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Abstract—Molecular Regulatory Pathways (MRPs) are key to
understanding biological functions. Knowledge Graphs (KGs)
help organize and analyze MRPs by structuring complex inter-
actions. Current methods for extracting KGs from biomedical
literature struggle with hierarchical relationships and context.
Large Language Models (LLMs) like GPT-4 show promise in
addressing these issues but remain underexplored for end-to-
end KG construction. We present reguloGPT, a novel GPT-4
based in-context learning prompt designed for the end-to-end
extraction of a regulatory graph and context from a sentence
that describes regulatory interactions. reguloGPT employs a
context-aware relational graph to capture MRPs’ hierarchical
structure and resolves semantic inconsistencies by embedding
context directly within the relational edges. We created a
benchmark dataset comprising four hundred annotated PubMed
titles on N6-methyladenosine (m6A) regulations. Rigorous evalu-
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ations of reguloGPT on the benchmark dataset showed marked
improvements over existing algorithms and other LLMs. We
further developed a novel G-Eval scheme, leveraging GPT-4
for annotation-free performance evaluation that demonstrated
agreement with evaluations on the benchmark dataset. Lastly,
we constructed m6A-KG by applying reguloGPT to 1,396 m6A-
related titles and demonstrated its utility in elucidating m6A’s reg-
ulatory mechanisms of cancer phenotypes across various cancers.
These results underscore reguloGPT’s potential for advancing
biological knowledge extraction. All reguloGPT works including
source code, benchmark datasets, and m6A-KG are available at
https://github.com/Huang-AI4Medicine-Lab/reguloGPT.

Index Terms—context-aware relation graph, GPT, in context
learning, knowledge graph construction, molecular regulatory
pathways, m6A mRNA methylation, reguloGPT

I. INTRODUCTION

Molecular Regulatory Pathways (MRPs) are central to our
understanding of the molecular mechanisms controlling bio-
logical functions. Studying MRPs allows scientists to uncover
disease-contributing dysregulations and guide the development
of targeted therapies. For organizing and analyzing the ex-



tensive data within MRPs, Knowledge Graphs (KGs) have
become instrumental. These KGs offer structured representa-
tions of complex interactions among various entities such as
genes, proteins, and biological processes within MRPs [1], [2].
While databases like KEGG [3] have been established through
meticulous human curation, the sheer volume and pace of
new research publications pose a significant challenge to such
manual efforts. To address this, automated Natural Language
Processing (NLP) methods have been developed by combining
rule-based and machine-learning strategies to improve the
extraction of biomedical knowledge from literature, resulting
in databases like INDRA [4].

MRPs are characterized by intricate relationships and hierar-
chical structures that span genes, proteins, and biological pro-
cesses within a biological context. Text descriptions of MRPs,
such as “METTL3-mediated m6A methylation of SPHK2 pro-
motes gastric cancer progression by targeting KLF2,” suggest
a context-specific relational graph involving several entities
like METTL3, m6A, SPHK2, KLF2, progression, and gastric
cancer as context (Fig. 1A). The relational graph encompasses
both explicitly and implicitly mentioned relationships that col-
lectively define the mechanism by which METTL3 regulates
the progression of gastric cancer.

Biomedical KGs are essential for integrating and analyz-
ing complex data across various biomedical domains. KG
can unify data from genomic databases, drug information,
and research publications to provide a comprehensive view,
enabling researchers to uncover insights that isolated data
might miss and facilitating hypothesis generation by exploring
connections between genes, proteins, diseases, and drugs,
revealing new research opportunities and potential therapeu-
tic targets. Additionally, KGs enhance the understanding of
disease mechanisms and support context-specific predictions
by comparing normal and disease-specific pathways, offering
more precise insights for interventions. The advent of Large
Language Models (LLMs) like GPT-4 represents a significant
leap forward in Natural Language Processing (NLP), providing
deep insights into the contextual dynamics of language. LLMs
have transformed the traditional view of language from a
static set of terms and rules into relational links between
words [5]. This perspective aligns well with the core ob-
jective of KGs, which involves mapping out a network of
relationships among entities. While LLM-based in-context
learning (ICL) has demonstrated state-of-the-art performance
in biomedical NLP tasks without expensive training or fine-
tuning, its potential for end-to-end KG construction of MRPs
remains largely unexplored, presenting a promising frontier in
the field of biomedical research [5]. In this paper, we explore
the capability of GPT-4 for the end-to-end construction of
a context-aware relational graph to accurately delineate the
context-specific MRPs of m6A mRNA methylation from a
given sentence. Our contributions are:

1) We proposed reguloGPT, a GPT-4 driven ICL prompt
specifically designed for the end-to-end extraction of
the regulatory graph and context to accurately interpret
context-specific MRPs. We designed baseline, few-shot,

Fig. 1. (A) A context-aware relational graph proposed in reguloGPT.
reguloGPT captures context-aware relational graphs from sentences (PubMed
titles) depicting molecular regulatory pathways. The relational graph reflects
the hierarchy of molecular pathways and incorporates the extracted biological
contexts and associated PubMed IDs into edges. This context-aware edge
enables the delineation of context-specific regulation. Alongside explicit
edges, the graph includes implicit relationships, such as the link between
KLF2 and gastric cancer, indicating KLF2’s role in promoting the disease
(extracted from the second title on top). (B) Excluding context in Knowledge
Graphs (KGs) can lead to contradictory relations or misinterpretations. For
example, without context, ‘deficiency of METTL3’ could be interpreted as
either ‘inhibit’ or ‘promote’ the ‘progression’. However, including specific
contexts (e.g., bladder cancer vs. gastric cancer) resolves the contradictions
as shown in (A). (C) The overall process of developing reguloGPT involves
collecting data, creating a benchmark dataset, engineering ICL reguloGPT
prompt, evaluating performance, generating a context-aware m6A-KG, and
utilizing m6A-KG in downstream analysis.

and Chain-of-Thought (CoT) prompts for reguloGPT.
2) We introduced a context-aware relational graph repre-

sentation of regulatory interactions in MRPs (Fig. 1A).
This graph uniquely incorporates the context as part of
the relational edges, thereby addressing and resolving the
semantic contradictions of relations that often arise when
contexts are not considered (Fig. 1B). It also possesses
the inherent regulatory hierarchy of MRPs.

3) We annotated the context-aware relational graphs derived
from 400 paper titles related to m6A MRPs to create a
benchmark dataset. This dataset encompasses a diverse
array of contexts, entities, and relationships, making it
highly valuable for the proper evaluation of reguloGPT.

4) We thoroughly evaluated the performance of reguloGPT
for predicting contexts, entity recognition, and extract-
ing both explicit and implicit relationships. reguloGPT
demonstrated significant improvement over several exist-
ing algorithms and LLMs.

5) To overcome the need for manual annotation in evaluating
reguloGPT, we introduced a novel G-Eval scheme, which
leverages the CoT prompt to evaluate extracted context



and relational graphs. We demonstrated a strong similar-
ity between G-Eval scores and annotation-based evalua-
tions, suggesting its potential capability for annotation-
free KG evaluation with larger datasets.

6) We applied reguloGPT to paper titles addressing m6A
MRPs and constructed a comprehensive m6A-KG. We
demonstrated its utility by exploring m6A-mediated path-
ways and delineated a mechanism that the m6A writer
METTL3 regulates cancer-related phenotypes in breast
cancer, lung cancer, and myeloid leukemia.

II. RELATED WORKS

Several methods have been devised to extract relationships
from text. These methods can be largely categorized as rule-
based [6]–[9] and machine-learning-based [10]. However, they
are mostly pipelined approach, focusing on extracting indi-
vidual triplet only [11]. Extracting detailed graphs containing
more than two entities from MRP descriptions challenges these
triplet-based approaches, as they fail to consider correlations
between triplets within a graph. This limitation results in cas-
cading errors from misidentified entities, causing the extraction
of redundant or missed relationships, and leads to exponential
computational complexity [12]. Although a few recent works
have considered graph extractions with three entities, such as
drug-gene-mutation relationships [13], generalized approaches
capable of extracting graphs of varying entity sizes are under-
explored in the biomedical domain. Though the existing meth-
ods have their own advantage such as precision, control, inter-
pretability, and adaptability, they are limited in capturing im-
portant contextual information like diseases and tissue types,
potentially leading to inconsistencies and misinterpretations
in biomedical KGs [14]. Recent advances in LLMs allowed
researchers to address those limitations, providing a more
integrated and adaptable approach to relationship extraction.
Leveraging LLMs for knowledge graph construction provides
advantages in handling complex and contextual relationships.
Research and practical implementations are increasingly fo-
cusing on these capabilities to overcome the limitations of
traditional triplet-based systems [15]–[18]. While LLMs have
made noticeable strides in capturing multiple relationships,
there are still challenges to address such as the effectiveness,
scalability, and reliability of these methods in constructing
detailed and accurate knowledge graphs [15]. Not only do
these limitations in methods hinder efforts to address the
challenges, but the lack of specialized benchmark datasets for
large graphs of MRP also impedes progress. Existing datasets
such as SemRep [6] have inspired new approaches for general
biological relationships or chemical-disease relationships to
some degree. However, they were not designed to represent the
full spectrum of complex and context-dependent MRP graphs.
Hence, there is an urgent need for annotated benchmark
datasets and innovative approaches to extract these detailed,
context-dependent relationships that are central to elucidating
MRPs from the literature.

III. MATERIALS AND METHODS

A. The reguloGPT workflow

reguloGPT is a GPT-4 prompt carefully designed and thor-
oughly assessed to extract a regulatory relational graph and its
biological context from a sentence describing MRPs. The de-
velopment of reguloGPT involves six key modules (Fig. 1C):
ICL reguloGPT prompt engineering, data collection and anno-
tation of the benchmark dataset, G-Eval prompt engineering,
performance evaluation, context-aware m6A-KG construction,
and downstream analysis of m6A-KG. We engineered three
reguloGPT prompts (baseline, few-shot, and CoT prompt) to
harness the full potential of GPT-4 for end-to-end context-
aware relational graph extraction. To assess the efficacy of
reguloGPT, we comprehensively evaluated its performance
against the benchmark dataset and compared it with six exist-
ing algorithms. In addition to traditional evaluation, we further
introduced an annotation-free evaluation scheme, G-Eval, and
demonstrated its capability for future applications. We then
applied reguloGPT to all titles to construct a context-specific
m6A-KG and analyzed m6A-associated regulatory pathways,
delineating context-aware relational graph representation and
novel regulatory mechanisms across various cancers.

B. In-context learning (ICL) prompts

To harness the potential of ICL, we developed three distinct
reguloGPT prompts (Fig. 2A, B, and C). While the baseline
prompt consists of instructions, definition, and output format
(Fig. 2A), the few-shot prompt adds demonstrations (Fig. 2B)
and the Chain-of-Thoughts (CoT) [19] prompt includes addi-
tional reasoning steps (Fig. 2C) with the demonstrations.

• Instruction specifies the task of reguloGPT for GPT-4
• Definition defines the nodes, edges, and context of the

context-aware relational graph. Each edge includes two
nodes and a predicate. We also incorporate implicit edges
since many relationships are logically derived but not
explicitly stated (Fig. 2A). Definition also outlines a set
of constraints for extraction of nodes and edges.

• Demonstration provides a few examples containing pairs
of sentences and the relational graphs extracted from the
sentences, along with their corresponding contexts. We
included four examples in our prompt (one is illustrated
in Fig. 2B).

• Chain-of-Thoughts adds a series of intermediate reason-
ing steps for each example (Fig. 2C), encouraging a
complex and logical response from LLM.

• Output provides instructions for the desired output for-
mat.

C. Annotation of the benchmark dataset

The lack of benchmark datasets for context-aware MRP-
related relational graphs is a primary obstacle to comprehen-
sively assessing the proposed reguloGPT. To address this lim-
itation, we developed an annotated benchmark dataset based
on papers focusing on m6A mRNA methylation. m6A methy-
lation, the most abundant mRNA modification in mammalian



Fig. 2. reguloGPT prompts: (A) Baseline prompt including instruction, definition, and output format. (B) Demonstration in few-shot prompt. (C) Demonstration
in CoT prompt. G-Eval prompt: (D) context evaluation and (E) graph evaluation. The Evaluation Steps were generated by GPT-4 based on our Instructions
and Definitions. Then, they evaluate the context or graph added in the Output Format in a form-filling fashion.

cells, exhibits highly dynamic and complex mechanisms. m6A
methylation has emerged as a highly active research area,
which has garnered much interest in recent years. Creating
the annotated dataset focusing on m6A circumvents the chal-
lenge of information overload inherent in more established
research domains, yet effectively covers both general and
nuanced MRP-related descriptions. We specifically focused on
the titles of these papers as they provide the most concise
description of molecular regulations. To compile this dataset,
we searched PubMed using PubTator [20] with the keyword
‘m6A’ to extract papers published from 2013, the inception
of this area, to 2023. Subsequently, we selected titles that
encompass complete sentences with genes.To facilitate the
annotation of a benchmark dataset, we assembled a team
of five subject-matter-expert annotators with backgrounds in
computer science and biomedicine to annotate 400 titles
containing MRPs from the m6A research papers. The an-
notation process consisted of three steps: a) Practice phase:
We randomly selected 20 sentences as practice examples.
Annotators followed the instructions to identify nodes, edges,
and context, engaging in discussions to reach a consensus.
They also documented special cases for further annotation; b)
Group annotation phase: Guided by the annotation guidelines
established during the practice phase, we divided the 400
titles among the five annotators. Each annotator reviewed and
annotated a subset of titles, after which they cross-reviewed
another annotator’s work c) Adjudication phase: Annotations
were considered final if both annotators agreed on them. In
cases of disagreement, the annotations were discussed within
the group until a consensus was reached.

D. Normalization of nodes, edges, and contexts

We used Gilda [21] to normalize nodes initially. Subse-
quently, we performed manual normalization to ensure con-
sistency. Nodes were further categorized into five types: m6A,

m6A-Writers/Erasers/Readers (m6A-WER), Gene Protein,
GO Pathway, and Other. For edge normalization, we up-
dated the ontological predicate definitions in SemRep [6],
resulting in a dictionary of 32 predicate types: administered
to, affects, associated with, augments, causes, coexists with,
compared with, complicates, converts to, diagnoses, disrupts,
higher than, inhibits, interacts with, isa, locates, lower than,
maintains, manifests, methods, occurs in, part of, precedes,
predisposes, prevents, process of, produces, same as, sen-
sitizes, treats, and uses. Similarly, we normalized contexts
adopting cancer types based on definitions from The Cancer
Genome Atlas (TCGA) [22].

E. Metrics and criteria for annotation-based evaluation
We adopted relaxed entity matching scheme used in [23]

and evaluated the performance as follows: a) Node: A node
is considered true positive if it achieves more than 50%
similarity with the ground truth. Nodes failing to meet this
criterion are considered as false positives. Any ground truth
nodes not predicted are counted as false negatives; b) Edge:
After normalizing using the predicate dictionary, each edge is
evaluated based on its predicate and the node alignment. An
edge is true positive if both the predicate and node alignment
matched the ground truth. False positives occur when node
alignment is correct, but the predicate does not match. Any
ground truth edges not predicted were false negatives; c)
Context: Accuracy serves as the metric for context prediction.
It is considered correct if achieving more than 50% similarity
with the ground truth context.

F. G-Eval for annotation-free assessment of reguloGPT
Since manual annotation is labor-intensive and costly, as-

sessing context-aware KG construction based on human an-
notations at scale is practically infeasible. Recent research
on annotation-free evaluation of Natural Language Gener-
ation has leveraged LLMs directly as evaluators [24]. For



example, GPTScore utilized LLMs to evaluate candidate out-
puts, assigning scores based on generation probability with-
out referencing any human annotations. Following a form-
filling paradigm [25], GPT-4 was also able to assess the
coherence, consistency, fluency, and relevance of generated
texts, with high agreement with human evaluators. Inspired
by these exciting studies, we proposed G-Eval (Fig. 2D and
E), a novel annotation-free evaluator based on GPT-4 for
reguloGPT output. G-Eval employs the form-filling paradigm,
encompassing a context evaluation (Fig. 2D) that assigns a
score to the extracted context, and a graph evaluation (Fig. 2E)
that scores the final extracted graph from a sentence. The
prompts for context and graph evaluations include four parts:
1) Introduction; 2) Definition, which describes the concept
of context in the context evaluation, or the concepts of
nodes and edges in the graph evaluation; 3) Evaluation Steps;
and 4) Output Format. These concepts—contexts, nodes, and
edges—are consistent with those defined in the reguloGPT
prompts (Fig. 2A). The evaluation steps were generated by
GPT-4 based on the introduction and definition. Scores range
from 1 to 5, and G-Eval repeats the evaluation five times to
obtain an average score as the final output [26].

G. Construction of the m6A knowledge graph

In addition to the annotated benchmark dataset, we pro-
cessed 969 m6A-related titles with our reguloGPT-CoT prompt
to extract context-aware graphs. We applied normalization to
standardize the extracted nodes, edges, and contexts. These
normalized relational graphs were integrated with those from
our benchmark dataset by linking common nodes and edges
to construct m6A-KG, a comprehensive KG detailing m6A
functions across diverse contexts. A distinctive feature of m6A-
KG is that each edge incorporates a set of associated contexts
to inform the context under which the regulation defined by the
edge occurs. Each edge also includes the extracted raw edge
values and PubMed Identifier (PMID) of the associated titles,
enabling traceability back to the original paper for reference.
Neo4j was used [27] for visualizing and managing m6A-KG.

IV. RESULTS

A. The benchmark dataset

Our query of PubMed yielded 1,369 research papers whose
titles describe m6A MRPs. From these, we selected 400
titles and meticulously annotated their context-aware relational
graphs addressing the regulatory mechanisms of m6A mRNA
methylation to create the benchmark dataset. The benchmark
data comprises 787 nodes, 1374 links with 153 predicates, and
243 contexts: equivalent to a graph with an average of 3.71
triplets and 0.86 context per title. Subsequent normalization
resulted in 695 unique nodes, 1282 links with 21 predicates,
and 160 unique contexts including 49 cancer contexts.

B. reguloGPT outperforms existing algorithms and other
LLMs

We evaluated reguloGPT’s performance against manual
annotation using the benchmark dataset, comparing it to four

TABLE I
NODE, EDGE, AND CONTEXT PREDICTION RESULTS∗

Node Edge Context
F1 Re Pr F1 Re Pr Accuracy

EIDOS 0.74 0.60 0.98 0.37 0.26 0.68 -
REACH 0.69 0.55 0.94 0.22 0.15 0.42 -
TRIPS 0.55 0.47 0.66 0.12 0.08 0.20 -
OpenIE 0.63 0.69 0.58 0.18 0.19 0.17 -

Mixtral-CoT 0.95± 0.94± 0.96± 0.56± 0.56± 0.56± 0.79
0.001 0.002 0.002 0.004 0.003 0.005

Llama3-CoT 0.93± 0.95± 0.91± 0.51± 0.56± 0.46± 0.73
0.000 0.001 0.001 0.001 0.002 0.001

reguloGPT-baseline 0.95± 0.94± 0.96± 0.56± 0.50± 0.65± 0.74
0.002 0.002 0.002 0.006 0.006 0.007

reguloGPT-fewshot 0.95± 0.92± 0.98± 0.58± 0.51± 0.67± 0.87
0.002 0.003 0.002 0.003 0.003 0.005

reguloGPT-CoT 0.96± 0.94± 0.97± 0.60± 0.55± 0.66± 0.89
0.001 0.002 0.001 0.005 0.005 0.005

∗ F = F1 score, Re = recall, Pr = precision

TABLE II
G-EVAL RESULTS

Context Graph
score∗ similarity† score similarity

Baseline 3.74 0.81 3.76 0.61
Few-shot 4.19 0.84 4.59 0.78

CoT 4.35 0.84 4.67 0.81
∗ The range of scores is 1 - 5.
† The similarity denotes the rand similarity coefficient between the G-

Eval and human annotation evaluations of reguloGPT’s prediction on the
benchmark dataset at the sentence level.

established algorithms as baselines: OpenIE [8], TRIPS [9],
REACH [7], EIDOS [10]. Note that these algorithms do not
output context information, so context evaluation results of
these algorithms are not presented. Besides these baseline
algorithms, we also evaluated the CoT prompt with Mixtral-
8x22B and Llama3-70B, two widely used open-source LLMs.
Mixtral-8x22B is the latest and largest mixture-of-experts
LLM from Mistral AI, known for its efficient architecture
and strong performance. Llama3-70B is the most advanced
model in Meta’s Llama series, featuring 70 billion parameters
and optimized for instruction-following tasks. These models
represent state-of-the-art performance in publicly available
language models and provide robust comparisons against regu-
loGPT. Overall, ICL prompts powered by LLMs demonstrated
remarkable superiority over non-LLM algorithms (Table I).
reguloGPT-CoT exhibited the most effective performance,
achieving an impressive accuracy of 0.89 for context pre-
diction and F1 scores of 0.96 for node prediction and 0.60
for edge prediction. The relatively lower performance on edge
prediction underscores the inherent complexity in accurately
extracting a graph. Compared to other LLMs, reguloGPT-CoT
achieved higher F1 score than both Mixtral-CoT and Llama3-
CoT, confirming the consensus on the superior ability of GPT-
4 for text understanding and reasoning over other LLMs [28].
Though EIDOS showed the highest performance among base-
line algorithms, reguloGPT-CoT achieved substantial improve-
ments with 22% and 23% higher node and edge F1 scores
than EIDOS, respectively. The marked increase in edge recall
highlights the advantage of reguloGPT’s end-to-end strategy



for graph extraction over methods focusing on individual
triplets separately. The improvement is evident in the title
“The m6A methyltransferase METTL3 promotes osteosarcoma
progression by regulating the m6A level of LEF1.” The bench-
mark annotations include four triplets under the context of
“osteosarcoma,” however, REACH only identified ‘METTL3
– [STIMULATES] – level of LEF1.’ Similarly, EIDOS ex-
tracted only one triplet ‘m6A methyltransferase METTL3 –
[STIMULATES] – osteosarcoma progression.’ In contrast, all
three reguloGPT ICL prompts successfully extracted all four
relations with the correct context. Among the three reguloGPT
ICL prompts, the advanced CoT prompt produced the most
aligned output with our requirements. For instance, although
we asked GPT-4 to introduce a dummy node to capture
the state of an entity in the prompt, the baseline prompt
ignored this guideline. In contrast, by adding one example
in a demonstration with a similar case, the few-shot prompt
was able to follow the requirement, even though this alignment
was not stable. For instance, in the title “Suppression of m6A
reader Ythdf2 promotes hematopoietic stem cell expansion,”
the few-shot prompt neglected the condition, but the CoT
prompt successfully maintained this alignment.

C. G-Eval is consistent with benchmark evaluation

We next investigated the G-Eval evaluations of the three
reguloGPT prompts on the benchmark dataset and assessed
the consistency between G-Eval evaluations and benchmark
annotations. G-Eval produced scores for context evaluation
and graph evaluations for each title. Examining the average
score across the 400 titles (Table II) revealed a consistent
trend with the annotation-based evaluation in Table I, i.e., the
CoT prompt exhibited the best performance, followed by the
few-shot and baseline prompts. To further validate the effec-
tiveness of our G-Eval strategy, we analyzed the similarities
between the G-Eval scores and annotation evaluation. Since
the annotation evaluation for each sentence is binary, i.e.,
correct or incorrect, we first binarized G-Eval scores based
on the score distribution, converting a score to correct if it
was greater than 3 and incorrect otherwise. Furthermore, since
G-Eval conducts graph evaluation instead of evaluating nodes
and edges separately as the annotation-based evaluation does,
we also generated a graph-level annotation evaluation where
a sentence was deemed correct if more than 50% of the edges
in the sentence were correctly predicted. We did not consider
node prediction because their F1 scores are high, as shown
in Table I. To compare the similarity between the G-Eval
and annotation evaluations, we computed the Rand matching
coefficient for each title. The similarity results demonstrate
high similarities between the two evaluations, especially for
CoT, where the Rand similarities reach 0.84 for context predic-
tion and 0.81 for graph prediction. These results suggest that
G-Eval is a promising annotation-free method for evaluating
reguloGPT.

Fig. 3. (A) Outdegree rate of nodes in different categories. (B) Nodes in lung
cancer KG with high/medium/low out-degree rates. Cancer-type specific KG
of (C) breast cancer, (D) myeloid leukemia, and (E) lung cancer. Extracted
pathways are shown to the left. Edge colors are associated with the supporting
titles.

D. m6A-KG, a context-aware-KG of m6A functions

Next, we demonstrated the utility of reguloGPT to create a
KG of the m6A-associated MRPs. m6A is one of the most pre-
dominant mRNA modifications in mammalian cells, present
in over 40% of transcripts [29]. The dynamic m6A regula-
tion involves various RNA binding proteins (RPBs) including
writers (METTL3 & METTL14), which add methyl groups,
erasers (ALKBH5 & FTO) which remove it, and readers,
(e.g., YTH proteins), which bind to m6A sites to decode the
regulatory signals to mediate gene expression. It achieves this
by regulating stability, alternative splicing, nuclear export, and
translation efficiency of mRNA. Additionally, it significantly
influences cancer development and progression by modulating
mRNA stability and splicing [30]. Despite growing interest,
the roles of m6A and its writers, erasers, and readers in cancer
through gene expression alterations are not fully understood.

1) Construction of m6A-KG with reguloGPT: We applied
reguloGPT to 969 titles without annotations, resulting in
the extraction of context-aware relational graphs that depict
functions related to m6A in diverse contexts. After normalizing
the nodes, edges, and contexts, we integrated these relation
graphs and the annotated graphs in the benchmark dataset into
a comprehensive m6A knowledge graph (m6A-KG), denoting



molecular regulatory pathways linked to m6A. The constructed
m6A-KG comprises 2442 nodes, 4678 links with 200 edge
predicates, and 376 contexts where each link encompassing an
average of 0.91 contexts. The average node degree, calculated
by aggregating incoming and outgoing edges, is 2.15 with
96% of nodes having less than five degrees and only eight
nodes possessing more than 20 degrees. As expected, the m6A
node emerged as the most connected, with a degree of 65,
highlighting its centrality in the network. The top nodes by
degree also include key m6A writers like METTL3 (degree
47) and METTL14 (degree 23), erasers such as ALKBH5
(degree 24) and FTO (degree 38), and readers like YTHDF1
(degree 28) and YTHDF2 (degree 22). These high degree
nodes underscore their vital roles in the regulatory functions
of m6A. Additionally, nodes like APOPTOSIS (degree 13),
GLYCOLYSIS (degree 11), and METASTASIS (degree 10)
also exhibited relatively high degrees, indicating m6A’s asso-
ciations with these tumor-related entities.

2) The structure of m6A-KG reflects the architecture of
molecular regulatory pathways.: Out-degree rates across each
node category revealed a hierarchical structure aligned with
that of a molecular pathway (Fig. 3A). Specifically, m6A-
WER and m6A have median out-degree rates of 0.72 and 0.52,
respectively, suggesting that they occupy upstream positions
and reaffirming their roles as key regulators. Gene Protein
and GO Pathway, with a median out-degree rate of 0.5, serve
as intermediate nodes bridging the upstream regulators with
the downstream nodes. Interestingly, Other nodes exhibited
a median out-degree rate of 0.00, indicating their positions at
the extreme end of the pathway. Close inspection revealed that
nodes with high out-degree rates include chemicals or envi-
ronmental stimuli like simvastatin, propofol, hypoxia, hepatic
microenvironment, and cigarette smoking, which are expected
to be upstream in pathways (Fig. 3B). Conversely, nodes with
high in-degree rates were disease phenotypes or outcomes
such as tumorigenesis, tumor growth, cancer progression,
radiosensitivity, drug resistance/sensitivity, chemoresistance,
or autophagic cell death, which naturally sit at the bottom of
pathways (Fig. 3B). The emergent structure of the m6A-KG,
featuring various stimuli at the top followed by clear upstream
m6A regulators and downstream phenotype outcomes, exhibits
the hallmarks of an MRP.

3) The m6A-KG reveals distinct mechanisms of m6A func-
tions across various cancer types.: We next investigated
m6A’s role in various cancers by leveraging m6A-KG’s in-
tegration of contexts and PMIDs into edges. This feature
enabled us to dissect functions specific to certain cancers
and to identify those common across multiple types. The
m6A-KG’s contexts included 67 cancer contexts represented
by 2558 links defined by 112 edge predicates. Especially,
the link ‘METTL3 – [AFFECTS] – m6A’ was associated
with 35 cancer contexts including 12 TCGA cancer types,
signifying METTL3’s ubiquitous influence in various cancers
and regulatory functions. Moreover, four relations (‘ALKBH5
– [AFFECTS] – m6A,’ ‘YTHDF2 – [INTERACTS WITH] –
m6A,’ ‘METTL3 – [STIMULATES] – PROGRESSION,’ and

‘WTAP – [AFFECTS] – m6A’) were associated with more than
10 cancer types, highlighting the central role of the writer
METTL3, the eraser ALKBH5, and the reader YTHDF2 in
multiple cancers.

To gain insights into cancer-specific m6A-mediated func-
tions, we extracted cancer-specific sub-KGs for breast cancer,
leukemia, and lung cancer (Fig. 3C, D, and E). These sub-KGs
presented clear hierarchies of MRPs, with m6A regulators at
the top and disease phenotype nodes downstream. METTL3’s
widespread association across cancers prompted further exam-
ination of pathways centering on this regulator. We focused on
pathways supported by edges spanning multiple titles because
they could reveal novel functions. The breast cancer sub-
KG (Fig. 3C) delineates a complex dual-pathway mechanism,
with evidence from five titles [26], [31]–[34], suggesting
METTL3’s involvement in tumor metastasis through two dis-
tinct routes: regulation of COL3A1, crucial for extracellular
matrix structure, and alteration of cancer cell metabolism via
the glycolytic pathway. This duality suggests that therapeutic
targeting METTL3 could simultaneously disrupt key structural
and metabolic routes essential to cancer metastasis, offering
a promising avenue for multifaceted therapeutic intervention.
Moreover, cancer-dependent regulations of MEG3, a tumor
suppressor gene, were revealed in lung and leukemia sub-KGs.
The leukemia sub-KG (Fig. 3D) suggests that MEG3 modu-
lates miR-493-5p to suppress myeloid leukemia by inhibiting
METTL3-mediated m6A methylation [35], [36]. Conversely, in
lung cancer sub-KG (Fig. 3E), METTL3 methylates MEG3,
which facilitates tumorigenesis and metastasis [37]. These
distinct regulatory mechanisms were corroborated through
a detailed examination of the literature associated with the
extracted pathways [38], validating the m6A-KG’s utility in
uncovering new functions.

V. CONCLUSION

In this study, we developed reguloGPT, a novel GPT-4 appli-
cation for the end-to-end KG construction for MRPs. We de-
vised ICL prompting to extract context-aware relational graphs
for MRPs. We annotated 400 titles on m6A methylation, en-
compassing various regulations applicable to broader studies.
We benchmarked reguloGPT, showing significant performance
improvements over existing algorithms, including Mixtral-
8x22B and Llama3-70B. Also, we found a strong similarity
between manual evaluation and our proposed annotation-free
G-Eval evaluation. reguloGPT successfully built a detailed
m6A-KG with 2442 nodes, 4678 links with 200 predicates,
providing a rich map of m6A regulatory functions by featuring
its unique context-aware edges with associated contexts and
PubMed IDs. This design not only allowed us to understand
context-specific regulations but also enhances traceability and
data verification. The m6A-KG revealed distinct mechanisms
of m6A functions across various cancer types, facilitating a
deeper understanding of m6A’s role in cancer and opening
avenues for targeted cancer research and therapy development.
The hierarchical structure of the m6A-KG mirrors the architec-
ture of MRPs, offering a more intuitive understanding of the



complex interactions and roles within these pathways. Future
studies will explore a more systematic G-Eval assessment
and relationship extraction, along with improved normalization
schemes for edges and contexts. A systematic and effective
approach to elucidate novel regulatory functions from the KG
will be further developed.
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