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Abstract
Recent contributions of semantic information the-
ory reveal the set-element relationship between
semantic and syntactic information, represented
as synonymous relationships. In this paper, we
propose a synonymous variational inference (SVI)
method based on this synonymity viewpoint to re-
analyze the perceptual image compression prob-
lem. It takes perceptual similarity as a typical syn-
onymous criterion to build an ideal synonymous
set (Synset), and approximate the posterior of its
latent synonymous representation with a paramet-
ric density by minimizing a partial semantic KL
divergence. This analysis theoretically proves
that the optimization direction of perception im-
age compression follows a triple tradeoff that
can cover the existing rate-distortion-perception
schemes. Additionally, we introduce synonymous
image compression (SIC), a new image compres-
sion scheme that corresponds to the analytical
process of SVI, and implement a progressive
SIC codec to fully leverage the model’s capabili-
ties. Experimental results demonstrate compara-
ble rate-distortion-perception performance using
a single progressive SIC codec, thus verifying the
effectiveness of our proposed analysis method.

1. Introduction
Image compression is a typical topic for lossy source cod-
ing, aiming to achieve the optimal tradeoff between recon-
structed image quality and coding rate. Following the rate-
distortion optimization instructed by Shannon’s classic in-
formation theory (1948; 1959), traditional image compres-
sion like JPEG (Wallace, 1991) and BPG (Bellard, 2015)
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have pursued this goal with the peak signal-to-noise ratio
(PSNR) and multi-scale structural similarity index (MS-
SSIM) quality metrics through handcrafted algorithms in-
cluding transform coding, quantization, and entropy coding.
With the growing research in artificial intelligence, recent
advancements in learned image compression (LIC) (Ballé
et al., 2018; Minnen et al., 2018; Cheng et al., 2020; He
et al., 2021; 2022a; Li et al., 2024) combine the optimization
principles of traditional image coding with the capabilities
of deep learning. Its basic optimization idea can be the-
oretically analyzed using a variational inference method
similar to that in the variational auto-encoder (Kingma &
Welling, 2013), leading to a loss function in the form of
a rate-distortion tradeoff (Ballé et al., 2017; 2018). These
methods have demonstrated significant rate-distortion per-
formance compared with conventional methods.

As the inconsistency exists between “low distortion” and
“high perceptual quality”, Blau and Michaeli explored the
tradeoff between distortion and perception (2018). They fur-
ther incorporated the perceptual constraint into compression
limit analysis and explored the rate-distortion-perception
tradeoff (Blau & Michaeli, 2019). Further theoretical analy-
sis (Theis & Agustsson, 2021; Theis & Wagner, 2021; Yan
et al., 2021; Qian et al., 2022; Theis, 2024; Hamdi et al.,
2025) and empirical results (Agustsson et al., 2019; Mentzer
et al., 2020; He et al., 2022b; Theis et al., 2022; Agustsson
et al., 2023; Muckley et al., 2023; Hoogeboom et al., 2023;
Xu et al., 2023; Careil et al., 2024) demonstrate the effec-
tiveness of this new optimization direction and suggest that
perceptual image compression (PIC) with high perceptual
quality at low bitrates can be achieved with generative com-
pression (Santurkar et al., 2018) empowered by generative
adversarial networks (GAN) (Goodfellow et al., 2014) and
diffusion models (Ho et al., 2020).

The great success of the rate-distortion-perception trade-off
has effectively shifted the focus from symbol-level accuracy
in traditional image compression and tends more towards
semantic information accuracy, which aligns with Shannon
and Weaver’s discussion on communication problem levels
(Weaver, 1953). However, these works adopt diverse em-
pirical optimization approaches for perceptual optimization,
such as Kullback-Leibler (KL) divergence, discriminator-
based adversarial loss like Wasserstein divergence (Blau &
Michaeli, 2019), or mixed with “perceptual” measure like

1



Synonymous Variational Inference for Perceptual Image Compression

LPIPS (Zhang et al., 2018; Mentzer et al., 2020; Muckley
et al., 2023) and DISTS (Ding et al., 2020). The diversity
and inconsistency of these methods motivate us to establish
a unified perspective for perceptual image compression with
a well-established mathematical theoretical framework.

In this paper, we model the perceptual image compression
problem mathematically based on a semantic information
theory viewpoint. Recent advancements in semantic infor-
mation theory (Niu & Zhang, 2024) highlight a set-element
relationship between semantic information (i.e., the mean-
ing) and syntactic information (i.e., data samples), where
one meaning can be expressed in diverse syntactic forms.
Building on this synonymity perspective, manipulating a set
of samples with the same meaning (referred as to a synony-
mous set, abbreviated as “Synset”) should be considered
as the principle of semantic information processing. This
viewpoint has the potential to surpass the theoretical limits
of classical information theory while relaxing symbol-level
accuracy (i.e., distortion) requirements. We emphasize that
although the concept of synonymity originates from text
data, it is universal to various types of natural data. For ex-
ample, in image data, perceptual similarity between different
images can be seen as a typical synonymous relationship.

On this basis, we re-analyze the optimization goal of percep-
tual image compression and introduce a novel variational
inference method to analyze its optimization direction, aim-
ing to guide the design of an image compression scheme.
The contributions of our paper are as follows:

1. We propose Synonymous Variational Inference (SVI),
a novel variational inference method to analyze the
optimization direction of perceptual image compres-
sion. By building an ideal synset based on a typical
criterion of perceptual similarity, it approximates the
posterior of the corresponding latent synonymous rep-
resentation with a parametric density by minimizing a
partial semantic KL divergence. This method theoreti-
cally proves that the optimization direction of percep-
tual image compression is an expected rate-distortion-
perception tradeoff form that covers the existing rate-
distortion-perception schemes. To the best knowledge
of the authors, our method is the first work that can
theoretically explain the fundamental reason for the
divergence measure’s existence in existing percep-
tual image compression schemes.

2. We establish Synonymous Image Compression (SIC),
a new image compression scheme that corresponds to
the analytical process of SVI. By solely encoding the
latent synonymous representation partially, SIC inter-
prets this information as an equivalent quantized latent
synset. It reconstructs multiple images satisfying the
synonymous relationship with the original image by

multiple sampling the detailed representations indepen-
dently from this latent synset.

3. We implement a progressive SIC codec to validate the
theoretical analysis result, fully leveraging the model’s
capabilities. Experimental results demonstrate compa-
rable rate-distortion-perception performance using a
single neural progressive SIC image codec, thus veri-
fying our method’s effectiveness.

2. Background
2.1. Rate-Distortion Theory and Variational Inference

As one of the fundamental theorems in Shannon’s classical
information theory, rate-distortion theory (Shannon, 1948;
Shannon et al., 1959) aims to address the lossy compression
problem. It provides a theoretical lower bound of the com-
pression rate R (D) with a given distortion D, which can be
characterized as a rate-distortion function (Thomas & Joy,
2006)

R (D) = min
p(x̂|x)

I
(
X; X̂

)
s.t. Ex,x̂∼p(x,x̂) [d (x, x̂)] ≤ D,

(1)

in which I
(
X; X̂

)
represents mutual information between

the source X and the reconstructed X̂ , numerically equal
to the average coding rate for compressing X with a given
lossy codec; D can be any reference distortion measure
satisfying the condition that d (x, x̂) = 0 if and only if
x = x̂, typified by the mean squared error (MSE).

To achieve this, learned image compression achieves op-
timal rate-distortion performance through end-to-end op-
timization training. While the ultimate optimization tar-
get remains the rate-distortion tradeoff, aligning with the
continuous changes in neural network model training, the
optimization process is achieved through variational infer-
ence for the generative model, specifically the variational
auto-encoders (Kingma & Welling, 2013; Ballé et al., 2017;
2018). The core idea of variational inference is to build a
parametric latent density q(ỹ|x) and minimize the KL diver-
gence, a standard measure in classical information theory,
to approximate the true posterior pỹ|x(ỹ|x), i.e.,

Ex∼p(x)DKL
[
q||pỹ|x

]
= Ex∼p(x)Eỹ∼q[

������:0
log q (ỹ|x)− log px|ỹ (x|ỹ)︸ ︷︷ ︸

weighted distortion

− log pỹ (ỹ)︸ ︷︷ ︸
rate

]
+ const.

(2)

As the first term equals 0 under the assumption of a uniform
density on the unit interval centered on y, and the last term
is a constant, the optimization simplifies to the sum of a
weighted distortion and a coding rate, thereby achieving the
optimal rate-distortion tradeoff.
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2.2. The Rate-Distortion-Perception tradeoff

Since Blau and Michaeli demonstrated the apparent trade-
off between perceptual quality and distortion measure that
widely exists in various distortion measures (2018), they ex-
tended the classic rate-distortion tradeoff to a triple tradeoff
version (2019). Specifically, they define the perceptual qual-
ity index dp (px, px̂) based on some divergence between
distributions of the source and reconstructed images, and
build a new lower bound of compression rate R (D,P ) with
considerations of the perception index, i.e.,

R (D,P ) = min
p(x̂|x)

I
(
X; X̂

)
s.t. Ex,x̂∼p(x,x̂) [d (x, x̂)] ≤ D,

dp (px, px̂) ≤ P.

(3)

Building on this triple tradeoff relationship, the percep-
tual image compression methods (Agustsson et al., 2019;
Mentzer et al., 2020; He et al., 2022b; Agustsson et al.,
2023; Muckley et al., 2023) typically optimize the model
using the following loss function form:

LRDP =λr · I
(
X; X̂

)
+ λd · Ex,x̂∼p(x,x̂) [d (x, x̂)]

+ λp · dp (px, px̂) .
(4)

2.3. Semantic Information Theory

As the optimization towards perceptual quality is more in-
clined to the accuracy of conveying meaning (the semantic
problem) instead of the symbol-level accuracy that classi-
cal information theory focuses on (the technical problem)
(Weaver, 1953), this paper considers analyzing the prob-
lem of perceptual image compression based on semantic
information theory.

Research on semantic information theory has been ongo-
ing since the 1950s, with various viewpoints such as log-
ical probability (Carnap & Bar-Hillel, 1952; Bar-Hillel &
Carnap, 1953; Barwise & Perry, 1981; Floridi, 2004; Bao
et al., 2011) and fuzzy probability (De Luca & Termini,
1972; 1974; Al-Sharhan et al., 2001) employed to discuss
the essence and measures of semantic information, but no
consensus has been reached over time. Furthermore, these
viewpoints provide limited theoretical guidance for the prac-
tical coding of natural information sources.

However, a recent contribution to semantic information the-
ory (Niu & Zhang, 2024) presents a potential turning point
in the field, which suggests understanding the semantic in-
formation from a synonymity perspective. In this theory,
semantic information is processed based on a fundamen-
tal principle: considering a set of syntactic samples with
the same meaning (referred to as a synset). Corresponding
semantic information measures are also provided. As an im-

portant foundation, a semantic variable Ů 1 corresponds
to various possible synsets Uis = {ui | i ∈ Nis}, where
each sample ui is a possible value of the syntactic variable
U and shares the same semantic meaning with all the pos-
sible values {uj | j ∈ Nis} indexed in Nis . On this basis,
the semantic entropy of Ů is defined by

Hs

(
Ů
)
= −

∑
is

∑
i∈Nis

p (ui) log

 ∑
i∈Nis

p (ui)

 , (5)

in which the probability of the synset p (Uis) is defined
as the sum of the probabilities of all the samples p (ui)
within it. This directly leads to the inequality between
the semantic entropy and the classical Shannon entropy,
i.e., Hs

(
Ů
)
≤ H

(
U
)

, being apparently valid, since the
uncertainty of syntactic samples is no longer the focus.

As the foundation of the synonymous variational inference
proposed in this paper, a new form of KL divergence needs
to be introduced from (Niu & Zhang, 2024), referred to
as partial semantic KL divergence DKL,s [q||ps], which is
defined as

DKL,s [q||ps] =
Ñ∑

is=1

∑
ui∈Uis

q (ui) log
q (ui)

p (Uis)
, (6)

which represents a divergence between a syntactic distribu-
tion q and a semantic distribution ps. 2 Clearly, these two
distributions emphasize different levels of information, i.e.,
the syntactic level and the semantic level. However, examin-
ing the distance between these distributions holds significant
physical meaning in perceptual image compression, which
will be detailed in Section 3.2.

3. Synonymous Variational Inference: A
Semantic Information Viewpoint

3.1. Overview

Consider an image codec, in which the encoder captures
the semantic information of the image, while the decoder
reconstructs an image with the same semantics as the origi-
nal instead of directly restoring the original image’s pixels.
Obviously, in natural image data, there are typically mul-
tiple images that share the same semantic information as
the original image. For example, all images that exhibit
certain perceptual similarities to the original image can be

1Refer to as Ũ in Niu and Zhang’s paper (2024). The ring hat
symbol “̊ ” is appplied to distinguish it from the tilde hat symbol
“˜” commonly used in variational inference.

2The relationship between the partial semantic KL diver-
gence and the standard KL divergence satisfies DKL,s [q||ps] ≤
DKL [q||p], which can be referred to as partial semantic relative
entropy in Niu and Zhang’s paper (2024).
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Figure 1. An illustration of the optimization directions of synonymous image compression. By continuously minimizing the partial
semantic KL divergence DKL,s

[
q||pỹs|X

]
in latent space, the reconstructed synset X̂ gradually approaches the ideal synset X until

complete overlap occurs. At that point, every sample x̂j ∈ X̂ is a “synonym” of the original image sample x.

considered to convey the same meaning “to some extent”
while retaining distinct detailed information. 3 Therefore,
when placing these images in a synset, there must be a la-
tent representation and the corresponding coding sequence
capable of capturing the shared characteristics among all
samples in this set, which should be learned by the semantic
encoder. Using this representation, the semantic decoder
can sample any image from the synset of the original image,
which satisfies certain perceptual similarity with the source
image if the synonymous judge criterion is the perceptual
similarity criterion.

When considering using a deep neural network to design
the above codec, its continuous optimization problem can
be analyzed using a similar idea to the variational autoen-
coder, based on variational inference (Kingma & Welling,
2013). Figure 1 illustrates the optimization direction of
this problem and provides a schematic representation of the
achievable effects within the data space. Ideally, the source
image x can be considered as a sample in the ideal synset X ,
shown as the dashed circles in Figure 1. Correspondingly,
there must be an ideal posterior pỹs|X (ỹs|X ) in the latent
space to represent the latent synonymous representations
ys that capture the shared characteristics of all the samples
{xi|xi ∈ X}. However, in practice, the ideal synset X is
unavailable, so we rely on the original image x to construct

3In practice, people may have varying judgments about whether
two images have the same meaning, due to their varying judge
criteria. Thus, samples in a synset based on a given synonymous
criterion must share some specific semantic information but do not
necessarily have completely identical meanings.

a parametric latent density q (ỹ|x) to approximate this pos-
terior by minimizing the partial semantic KL divergence
between these two distributions, i.e.,

minEx∼p(x)DKL,s
[
q||pỹs|X

]
. (7)

Once this distribution divergence is minimized, a generative
model px|ỹs,ŷϵ

(x|ỹs, ŷϵ) (i.e., the semantic decoder, in
which ŷϵ is a sampling for details) can be finally optimized.
On this basis, the reconstructed synset x̂ produced by the
semantic decoder can be considered as a sample of the
ideal synset X , which ensures exhibiting certain perceptual
similarities to the original image x.

3.2. Synonymous Variational Inference

Unlike the usual variational inference, the two distribu-
tions of (7) work at different levels: The parametric density
q (ỹ|x) works at the syntactic level, while the true posterior
pỹs|X (ỹs|X ) operates at the semantic level, represented in
the form of synsets. However, since ỹ can be decomposed
into a combination or concatenation of a synonymous repre-
sentation ỹs and a detailed representation ỹϵ, it is possible to
effectively process the minimization of the partial semantic
KL divergence. To distinguish from the existing variational
inference methods, we give the following definition.

Definition 3.1. Synonymous Variational Inference (SVI) is
a generic variational inference method that approximates
the true posterior of the synonymous representations with a
parametric density at the syntactic level by minimizing the
partial semantic KL divergence (7).
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generative model

(synthethis transform)

Observed Data

Random Variables

Multi-samples Required to 

Construct Synsets

Parametric Prior

(Factorized / Hyperprior)

Essential Dependence

Non-essential Dependenceinference model

(analysis transform) Ideal Synset

“Noisy” Latent Synset

Figure 2. Left: Representation of the proposed encoder as a synonymous variational inference model, and corresponding decoder as a
generative Bayesian model. The latent representation ỹ is a merge of the synonymous representation ỹs and the detailed representation
ỹϵ, achieved through some form of merging or splicing. A fully factorized (Ballé et al., 2017) or a hyperprior-like (Ballé et al., 2018;
Minnen et al., 2018) entropy model can be employed in the “Parametric Prior” item. An autoregressive (Minnen et al., 2018) or a parallel
(He et al., 2021) context model can also be utilized in θp. These two types of methods can be used for accurate probability estimations of
ỹs or predictions for ŷϵ. Right: Illustrations for the equivalent relationship of the “noisy” latent synset Ỹ and the ideal synset X .

By applying the proposed synonymous variational inference,
the optimization direction of perceptual image compression
can be determined. To facilitate the subsequent derivation,
we first state the following lemma (the detailed proof can
be found in Appendix A.1):
Lemma 3.2. When the source considers the existence of
an ideal synset X and the decoder places the reconstructed
sample in a reconstructed synset X̃ , the minimization of the
expected negative log synonymous likelihood term

minEx∼p(x)Eỹ∼q

[
− log pX |ỹs

(X |ỹs)
]

⇐⇒ minλd · Ex∼p(x)Eỹ∼qEx̃i∈X̃ |ỹs
[d (x, x̃i)]

+ λp · Eỹ∼qEx̃i∈X̃ |ỹs
DKL [px||px̃i

] ,

(8)

in which λd and λp are the tradeoff factors for the expected
distortion (typically expected means-squared error, i.e., E-
MSE) term and the expected KL divergence (E-KLD) term,
respectively.

Based on this, we propose the following theorem:
Theorem 3.3. For an image source x ∼ p (x)
together with its bounded expected distortion
Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] and expected KL diver-
gence Ex̂i∈X̂ |ŷs

DKL [px||px̂i
], the minimum achievable

rate of perceptual image compression is

R (X ) = min
p(X̂ |x)

I
(
X;

ˆ̊
X

)
s.t. Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] ≤ D,

Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ≤ P,

(9)

where I
(
X;

ˆ̊
X

)
= Hs

(
ˆ̊
X

)
−Hs

(
ˆ̊
X|X

)
with semantic

variable ˆ̊
X corresponds to the reconstructed synset X̂ .

Proof. As stated in Figure 2, the model of synonymous
image compression can be considered as a generalized vari-
ational auto-encoder. By using the proposed SVI, i.e., mini-
mizing the partial semantic KL divergence given in (7),

Ex∼p(x)DKL,s
[
q||pỹs|X

]
= Ex∼p(x)Eỹ∼q[

������:0
log q (ỹ|x)− log pX|ỹs

(X |ỹs)− log pỹs
(ỹs)

]
+ const.

(10)

The first term equals 0 under the assumption of a uniform
density on the unit interval centered on y, and the last term
is a constant for a determined x and corresponding ideal
synset X . For the third term, with a determined inference
and generative model, the coding rate of the synonymous
representation Ex∼p(x)Eỹ∼q

[
− log pỹs

(ỹs)
]

is equal to

I
(
X;

ˆ̊
X

)
, as stated in Appendix A.2.

By Lemma 3.2, the minimization of the second term is
equivalent to minimizing a weighted expected distortion
Ex∼p(x)Eỹ∼qEx̃i∈X̃ |ỹs

[d (x, x̃i)] plus a weighted E-KLD
term Eỹ∼qEx̃i∈X̃ |ỹs

DKL [px||px̃i ]. These weights can be
considered as Lagrange multipliers to the rate term, which
makes the optimization goal equivalent to minimizing

I
(
X;

ˆ̊
X

)
with quantized bounded expected distortion and

E-KLD constraints to obtain the optimal p(X̂ |x), shown
as (9). This target corresponds to a Synonymous Rate-
Distortion-Perception Tradeoff, which can be shown as

LX = λr · Ex∼p(x)

[
− log pŷs

(ŷs)
]

+ λd · Ex∼p(x)Ex̂i∈X̂ |ŷs
[d (x, x̂i)]

+ λp · Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ,

(11)

thus we finish the proof of the theorem.
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Figure 3. Processing frameworks of SIC. (a): The general framework. (b): The progressive framework.

Due to space limitations, only a brief outline of the proof is
provided above. Please refer to Appendix A.2 for detailed
proof. Additionally, we state that the existing rate-distortion-
perception tradeoff (4) is a special case of (11) when there
is only one sample x̂ in the reconstructed synset X̂ . More
comprehensive discussions are provided in Appendix A.3.

4. Synonymous Image Compression
According to Figure 2, the main difference between our
proposed processing scheme and the general LIC method is
that the generator only needs part of the accurate latent fea-
tures, while the other part can be obtained through random
sampling instead of accurate coding. Thus, the generator
can obtain all the information required to reconstruct the
image. To this end, we name this new image compression
scheme Synonymous Image Compression (SIC).

A general framework of SIC is given in Figure 3(a). The
SIC codec requires an analysis transform ga

(
x;ϕg

)
and

a synthesis transform gs
(
ŷs, ŷϵ,j ;θg

)
to achieve the bidi-

rectional nonlinear mapping between the data space and
the latent space. Only the synonymous representation ŷs is
required to be coded, and this representation is equivalent
to a quantized latent synset Ŷ contains all the samples with
different detailed representations. With obtaining ŷs, the
generative model can generate multiple images X̂ = {x̂j}
by sampling diverse detailed representations

{
ŷϵ,j

}
in Ŷ .

A uniform noise with unit interval should be used for ys

to achieve efficient continuous optimization, and an en-
tropy model assisted by an arbitrary form of parametric
prior should be employed to estimate the coding rate for
ŷs, whereas both these two are not essential for yϵ and ŷϵ.
Although this aligns with the analytical process of synony-
mous variational inference, it results in the SIC model’s
capabilities being underutilized, as the details still have the
potential to provide additional information.

The progressive framework of SIC is proposed to solve this
problem, as shown in Figure 3(b). It partition the latent fea-

ture ŷ into L synonymous levels, treating the first l levels as
the synonymous representation ŷ(l)

s , while the subsequent
levels are considered as the detailed representation ŷ(l)

ϵ . By
varying l from 1 to L and optimizing through the loss func-
tion of the corresponding level in the training process, the
SIC model can be optimized for approaching different ideal
synsets X (l). After training, synonymous representations
at each level can be encoded progressively and fed to the
decoder, making SIC a progressive image codec that can
produce images at diverse synonymous levels (correspond-
ing to varying coding rates) using a single generator. In our
upcoming experiments, we implement a progressive SIC
model to fully leverage the model’s capabilities, where the
L levels are equally slicing the channels C into L groups,
shown as Figure 7 in Appendix C.1.

The designing of the training loss for the progressive SIC
model should take several practical issues into account.
Firstly, while the loss function requires traversing samples
in the reconstructed synset X̂ , this is not practical during
the actual training process. Therefore, the real training loss
function utilizes a small number of reconstructed samples
and computes the arithmetic mean as a practical approxima-
tion. Secondly, the training should also take into account
the synonymous rate-distortion-perception trade-offs at each
level, meaning that the trade-offs between levels are also re-
quired to be balanced. To this end, we design a group of loss
functions for the progressive SIC model that alternatively
trains for the level l = 1, 2, · · · , L step by step, i.e.,

L(l) = αL(l)
X +(1− α)L(L)

X +L(l)
c , l = 1, 2, · · · , L, (12)

in which L(l)
X is represented by

L(l)
X = Ex∼p(x)

[
−λ(l)

r · log p
ŷ
(l)
s

(
ŷ(l)
s

)
+

1

M

M∑
i=1

(
λ
(l)
d · MSE

(
x, x̂

(l)
i

)
+ λ(l)

p · LPIPS
(
x, x̂

(l)
i

))]
,

(13)
where the MSE is utilized as the distortion item, and the
LPIPS (Zhang et al., 2018) is directly replaced by the KL
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Figure 4. Comparisons of methods using DISTS on different datasets. Each point on the HiFiC and MS-ILLM performance curves is
from a single model, while our entire performance curves are achieved by a single progressive SIC model.

divergence term since accurately calculating the KL diver-
gence for image datasets is challenging; α is set between the
l level and the L level (equivalent to the conventional rate-
distortion-perception tradeoff) to indirectly achieve multi-
level tradeoffs; L

(l)
c is additional constraints in training,

which detailed elaborated in Appendix C.1. Moreover, M
denotes the number of reconstructed samples in training.
Subsequent experimental results will show that with M = 1
the proposed method can achieve comparable rate-distortion-
perception performance, while bigger M will perform ad-
vantages in certain synonymous levels.

5. Experimental Illustration
In this section, we examine the effectiveness of our proposed
analytical theory through experimental results.

5.1. Implementation Setup and Comparison Schemes

Model architecture: The analysis transform ga and the
synthesis transform gs are implemented using the Swin
Transformer (Liu et al., 2021), while the coding rate is es-
timated using a joint autoregressive and hierarchical prior
architecture (Minnen et al., 2018) based on deep convolu-
tional neural networks, with structural adjustments made
for our level partitioning mechanism. We set the number of
latent representation channels to C = 512 and the number
of the equally partitioned synonymous levels to L = 16,
giving each synonymous level a channel dimension of 32.
This allows a single progressive SIC codec to support 16
coding rates and their corresponding image quality levels.

Model Training: We randomly select 100,000 images from
the OpenImages V6 dataset (Kuznetsova et al., 2020) as
the training data, resizing them to a uniform resolution of
256×256 using random crop and resized crop for the training
process. We train our model for 1 × 106 iterations with a
batch size of 16, a learning rate of 1×10−4, and the AdamW
optimizer with a weight decay of 5 × 10−5. We evaluate

our models with the test set of CLIC2020 (Toderici et al.,
2020), the validation set of DIV2K (Agustsson & Timofte,
2017), and the Kodak dataset 4. Refer to Appendix C.1 for
the hyperparameter settings and implementation details.

Comparison schemes: The comparison schemes for tradi-
tional image compression use BPG (Bellard, 2015) and the
state-of-the-art VTM 5 to serve as the benchmarks for dis-
tortion measures. The PIC schemes for comparison include
HiFiC (Mentzer et al., 2020) and MS-ILLM (Muckley et al.,
2023), including the No-GAN fine-tuning version of MS-
ILLM. These two schemes use adversarial loss to optimize
perceptual quality, serving as benchmarks for perceptual
measures. As the pre-training model of MS-ILLM, the
No-GAN scheme directly uses LPIPS, the same perception
measure as our choice, which is the focus of comparison.

Evaluation Metrics: PSNR is utilized for distortion mea-
suring, while LPIPS and DISTS (Ding et al., 2020) are
for perception measuring. It should be noted that the
DISTS measure, due to its resampling tolerance, aligns
more closely with the human understanding of perceptual
similarity-typified synonymous relationships than LPIPS,
thus as our focus in our following analysis.

5.2. Performance Analysis

We first examine our progressive SIC model’s capabilities
in the adaptation of full-rate perception qualities. Figure 4
compares the performance of our method and the compar-
ison schemes under DISTS, in which our model is trained
with sampling ŷϵ,j only once (i.e., M = 1), as this follows
the common usage in existing generative model training.
As shown in this figure, our scheme can achieve percep-
tual quality adaptability across various rates using a single
model, with the perceptual quality of the reconstructed im-

4Kodak PhotoCD dataset, URL http://r0k.us/graphics/kodak/.
5VVCSoftware VTM, URL https://vcgit.hhi.fraunhofer.de/

jvet/VVCSoftware VTM.git, Version 23.4.
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Figure 5. Comparisons of our progressive SIC schemes with different sampling numbers in reconstructed X̂ on different datasets.

age improving as the coding rate increases.

For the concerned DISTS measure, our method surpasses
the No-GAN MS-ILLM solution (also trained with LPIPS)
in a large coding rate range. This performance is demon-
strated under conditions where the PSNR quality contin-
uously approaches and even exceeds the comparison No-
GAN schemes, and the LPIPS quality remains very similar,
thus verifying a comparable rate-distortion-perception per-
formance, shown as Figure 11 in Appendix C.2. This sur-
passing reflects the advantage of incorporating the concept
of synset in our proposed SVI. However, this advantage is
modest compared to HiFiC and MS-ILLM guided by the
GAN’s adversarial loss, since our loss directly uses LPIPS
to replace the KL divergence. Therefore, utilizing discrim-
inative mechanisms in SIC models with the synonymous
viewpoint (i.e., replacing the E-KLD term) may further en-
hance perceptual quality in future considerations.

In addition, Figure 5 compares the DISTS qualities for re-
construction sampling numbers M = 1 and M = 5 un-
der identical hyperparameter settings. With M = 5, the
expected distortion and perception loss are estimated via
arithmetic mean, aligning more closely with theoretical op-
timization directions. Results indicate that expanding the
reconstructed synset X̂ by increasing ŷϵ,j samples during
training offers slight performance advantages across various
datasets in general. These advantages are especially evident
in the low and medium rate range, while the intersections
at relatively high rates are due to insufficient fine-tuning
of the hyperparameter settings, which needs more precise
exploration in future works.

For further additional analysis and visualization results,
please refer to Appendix C.2.

6. Limitations
According to the above experimental results and analysis,
the limitation of the implemented progressive SIC model
mainly lies in using the LPIPS measure to replace the

divergence term in the loss function. Based on related PIC
work, the GAN-based adversarial loss is suggested as a
replacement for the KL divergence term to further improve
model performance.

To verify the impact of adversarial loss on performance, we
build a discriminator based on HiFiC’s structure and fine-
tune the synthesis transform gs of our M = 1 and M = 5
models with non-saturating loss (Goodfellow et al., 2014)
for 2 × 105 steps as supplementary experiments. Specif-
ically, we use a single conditional discriminator (refer to
Appendix D.1) to obtain the discriminative loss for recon-
structed images at all synonymous levels, with the syn-
onymous representation ŷ(l)

s of each synonymous level l
introduced as a separate condition. The non-saturating loss
can be expressed as

L(l)
G = E

x,x̂
(l)
i

[
− log

(
D

(
x̂
(l)
i , ŷ(l)

s

))]
, (14)

L(l)
D =E

x,x̂
(l)
i

[
− log

(
1−D

(
x̂
(l)
i , ŷ(l)

s

))]
+ Ex∼p(x)

[
− log

(
D

(
x, ŷ(l)

s

))]
,

(15)

and thus the perception term in Equation (13) is required to
be adjusted from solely the LPIPS term to the sum of the
LPIPS term and the generative loss in Equation (14), i.e.,

LPIPS
(
x, x̂

(l)
i

)
=⇒ LPIPS

(
x, x̂

(l)
i

)
+ L(l)

G . (16)

Figure 6 shows the fine-tuned performance using DISTS
as the evaluation measure, while other measures, including
PSNR, LPIPS, and FID (Heusel et al., 2017), and visualiza-
tion results are given in Appendix D.2. These results show
that:

• The perceptual quality (DISTS, FID) has improved.
While LPIPS performance remains nearly unchanged,
DISTS and FID show greater gains at higher bitrates,
with DISTS gradually approaching that of MS-ILLM
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Figure 6. Comparisons of methods using DISTS on different datasets (supplemented fine-tuned model performance). Each point on the
HiFiC and MS-ILLM performance curves is from a single model, while our entire performance curves are achieved by a single progressive
SIC model.

(with GAN). This means that the fine-tuning loss with
the adversarial loss is closer to the ideal optimization
direction, which can make better perceptual qualities
of the reconstructed images. Besides, while DISTS
and FID values change little at low rates (bpp < 0.10),
the visual qualities improve significantly.

• The improvement of DISTS is relatively obvious,
while the enhancement in FID remains limited. This
is a noteworthy phenomenon since it is absent in the
non-sampling schemes, as confirmed by the experi-
mental results in the MS-ILLM paper (Muckley et al.,
2023). Unlike DISTS’ resampling tolerance, FID fo-
cuses on the consistency of the distribution between the
original and reconstructed image groups. This suggests
that our implementation is still insufficient in optimiz-
ing the distribution of reconstructed images, especially
in our detailed sampling mechanism.

• The gap compared to HiFiC and MS-ILLM is still
obvious, especially on FID. In addition to the reason
of the detailed sampling mechanism, this issue may
also be due to insufficient fine-tuning with multiple
synonymous layers battling against each other, or in-
efficient perceptual loss is chosen. Besides, to address
the limited improvement at low bit rates (bpp < 0.10),
another solution is to find a better mechanism than
equal channel slicing for synonymous level partition-
ing.

• The distortion (PSNR) has degraded, which can ver-
ify the distortion-perception tradeoff as mentioned in
(Blau & Michaeli, 2018).

Based on the above analyses, the current SIC framework still
has limitations but shows potential for further exploration
and offers belief directions for future research on perceptual
image compression.

7. Relevant Thoughts on Semantic
Information Theory

As an extension to synonymity-based semantic informa-
tion theory, our work provide guidance for practical image
coding designs. In Appendix B, we further discuss the rela-
tionships with existing conclusions in semantic information
theory, including the semantic entropy and the down seman-
tic mutual information proposed in (Niu & Zhang, 2024).

8. Conclusions
In this paper, we consider the perceptual image compres-
sion problem from the perspective of synonymity-based
semantic information theory. Specifically, we propose a syn-
onymous variational inference (SVI) method to re-analyze
the optimization direction of perceptual image compression.
Based on this analysis method, we theoretically prove that
the optimization direction of perceptual image compres-
sion is a triple tradeoff, i.e., synonymous rate-distortion-
perception tradeoff, which is compatible with the existing
rate-distortion-perception tradeoff empirically presented by
previous works. Additionally, we propose a new perceptual
image compression scheme, namely synonymous image
compression, corresponding to the SVI analytical process,
and implement a rough progressive SIC model to fully lever-
age the model’s capabilities. Experimental results demon-
strate full-rate rate-distortion perception performance and
notable advantages on DISTS, thereby verifying the effec-
tiveness of our proposed analysis method.

Software and Data
We will upload code for reproducing our results to the repos-
itory at https://github.com/ZJLiang6412/
SynonymousImageCompression.
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Mentzer, F., Ballé, J., Shi, W., and Timofte, R. CLIC
2020: Challenge on learned image compression, 2020,
2020.

Wallace, G. K. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30–44, 1991.

Weaver, W. Recent contributions to the mathematical theory
of communication. ETC: a review of general semantics,
pp. 261–281, 1953.

Xu, T., Zhang, Q., Li, Y., He, D., Wang, Z., Wang, Y., Qin,
H., Wang, Y., Liu, J., and Zhang, Y.-Q. Conditional
perceptual quality preserving image compression. arXiv
preprint arXiv:2308.08154, 2023.

Xu, T., Zhu, Z., He, D., Li, Y., Guo, L., Wang, Y., Wang,
Z., Qin, H., Wang, Y., Liu, J., and Zhang, Y.-Q. Idempo-
tence and perceptual image compression. In The Twelfth
International Conference on Learning Representations
(ICLR), 2024.

Yan, Z., Wen, F., Ying, R., Ma, C., and Liu, P. On perceptual
lossy compression: The cost of perceptual reconstruction
and an optimal training framework. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning (ICML), pp. 11682–
11692. PMLR, 2021.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2018.

12



Synonymous Variational Inference for Perceptual Image Compression

A. The Proof of the Key Theoretical Results
In the main text, we present Lemma 3.2 and provide a brief proof of the optimization direction of SIC in Theorem 3.3, based
on this lemma. In this appendix section, we first provide detailed proofs of Lemma 3.2 and Theorem 3.3, and briefly discuss
their relationships with the existing image compression theories.

A.1. The Proof of Lemma 3.2

Lemma 3.2. When the source considers the existence of an ideal synset X and the decoder places the reconstructed sample
in a reconstructed synset X̃ , the minimization of the expected negative log synonymous likelihood term

minEx∼p(x)Eỹ∼q

[
− log pX |ỹs

(X |ỹs)
]
⇐⇒ minEỹ∼qEx̃i∈X̃ |ỹs

{
λd · Ex∼p(x) [d (x, x̃i)] + λp ·DKL [px||px̃i

]
}
,

(17)
in which λd and λp are the tradeoff factors for the expected distortion term and the expected KL divergence term, respectively.

Proof. According to the generative model presented in Figure 2, any sample xi in the ideal synset X is expected to
be capable of being generated using a synonymous representation ỹs and a detailed sample ŷϵ,j , in which the detailed
sample ŷϵ,j is sampled based on a specific prior pŷϵ|ỹs

(ŷϵ|ỹs;ψ,θp). It should be noted that ŷϵ,j ̸= ỹϵ since the detailed
representation ỹϵ is not required to be coded and transmitted to the decoder end.

Additionally, according to the semantic information theory based on synonymity (Niu & Zhang, 2024), the probability
of a synset is equal to the sum of the probability or the integral of the density of each sample within the set. Herein, we
consider the integral form because image samples within an ideal synset can typically be transformed into one another
through continuous changes.

Based on the above factors, we can expand the expression on the left side of (17) as follows:

Ex∼p(x)Eỹ∼q

[
− log pX |ỹs

(X |ỹs;θg)
]

(a)
= Ex∼p(x)Eỹ∼q

[
− log

∫
ŷϵ,j

pX |ỹs,ŷϵ,j

(
X |ỹs, ŷϵ,j ;θg

)
· pŷϵ,j |ỹs

(
ŷϵ,j |ỹs;ψ,θp

)
dŷϵ,j

]
(b)
= Ex∼p(x)Eỹ∼q

{
− logEŷϵ,j |ỹs∼pŷϵ,j |ỹs

[
pX |ỹs,ŷϵ,j

(
X |ỹs, ŷϵ,j ;θg

)]}
(c)
= Ex∼p(x)Eỹ∼q

{
− logEŷϵ,j |ỹs∼pŷϵ,j |ỹs

[∫
xi∈X

pxi|ỹs,ŷϵ,j

(
xi|ỹs, ŷϵ,j ;θg

)
dxi

]}
(d)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

pxi|x̃j
(xi|x̃j) dxi

]}
,

(18)

where (a) is achieved by introducing ŷϵ,j into the conditional probability with a corresponding integral; (b) is according to
the definition of mathematical expectation; (c) is according to the integral relationship between the probability of the ideal
synset and its samples as stated before; (d) is based on a determined generator θg which can definitely map the input ỹs and
ŷϵ,j to the output x̃j , i.e., x̃j = gs

(
ỹs, ŷϵ,j ;θg

)
. It should be noted that in the equation (d), the reconstructed sample x̃j

is not required to be completely aligned with the source synonymous sample xi but for the overall ideal synset X , which
is why two subscripts, i.e., i and j, are used here. By minimizing this term, we can use the synonym representation ŷs to
obtain the reconstructed synset X̂ , bringing it closer to the ideal synset X , thus achieving the optimization objective shown
in Figure 1.

Since the above results only involve the sample xi from the ideal synset centered by the original image x and the
reconstructed sample x̃j obtained by the SIC codec, the influence of the original image sample x has not directly involved.
To this end, we consider to rewrite (18) as

Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

pxi|x̃j
(xi|x̃j) dxi

]}
(a)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

px̃j |xi
(x̃j |xi) ·

pxi
(xi)

px̃j
(x̃j)

dxi

]}
(b)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

px̃j |xi
(x̃j |xi) ·

px (x)

px̃j (x̃j)
·
px̃j

(x̃j)

px (x)
· pxi

(xi)

px̃j (x̃j)
dxi

]}
,

(19)
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in which (a) is by the Bayes’ theorem, and (b) is achieved by introducing the reciprocal terms
px (x)

px̃j
(x̃j)

and
px̃j (x̃j)

px (x)
.

Furthermore, since any sample xi in the ideal synset (including the original image sample x) shares the same synonymous
representation ỹs by the ideal parametric SIC encoder with ϕ∗

g , the posterior term in the (19) satisfy the following equations:

px̃j |xi
(x̃j |xi) = px̃j |ỹs

(x̃j |ỹs) = px̃j |x (x̃j |x) . (20)

Therefore, the result of (19) can be further derived as

Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

px̃j |xi
(x̃j |xi) ·

px (x)

px̃j
(x̃j)

·
px̃j (x̃j)

px (x)
· pxi

(xi)

px̃j
(x̃j)

dxi

]}
(a)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

(
px̃j |x (x̃j |x) ·

px (x)

px̃j
(x̃j)

)
·
px̃j

(x̃j)

px (x)
· pxi

(xi)

px̃j
(x̃j)

dxi

]}
(b)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[∫
xi∈X

px|x̃j
(x|x̃j) ·

px̃j
(x̃j)

px (x)
· pxi

(xi)

px̃j (x̃j)
dxi

]}
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[
px|x̃j

(x|x̃j) ·
px̃j (x̃j)

px (x)
·
∫
xi∈X

pxi (xi)

px̃j
(x̃j)

dxi

]}
(c)
= Ex∼p(x)Eỹ∼q

{
− logEx̃j∈X̃ |ỹs

[
px|x̃j

(x|x̃j) ·
px̃j (x̃j)

px (x)
·
(

1

|X |

∫
xi∈X

pxi
(xi)

px̃j
(x̃j)

dxi

)
· |X |

]}
(d)

≤ Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− log px|x̃j

(x|x̃j) + log
px (x)

px̃j
(x̃j)

− log
1

|X |

∫
xi∈X

pxi (xi)

px̃j
(x̃j)

dxi − log |X |
]

(e)

≤ Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− log px|x̃j

(x|x̃j) + log
px (x)

px̃j
(x̃j)

− 1

|X |

∫
xi∈X

log
pxi (xi)

px̃j
(x̃j)

dxi − log |X |
]
,

(21)

where (a) replaces px̃j |xi
(x̃j |xi) with px̃j |x (x̃j |x) using (20); (b) is derived by the Bayes’ theorem in reverse; (c)

introduces |X | and its reciprocal, in which |X | denotes the size of the ideal synset X , and can be used to express an
arithmetic mean along with the followed integral over X ; (d) and (e) can be scaled based on the Jensen’s inequalities,
respectively, since − log (·) is a convex function.

Next, we examine the result of (21) separately.

1. The Derivation of the First Term. Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− log px|x̃j

(x|x̃j)
]

denotes an expected distortion
which averaged on the source images and the corresponding samples of the reconstructed synsets. As a typical case,
when the likelihood probability px|x̃j

(x|x̃j) follows a Gaussian distribution N
(
x|x̃j , σ

2Id
)

(in which d denotes the
dimension of the original image x), this term will be equivalent to

Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− log px|x̃j

(x|x̃j)
]
=

1

2σ2
· Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

||x− x̃||2 + d

2
log

(
2πσ2

)
, (22)

in which the σ2 is the variance term of the set Gaussian distribution, i.e., the power of the quantization noise. In this
case, the term can be considered as a weighted Expected Mean Squared Error (E-MSE) loss (instead of the Mean
Squared Error (MSE) loss) plus a constant.

In typical LIC methods (Ballé et al., 2017; 2018), the multiplier
1

2σ2
is often replaced with a hyperparameter λ as the

tradeoff factor to the MSE loss to the balance with the coding rate. However, in SIC, if E-MSE is used as the distortion

loss term, it is incomplete to define the physical meaning of the hyperparameter as
1

2σ2
alone: The effect of scaling,

due to the inequality in (21)(d), should be also considered. Therefore, we summarize the analysis results as

λd · Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs
||x− x̃j ||2 + const, (23)

in which λd = αd

(∣∣X̃ ∣∣) · 1

2σ2
. The multiplier αd

(∣∣X̃ ∣∣) is a scaling factor influenced by the size of the reconstructed

synset X̃ , and it can be implicitly incorporated into the value of the hyperparameter λd thus it does not need to be
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explicitly assigned. It should be noted that when the equality condition of Jensen inequality (21)(d) is satisfied or the
reconstructed synset contains only one sample, the multiplier αd

(∣∣X̃ ∣∣) = 1, and the analysis result will be degraded

into λ · Ex∼p(x)Eỹ∼q ||x− x̃||2 + const.

When other distortion measures (such as Expected MS-SSIM, abbreviated as E-MS-SSIM) are used instead of E-MSE,
the situation is similar and will not be discussed further. Herein, we give a general analysis result as

λd · Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs
[d (x, x̃j)] + const, (24)

in which d (·) denotes any distortion measure between the original image x and the reconstructed sample x̃j .

2. The Derivation of the Second Term and the Third Term. These two terms should be firstly considered together due
to their linkage, which can be derived as

Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
log

px (x)

px̃j (x̃j)
− 1

|X |

∫
xi∈X

log
pxi

(xi)

px̃j (x̃j)
dxi

]
= Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
1

|X |

∫
xi∈X

(
log

px (x)

px̃j
(x̃j)

− log
pxi

(xi)

px̃j
(x̃j)

)
dxi

]
= Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
1

|X |

∫
xi∈X

log
px (x)

px̃j (x̃j)
·
px̃j

(x̃j)

pxi (xi)
dxi

]
= Ex∼p(x)

[
1

|X |

∫
xi∈X

log
px (x)

pxi (xi)
dxi

]
=

1

|X |

∫
xi∈X

Ex∼p(x)

[
log

px (x)

pxi
(xi)

]
dxi

=
1

|X |

∫
xi∈X

DKL [px||pxi
] dxi = f (x,X ) ,

(25)

i.e., the arithmetic mean of the KL divergence between the original sample x and the synonymous sample xi, which is
a non-negative function f (x,X ) of the original sample x and the ideal synset X . If these two factors at the source are
determined, the result of the function will be constant. For a special case, when X contains only one sample, i.e., the
original image x, this constant will be equal to 0 since the two distributions reduce to only one distribution px.

Despite the foregoing facts, if it is treated as a constant, the existence of the ideal synset on the source will lose its
meaning during the minimization process, and no samples with perceptual similarity to the source image will be
available to provide a reference for the reconstructed samples. Therefore, we need to consider the second and third
terms separately to determine the meaning of the constant value in the optimization process:

• For the second term Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
log

px (x)

px̃j
(x̃j)

]
, it can be further derived as

Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
log

px (x)

px̃j
(x̃j)

]
= Eỹ∼qEx̃j∈X̃ |ỹs

[
Ex∼p(x) log

px (x)

px̃j
(x̃j)

]
= Eỹ∼qEx̃j∈X̃ |ỹs

DKL
[
px||px̃j

]
,

(26)

i.e., an Expected KL Divergence (E-KLD) between the distribution of the original image px and the distribution
of the reconstructed sample px̃j

that averaged on the reconstructed synset X̃ .

• As for the third term, i.e., Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− 1

|X |

∫
xi∈X

log
pxi

(xi)

px̃j
(x̃j)

dxi

]
, although it has a similar

form to KL divergence, it cannot be called KL divergence because it uses the arithmetic mean instead of the
mathematical expectation, thus lacking the non-negative properties of KL divergence. It should be noted that the
outer mathematic expectations Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

is actually calculated the expectation value according to
the conditional probability px̃j |x (x̃j |x) instead of px̃j

(x̃j), thus the result cannot be regarded as KL divergence
from this perspective neither. In spite of this, we can intuitively find the conditions under which this term equals 0,
which can be expressed as

Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[
− 1

|X |

∫
xi∈X

log
pxi

(xi)

px̃j (x̃j)
dxi

]
= 0 ⇐⇒ pxi

(xi) = px̃j
(x̃j) ∀i, j (27)
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i.e., for arbitrary sample pair (xi, x̃j), the probabilities of both samples are equal. To facilitate subsequent analysis,
we label this term as −δp.

Based on the above analysis, we obtain the following equation relationship:

Eỹ∼qEx̃j∈X̃ |ỹs
DKL

[
px||px̃j

]
− δp =

1

|X |

∫
xi∈X

DKL [px||pxi ] dxi = f (x,X ) . (28)

From this formula, we can see that although f (x,X ) is a constant when x and X are determined, we can ap-
proximate it by minimizing the E-KLD term Ex̃j∈X̃ |ỹs

DKL
[
px||px̃j

]
. For a special case, by forcing δp = 0 with

equal probability sampling for x̃j , the E-KLD term Ex̃j∈X̃ |ỹs
DKL

[
px||px̃j

]
is equal to the arithmetic mean term

1
|X |

∫
xi∈X DKL [px||pxi

] dxi.

Similar to the first term, considering the effect of scaling in (3.2)(d), we summarize the analysis results as

λp · Eỹ∼qEx̃j∈X̃ |ỹs
DKL

[
px||px̃j

]
, (29)

in which λp = 1|X |≠1

(∣∣X ∣∣) · αp

(∣∣∣X̃ ∣∣∣) is also a scaling factor influenced by the size of the ideal synset X and the

reconstructed synset X̃ , and 1|X |̸=1 is a indicated function of the size of the ideal synset |X |. Similar to the first term,
we discuss the following two special cases:

• When the equality condition of Jensen inequality (21)(e) is satisfied, or the ideal synset is considered with multiple
samples while the reconstructed synset contains only one, the multiplier 1|X |≠1

(∣∣X ∣∣) = 1 and αp

(∣∣X̃ ∣∣) = 1,
and the analysis result will be degraded into Eỹ∼qDKL [px||px̃].

• When the ideal synset contains only one sample, i.e., the original image x, the multiplier 1|X |≠1 (|X |) = 0, which
makes the analysis result equal to 0.

3. The Derivation of the Fourth Term. With the determination of the ideal synset X for the original image x, the term
− log |X | is a constant that cannot be optimized.

To summarize, by consolidating the above analysis results, we complete the proof of Lemma 3.2, that is,

minEx∼p(x)Eỹ∼q

[
− log pX |ỹs

(X |ỹs)
]

= min
{
λd · Ex∼p(x)Eỹ∼qEx̃j∈X̃ |ỹs

[d (x, x̃i)] + const
}
+
{
λp · Eỹ∼qEx̃j∈X̃ |ỹs

DKL
[
px||px̃j

]}
+ const

⇔ minEỹ∼qEx̃i∈X̃ |ỹs

{
λd · Ex∼p(x) [d (x, x̃i)] + λp ·DKL [px||px̃i

]
}
.

(30)

A.2. The Proof of Theorem 3.3

Theorem 3.3. For an image source x ∼ p (x) together with its bounded expected distortion Ex∼p(x)Ex̂i∈X̂ |ŷs
[d (x, x̂i)]

and expected KL divergence Ex̂i∈X̂ |ŷs
DKL [px||px̂i

], the minimum achievable rate of perceptual image compression is

R (X ) = min
p(X̂ |x)

I
(
X;

ˆ̊
X

)
s.t. Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] ≤ D,

Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ≤ P,

(31)

where I
(
X;

ˆ̊
X

)
= Hs

(
ˆ̊
X

)
−Hs

(
ˆ̊
X|X

)
with semantic variable ˆ̊

X corresponds to the reconstructed synset X̂ .

Proof. The key point to prove this problem is to consider an ideal scenario, in which there are multiple image samples xi at
the source with similar perceptual similarities to the original image x. In this scenario, each sample can be assumed to be
potentially generated by the ideal perceptual image decoder. To this end, it is necessary to assume the existence of an ideal
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synset X at the source which can encompass these samples (including the original image x). These samples must share the
same synonymous representations which can be represented as ỹs in the latent space, while the unique detailed features of
each sample should be represented as ỹϵ in the latent space.

Based on this assumption, there should be an ideal image codec, in which the encoder ensures that any sample within the
ideal synset X obtains the same synonymous representation ỹs after encoding, while the decoder, upon receiving only
the synonymous representation ỹs, can generate different samples xi within the ideal synset X through sampling ŷϵ,j .
The optimization process leading to this ideal encoder-decoder pair can be modeled as a variational auto-encoder model,
which can be achieved by minimizing the partial semantic KL divergence based on the idea of the proposed synonymous
variational inference (SVI), that is,

Ex∼p(x)DKL,s
[
q||pỹs|X

]
= Ex∼p(x)Eỹ|x∼q

[
log

q (ỹ|x)
pỹs|X (ỹs|X )

]
= Ex∼p(x)Eỹ|x∼q

[
log

q (ỹ|x)
pX ,ỹs

(X , ỹs) /pX (X )

]
= Ex∼p(x)Eỹ|x∼q

[
log

q (ỹ|x)
pX |ỹs

(X |ỹs) · pỹs
(ỹs) /pX (X )

]
= Ex∼p(x)Eỹ|x∼q

[
log q (ỹ|x)− log pX |ỹs

(X |ỹs)− log pỹs
(ỹs) + log pX (X )

]
(32)

Next, We examine the result of (32) term by term.

1. For the first term log q (ỹ|x), since the noisy latent representation ỹ can be separated into two parts, i.e., a synonymous
representation ỹs and a detailed representation ỹϵ, it can be expanded to

log q
(
ỹ|x;ϕg

)
= log q

(
ỹs, ỹϵ|x;ϕg

)
= log q

(
ỹs|x;ϕg

)
+ log q

(
ỹϵ|x, ỹs;ϕg

)
. (33)

Since both ỹs and ỹϵ are determined based on a parametric inference model ga
(
x;ϕg

)
and uniform density on the

unit interval centered on ys and yϵ, this term equals a constant 0.

2. For the second term − log pX |ỹs
(X |ỹs), with the outside expectations Ex∼p(x)Eỹ|x∼q , the minimization of this term

can be equivalent to minimizing an weighted expected distortion Ex∼p(x)Eỹ∼qEx̃i∈X̃ |ỹs
[d (x, x̃i)] plus an weighted

E-KLD term Eỹ∼qEx̃i∈X̃ |ỹs
DKL [px||px̃i

], by Lemma 3.2.

3. For the third term − log pỹs
(ỹs), it is the coding rate of the synonymous representations. With the outside expectations,

it is also equivalent to the semantic entropy of semantic variable ˜̊
Y corresponding to a latent synset Ỹ . This can be

derived by

Ex∼p(x)Eỹ|x∼q

[
− log pỹs

(ỹs)
]
= Ex∼p(x)Eỹ|x∼q

[
− log

∫
ỹϵ

pỹs
(ỹs, ỹϵ) dỹϵ

]

= Ex∼p(x)Eỹ|x∼q

[
− log

∫
ỹ∈Ỹ

pỹ (ỹ) dỹ

]
(a)
= Hs

(
˜̊
Y
)
,

(34)

in which (a) is achieved based on the definition of semantic entropy in Niu and Zhang’s paper (2024), with the help

of the weak law of large numbers. Additionally, considering the determined codec, the semantic entropy Hs

(
˜̊
Y
)

is
equivalent to single-side semantic mutual information, i.e.,

Hs

(
˜̊
Y
)

(a)
= Hs

(
˜̊
X

)
(b)
= Hs

(
˜̊
X

)
−Hs

(
˜̊
X|X

)
(c)
= I

(
X;

˜̊
X

)
, (35)

where (a) is by giving a determined decoder to map the latent synset Ỹ to the reconstructed synset X̃ ; (b) is achieved
by a determined encoder, which makes log q

(
X̃ |x

)
= log q (ỹs|x) = 0 with a uniform density on the unit interval

centered on ys; (c) is by the definition of this single-side semantic mutual information.
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4. For the fourth term − log pX (X ), with the determination of the ideal synset X for the original image x, it is a constant
that cannot be optimized.

To summarize, the minimization of (32) is equivalent to the following optimization directions

LX = λd · Ex∼p(x)Eỹ∼qEx̃i∈X̃ |ỹs
[d (x, x̃i)] + λp · Eỹ∼qEx̃i∈X̃ |ỹs

DKL [px||px̃i
]

+ Ex∼p(x)Eỹ∼q

[
− log pỹs

(ỹs)
]
.

(36)

At the convergence point, when the minimum value of the loss function is achieved, the model effectively minimizes the

single-side semantic mutual information with the quantized form of ˆ̊
X under the constraints of bounded quantized expected

distortion and E-KLD, as follows in (31). The weights λd and λp can be considered as Lagrange multipliers to the rate term.
So we conclude this theorem.

From the proof of Lemma 3.2 and Theorem 3.3 above, we can see that the differences between the proposed SVI and
conventional variational inference in guiding image compression tasks mainly include:

• The Analysis Method for the Likelihood Term: Conventional variational inference treats the likelihood term
− log (x|ỹ) in usual LIC methods as a weighted distortion (Ballé et al., 2017; Blau & Michaeli, 2018), primar-
ily because the synonymous relationship emphasized in this paper is not incorporated in these works.

In our proposed SVI, since the synonymous relationship is considered, the likelihood term primarily focuses on
the mapping relationship between the latent synset and the ideal synset, which is formed by − log pX|ỹs

(X|ỹs).
Lemma 3.2 states that the minimization of the expected synonymous likelihood term is equivalent to the minimization
of a tradeoff function with weighted expected distortion and weighted E-KLD term.

Additionally, the analytical process of Lemma 3.2 emphasizes that the fundamental reason for the expected KL
divergence term’s existence is due to the consideration of the ideal synset X centered by the original image x.
Once the ideal synset is unconsidered (equal to the ideal synset only contains the original image, i.e., X = {x}), the
expected KL divergence term will disappear in the analysis result, which means the degradation to solely the weighted
distortion term. Therefore, we can give the following statement:

To the best knowledge of our authors, our method is the first work that can theoretically explain the fundamental
reason for the divergence measure’s existence in perceptual image compression, which stems from considering
the ideal synset as the reconstruction reference.

• The Considerations on Coding Rates: Conventional variational inference considers performing entropy coding for all
latent representations, whose coding rate can be represented as − log p (ỹ).

In our proposed SVI, only a partial of the latent representation is required to be encoded, whose coding rate is expressed
as − log p (ỹs). We emphasize that the other partial, i.e., the detailed representation, is not required to be coded: it
can also be sampled from the latent synset Ỹ by the decoder, which is not necessary to keep consistency with it at
the encoder end. This stems from the change in optimization direction from the original sample-oriented to the ideal
synset-oriented, which allows the decoder to generate any samples that can exist in the ideal synset.

Since the detailed representation can be obtained by sampling at the receiving end and is allowed to contribute effective
information for image reconstruction, encoding only the synonymous representation part theoretically improves coding
efficiency compared to traditional methods. From the perspective of mutual information, this can be expressed as

I
(
X;

ˆ̊
X

)
≤ I

(
X; X̂

)
, in which the condition for the inequality to hold as equality is that the reconstruction of the

synonym set is restricted to producing only one sample, meaning the decoder is not allowed to sample ŷϵ,j , nor is it
permitted to use ŷϵ,j as input to the generator.

A.3. Discussions on the Relationships with Existing Image Compression Theories

From Lemma 3.2, Theorem 3.3, and their respective proof processes, it is evident that the optimization objective derived
in this paper through synonymous variational inference is compatible with the optimization objectives of existing image
compression theories:
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• Compatibility with Existing Rate-Distortion-Perception Tradeoff: According to the triple tradeoff shown as (31),
when the reconstructed synset is not considered (equal to the reconstructed synset contains only one sample, represented
as X̂ = {x̂}), the optimization objective will be degraded into the existing rate-distortion-perception tradeoff. This
relationship can be expressed by

R (X ) = min
p(X̂ |x)

I
(
X;

ˆ̊
X

)
s.t. Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] ≤ D,

Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ≤ P,

X̂={x̂}
=====⇒

R (D,P ) = min
p(x̂|x)

I
(
X; X̂

)
s.t. Ex∼p(x) [d (x, x̂)] ≤ D,

DKL [px||px̂] ≤ P,

(37)

in which the KL divergence DKL [px||px̂] is a typical measure of the divergence between distributions, i.e., dp (px, px̂)
in (3), as stated in (Blau & Michaeli, 2019). In view of this, the existing rate-distortion-perception tradeoff (4) is a
special case of (11) when there is only one sample x̂ in the reconstructed synset X̂ .

• Compatibility with Traditional Rate-Distortion Tradeoff: Based on the analytical process of Lemma 3.2, when the
ideal synset is not considered (equal to the ideal synset contains only the original image, represented as X = {x}), the
expected synonymous likelihood term will be degraded into the usual likelihood term, i.e.,

Ex∼p(x)Eỹ∼q

[
− log pX|ỹs

(X|ỹs)
] X={x}
=====⇒ Ex∼p(x)

[
− log px|ỹ (x|ỹ)

]
, (38)

in which the minimization of the usual likelihood term Ex∼p(x)Eỹ∼q

[
− log px|ỹ (x|ỹ)

]
is equivalent to the minimiza-

tion of a weighted distortion λEx∼p(x)Eỹ∼q [d (x, x̃)], makes the existence of the KL divergence term unnecessary.
Additionally, X = {x} will also implicitly makes the existence of ŷϵ,j unnecessary, which results in X̂ = {x̂}.
Therefore, the relationship with the traditional rate-distortion tradeoff can be represented by

R (X ) = min
p(X̂ |x)

I
(
X;

ˆ̊
X

)
s.t. Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] ≤ D,

Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ≤ P,

X={x}
======⇒
(X̂={x̂})

R (D) = min
p(x̂|x)

I
(
X; X̂

)
s.t. Ex∼p(x) [d (x, x̂)] ≤ D.

(39)

In view of this, we state that the traditional rate-distortion tradeoff is also a special case of (11), where the condition is
that the ideal synset X always contains only a single sample, i.e., the original x.

Therefore, we demonstrate that the foundational theories underlying existing image compression methods can be viewed as
special cases of our analysis viewpoint. In other words, our theoretical analysis provides consistent and universal guidance
for designing image compression approaches, regardless of whether compression is considered for perceptual quality.

It should be noted that, although the E-KLD term in the above analysis represents the optimal distribution distance selection
based on minimizing the partial semantic KL divergence, accurately calculating the E-KLD between two image sets may be
unrealistic due to the complexity of the image source. Therefore, we can refer to existing empirical practices in perceptual
image compression, such as using metrics that tend to be subjective, like LPIPS or DISTS, instead of the KL divergence
calculation, or using adversarial losses in the GAN training process, such as Wasserstein loss, as a substitute for KL
divergence.

B. Relevant Thoughts on Semantic Information Theory
In this appendix section, we will briefly provide relevant thoughts on semantic information theory based on our analytical
results. We emphasize that the semantic information theory referenced here specifically pertains to the synonymity-based
semantic information theory, primarily derived from Niu and Zhang’s paper (Niu & Zhang, 2024).

B.1. Relationships with Existing Conclusions in Semantic Information Theory

• Semantic Entropy: Given a semantic variable Ů , whose possible values are the synset Uis = {ui|i ∈ Nis}, , is =
1, 2, ..., N , and Nis is the set of ordinal numbers of all syntactic symbols ui ∈ Uis , the semantic entropy of the semantic
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variable is expressed as:

Hs

(
Ů
)
= −

N∑
is=1

p (Uis) log p (Uis) = −
N∑

is=1

∑
i∈Nis

p (ui) log

 ∑
i∈Nis

p (ui)

 , (40)

in which the probability a single semantic symbol corresponds to the synset Uis is the sum of the probability of each
syntactic value ui, i ∈ Nis , i.e., p (Uis) =

∑
i∈Nis

p (ui).

Additionally, the semantic source coding theorem in (Niu & Zhang, 2024) states that, for a semantic source Ů with
its corresponding syntactic source U and its determined synonymous mapping between these two types of sources
(which results in the determined synsets Uis = {ui|i ∈ Nis}, is = 1, 2, ..., N ), the achievable coding rate for semantic
lossless rate is R ≥ Hs

(
Ů
)

without the necessity to focus on symbol-level accuracy.

In our work, we point out that the ultimate goal of synonymous variational inference is to construct an ideal synset X
corresponding to the original image x by finding a synonymous mapping rule and encoding the shared latent features of
the ideal synset ŷs as the coding sequences. In the ideal scenario where model training has converged, the reconstructed
synset X̂ at the SIC decoder can perfectly overlap with the ideal synset X . Under such conditions, the average coding
rate of the synonymous representation ŷs in the latent space can approach the semantic entropy of the semantic variable
corresponding to the ideal synset, i.e.,

Ex∼p(x) [− log p (ŷs)]
(a)
= Hs

(
ˆ̊
Y
)

(b)
= Hs

(
ˆ̊
X

)
(c)
= I

(
X;

ˆ̊
X

)
(d)
= Hs

(
X̊

)
, (41)

in which the established conditions of (a) ∼ (c) is the same as the conditions in (34) and (35), and (d) is achieved
by the ideal SIC codec. At this point, the found synonymous mapping rule is determined by the bounded expected
distortion and the bounded E-KLD, i.e., Ex∼p(x)Ex̂i∈X̂ |ŷs

[d (x, x̂i)] ≤ D,Ex̂i∈X̂ |ŷs
DKL [px||px̂i

] ≤ P .

• Down Semantic Mutual Information: The down semantic mutual information is a measure defined as

Is

(
Ů ; V̊

)
= Hs

(
Ů
)
+Hs

(
V̊
)
−H

(
U, V

)
, (42)

which is proved to be the minimum coding rate in semantic lossy source coding when the “semantic distortion” (denoted

as ds

(
X̊,

ˆ̊
X
)

in concept) satisfying ds

(
X̊,

ˆ̊
X
)
≤ Ds, using an extended joint asymptotic equipartition property

(AEP) analysis called Semantically Joint AEP.

In our work, since the ideal synset is not explicitly constructed in practice, directly determining the overlap degree
between the reconstructed synset and the ideal synset is challenging. Consequently, the model obtained after training
convergence may still function as a semantic lossy coding model. We propose that the coding rate of the SIC model
should also serve as an upper bound for the lower semantic mutual information, expressed as:

Ex∼p(x) [− log p (ŷs)]
(a)
= Hs

(
ˆ̊
Y
)

(b)
= Hs

(
ˆ̊
X

)
(c)
= Hs

(
ˆ̊
X

)
−Hs

(
ˆ̊
X|X

)
(d)
= H

(
X

)
+Hs

(
ˆ̊
X

)
−Hs

(
X,

ˆ̊
X

)
(e)

≥ Hs

(
X̊

)
+Hs

(
ˆ̊
X

)
−H

(
X, X̂

)
= Is

(
X̊;

ˆ̊
X

)
,

(43)

in which the established conditions of (a) ∼ (c) is the same as the conditions in (34) and (35), (d) is achieved

by the equation Hs

(
ˆ̊
X|X

)
= Hs

(
X,

ˆ̊
X

)
− H

(
X

)
, and (e) can be proved by a scaling process according to

H
(
X

)
≥ Hs

(
X̊

)
and Hs

(
X,

ˆ̊
X

)
≤ H

(
X, X̂

)
, which follows the fundamental properties of semantic variables

stated in (Niu & Zhang, 2024).
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Figure 7. The implementation details of the auto-encoder framework designed for the progressive SIC model.

B.2. Extended Thinking: About Synonymous Idempotence Constraints

As discussed earlier, since the ideal synset is not explicitly constructed, directly determining the overlap between the
reconstructed synset and the ideal synset is infeasible. However, since the ideal synset directly corresponds to the
synonymous representation ŷs in the latent space, the distance between the two synsets in the data space can be evaluated
by first re-encoding the samples from the reconstructed synset, then obtaining the new synonymous representation ŷ′

s,
and finally calculating the distance between ŷs and ŷ′

s. This idea can be directly integrated into the training process. By
incorporating constraints into the loss function, the SIC codec can be explicitly guided to optimize toward maximizing the
overlap between the reconstructed synset and the ideal synset during the optimization process, i.e.,

Lsynset
c =

∣∣∣∣ŷ′
s − ŷs

∣∣∣∣2 , (44)

in which the adopted distance measure is based on the MSE function in our model optimization.

Additionally, if sufficient diversity among the samples in the reconstructed synset should be ensured, the following constraints
can be incorporated into the loss function:

Ldetail
c =

∣∣∣∣ŷ′
ϵ,j − ŷϵ,j

∣∣∣∣2 . (45)

It refers to re-feeding the reconstructed image into the encoder, computing the difference between the new detailed
representation ŷ′

ϵ,j and the original detail representation ŷϵ,j , and incorporating it into the optimization process of the SIC
codec.

When both of the above constraints are equal to 0, the idempotence property of the reconstructed image samples is effectively
satisfied (in which idempotence “refers to the stability of image code to re-compression”, as stated in Xu’s paper (2024)).
Here, we term the above constraint as the synonymous idempotence constraint and incorporate it into the loss function for
the neural SIC model implemented in this paper. Please refer to Appendix C.1 for specific training details.
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Figure 8. The joint autoregressive and hierarchical prior architecture of the progressive SIC model.

C. Experimental Illustrations: Implementations and Supplementary Results
In this section, we provide implementation details of the progressive SIC model and supplementary results for Section 5.

C.1. Implementation details

The auto-encoder architecture, including an analysis transform as the encoder and a synthesis transform as the decoder, is
implemented based on the Swin Transformer (Liu et al., 2021). The implementation details are shown in Figure 7. Both
the analysis transform and the synthesis transform perform a 4-stage nonlinear processing, in which each layer includes a
dimension adjustment module (Linear Embedding, Patch Merging, and Patch Division) and a Swin Transformer module.

For the analysis transform, the image x with the resolution of h× w × 3 is first partitioned into patches with the resolution
of 2× 2. Then, the patches are fed into the Linear Embedding module at stage 1 for dimension expansion, and the features
are further extracted using a followed Swin Transformer Block. The following processing stages all use the Patch Merging
block and several Swin Transformer blocks to extract deeper features. Finally, the analysis transform outputs a feature map
with a dimension of h

16 × w
16 × 512, in which the channel dimension C = 512.

To support multiple synonymous level partitioning, we perform equal slicing along the channel dimension of the latent
representation. We set the number of the synonymous levels L = 16, thus the latent representations are partitioned along
the channel dimension into 16 groups. Each synonymous group contains a sub-feature map with the size of h

16 × w
16 × 32.

When the l-th synonymous level is selected, the synonymous representations ys contains the first l groups of the sub-feature
map with the full size of h

16 × w
16 × 32l, thus makes the remaining levels serve as detailed representations yϵ.

For the synthesis transform, the quantized synonymous representations ŷs and sampled detailed representations ŷϵ are as
input. Then, four upsampled Swin Transformer stages and a final convolutional layer are applied to the input to integrate the
global information of the image, in which each stage increases the input resolution through the corresponding number of
Swin Transformer modules in the analysis transform and a Patch Division module. Finally, a convolutional layer outputs the
reconstructed image ŷj .

For rate estimation, the progressive SIC model adopts a joint autoregressive and hierarchical prior architecture based on
(Minnen et al., 2018) as shown in Figure 8. All these modules in this architecture are implemented based on convolutional
neural networks represented by Figure 9, in which Q represents the quantization model using the round function.

In this architecture, the hyperprior ha and hs are performed for both the distribution estimation for the synonymous
representation ŷs and the sampling for the detailed representation. The hyperprior performs the “forward adaptation” to
estimate µh

s ,σ
h
s and µh

ϵ ,σ
h
ϵ based on the side information ẑ, while the context model performs the “backward adaptation”

to estimate µc
s,σ

c
s based on the already-coded synonymous representations, in which the expressions “forward adaptation”
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Figure 9. The implementation details of the modules in the joint autoregressive and hierarchical prior architecture.

and “backward adaptation” are stated in (Ballé et al., 2020). For the synonymous representations ŷs, an Entropy Parameters
modules are employed to integrate the input µh

s ,σ
h
s and µc

s,σ
c
s to an output accurate estimation µs,σs. And for the detailed

representation ŷϵ, a uniform sampling based on the following equation is utilized:

ŷϵ,j = Q
(
µh

ϵ + U (−2, 2)
)
, (46)

in which the uniform distribution U (−2, 2) is set empirically. We realize that this sampling method cannot fit the ideal
conditional distribution in vector form: The SVI theoretical analysis provides an ideal detail sampling principle that
follows a conditional distribution pŷϵ,j |ỹs

in vector form (stated in the Equation (18)), which guides the prediction
of the samples vector ŷϵ,j conditioned on synonymous representations ỹs. However, the current unideal sampling
mechanism cannot ensure reasonable contextual structure in the details of the reconstructed images, which may affect
the distribution consistency focused by measures like FID. We argue that sampling the detailed representation to match
the ideal conditional distribution in vector form is challenging, especially when multiple distinct samples (i.e., M > 1).
Although we are still exploring effective solutions to this problem, adopting a simple yet suboptimal sampling method is
currently a necessary compromise. This will be a key breakthrough direction for our future research.

To support the multiple synonymous level partitioning mechanism, we modify the masked convolutional layer of the
spatial context autoregressive model in (Minnen et al., 2018) to a spatial-channel context autoregressive model like (Li
et al., 2020), in which the 3D mask for the masked Context Model is presented by Figure 10. The core mechanism is
to estimate the current feature’s probability distribution by conditioning on encoded spatial and channel features. This
spatial-channel context autoregressive module is implemented based on a 5× 5 convolutional layer, in which the spatial
context autoregressive process within the single group of sub-latent feature map ck is achieved by the left matrix shown in
Figure 10, and the channel context autoregressive process from the coded groups of sub-latent feature map to the current
group is achieved by the full 1 matrix shown as the right matrix in Figure 10.

Additionally, for the Entropy Parameters module, all the estimations of µs and σs across diverse synonymous levels share
the same module. To achieve this, each convolutional layer in the Entropy Parameters module assigns a group parameter of
l, enabling the layer to process l independent groups in parallel. These groups perform the estimation processes separately
for each sub-feature map, and their outputs are concatenated to form µs and σs.

Before model training, hyperparameter values for the loss function (12) and (13) must be specified before model training.
Table 1 presents these hyperparameters of our progressive SIC model, which are configured empirically.

Since multiple sub-feature maps are partitioned in the channel dimension to build different synonymous levels l =
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3D-Mask for Masked-Conv

Figure 10. The 3D mask for the masked convolutional layer in the context model.

Table 1. Hyperparameters Configurations for progressive SIC model training.

l 1 2 3 4 5 6 7 8

α 0.5

λ
(l)
r 128 256 384 512 640 768 896 1024

λ
(l)
d 239/8 238/8 237/8 236/8 235/8 234/8 233/8 232/8

λ
(l)
p 245/8 242/8 239/8 236/8 233/8 230/8 227/8 224/8

l 9 10 11 12 13 14 15 16

α 0.5

λr 1152 1280 1408 1536 1664 1792 1920 2048

λ
(l)
d 231/8 230/8 229/8 228/8 227/8 226/8 225/8 224/8

λ
(l)
p 221/8 218/8 215/8 212/8 29/8 26/8 23/8 20/8

1, 2, · · · , L, each synonymous level l needs to learn different levels of information during model training. However, due to
the limitations of computing resources during training, it is not possible to cover all synonymous levels in each forward
process, and we can only use the loss functions of different synonymous levels alternately for training. This alternating
training between layers can lead to some layers losing the ability to extract effective information early in training, causing
the coding rate of the corresponding sub-feature map to approach 0 in the subsequent training process and in the final model.
To avoid this, an effective trick is to introduce the following constraints into the loss function during the warming-up phase,
ensuring that each sub-feature map learns valid information:

Lwarming
c = a · log pỹl

(ỹl) + b · std
(
− log pỹ1

(ỹ1) , · · · ,− log pỹL
(ỹL)

)
, (47)

in which the former term is the minus coding rate estimation of the current sub-feature map corresponds to the synonymous
level l; the latter term, i.e., std (·) is a standard deviation function, which calculates the standard deviation of the coding rates
of each sub-feature map; a and b are the corresponding tradeoff factors. This constraint increases the coding rate estimation
of the sub-feature map l and limits the standard deviation of all the sub-feature maps’ coding rate estimation, allowing each
sub-feature map to learn a certain amount of effective information during the warm-up stage without excessive learning. We
empirically set a = 4, b = 64 in this constraint.

Combining the synonymous constraints discussed at the end of Appendix B.2, the constraints in the training loss function in
the warming-up process can be summarized as

L(l)
c = Lsynset

c + Ldetail
c + Lwarming

c , (48)

After the warming-up phase, the constraints will be modified to

L(l)
c = Lsynset

c + Ldetail
c . (49)
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Figure 11. Comparisons of methods using PSNR and LPIPS on different datasets. Each point on the HiFiC and MS-ILLM performance
curves is from a single model, while our entire performance curves are achieved by a single progressive SIC model.

During training, we treat the first 12500 iterations as the warming-up phase, and the subsequent iterations are for the formal
training process.

In performance validation, for each input image at each synonymous level, we randomly select a single sample x̂j from the
reconstructed synset X̂ as the resulting image. Then we compare this result with the baseline methods by calculating the
average coding rate, PSNR (distortion quality), and LPIPS and DISTS (perceptual quality) across the dataset.

C.2. Supplementary Results

Figure 11 provides the supplementary PSNR and LPIPS quality results for Figure 4, which are quality assessment measures
corresponding to the distortion and perceptual terms in the training loss function. As shown in the figure, for the distortion
evaluation measure PSNR, as the coding rate increases, PSNR progressively approaches the performance of No-GAN
MS-ILLM and even that of BPG. For the perceptual quality evaluation measure LPIPS, our solution reaches near the
LPIPS quality of the perceptual solution at full rate. Even for the Kodak dataset, at low rates, our method outperforms the
No-GAN MS-ILLM scheme. In this case, even without applying DISTS to the loss function for optimization, our method
still demonstrates performance gains under most DISTS rates, shown as the results in Figure 4. This indicates that our
method aligns better with the resampling tolerance emphasized by DISTS.

Consequently, our method achieves comparable rate-distortion-perception performance using a single progressive SIC
model, which demonstrates our advantages in variable-rate support.

Besides, the visualization results are presented from Figure 12 to Figure 17, which can be divided in two groups:

1. The first group illustrates the process of improving the reconstructed image as the synonymous level l increases, which
includes Figure 12, Figure 13, and Figure 14, corresponding to the test image from CLIC2020 test, DIV2K validation,
and the Kodak dataset, respectively.

We captured the effects of reconstructed images at specific synonymous levels to clearly demonstrate how switching
synonymous levels impacts the quality of the reconstructed images: At low synonymous levels, the coding rate for
the synonymous representation is relatively low. As a result, the reconstructed image is sampled from a larger synset,
capturing only the global semantic content of the image, with limited pixel-level detail accuracy. As the synonymous
level increases, the coding rate rises, which reduces the size of the reconstructed synset. This allows for more accurate
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Figure 12. Visualization results of reconstructed images at different synonymous levels using progressive SIC (M = 1). Image from the
CLIC2020 test set.
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Figure 13. Visualization results of reconstructed images at different synonymous levels using progressive SIC (M = 1). Image from the
DIV2K validation set.
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Figure 14. Visualization results of reconstructed images at different synonymous levels using progressive SIC (M = 1). Image from the
Kodak validation set.
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Figure 15. Visualization comparison of reconstructed images at synonymous level l = 5 using progressive SIC with M = 1 and M = 5.
Image from the CLIC2020 test set.

Original

Rate = 0.2158 bpp / DISTS =  0.0501 Rate = 0.2156 bpp / DISTS = 0.0492

Figure 16. Visualization comparison of reconstructed images at synonymous level l = 6 using progressive SIC with M = 1 and M = 5.
Image from the DIV2K validation set.

Original

Rate = 0.3600 bpp / DISTS =  0.1021 Rate = 0.3281 bpp / DISTS = 0.0935

Figure 17. Visualization comparison of reconstructed images at synonymous level l = 7 using progressive SIC with M = 1 and M = 5.
Image from the Kodat dataset.
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Figure 18. Employed Discriminator Architecture in our finetuning attempts.

semantic information and progressively enhances the details in the reconstructed image.

These visualization results demonstrate that the progressive SIC model we implemented can effectively leverage the
switching of synonymous levels to adjust to different coding rates, enabling the accuracy of the reconstructed image to
improve as the coding rate increases, while ensuring a smooth enhancement of perceptual quality.

2. The second group presents a visualized quality comparison of the reconstructed images corresponding to specific
synonymous levels, with the number of detailed representations ŷϵ,j set to M = 1 and M = 5 during training. It
includes Figure 15, Figure 16, and Figure 17, corresponding to the test image from CLIC2020 test, DIV2K validation,
and the Kodak dataset, respectively. The perceptual quality is evaluated using the DISTS measure.

These visualization results demonstrate certain advantages of increasing the sampling number of ŷϵ,j in perceptual
qualities at certain synonymous levels, since more sampling results in effective learning of the shared characteristics
within the reconstructed synset X̂ .

We state that the results presented in this article are some of our preliminary results. Currently, our investigations on the
perceptual loss (i.e., the divergence term) utilization, synonymous level partition mechanisms, sampling numbers, and
hyperparameter settings on progressive SIC schemes are still insufficient. These factors may contribute to the issues observed
in Figure 4 and Figure 5. Future works are needed to explore these aspects in more detail.

D. Limitations: Implementation Details and Supplementary Results
In this section, we present the implementation details and results of the supplementary experiments in Section 6, focusing on
the primary concern of using GAN-based adversarial loss to replace the divergence term in the loss function of Equation (11).

D.1. Implementation Details

As described in Section 6, we use GAN-based adversarial loss to replace the divergence term in the loss function and
improve the performance of our implemented SIC model. Hence, the auto-encoder architecture remains consistent with
those in Appendix C.1. This section mainly details the discriminator design.

The utilized conditional discriminator is a convolutional neural network with two input branches—the original image x
/ reconstructed image x̃(l)

j as a main branch and the synonymous representation ỹ(l)
s as a condition branch—and outputs

the probability that the input image is judged as real. Besides, the discriminator model consists of two parts, i.e., a group
of conditional models and a main architecture. The conditional branch is first upsampled by 16 times, concatenated with
the main branch in the channel dimension, and then fed into the main architecture to estimate the output probability. We
fine-tune the synthesis transform gs (i.e., the generator) with a single discriminator model, using a corresponding conditional
model for each synonymous level l and sharing the main architecture across all synonymous levels.
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D.2. Supplementary Results

Figure 19 shows the performance of the fine-tuned model (labeled as “with GAN”) using PSNR, LPIPS, DISTS, and
FID, compared with the original model (labeled as “no-GAN”) and other comparison schemes across different datasets. It
should be noted that calculating FID on the Kodak dataset is unavailable as this dataset has only 24 images to yield the
useful metrics, which is also stated in (Muckley et al., 2023). These results show that introducing adversarial loss improves
perceived quality, indicating its optimization direction is closer to the optimal divergence than metrics like LPIPS.

However, unlike in classical perceptual compression methods (Muckley et al., 2023), we observe that while DISTS—more
tolerent to resampling—improves significantly, FID—which measures distribution distance—shows limited gains. This
suggests our empirical detail sampling leads to a suboptimal reconstructed image distribution, likely because it does
not follow the ideal probability distribution of the detail representations in vector form, which verifies our statements in
Appendix C.1. Therefore, solving this problem is also one of the key research directions of our future work.

Figure 20 compares reconstructed images before and after fine-tuning with adversarial loss at synonymous level l = 1, using
samples from different datasets. Although DISTS and FID show limited numerical improvement at this level, the perceptual
improvement can be visibly enhanced, which confirms that adversarial loss improves generation quality across synonymous
levels (i.e., across different rate ranges).

Although we acknowledge a performance gap between our method and state-of-the-art approaches, we also need to clarify
once again the advantages of our approach. That is, our implementation scheme—unlike schemes that require separate
models for each rate—offers much easier deployment by achieving acceptable perceptual qualities using one single model
when we set different synonymous levels. We have identified its current limitations and proposed potential solutions;
addressing these could enable SIC to approach the theoretically optimal scheme instructed by SVI and thus potentially
surpass existing methods in future works.
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Figure 19. Comparisons of methods using PSNR, LPIPS, DISTS, and FID on different datasets (Supplemented fine-tuned model
performance). Each point on the HiFiC and MS-ILLM performance curves is from a single model, while our entire performance curves
are achieved by a single progressive SIC model.
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Original w/o Discriminator Finetuned w/ Discriminator Finetuned

CLIC2020 #023

DIV2K #0835

Kodak #01

CLIC2020 #164

DIV2K #0876

Kodak #15

Figure 20. Visualization results of reconstruction images: No-GAN vs. with GAN (Synonymous level l = 1). Images from the CLIC2020
test set, the DIV2K validation set, and the Kodak dataset.
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