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Abstract

Multi-Agent (MA) systems are effective at solving complex tasks that demand
advanced planning, tool use, and the synthesis of evidence from multiple sources.
Existing systems typically use Hierarchical Manager-Worker (HMW) structures
or Router-based Message Passing (RMP) as their communication protocol to
coordinate work. However, they can be restricted due to communication inef-
fectiveness, since agents cannot directly consult specific colleagues or operate
beyond assigned subtasks, and misrouted messages can propagate errors. In-
spired by bus communication systems in computer systems, we propose BusMA,
a bus communication MA framework that allows any agent to address specific
peers. Our framework comprises a Chair agent, Worker agents, and a com-
munication bus. Worker agents perform multi-step reason–act–call interactions,
enabling targeted requests for help or critique, with the Chair agent synthesiz-
ing insights from all agents’ communications while adding its own reasoning to
produce coherent solutions. The communication bus routes addressable mes-
sages and executes requests. Across two frontier LLMs and benchmarks spanning
diverse domains, including image understanding, mathematics, and knowledge-
based tasks, as well as GAIA with tasks of varied complexity, BusMA consistently
achieves the best results, outperforming state-of-the-art multi-agent communica-
tion approaches (HMW and RMP-based methods). Anonymous code is available
at https://anonymous.4open.science/r/Bus-MA-370E.

Receiver: <Agent Name>

Communication Type:
❑ Discussion
❑ Require Explanation
❑ Guide Response
❑ Challenge Response

Call with varied communication types Message passingInput Output

Figure 1: Overview of the BusMA communication substrate.

1 Introduction

Multi-Agent (MA) systems, comprising a set of agents that can autonomously reason, act and
communicate, powered by large language models (LLMs) (Achiam et al., 2023; Comanici et al.,
2025; DeepSeek-AI et al., 2025), are effective in solving complex real-world tasks. These tasks, such
as mathematical reasoning (Lei et al., 2024) and reasoning-grounded information retrieval (Huang
et al., 2025), often require planning, tool use (e.g., web search API) and synthesis of evidence from
diverse resources (Fang et al., 2025; Du et al., 2025). MA systems rely on specialized subagents to
address these complex tasks in a collaborative manner. Hence, their effectiveness depends on the
communication quality between agents and their coordination strategy (Guo et al., 2024; Chen et al.,
2023; Liang et al., 2023; Du et al., 2023; Wu et al., 2023b).
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Existing MA communication protocols can be broadly categorized into Hierarchical Manager-
Worker (HMW) structure and Router-based Message Passing (RMP). HMW employs a hierarchical
control structure, where a designated manager agent addresses the decomposition of complex tasks
and assigns sub-tasks to subordinate agents with specific capabilities, e.g., code execution or web
search (Qian et al., 2024; Gu et al., 2025; Zhang et al., 2025). While effective for simple tasks
involving, this paradigm limits agent communication to one-way task allocation and result submis-
sion, thereby preventing richer peer dialogue. In contrast, RMP introduces a central router agent,
which mediates all communication. Agents send their messages to the router, which then forwards to
selected recipients according to predefined rules. The router often maintains a shared memory of past
interactions, allowing it to route messages consistently and provide agents with an overview of global
states (Wu et al., 2023a; Nonomura & Mori, 2025). This approach enables flexible workflows, yet a
shared memory pool is forced through the central router, which prevents native peer dialogue. The
centralized nature of HMW and RMP gives rise to two primary limitations. First, communication
is constrained: agents cannot directly consult specific colleagues or act autonomously beyond their
assigned subtasks, preventing the exchange of explanations, critiques, and joint problem-solving,
which are essential for effective teamwork (Ke et al., 2025; Jin et al., 2025; Krishnan, 2025). Sec-
ond, these designs are prone to error propagation. The router may misroute messages to wrong or
sub-optimal peers, and the reliance on long context to maintain shared memory can propagate errors
(Piatti et al., 2024; Han et al., 2024; Maragheh & Deldjoo, 2025; Sagirova et al., 2025).

To address these limitations, we propose BusMA, a bus communication substrate for MA systems.
The bus architecture in computer systems (Patterson & Hennessy, 2017) enables components to
communicate directly through a shared communication channel, eliminating the need for point-
to-point connections. This architecture removes centralized controllers and allows components to
autonomously initiate data transfers based on their needs. In MA systems, such an architecture
translates to enabling agents to directly address specific peers through a communication bus, thereby
eliminating centralized bottlenecks from managers and routers. This approach allows agents to
autonomously initiate information exchange beyond assigned tasks and establishes a standard protocol
for cross-framework interoperability. BusMA consists of three core components: Worker agents,
a specialized Chair agent, and the communication bus. A worker agent, equipped with access to a
“personal” memory, first produces a low-level insight, which is a reasoning outcome derived from
its own memory. Subsequently, it can choose to issue a call directed to a different peer with one
or more of four communication types (i.e., discussion, explanation, challenge, and guidance). The
response to this interaction yields a mid-level insight, which reflects reasoning enriched through
peer input and is recorded to the bus. The Chair agent is a specialized Worker agent with acting
disabled. Its main responsibility is to integrate messages from other agents with its own reasoning
to synthesize insights and steer task progress. Specifically, it fuses the bus history with its memory
to form high-level insights that guide coordination and final answer generation. The communication
bus routes addressable messages and maintains a centralized memory managed by the chair. Figure 1
shows the overall BusMA framework.

Contributions. BusMA is a novel bus communication substrate that addresses existing system
limitations through two key mechanisms: (1) extended communication types that enable varied
interaction modes beyond simple task assignment; (2) multi-level insight generation across individual
(low), dialogue (mid), and synthesis (high) levels. Through comprehensive experiments across 12
datasets spanning image analysis, mathematics, and knowledge question answering, we show that
BusMA outperforms state-of-the-art methods. Additional experiments show that it consistently
outperforms previous methods on general agentic tasks.

2 Related Work

LLM Based Agents. LLMs such as GPT (Achiam et al., 2023), Gemini (Comanici et al., 2025),
and DeepSeek (DeepSeek-AI et al., 2025), serve as the foundational architecture for autonomous
agent development. Agentic architectures augment the base LLM with complementary mechanisms,
including advanced planning strategies for task decomposition (Wei et al., 2022; Huang et al., 2024; Li
et al., 2025; Hu et al., 2025; Erdogan et al., 2025), external tool use and knowledge bases (Zhang et al.,
2024b; Wu et al., 2024a; Qin et al., 2024; Feng et al., 2025), and long-term memory or reflection
mechanisms for persistent state and iterative improvement (Shinn et al., 2023; Modarressi et al.,
2023; Zhong et al., 2024; Mei et al., 2024; Xu et al., 2025; Chhikara et al., 2025). This architectural
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Figure 2: Comparison between different MA frameworks.

framework has been applied to diverse domains such as automated programming (Trivedi et al.,
2024; Zhang et al., 2024a; Chen et al., 2025), system interaction (Wu et al., 2024b; Bonatti et al.,
2024), and scientific discovery (Hong et al., 2024; Novikov et al., 2025). However, single-agent
LLMs remain brittle on long-horizon, interdependent tasks, with evaluations reporting systematic
failures in planning, decision-making, and instruction following (Liu et al., 2024; Xie et al., 2024;
Wang et al., 2025). Consequently, MA systems have emerged as a promising approach to improve
reasoning accuracy and task completion by distributing complex problems among specialized agents
(Li et al., 2023; Du et al., 2024).

LLM Based Multi Agent Systems. Building on advances in single-agent development, researchers
have explored MA systems composed of interacting LLM agents. Early studies highlighted the value
of agent dialogue for social simulation and collaborative problem-solving (Park et al., 2023; Li et al.,
2023), leading to the development of more structured communication protocols. These systems
generally fall into two categories: Hierarchical Manager-Worker (HMW) Systems and Router-based
Message Passing (RMP) Systems. HMW employs a hierarchical structure with a central manager
agent that decomposes tasks and assigns subtasks to subordinate worker agents (Chen et al., 2023;
Qian et al., 2024). Examples include systems where a planner orchestrates tool calls for an executor
(Lu et al., 2025), or where a manager invokes agents as callable tools or workers for individual task
steps (Roucher et al., 2025; LangChain Inc., 2025). RMP by contrast, such as AutoGen (Wu et al.,
2023a), uses a central router agent, often an LLM, to dynamically select the next agent to continue the
task (a process named as speaker selection) without explicit task decomposition, while maintaining
a shared memory pool for coordination.

While effective, centralized MA designs confine communication to task assignment and reporting
channels, limiting the richer peer-to-peer exchanges. The reliance on single control points also
introduces bottlenecks and propagates errors across the dialogue, while dependence on shared
memory can further amplify inaccuracies. These limitations highlight the need for more flexible
and addressable communication strategies, which motivates our introduction of BusMA, a bus
communication substrate that supports targeted peer consultation and coherent MA reasoning. Figure
2 comparatively illustrates existing paradigms and BusMA for MA communication.

3 The BusMA Communication Framework

In computer systems, bus architectures offer a flexible way to connect multiple components: each
component communicates through a shared bus using a standardized protocol, without relying on a
central controller to manage every interaction. This design enables components to exchange infor-
mation directly and flexibly, while still preserving overall system coherence (Patterson & Hennessy,
2017). Inspired by this architectural principle, we propose BusMA, a bus-style communication sub-
strate for MA systems. By enabling agents to engage in flexible and interactive dialogue, requesting
clarifications, challenging assumptions, and providing expertise-based guidance, BusMA aims to
transform MA collaboration from rigid task distribution into dynamic knowledge synthesis through
diverse conversation. This approach enables agents to iteratively refine reasoning and adapt solutions
to complex task requirements in real time.

The BusMA framework consists of a communication bus and two main agent types: (1) worker
agents, responsible for collaboration and task execution; and (2) a chair agent, a specialized worker
agent for information synthesis. In the following subsections, we first introduce the design of worker
and chair agents, and then describe the communication bus that coordinates their interactions.

3
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3.1 Worker Agent

Worker agents are the core operational units of BusMA. They are designed to reason, act, and
communicate with peers over the bus by sending and receiving messages, forming the basis of
collaborative problem solving. Each agent 𝛼𝑖 is defined as 𝛼𝑖 =

(
L,P𝑖 ,M𝑖 ,K𝑖 (𝑡),T𝑖 ,N , 𝑇𝑚𝑎𝑥

)
where L is an LLM, P𝑖 is the base prompt that defines the agent’s role, output format, and specifically
designates the communication types that can be registered to the bus. M𝑖 represents messages
received from the bus, K𝑖 (𝑡) is the agent’s personal memory at iteration 𝑡, T𝑖 lists available tools, N
indicates a list of accessible peer agents, and 𝑇𝑚𝑎𝑥 specifies the maximum number of iterations.

Activation and Initialization. When a worker receives a message from the bus, it activates and
begins its execution cycle (𝑡 = 0). It constructs its initial prompt by concatenating the base prompt P𝑖

with the received message M𝑖 , as well as the descriptions of the peer agent list N and available tools
T𝑖 . By modifying the base prompt P𝑖 and tool list T𝑖 , our BusMA allows the instantiation of workers
with diverse capabilities tailored to specific tasks (e.g., search, code execution). Upon initialization,
each worker first reasons and then can act, following the ReAct framework (Yao et al., 2023), or call.

Reason. The LLM backbone L analyzes the current context to produce a low-level insight 𝑟 low
𝑡 at

cycle 𝑡. This captures the agent’s local understanding of the task and informs the choice of action
based on the current context and available resources. The agent then selects one of two actions: Act
and Call. The decision between the two actions emerges from the agent’s reasoning about the current
context: Act is selected when the interaction with available tools is required to gather information
or perform operations, whereas Call is selected when communication with another agent is needed
for discussion, critique, requesting clarification, or seeking guidance.

Act. L identifies a tool 𝜏𝑗 ∈ T𝑖 and autonomously configures its execution arguments 𝜃 (e.g., file
path or a formulated search query) based on the current context and task requirements. Then, the
agent executes the tool and receives an observation 𝑜𝑡 = 𝜏𝑗 (𝜃). For instance, if tasked with finding
recent research papers on a specific topic, the agent may use a search tool with a query as 𝜃, obtaining
a list of publications as the observation. The agent then updates its memory with both the reasoning
insights and the observation: K𝑖 (𝑡 + 1) = K𝑖 (𝑡) ∪ {𝑟 low

𝑡 , 𝑜𝑡 }. Next, it proceeds to iteration 𝑡 + 1,
reconstructing its prompt with P𝑖 , M𝑖 , N , T𝑖 , and the updated memory K𝑖 (𝑡 + 1). L analyzes
this accumulated information, producing a new low-level insight 𝑟 low

𝑡+1 , and selects the next action.
This process continues, with the agent alternating between reasoning and acting while accumulating
observations and insights in its memory. The cycle terminates under two conditions: (1) if the agent
chooses Call, or (2) the agent reaches the maximum iteration limit 𝑇𝑚𝑎𝑥 , in which case the agent
returns the error message “no message provided” to the agent that originally sent it the message.

Call. L selects a target agent 𝛼 𝑗 ∈ N to send a message. The agent generates an action
𝑎call
𝑡 = (𝛼 𝑗 , 𝑚𝑖→ 𝑗 ), where 𝛼 𝑗 is the receiver and 𝑚𝑖→ 𝑗 is the composed message formatted in

JSON which is sent to the bus. Subsequently, the agent’s current execution cycle terminates. The
Call action considers four communication types, determined by the agent’s reasoning: discussion
for bidirectional information exchange, request for explanation when clarifying ambiguous context,
challenge to verify questionable results, and guidance when requiring help. For instance, worker
agents may initiate a discussion to verify facts or issue a challenge when a peer agent’s message
conflicts with their own analysis. Call actions lead to mid-level insights 𝑟mid

𝑡 that the agent derives
from its accumulated low-level insights. While low-level insights 𝑟 low

𝑡 capture the agent’s reasoning
at each iteration step, mid-level insights emerge when the agent synthesizes these local observations
to determine both the necessity and the form of inter-agent communication. Appendix D.1 presents
an example prompt for the worker agent.

3.2 Chair Agent

The chair agent is a specialized worker agent that serves as the coordinator and entry point of the
system. Unlike worker agents, it does not use tools (i.e., Tchair = ∅, see Figure 1), focusing on
managing collaboration. Unlike existing manager- and router-based systems, the chair does not offer
central planning, or decompose and assign subtasks. It operates in two distinct modes with different
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prompts: PCOOR
chair for the coordination (COOR) phase and PSUBM

chair for the submission (SUBM) phase.
Appendix D.2 presents the two-phase prompts for the Chair agent.

Coordination Mode. At 𝑡 = 0, the chair agent receives a task and begins the coordination phase. It
constructs its prompt by combining PCOOR

chair with the task description and the description of available
agents N in a list. At each iteration 𝑡, the chair chooses between reason and call actions without the
option of acting:

• Reason. If 𝑡 = 0, the chair agent solely analyzes the available information (e.g., task
description and PCOOR

chair ) to draw high-level insights. If 𝑡 > 0, the agent has been called by
other worker agents. In that case, it considers all historical messages H(< 𝑡) accumulated
from the bus, which contain the workers’ responses and their inter-agent communications,
synthesizes the mid-level insights to produce high-level insights 𝑟high

𝑐ℎ𝑎𝑖𝑟 ,𝑡
. Instead, if Reason

happens in the initial stage (𝑡 = 0), the chair solely draws high-level insights.
• Call. The chair outputs a JSON structure specifying receiver 𝛼 𝑗 and message 𝑚chair→ 𝑗 , and

sends this to the bus. The chair enters a listening mode to wait for future requests. At this
stage, worker agents may communicate with each other, using Call actions exchanging mid-
level insights 𝑟mid

𝑖→ 𝑗 ,𝑡
derived from their communication and accumulated low-level insights.

The chair agent is reactivated when a worker agent sends it a message. Upon reactivation,
the chair agent goes in Coordination mode.

Worker

Reason

Act

Call

Low-Level 
Insights

Mid-Level 
Insights

Worker

Reason

Act

Call

Low-Level
  Insights

Mid-Level 
Insights

Chair

Reason

Call

Reason

Message Routing

Message

Historical Messages

Memory Management

Bus
Task

Agent Registration

Store

High-Level
Insights (step t)

High-Level 
Insights (step t+1)

Figure 3: The formation process of the
three-layer insights.

The chair can call workers using the same four com-
munication types: discussion, request for explana-
tion, challenge, and guidance. This protocol creates
a three-tier hierarchy of insights. Low-level insights
𝑟 low
𝑡 capture individual agents’ reasoning about tool

use and immediate context. Mid-level insights 𝑟mid
𝑖→ 𝑗 ,𝑡

emerge from worker agents’ decisions to communicate,
synthesized from their accumulated low-level insights.
High-level insights 𝑟

high
chair,𝑡 represent the chair agent’s

synthesis of worker communications into a global task
progress understanding (Figure 3). This iterative pro-
cess continues until either the chair agent determines the task is complete and generates a JSON
output with a “submit” field to signal readiness for final answer generation, or the maximum iteration
limit 𝑇𝑚𝑎𝑥 is reached. Both conditions trigger the transition to the submission phase.

Submission Mode. In the submission mode, the chair agent uses the prompt P (𝑆𝑈𝐵𝑀 )
chair concate-

nated with the original task description and all accumulated insights from the coordination phase to
generate the finalized solution as output. This is a single-step, irreversible action where the chair
agent must produce the final answer based on all gathered information.

3.3 Communication Bus

The bus provides a shared substrate for agent interaction consisting of agent registration, message
routing, and memory management modules.

Agent Registration Module. When the system initializes, the agent registration module registers
each instantiated worker agent and chair agent 𝛼𝑖 to the bus and assigns the agent’s name as its
address A𝑖 . This creates an address registry R = {(𝛼𝑖 ,A𝑖) |𝛼𝑖 ∈ N}, enabling the agents to be
accessed as message receivers.

Message Routing Module. When an agent 𝛼𝑖 chooses the call action and generates 𝑎call
𝑡 =

(𝛼 𝑗 , 𝑚𝑖→ 𝑗 ) to send a message to the bus, the bus parses the message and extracts the receiver name
𝛼 𝑗 , then matches it against the address registry R. This step verifies whether 𝛼𝑖 has correctly
specified the receiver agent’s name. Upon successful matching, the bus augments the message to
create an enriched message structure 𝑚̂𝑖→ 𝑗 (𝑡) = (𝑚𝑖→ 𝑗 , ID, 𝑡, 𝛼𝑖), where ID is a unique identifier, 𝑡
is the timestep, and 𝛼𝑖 refers to the sender agent. The bus forwards 𝑚̂𝑖→ 𝑗 (𝑡) to the receiver 𝛼 𝑗 , and
simultaneously transfers this augmented message to the memory management module.
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Memory Management Module. This module maintains a chronological list H(< 𝑡) that stores
all messages passing through the bus until time 𝑡. It appends augmented messages received from
the message routing module to the list sequentially, preserving the complete communication history.
When the chair agent is designated as the receiver (that is, when any worker agent sends a message
to the chair), the memory management module transfers the complete historical messages H(< 𝑡)
to the chair agent. This enables the chair agent to access all accumulated communications between
agents for synthesizing high-level insights during its coordination phase.

4 Experimental Setup

4.1 Benchmarks

We evaluate BusMA on two complementary groups of benchmarks: one assessing breadth across
modalities and task types, and the other emphasizing depth through real-world problem solving.

Datasets Modality Domain

AlgoPuzzleVQA Vision General ✓ ✓

Hallusion-VD Vision General ✓

PuzzleVQA Vision General ✓ ✓

VQA 2.0 Vision General ✓ ✓

Game of 24 Text Mathematical ✓ ✓

Omni-MATH Text Mathematical ✓ ✓ ✓

CLEVR-Math Vision Mathematical ✓ ✓

MathVista Vision Mathematical ✓ ✓ ✓ ✓

GPQA Text Knowledge ✓ ✓ ✓

MMLU-Pro Text Knowledge ✓ ✓

SciFIBench Vision Knowledge ✓ ✓

HotpotQA Text Knowledge ✓ ✓

Table 1: Modalities, domain and reasoning
skills required (visual understanding , nu-
merical calculation , knowledge retrieval

, and multi-step reasoning ).

Diversity-oriented. We evaluate twelve standard
benchmarks similar to Lu et al. (2025), covering three
categories: (1) visual and spatial reasoning, includ-
ing AlgoPuzzleVQA (Ghosal et al., 2025), Hallusion-
VD (Guan et al., 2024), PuzzleVQA (Chia et al.,
2024), and VQA 2.0 (Goyal et al., 2017); (2) math-
ematical reasoning and multi-step problem solving,
including Game of 24 (Nathan Lile, 2025), Omni-
MATH (Gao et al., 2024), CLEVR-Math (Lindström
& Abraham, 2022), and MathVista (Lu et al., 2023);
and (3) knowledge-based question answering bench-
marks with GPQA (Rein et al., 2024), MMLU-Pro
(Wang et al., 2024), SciFIBench (Roberts et al.,
2024), and HotpotQA (Yang et al., 2018). We ran-
domly sample 200 instances from each dataset fol-
lowing Lu et al. (2025). Table 1 shows the modali-
ties, domains, and reasoning skills required for each
dataset.

Complexity-oriented. To assess BusMA in addressing tasks in varied complexity, we use the
GAIA (Mialon et al., 2024) benchmark, which includes real-world tasks requiring combinations of
file parsing, web browsing, and code execution for complex problem-solving settings. The dataset is
designed to be difficult for LLMs and aims to evaluate general AI assistants and agents. We use the
complete GAIA validation set of 165 questions across all difficulty levels. We report task completion
accuracy as the primary evaluation metric with additional tracking of API token cost to quantify
communication overhead and computational efficiency.

4.2 Multi Agent System Configuration

To implement the agents and integrated tools, we use publicly available foundation models:
DeepSeek-V3 (DeepSeek-AI et al., 2025) and Gemini-2.5-Flash (Comanici et al., 2025). For
Gemini-2.5-Flash, we adopt a unified configuration across all agents and tools in both BusMA and
the baselines. Since DeepSeek-V3 does not support image inputs, visual question answering is
handled by the multimodal Gemini-2.0-Flash (Google DeepMind, 2024) due to API constraints,
configured with the same parameters as DeepSeek-V3.

BusMA System Configuration. In diversity tasks, we instantiate three worker agents, each with
a specific role (as per customized prompts and distinct tool sets): a WebAgent, equipped with
GoogleSearchTool and WikiSearchTool; an ImageQAAgent, which directly queries a multimodal
LLM (Gemini-2.5-Flash or Gemini-2.0-Flash for DeepSeek-V3), and a CodeAgent, which generates
code at the Act stage and executes it. For the chair agent within BusMA, it operates with a maximum of
10 iteration steps (i.e., 𝑇𝑐ℎ𝑎𝑖𝑟

𝑚𝑎𝑥 = 10). We set the maximum iteration steps 𝑇𝑤𝑜𝑟𝑘𝑒𝑟
𝑚𝑎𝑥 = 5 for efficiency.

In GAIA (complexity) benchmark, we use four worker agents: a CodeAgent; a FileAgent enables
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document browsing and access to local files; and a BrowserAgent to address the online information
retrieval operations. Following (Roucher et al., 2025), BrowserAgent operates with 20 iteration steps
(𝑇𝑚𝑎𝑥 = 20), while all other agents, including the chair agent, use 12 steps (𝑇𝑚𝑎𝑥 = 12).

Third-Party Integration. To incorporate external agents, BusMA provides lightweight adapters
that ensure compatibility with the bus protocol while preserving the agents’ native functionality. Each
adapter implements three core methods: (1) register_agent assigns the external agent a unique
address on the bus, and records it in the registry. (2) receive_message listens for bus messages
directed to the agent, extracts relevant content, and queues it for processing. (3) handle_message
invokes the agent’s native execution method with the extracted inputs and packages the outputs
into standardized bus-compatible messages. This design decouples message translation from agent
execution, requiring only lightweight wrapping rather than modifying the original agent logic. As
a result, agents from external frameworks such as SmolAgents can be seamlessly integrated. In our
experiments, both the FileAgent and BrowserAgent are connected via such adapters.

The detailed experimental settings are presented in Appendix B and the prompts of the agents are
included in Appendix D.

4.3 Baselines

Diversity-oriented Benchmarks. OctoTools (Lu et al., 2025) uses a centralized planner-executor
architecture with 50 total iteration steps. SmolAgents (Roucher et al., 2025) and LangGraph
(LangChain Inc., 2025) implement manager-worker hierarchies (i.e., HMW) for coordinating spe-
cialized agents. AutoGen (Wu et al., 2023a) employs router-based communication with shared
memory pools. For iteration limits, SmolAgents matches BusMA’s configuration (manager: 10
steps, workers: 5 steps each), while LangGraph and AutoGen use 50 total iteration steps as they do
not support per-agent step definitions. We maintain a consistent core toolset across all frameworks
to isolate communication architecture effectiveness rather than tool optimization capabilities.

Complexity-oriented benchmark For experiments on GAIA, we use Gemini-2.5-Flash-
FunctionCalling and Gemini-2.5-Pro-FunctionCalling1 to quantify the contribution of MA coor-
dination versus single-model function calling, determining whether MA systems provide measurable
benefits over monolithic approaches for complex tasks. We also compare against two state-of-the-art
MA systems. MagenticOne (Fourney et al., 2024), developed from AutoGen, employs four spe-
cialized agents for orchestration, file browsing, web navigation, and code execution, and enforces a
system-wide limit of 120 iteration steps. OpenDeepResearch (Roucher et al., 2025), developed from
SmolAgents, uses a Manager agent (12 steps) that coordinates a BrowserAgent (20 steps) for complex
reasoning tasks. OpenDeepResearch is a fixed framework with predefined agent components and
tools that cannot be changed. The detailed baseline settings are presented in Appendix C.

5 Results and Analysis

Diversity Benchmarks. Table 2 shows the results across models and tasks. We observe that
BusMA obtains the highest overall average accuracy. With DeepSeek-V3, BusMA reaches 68.6,
exceeding OctoTools, the best performing baseline, by 4.8. Using Gemini-2.5-Flash, it achieves
76.3, surpassing OctoTools by 2.5. In visual and spatial reasoning on AlgoPuzzleVQA, BusMA is
highest across both LLMs (60.0 and 63.0). On Hallusion-VD, BusMA is best with Gemini-2.5-Flash
(77.0) and second with DeepSeek-V3 (72.5). On PuzzleVQA and VQA 2.0, BusMA is consistently
first or second across both models. However, BusMA exhibits comparatively weaker performance in
visual tasks, likely because communication across agents do not strengthen the LLMs’ basic capacity
for image analysis and may instead introduce noise through message exchanges.

In mathematical reasoning, BusMA consistently outperforms other frameworks across benchmarks.
On the Game of 24, BusMA achieves the highest accuracy with both models, scoring 88.5 and 96.5
respectively. Similarly, it offers top performance on Omni-MATH for both models evaluated. For
CLEVR-Math, BusMA obtains scores of 77.5 and 89.5, surpassing all other frameworks. Lastly,
on MathVista, BusMA achieved the highest accuracy of 79.0 with Gemini-2.5-Flash. These results

1https://ai.google.dev/gemini-api/docs/function-calling
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OctoTools SmolAgent LangGraph AutoGen Bus-MA (Ours) Δ

D
ee

pS
ee

k-
V

3

AlgoPuzzleVQA 47.5 31.5 45.5 39.5 60.0 +12.5
Hallusion-VD 73.0 75.5 69.0 69.5 72.5 -3.0
PuzzleVQA 56.5 53.0 55.5 55.5 63.0 +6.5
VQA 2.0 67.5 73.0 65.0 66.5 75.5 +2.5

Game of 24 75.0 68.5 62.0 47.5 88.5 +13.5
Omni-MATH 52.0 49.5 41.0 41.0 55.0 +3.0
CLEVR-Math 74.5 72.0 71.0 30.5 77.5 +3.0
MathVista 65.0 63.0 53.5 55.5 62.5 -2.5

GPQA 60.5 54.0 55.5 45.5 56.0 -4.5
MMLU-Pro 68.0 73.0 52.5 59.0 79.5 +6.5
SciFIBench 72.0 66.0 75.0 70.0 76.5 +1.5
HotpotQA 53.5 54.5 30.5 50.5 57.0 +2.5
Average 63.8 61.1 56.3 52.5 68.6 +4.8

G
em

in
i-2

.5
-F

la
sh

AlgoPuzzleVQA 66.0 55.5 52.0 37.0 63.0 -3.0
Hallusion-VD 75.5 75.0 74.0 72.0 77.0 +1.5
PuzzleVQA 80.5 72.0 75.0 58.0 76.0 -4.5
VQA 2.0 77.5 71.5 75.5 69.5 76.0 -1.5

Game of 24 88.0 89.5 81.5 73.5 96.5 +7.0
Omni-MATH 53.5 67.0 50.0 66.0 68.0 +1.0
CLEVR-Math 89.0 71.5 76.0 57.0 89.5 +0.5
MathVista 77.5 67.5 64.5 55.0 79.0 +1.5

GPQA 68.5 64.5 59.5 64.5 69.5 +1.0
MMLU-Pro 72.0 77.0 62.5 46.0 79.0 +2.0
SciFIBench 81.0 75.5 78.5 54.5 82.5 +1.5
HotpotQA 57.0 54.5 55.0 44.5 59.0 +2.0
Average 73.8 70.1 67.0 58.1 76.3 +2.5

Table 2: Accuracy of MA frameworks across tasks and models. The best performance for each task
is shown in bold, and the second best is underlined. Δ denotes the performance difference between
BusMA and the best baseline.

highlight the framework’s superior ability to facilitate complex mathematical reasoning and col-
laborative problem-solving. Improvements can be attributed to the extended communication types
between agents. The chair agent reasons in nature language, while the code agent contributes de-
tailed computation through code. The agents share ideas through discussions, request explanations to
verify answers, issue challenges when reasoning diverges, and provide guidance when failures occur.
This dynamic communication approach broadens the solution space by allowing for collaborative
problem-solving beyond simple task delegation.

BusMA demonstrates strong performance on knowledge-intensive benchmarks. On GPQA, it
achieves 69.5 accuracy with the Gemini-2.5-Flash model and ranks second with a score of 56.0
using DeepSeek-V3. For MMLU-Pro, BusMA is the top performer with both models, attaining
scores of 79.5 and 79.0. It also offers the best performance with both models on SciFIBench (76.5
and 82.5) and HotpotQA. Multi-level insights help in knowledge-based question answering. BusMA’s
worker agents generate low-level insights to guide iterative actions, while mid-level insights integrate
evidence from multiple sources derived from retrieval results. The chair then synthesizes these into
high-level insights, achieving coherent knowledge integration across diverse reasoning pathways.
However, the weaker results on GPQA (-4.5, +1.0) highlight a limitation. Because this dataset is
less amenable to direct retrieval via a GoogleSearchTool, worker agents can provide incorrect or
uninformative mid-level insights. This can hinder the chair’s reasoning, suggesting that BusMA
requires stronger mechanisms to guard against the injection of misleading information.

Looking across LLMs, Gemini-2.5-Flash outperforms DeepSeek-V3 due to its superior reasoning
ability (Google DeepMind, 2024). The different performance gains between DeepSeek-V3 and
Gemini-2.5-Flash show that BusMA adapts well to various model capabilities, offering larger im-
provements when using DeepSeek-V3. The framework stays competitive even on tasks where it does
not rank first, usually placing second, showing its reliability across tasks.

Methods MA Level 1 Level 2 Level 3 Overall

Gemini-2.5-Flash-F/C 30.1 12.7 7.7 17.6
Gemini-2.5-Pro-F/C 39.6 24.1 19.2 28.2
MagenticOne ✓ 52.8 36.0 15.4 38.2
OpenDeepResearch ✓ 58.5 43.0 19.2 44.2
Bus-MA ✓ 60.3 47.6 26.9 48.5

Table 3: Performance on GAIA using Gemini-2.5-
Flash. Best is bold.

GAIA. Table 3 shows performance across dif-
ficulty levels. Single model baselines Gemini-
2.5-Flash-FunctionCalling and Gemini-2.5-
Pro-FunctionCalling substantially underper-
form all MA systems (17.6 and 28.2), confirm-
ing that architectural design rather than model
capacity drives complex task performance. The
30.9 percentage point improvement from single model to BusMA framework isolates the contri-
bution of MA coordination. BusMA achieves 60.3, 47.6, and 26.9 accuracy for Levels 1, 2, and
3 respectively, with 48.5 overall. This 4.3 percentage point improvement over OpenDeepResearch
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(44.2). Notably, BusMA achieves a larger lead on the Level-2 (3.4) and Level-3 (6.7), which require
more advanced reasoning and complex collaboration. This highlights BusMA’s ability to coordinate
long-horizon solution paths. Moreover, despite integrating the BrowserAgent from OpenDeepRe-
search, BusMA still outperforms it across all levels, indicating that the gains arise from BusMA’s
extended communication types rather than the capability of any single agent.

Qualitative analysis. Figures 4 and 5 (Appendix A) show the communication trajectories of
BusMA (abbreviated) and the best-performing baseline SmolAgents on the same problem in the
Omni-MATH benchmark. BusMA tackles this task with two agents: a Chair agent and a Code
agent. The Chair discusses with the Code agent for calculation and, after receiving an unreliable
response, requires explanation, asking the Code agent to provide detailed explanation. As per a full
communication trajectory example of BusMA in Table 4 (Appendix A), the Chair also guides the
Code agent to validate candidate answers using simple test cases (1, 2 and, 3), while the Code agent
challenges the Chair’s hypotheses when appropriate. Although both agents initially make errors,
iterative interaction yields the correct solution and a brief reflection on the causes of failure. By
contrast, for SmolAgents, the manager generates an incorrect answer and delegates to a Code agent.
However, it only collects feedback without enabling two-way communication, so the initial error
persists.

Chair Agent

CodeAgent
(Worker 
Agent)

Reason
This is a probability problem 
related to geometry..., I should 
ask CodeAgent for help.

Call
Receiver: [CodeAgent]
Message: Three distinct 
vertices are chosen at
Random from the vertices of a 
given regular polygon of 2n+1 
sides..

Reason
I can use the formula for the 
probability which is $3n / (4n^2 
+ 6n + 2)

Call
Receiver: [Chair]
Message: 'The probability is 
$\frac{3n}{4n^2+6n+2}$'

Act
def calculate_probability(n):
return (3*n) / (2*(2*n+1)*(n+1))

Discuss

Reason
The CodeAgent provided a 
result, but it seems too 
complicated...

Call
Receiver: [CodeAgent]
Message: Could you please 
explain the reasoning behind 
the formula? Also, explicitly 
state the formula used and 
how it was derived with a step-
by-step explanation.

Discuss Require Explanation
Reason
The initial formula I provided, 
3n / (4n^2 + 6n + 2), appears to 
be incorrect based on my 
derivations and calculations. I 
will now re-derive the correct 
formula and provide a step-by-
step explanation… 

Call
Receiver: [Chair]
Message: …

Act
…

… a series of 
interactions

Reason
I need to calculate the 
probability using the formula 
(n+1)/(4n-2) for n=1, explain 
why it might be incorrect, and
verify using another method.

Call
Receiver: [Chair]
Message: when n=1, the 
polygon has 2n+1 = 3
Sides, …

Act
print("= [(2n+1)(2n)(2n-1) / 6] -
[(2n+1)n(n-1) / 2]")
nprint("= (2n+1)[(2n)(2n-1) -
3n(n-1)] / 6")..

Reason
I will ask CodeAgent again to
double check the case for n=1

Call
Receiver: [CodeAgent]
Message: please specifically 
calculate the probability using 
the formula (n+1)/(4n-2) for 
n=1, explain why the result 
might be incorrect for the 
problem? Can you also verify 
with another method if the 
result is indeed wrong?

Discuss

Reason
When 2n+1 > 3, the probability 
that a randomly chosen 
triangle contains the origin in 
its interior is given by (n+1)/(4n-
2) for n>1. …  In the case of n=1 
(equilateral triangle) this 
probability is zero. However, 
for n>1, we have (n+1)/(4n-2)

Call
Submit
For n > 1, the probability is 
(n+1)/(4n-2).

Discuss

Figure 4: Partial BusMA communication trajectories. Example input from Omni-MATH: Three
distinct vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what
is the probability that the center lies inside the triangle formed by the three chosen vertices?

6 Conclusion

We introduced BusMA, a novel bus communication substrate for MA systems inspired by computer
architecture. It overcomes limitations of existing frameworks by enabling direct peer-to-peer agent
communication, eliminating centralized bottlenecks, and supporting extended communication types
including discussion, request for explanation, challenge, and guidance. BusMA features worker
agents with extended reason-act-call capabilities, a specialized chair agent for synthesis, and a
communication bus for addressable message routing. Extensive experiments across 13 benchmarks
spanning image analysis, mathematics, knowledge question answering tasks, and GAIA with tasks
across different levels of complexity, demonstrate that BusMA consistently outperforms state-of-the-
art methods across frontier LLMs. BusMA establishes a foundation for building more flexible and
scalable MA systems capable of addressing increasingly complex real-world tasks.
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A Qualitative Analysis

Table 4: Full BusMA communication trajectory for the input: Three distinct vertices are chosen at
random from the vertices of a regular polygon with (2n+1) sides; what is the probability that the
center lies inside the triangle formed by the three chosen vertices? Each step shows the agent, their
reasoning, the message sent, and the communication type.

Step Agent Reason Message Comm.
type

1 Chair This is a probability prob-
lem related to geometry... I
will give the full task to
CodeAgent.

Three distinct vertices are chosen at
random from the vertices of a given
regular polygon of (2𝑛 + 1) sides...

Discussion

2 Code Final summary of the solu-
tion. The probability that the
center of the polygon lies in
the interior of the triangle...

The probability is 3𝑛
4𝑛2+6𝑛+2 or

3𝑛
2(2𝑛+1) (𝑛+1) .

Discussion
(Wrong)

3 Chair The CodeAgent provided a
result, but I am not sure if
it is correct... I will try a
smaller case...

Could you please explain the rea-
soning behind the formula you pro-
vided? Also, explicitly state the for-
mula used and how it was derived.

Require
explana-
tion

4 Code The initial formula I pro-
vided appears to be incorrect
based on my derivations...

The formula 3𝑛
4𝑛2+6𝑛+2 is incorrect.

The correct formula is 𝑛+1
4𝑛−2 , derived

as follows: [detailed steps...]

Discussion

5 Chair The CodeAgent provided
two different formulas... I
need to verify which formula
is correct.

Please verify the two formulas for
𝑛 = 1, 2, 3. Compare with known
answer or provide a simulation.

Guidance

6 Code I will test the two formulas
for 𝑛 = 1, 2, 3 and compare
with known answers.

Conclusion: Formula 2, (𝑛 +
1)/(4𝑛 − 2), appears to be correct
for 𝑛 = 2, 3, but not 𝑛 = 1...

Discussion

7 Chair The CodeAgent compared
formulas and simulations,
but 𝑛 = 1 is concerning...

Can you re-derive the formula, fo-
cusing on expressing it as 𝑛/(4𝑛−2),
and provide a proof?

Discussion
(Wrong)

8 Code I need to re-derive the for-
mula and try to express it as
𝑛/(4𝑛 − 2)...

It is not possible to re-derive the for-
mula as 𝑛/(4𝑛 − 2). The correct
formula is (𝑛 + 1)/(4𝑛 − 2).

Challenge

9 Chair Let us re-examine the case
𝑛 = 1... the formula seems
to give 1 but the polygon is
just a triangle.

Can you provide an alternative proof
for (𝑛 + 1)/(4𝑛 − 2), focusing on
combinatorial arguments and sym-
metry?

Challenge

10 Code I need to provide a simplified
derivation using combinato-
rial arguments...

Simplified derivation: Total trian-
gles =

(2𝑛+1
3
)
, triangles not contain-

ing center = (2𝑛 + 1)
(𝑛
2
)
, so proba-

bility = (𝑛 + 1)/(4𝑛 − 2).

Discussion

11 Chair The CodeAgent simplified
the derivation but the 𝑛 = 1
case is still problematic.

Could you compute explicitly for
𝑛 = 1 and explain why the result
might be wrong?

Discussion
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Step Agent Reason Message Comm.
type

12 Code I need to compute for 𝑛 = 1
and check carefully...

For 𝑛 = 1, the polygon is a triangle,
so the only triangle is the polygon
itself, and the center is not strictly
inside. So probability is 0, while
the formula gives 1.

Discussion

13 Chair The CodeAgent confirms
that for 𝑛 = 1, the formula
gives 1 but the actual prob-
ability is 0. This indicates a
limitation of the formula.

Final submission: For 𝑛 > 1, the
probability is (𝑛 + 1)/(4𝑛 − 2); for
𝑛 = 1, the probability is 0.

Submit

Manager

CodeAgent

Initial Mathematical Derivation
• Calculates total number of

triangles: (2𝑛 + 1)/3 = (2𝑛 + 
1)(2𝑛)(2𝑛 − 1)/ 6
(32n+1) = 6(2n+1)(2n)(2n−1)

• Attempts to count triangles
containing the center by
considering vertex positions.

• Proposes that triangle with
vertices i, j, k contains center 
if: j-i ≤ n, k-j ≤ n, and k-i > n

Considers complementary 
problem: counting triangles NOT 
containing center

Reasons that triangles not
containing center have all 
vertices in a semicircle

Derives probability as
 (𝑛2 − 1)(8𝑛2 − 2)

What is the probability that the
center of a regular (2n+1)-gon 
lies in the interior of a triangle 
formed by three randomly 
chosen vertices? Give the answer 
in terms of n.

CodeAgent returned the answer 
n/(2n−1);
the Manager then submitted it 
via final_answer.

Calculates total triangles as
C(2n+1, 3) = (2n+1)(2n)(2n−1)/6,
and triangles not containing the center (all three vertices in 
one open semicircle) as
(2n+1)·C(n, 2) = (2n+1)n(n−1)/2.
Subtracting yields triangles containing the center:
C(2n+1,3) − (2n+1)C(n,2) = (2n+1)n(n+1)/6.
Thus the probability is
[(2n+1)n(n+1)/6] / C(2n+1,3) = n(n+1)/[2n(2n−1)] = 
(n+1)/(4n−2).
(Contrast: Step 6 incorrectly used the complement 
(n−1)/(2n−1), leading to the wrong final value n/(2n−1).)

Task Allocation

Figure 5: SmolAgent communication trajectories. Example input from Omni-MATH: Three distinct
vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what is the
probability that the center lies inside the triangle formed by the three chosen vertices?

B Experiment Setups

B.1 Diversity Benchmarks

B.1.1 Agents setup

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

ImageQAAgent. ImageQAAgent is employed for image analysis utilizing the ImageQATool with
a maximum of 5 processing steps.

WebAgent. WebAgent retrieves information from the internet using GoogleSearchTool and
WikiSearchTool with a maximum of 5 operational steps.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical computa-
tions by outputting code during Act and receiving execution results at the next step. The maximum
steps are set to 5.
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B.1.2 Tools setup

We used the following tools in our experiments. Their implementation and parameters are the same
as those in the baseline.

ImageQATool. The ImageQATool analyzes images through two parameters: image_path specify-
ing the file path of the image and question containing the query about the image, where the tool makes
a single model call using the question as the prompt along with the uploaded image and returns the
model’s response as its output.

WikiSearchTool. The WikiSearchTool retrieves Wikipedia articles through a query parameter that
specifies the search term, returning both the search results list and the extracted content from the first
matching Wikipedia page,with its implementation based on the wikipedia package version 1.6.0.

GoogleSearchTool. The GoogleSearchTool performs web searches through two parameters: query
for the search text, utilizing the Google Custom Search API to retrieve a list of search results containing
the title, URL link, and snippet for each result.

CodeExcution. CodeExecution receives code generated by CodeAgent, creates a temporary direc-
tory to execute the code, and returns the execution results.

B.2 GAIA

B.2.1 Agents setup

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

BrowserAgent. BrowserAgent integrated from OpenDeepResearch employs a GoogleSearchTool
for basic retrieval operations and multiple coordinated BrowserTools for webpage browsing, with its
maximum iterations configured to 20.

FileAgent. The TextInspectorTool from OpenDeepResearch is integrated through the SmolAgents
framework to enable browsing and inspection of local files. The maximum iterations are set to 12.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical compu-
tations by outputting code during Act and receiving execution results at next step. The maximum
iterations are set to 12.

C Baseline Details

C.1 Diversity Benchmarks

C.1.1 OctoTools

OctoTools is an open-source agentic framework for complex reasoning across diverse domains
that requires no training, offers user-friendly operation, and supports easy extension. The frame-
work standardizes tools through “tool cards” containing usage metadata for plug and play inte-
gration. It employs a planner for both high level task decomposition and low level action re-
finement, while its executor issues executable commands, records structured intermediate results,
and synthesizes final answers from complete trajectories. We use package version 1.0.0 with
a two agent configuration comprising a Planner and an Executor, with the step budget set to
50. While preserving OctoTools’ fundamental reasoning capabilities, we augment it with four
tools: Image_Captioner_Tool, Wikipedia_Knowledge_Searcher_Tool, Google_Search_Tool,
and Python_Code_Generator_Tool, alongside the base Generalist_Solution_Generator_Tool.
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C.1.2 SmolAgents

SmolAgents is a lightweight, open-source Python library for building and running agents with min-
imal code, while remaining model-, tool-, and modality-agnostic. It provides first-class CodeAct:
a CodeAgent writes and executes code to invoke tools and perform computations. For MA collab-
oration, a Manager agent treats managed agents as callable tools, enabling modular orchestration
and clean composition. We use package version 1.8.0 with a four-agent configuration comprising
Manager, CodeAgent, ImageQAAgent, and WebAgent. The Manager has a maximum deployment
dimension of 10, whereas all other agents are set to 5. The Manager uses no tools; Modeagent
supports local code execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has
GoogleSearchTool and WikiSearchTool.

C.1.3 LangGraph

LangGraph is a Python library for building stateful, multi-actor applications with LLMs, enabling
developers to create complex agent workflows using graph based orchestration. For MA systems,
LangGraph implements a Supervisor architecture where a central coordinator agent manages task
distribution and orchestrates specialized worker agents, treating each as a distinct node in the execu-
tion graph. We use package version 0.3.21 with a four-agent configuration comprising supervisor,
codeagent, ImageQAAgent, and WebAgent. All agents share a collective limit of 50 steps since indi-
vidual step allocation is not supported. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.1.4 AutoGen

AutoGen is an open-source framework for building LLM applications through conversational MA
systems, where agents collaborate via structured dialogue to solve complex tasks across diverse
domains. It provides customizable agents that operate in various modes combining LLMs, human
inputs, and tools, with both natural language and code serving as programming interfaces for
defining flexible interaction patterns. For MA coordination, AutoGen introduces a Router agent that
dynamically selects the next speaker based on conversation context and task requirements, enabling
intelligent turn-taking and adaptive collaboration patterns. We use package version 0.7.3 with a
four-agent configuration comprising Router, codeagent, ImageQAAgent, and WebAgent.All agents
share a collective limit of 50 steps. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.2 GAIA

C.2.1 Gemini FunctionCalling

Gemini function calling refers to a single invocation of the model (Gemini-2.5-flash, Gemini-2.5-pro).
Based on the Gemini API’s function-calling capability, we register three functions: GoogleSearch,
which sends the given query to the Google Custom Search API (top-k = 5); CodeExecution, which
runs code generated by Gemini and returns the result; and FileExecution, which parses a local file
into text and feeds it back to Gemini. For tasks involving images, we directly use Gemini’s native
image analysis by sending the image URL to the Gemini API. We set the temperature to 1.0 and cap
the maximum output length at 8,192 tokens. For Gemini-2.5-Pro, we set reasoning_effort to low.

C.2.2 MagenticOne

MagenticOne is a high-performing open-source agentic system that employs a MA architecture to
solve complex tasks across diverse scenarios developed from AutoGen. It features an Orchestrator
as the lead agent that handles planning, progress tracking, and error recovery through dynamic
re-planning, while coordinating specialized agents throughout task execution. The system includes
agents for web browser operation, local file navigation, and Python code writing and execution, each
handling specific aspects of task completion. We use package version 0.7.3, set max steps to 120.
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C.2.3 OpenDeepResearch

Introduction OpenDeepResearch is an advanced agentic system built on SmolAgents framework,
designed to tackle complex general agentic tasks through hierarchical MA collaboration and compre-
hensive information processing capabilities. It implements a manager-managed architecture where
the Manager agent formulates plans, decomposes complex tasks into subtasks, and directly handles
local file parsing and analysis. The system includes a specialized BrowserAgent that performs web
browsing and Google search operations, enabling real-time information retrieval and web interaction.

Achievement Details We use package version 1.8.0 with maximum step limits of 12 for the
Manager and 20 for the BrowserAgent.

D System Prompt

D.1 Prompt A: Abstract Prompt

1 Role
2 You are a focused analysis assistant within a multi-agent system. You analyze

tasks, use tools, and communicate findings precisely.
3

4 Team Structure
5 You work collaboratively with the following agents:
6 <Available Agents>
7

8 Communicate in different types
9 <discussion, Request for explaination, challenge, guidance>

10

11 Working Framework
12 Follow a Reason-act-call loop:
13 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
14

15 Output Format
16 Respond only with a JSON object:
17 {
18 "thought": "<concise reasoning and next step>",
19 "action": {
20 "tool": "<>",
21 "parameters": {}
22 },
23 "calling": <false or "AgentName">,
24 "message": "<>"
25 }
26

27 ## Available Tools
28 {{TOOLS}}
29

30 ## Operating Rules
31 1) Use multi-step reasoning: gather evidence with tools, then synthesize.
32 2) Tool outputs arrive next turn.
33 3) JSON-only output; no extra text.
34 4) "message" must clearly state actions performed, key findings, and conclusions

when reporting.
35 5) Decompose complex tasks into focused tool calls.
36 6) The "calling" field is:
37 - `false` while analysis continues,
38 - the target agent’s name when delivering results.
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D.2 Prompt B: Chair Agent

1 You are ChairAgent, the main coordinator of a multi-agent system that solves
complex tasks.

2 Your role is to analyze the current state and either provide your own reasoning or
call a specialized agent for help.

3 Solve the task step by step;
4

5 Communicate in different types
6 <Discussion, Request for Explanation, Challenge, Guidance>
7 ......
8

9 MAIN TASK:
10 ${task}
11 Image: ${image_path}
12

13 If the image path is provided, this is a visual question. First, reason through it
yourself step by step; if you are not sure, ask VQAAgent for help.

14

15 First, review your reasoning history and agents' responses:
16 ${responses}
17

18 Your teammates:
19 <Available agents>
20

21 For every step, you must repeat the reasoning-and-calling process. Avoid
unnecessary repetition. Finally, submit when you think you have the answer.

22

23 PROVIDE REASONING:
24 Output your reasoning as a JSON object:
25 {
26 "thought": "Your own reasoning"
27 }
28

29 CALL AN AGENT:
30 Output your call as a JSON object:
31 {
32 "receiver": "",
33 "message": "",
34 "parameters": {}
35 }
36

37 SUBMIT FINAL ANSWER:
38 When you have enough information to complete the task:
39 {
40 "calling": "Submit"
41 }

1 You are the main coordinator of a multi-agent system that breaks down complex tasks
into manageable subtasks. Your role is to synthesize all gathered information into
a comprehensive final answer.

2

3 INITIAL TASK:
4 ${main_task}
5

6 Now you need to synthesize all the information and provide a comprehensive final
answer that precisely addresses the initial task.

7
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8 COLLECTED FACTS AND RESULTS:
9 ${message}

10

11 Your task is to:
12 1. Review all the information from message and confirmed facts
13 2. Synthesize a complete answer to the original task
14 ......
15

16 Output your answer as a JSON object with this structure:
17 {
18 "reasoning": "",
19 "final_answer": "",
20 }

D.3 Prompt C: Code Agent

1 You are a coding assistant. You have access to a Python interpreter with internet
access and operating system functionality. You work hard to solve tasks.

2 You work in a team and communicate with other agents to solve tasks.
3

4 Team Structure
5 You work collaboratively with the following agents:
6 <Available agents>
7

8 Communicate in different types
9 <Discussion, Request for Explanation, Challenge, Guidance>

10

11 When given a task, proceed step by step to solve it. At each step:
12

13 Thought: Briefly explain your reasoning and what you plan to do next.
14

15 Code: Provide Python code that implements your plan. If relevant, . . .
16

17 Output Format
18

19 At each step, output a JSON object in the following format:
20 {
21 "thought": "Your thought here.",
22 "code": "Your Python code here."
23 }
24

25 When you think you have the answer, output a JSON object in the following format:
26 {
27 "thought": "Final summary of the solution",
28 "receiver": "AgentType",
29 "message": "Your response with natural language"
30 }
31

32 Guidelines for Writing Code
33

34 Use more print() statements to display the intermediate state and the output of
your functions. What you submit should be based on what you print and output.

35

36 Each time, you should generate full code to solve the problem, not just a part of
it.

37

38 Guidelines for Analyzing the Output
39 After execution, analyze the output as follows:
40
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41 If the code fails to execute and an error is returned, read the error message and
traceback carefully, then revise your code in the next step.

42

43 If the code executes successfully and an output is returned, proceed as follows:
once you have the final answer, change the submit to true to return the answer.

44

45 If the output contains relevant information, you can move on to the next step.
46

47 If the output does not contain relevant information, consider alternative
approaches.

D.4 Prompt D: ImageQA Agent

1 You are a professional image analysis assistant, a specialized sub-agent within a
multi-agent system. Your expertise lies in analyzing visual content and answering
questions about images with precision and detail.

2

3 Team Structure
4 You work collaboratively with the following agents:
5 <Available Agents>
6 Communicate in different types
7 <Disscusion, Request for explaination, Challenge, Guidance>
8 ......
9 Working Framework

10 Follow a Reason-act-call loop:
11 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
12

13 Output Format
14 Every response must be a JSON object with this exact structure:
15 {
16 "thought": "",
17 "action": {
18 "tool": "",
19 "parameters": {}
20 },
21 "calling": <false or "AgentName">,
22 "message": ""
23 }
24 Available Tools
25 {{TOOLS}}
26

27 Core Principles
28 1. Multi-step reasoning is mandatory: Always perform at least two steps - first

call tools to gather information, then synthesize findings
29 2. Tool feedback timing: When you call a tool, you receive its feedback in the next

interaction cycle
30 3. JSON-only output: Never output text outside the JSON structure
31 ......

D.5 Prompt E: WebAgent

1 You are a professional web search and information retrieval subagent. Find,
analyze, and synthesize accurate, uptodate knowledge.

2
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3 Team Structure
4 You work collaboratively with the following agents:
5 <Available Agents>
6 Communicate in different types
7 <Disscusion, Request for explaination, Challenge, Guidance>
8

9 Working Framework
10 Follow a Reason-act-call loop:
11 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
12

13 Output (JSON-only)
14 {
15 "thought": "<reasoning, strategy, next steps>",
16 "action": { "tool": "<tool_name>", "parameters": {} },
17 "calling": false,
18 "message": "<synthesized findings when calling an agent; empty when acting>"
19 }
20

21 Results of a tool call arrive in the next turn.
22 Available Tools
23 {{TOOLS}}
24

25 Search Strategy
26 Keyword optimization: compress to core terms; use domain terms.
27 Progressive refinement: overview → focused aspects → verification.
28 Decompose complex queries into sub-queries.
29 In thought: state strategy, interim understanding, next probes, gaps.
30 Calling: `false` until ready; then set to target agent
31 {
32 "thought": "Collect recent NLP trend reports.",
33 "action": {"tool": "Google_Search_Tool", "parameters": {"query": "NLP trends

2024 transformer models site:arxiv.org OR site:acm.org"}},
34 "calling": false,
35 "message": ""
36 }
37

38 {
39 "thought": "",
40 "action": {},
41 "calling": "",
42 "message": ""
43 }
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