasserstein kernel (SWK) (Carriere et al., 2017),
persistence weighted gaussian kernel (PWGK) (Kusano et al., 2016), propagation kernel
(Prop) (Neumann et al., 2016), graph hopper kernel (GHK) (Feragen et al., 2013), graph
convolutional networks (GCN) (Kipf and Welling, 2017), graph isomorphism network (GIN)
(Xu et al., 2019), PersLay (Carrière et al., 2020), graph filtration learning (GFL) (Hofer
et al., 2020) and topological graph neural network (TGNN) (Horn et al., 2022). We apply
a nested CV comprising an outer loop of stratified 2-fold CV and an inner loop of stratified
3-fold CV, for each subject. Since we may get a different split of data folds each time, we
perform the nested CV for 100 trials and report an average accuracy score and standard
deviation for each subject. We also average these individual accuracy scores across subjects
(11× 100 scores) to obtain an overall accuracy.

Results Figure 2 compares classification accuracy for individual subjects. There is vari-
ability in performance across subjects and across methods. In most subjects all methods
perform relatively well. The consistently poorer performance of PI, Prop, GIN, PersLay
and GFL is evident in the lower overall performance. TopVS is demonstrated to perform
favorably against the graph neural network classification methods. The results suggest that
the use of complex classification methods, such as GCN, GIN, PersLay, GFL and TGNN,
does not result in significant increase in generalizability when classifying brain networks.
Our TopVS method is consistently among the best performing classifiers, resulting in the
higher overall performance.
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Appendix A. Brain Network Dataset

Brain network data were obtained from eleven neurosurgical patients between 19 and 59
years old as described in Table 1. The patients were undergoing chronic invasive intracra-
nial electroencephalography (iEEG) monitoring as part of their treatment for medically
refractory epilepsy. The Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans was followed for all the experiments. The Uni-
versity of Iowa Institutional Review Board and the National Institutes of Health approved
all research protocols, and written informed consent was obtained from all subjects. Acqui-
sition of clinically required data was not impeded by the research and subjects were free to
rescind their consent whenever they wished without interfering with their clinical evalua-
tion. Subdural and depth electrodes (Ad-Tech Medical, Oak Creek, WI) used to obtain all
research data were located by the team of epileptologists and neurosurgeons based solely
on needs for clinical evaluation of the patients. Data collected in the operating room prior
to electrode removal, before and during induction of general anesthesia with propofol were
used to create the brain network dataset. Full description of the method for obtaining the
brain network dataset and experimental procedure is provided in (Banks et al., 2020).
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Table 1: Brain network dataset.

Subject Age Gender Network size

R369 30 M 199
L372 34 M 174
R376 48 F 189
B384 38 M 89
R399 22 F 175
L400 59 F 126
L403 56 F 194
L405 19 M 127
L409 31 F 160
L423 51 M 152
L514 46 M 118
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