Under review as a conference paper at ICLR 2026

BusMA: A Bus COMMUNICATION SUBSTRATE FOR

I Nl

—

MUuULTI-AGENT SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Agent (MA) systems are effective at solving complex tasks that demand
advanced planning, tool use, and the synthesis of evidence from multiple sources.
Existing systems typically use Hierarchical Manager-Worker (HMW) structures
or Router-based Message Passing (RMP) as their communication protocol to
coordinate work. However, they can be restricted due to communication inef-
fectiveness, since agents cannot directly consult specific colleagues or operate
beyond assigned subtasks, and misrouted messages can propagate errors. In-
spired by bus communication systems in computer systems, we propose BusMA,
a bus communication MA framework that allows any agent to address specific
peers. Our framework comprises a Chair agent, Worker agents, and a com-
munication bus. Worker agents perform multi-step reason—act—call interactions,
enabling targeted requests for help or critique, with the Chair agent synthesiz-
ing insights from all agents’ communications while adding its own reasoning to
produce coherent solutions. The communication bus routes addressable mes-
sages and executes requests. Across two frontier LLMs and benchmarks spanning
diverse domains, including image understanding, mathematics, and knowledge-
based tasks, as well as GAIA with tasks of varied complexity, BusMA consistently
achieves the best results, outperforming state-of-the-art multi-agent communica-
tion approaches (HMW and RMP-based methods). Anonymous code is available
at https://anonymous.4open.science/r/Bus-MA-370E!

— Input + Output <=-=-= Call with varied communication types <+—— Message passing
Chair Agent -
cmu Wovkev Wovkev Wovkev i _—
ABem Asem Agem Agem 822 | ' @ i [Receiver: <Agent Name>
A=0 . 0 i| Communication Type:
memory reason call | !
H

Q Discussion

Routing Worker Agent i [QO Require Explanation
Communication Bus gg B g @ ; Q Guide Response
2NN 2NN 2-0 ~* L O Challenge Response
& &) memory reason act call

Figure 1: Overview of the BusMA communication substrate.

ﬂ Agent Message Memory

1 INTRODUCTION

Multi-Agent (MA) systems, comprising a set of agents that can autonomously reason, act and
communicate, powered by large language models (LLMs) (Achiam et al) 2023 (Comanici et al.,
2025; DeepSeek-Al et al.L [2025)), are effective in solving complex real-world tasks. These tasks, such
as mathematical reasoning (Lei et al.,|2024) and reasoning-grounded information retrieval (Huang
et al.| 2025)), often require planning, tool use (e.g., web search API) and synthesis of evidence from
diverse resources (Fang et al., [2025} |Du et al., [2025). MA systems rely on specialized subagents to
address these complex tasks in a collaborative manner. Hence, their effectiveness depends on the
communication quality between agents and their coordination strategy (Guo et al.,2024{ Chen et al.,
2023} Liang et al., 2023 Du et al., 2023 Wu et al., [2023b).

https://anonymous.4open.science/r/Bus-MA-370E

Under review as a conference paper at ICLR 2026

Existing MA communication protocols can be broadly categorized into Hierarchical Manager-
Worker (HMW) structure and Router-based Message Passing (RMP). HMW employs a hierarchical
control structure, where a designated manager agent addresses the decomposition of complex tasks
and assigns sub-tasks to subordinate agents with specific capabilities, e.g., code execution or web
search (Qian et al.| 2024; |Gu et al. 2025} |[Zhang et al., [2025). While effective for simple tasks
involving, this paradigm limits agent communication to one-way task allocation and result submis-
sion, thereby preventing richer peer dialogue. In contrast, RMP introduces a central router agent,
which mediates all communication. Agents send their messages to the router, which then forwards to
selected recipients according to predefined rules. The router often maintains a shared memory of past
interactions, allowing it to route messages consistently and provide agents with an overview of global
states (Wu et al.}2023a; Nonomura & Mori, |2025)). This approach enables flexible workflows, yet a
shared memory pool is forced through the central router, which prevents native peer dialogue. The
centralized nature of HMW and RMP gives rise to two primary limitations. First, communication
is constrained: agents cannot directly consult specific colleagues or act autonomously beyond their
assigned subtasks, preventing the exchange of explanations, critiques, and joint problem-solving,
which are essential for effective teamwork (Ke et al., [2025}; Jin et al.l 2025} |Krishnan, [2025). Sec-
ond, these designs are prone to error propagation. The router may misroute messages to wrong or
sub-optimal peers, and the reliance on long context to maintain shared memory can propagate errors
(Piatti et al.| | 2024; Han et al., |2024; Maragheh & Deldjool [2025; [Sagirova et al., 2025)).

To address these limitations, we propose BusMA, a bus communication substrate for MA systems.
The bus architecture in computer systems (Patterson & Hennessy, 2017)) enables components to
communicate directly through a shared communication channel, eliminating the need for point-
to-point connections. This architecture removes centralized controllers and allows components to
autonomously initiate data transfers based on their needs. In MA systems, such an architecture
translates to enabling agents to directly address specific peers through a communication bus, thereby
eliminating centralized bottlenecks from managers and routers. This approach allows agents to
autonomously initiate information exchange beyond assigned tasks and establishes a standard protocol
for cross-framework interoperability. BusMA consists of three core components: Worker agents,
a specialized Chair agent, and the communication bus. A worker agent, equipped with access to a
“personal” memory, first produces a low-level insight, which is a reasoning outcome derived from
its own memory. Subsequently, it can choose to issue a call directed to a different peer with one
or more of four communication types (i.e., discussion, explanation, challenge, and guidance). The
response to this interaction yields a mid-level insight, which reflects reasoning enriched through
peer input and is recorded to the bus. The Chair agent is a specialized Worker agent with acting
disabled. Its main responsibility is to integrate messages from other agents with its own reasoning
to synthesize insights and steer task progress. Specifically, it fuses the bus history with its memory
to form high-level insights that guide coordination and final answer generation. The communication
bus routes addressable messages and maintains a centralized memory managed by the chair. Figure[I]
shows the overall BusMA framework.

Contributions. BusMA is a novel bus communication substrate that addresses existing system
limitations through two key mechanisms: (1) extended communication types that enable varied
interaction modes beyond simple task assignment; (2) multi-level insight generation across individual
(low), dialogue (mid), and synthesis (high) levels. Through comprehensive experiments across 12
datasets spanning image analysis, mathematics, and knowledge question answering, we show that
BusMA outperforms state-of-the-art methods. Additional experiments show that it consistently
outperforms previous methods on general agentic tasks.

2 RELATED WORK

LLM Based Agents. LLMs such as GPT (Achiam et al., [2023), Gemini (Comanici et al.,|[2025)),
and DeepSeek (DeepSeek-Al et al., [2025)), serve as the foundational architecture for autonomous
agent development. Agentic architectures augment the base LLM with complementary mechanisms,
including advanced planning strategies for task decomposition (Wei et al.,2022;|Huang et al.,|2024; L1
etal.,2025; Hu et al., 2025} [Erdogan et al.,[2025)), external tool use and knowledge bases (Zhang et al.}
2024b; (Wu et al., 2024a; Qin et al.| |2024; [Feng et al., 2025)), and long-term memory or reflection
mechanisms for persistent state and iterative improvement (Shinn et al. 2023} [Modarressi et al.
2023} Zhong et al.| 2024} [Mei et al.| 2024;|Xu et al.,|2025; |Chhikara et al.,|2025)). This architectural

Under review as a conference paper at ICLR 2026

Manager Router
Agent Agent
Task allocation Speaker Selection

e I N P ¥ N
Worker || Worker | | worker Worker || worker || worker
Agent Agent Agent Agent Agent Agent

Hierarchical Manager-Worker Router-based Message Passing Bus Communication Substrate
(HMW) systems (RMP) systems for MA (BusMA)

Worker Worker
Agent Agent

Figure 2: Comparison between different MA frameworks.

framework has been applied to diverse domains such as automated programming (Trivedi et al.,
2024; Zhang et al., 2024aj (Chen et al [2025)), system interaction (Wu et al., |2024bj Bonatti et al.,
2024])), and scientific discovery (Hong et al.| 2024; Novikov et al., 2025). However, single-agent
LLMs remain brittle on long-horizon, interdependent tasks, with evaluations reporting systematic
failures in planning, decision-making, and instruction following (Liu et al., 2024} |Xie et al., 2024;
Wang et al.,|2025). Consequently, MA systems have emerged as a promising approach to improve
reasoning accuracy and task completion by distributing complex problems among specialized agents
(L1 et al.} [2023; [Du et al.| [2024).

LLM Based Multi Agent Systems. Building on advances in single-agent development, researchers
have explored MA systems composed of interacting LLM agents. Early studies highlighted the value
of agent dialogue for social simulation and collaborative problem-solving (Park et al.|[2023}Li et al.,
2023), leading to the development of more structured communication protocols. These systems
generally fall into two categories: Hierarchical Manager-Worker (HMW) Systems and Router-based
Message Passing (RMP) Systems. HMW employs a hierarchical structure with a central manager
agent that decomposes tasks and assigns subtasks to subordinate worker agents (Chen et al., |2023;
Qian et al.,|2024). Examples include systems where a planner orchestrates tool calls for an executor
(Lu et al.}|2025), or where a manager invokes agents as callable tools or workers for individual task
steps (Roucher et al., [2025} |LangChain Inc.,|[2025). RMP by contrast, such as AutoGen (Wu et al.,
2023al), uses a central router agent, often an LLM, to dynamically select the next agent to continue the
task (a process named as speaker selection) without explicit task decomposition, while maintaining
a shared memory pool for coordination.

While effective, centralized MA designs confine communication to task assignment and reporting
channels, limiting the richer peer-to-peer exchanges. The reliance on single control points also
introduces bottlenecks and propagates errors across the dialogue, while dependence on shared
memory can further amplify inaccuracies. These limitations highlight the need for more flexible
and addressable communication strategies, which motivates our introduction of BusMA, a bus
communication substrate that supports targeted peer consultation and coherent MA reasoning. Figure
[2 comparatively illustrates existing paradigms and BusMA for MA communication.

3 THE BusMA CoMMUNICATION FRAMEWORK

In computer systems, bus architectures offer a flexible way to connect multiple components: each
component communicates through a shared bus using a standardized protocol, without relying on a
central controller to manage every interaction. This design enables components to exchange infor-
mation directly and flexibly, while still preserving overall system coherence (Patterson & Hennessy,
2017). Inspired by this architectural principle, we propose BusMA, a bus-style communication sub-
strate for MA systems. By enabling agents to engage in flexible and interactive dialogue, requesting
clarifications, challenging assumptions, and providing expertise-based guidance, BusMA aims to
transform MA collaboration from rigid task distribution into dynamic knowledge synthesis through
diverse conversation. This approach enables agents to iteratively refine reasoning and adapt solutions
to complex task requirements in real time.

The BusMA framework consists of a communication bus and two main agent types: (1) worker
agents, responsible for collaboration and task execution; and (2) a chair agent, a specialized worker
agent for information synthesis. In the following subsections, we first introduce the design of worker
and chair agents, and then describe the communication bus that coordinates their interactions.

Under review as a conference paper at ICLR 2026

3.1 WORKER AGENT

Worker agents are the core operational units of BusMA. They are designed to reason, act, and
communicate with peers over the bus by sending and receiving messages, forming the basis of
collaborative problem solving. Each agent «; is defined as ; = (£, Pi, Mi, Ki (1), Teu N, Trnax)
where £ is an LLM, P; is the base prompt that defines the agent’s role, output format, and specifically
designates the communication types that can be registered to the bus. M; represents messages
received from the bus, K;(¢) is the agent’s personal memory at iteration ¢, 7; lists available tools, N
indicates a list of accessible peer agents, and 7,4 specifies the maximum number of iterations.

Activation and Initialization. When a worker receives a message from the bus, it activates and
begins its execution cycle (¢ = 0). It constructs its initial prompt by concatenating the base prompt P;
with the received message M;, as well as the descriptions of the peer agent list N and available tools
7;. By modifying the base prompt #; and tool list 7;, our BusMA allows the instantiation of workers
with diverse capabilities tailored to specific tasks (e.g., search, code execution). Upon initialization,
each worker first reasons and then can act, following the ReAct framework (Yao et al.| [2023)), or call.

Reason. The LLM backbone £ analyzes the current context to produce a low-level insight 1°" at
cycle t. This captures the agent’s local understanding of the task and informs the choice of action
based on the current context and available resources. The agent then selects one of two actions: Act
and Call. The decision between the two actions emerges from the agent’s reasoning about the current
context: Act is selected when the interaction with available tools is required to gather information
or perform operations, whereas Call is selected when communication with another agent is needed

for discussion, critique, requesting clarification, or seeking guidance.

Act. L identifies a tool 7; € 7; and autonomously configures its execution arguments 6 (e.g., file
path or a formulated search query) based on the current context and task requirements. Then, the
agent executes the tool and receives an observation o; = 7;(6). For instance, if tasked with finding
recent research papers on a specific topic, the agent may use a search tool with a query as 6, obtaining
a list of publications as the observation. The agent then updates its memory with both the reasoning
insights and the observation: %G (¢ + 1) = K;(t) U {rl°",0,}. Next, it proceeds to iteration ¢ + 1,
reconstructing its prompt with #;, M;, N, 7;, and the updated memory K;(¢ + 1). L analyzes
this accumulated information, producing a new low-level insight ri‘jr“l’ and selects the next action.
This process continues, with the agent alternating between reasoning and acting while accumulating
observations and insights in its memory. The cycle terminates under two conditions: (1) if the agent
chooses Call, or (2) the agent reaches the maximum iteration limit 7;,,,,, in which case the agent
returns the error message “no message provided” to the agent that originally sent it the message.

Call. L selects a target agent a; € N to send a message. The agent generates an action

afa“ = (aj,m;-j), where «; is the receiver and m;_,; is the composed message formatted in

JSON which is sent to the bus. Subsequently, the agent’s current execution cycle terminates. The
Call action considers four communication types, determined by the agent’s reasoning: discussion
for bidirectional information exchange, request for explanation when clarifying ambiguous context,
challenge to verify questionable results, and guidance when requiring help. For instance, worker
agents may initiate a discussion to verify facts or issue a challenge when a peer agent’s message
conflicts with their own analysis. Call actions lead to mid-level insights ™ that the agent derives
from its accumulated low-level insights. While low-level insights 7I°" capture the agent’s reasoning
at each iteration step, mid-level insights emerge when the agent synthesizes these local observations
to determine both the necessity and the form of inter-agent communication. Appendix [D.T]presents
an example prompt for the worker agent.

3.2 CHAIR AGENT

The chair agent is a specialized worker agent that serves as the coordinator and entry point of the
system. Unlike worker agents, it does not use tools (i.e., Tchair = 0, see Figure E]) focusing on
managing collaboration. Unlike existing manager- and router-based systems, the chair does not offer
central planning, or decompose and assign subtasks. It operates in two distinct modes with different

Under review as a conference paper at ICLR 2026

prompts: PSOOR for the coordination (COOR) phase and P5UBM for the submission (SUBM) phase.
Appendix ﬂpresents the two-phase prompts for the Chair agent.

Coordination Mode. At = 0, the chair agent receives a task and begins the coordination phase. It
constructs its prompt by combining PSOOR with the task description and the description of available
agents N in a list. At each iteration ¢, the chair chooses between reason and call actions without the
option of acting:

e Reason. If + = 0, the chair agent solely analyzes the available information (e.g., task
description and PSSSR) to draw high-level insights. If # > 0, the agent has been called by
other worker agents. In that case, it considers all historical messages (<) accumulated

from the bus, which contain the workers’ responses and their inter—agent communications,
synthesizes the mid-level insights to produce high-level insights r?hggir ;- Instead, if Reason
happens in the initial stage (r = 0), the chair solely draws high-level insights.

* Call. The chair outputs a JSON structure specifying receiver @; and message mchair— j, and
sends this to the bus. The chair enters a listening mode to wait for future requests. At this
stage, worker agents may communicate with each other, using Call actions exchanging mid-

level insights r?‘_‘)dj’ , derived from their communication and accumulated low-level insights.

The chair agent is reactivated when a worker agent sends it a message. Upon reactivation,

the chair agent goes in Coordination mode.

The chair can call workers using the same four com- Worker)

Low-Level

munication types: discussion, request for explana- | Reson vl
tion, challenge, and guidance. This protocol creates Act

Chair

. N ' i on .
a three-tier hierarchy of insights. Low-level insights | o [| T
r%ow capture individual agents’ reasoning about tool e — toghts (sep §
use and immediate context. Mid-level insights r;“_‘f'j ;| Rosson [Lowtow cal @ |#H
o i—j, 2200 | st < |
emerge from worker agents’ decisions to communicate, Act Reason [Honies

. . . . b MidLevel |
synthesized from their accumulated low-level insights. Calt | raihin

High-level insights ri‘lﬁt’r , represent the chair agent’s
synthesis of worker communications into a global task
progress understanding (Figure [3). This iterative pro-
cess continues until either the chair agent determines the task is complete and generates a JSON
output with a “submit” field to signal readiness for final answer generation, or the maximum iteration

limit 7,,,4 is reached. Both conditions trigger the transition to the submission phase.

Figure 3: The formation process of the
three-layer insights.

Submission Mode. In the submission mode, the chair agent uses the prompt Pc(f'a gBM) concate-
nated with the original task description and all accumulated insights from the coordination phase to
generate the finalized solution as output. This is a single-step, irreversible action where the chair

agent must produce the final answer based on all gathered information.

3.3 CoMMUNICATION Bus

The bus provides a shared substrate for agent interaction consisting of agent registration, message
routing, and memory management modules.

Agent Registration Module. When the system initializes, the agent registration module registers
each instantiated worker agent and chair agent @; to the bus and assigns the agent’s name as its
address A;. This creates an address registry R = {(«@;, A;)|a; € N}, enabling the agents to be
accessed as message receivers.

Message Routing Module. When an agent o; chooses the call action and generates a$!! =

(aj,mi- ;) to send a message to the bus, the bus parses the message and extracts the receiver name
«j, then matches it against the address registry R. This step verifies whether «; has correctly
specified the receiver agent’s name. Upon successful matching, the bus augments the message to
create an enriched message structure 771, j(¢) = (m;—;,ID, ¢, @;), where ID is a unique identifier, ¢
is the timestep, and «; refers to the sender agent. The bus forwards 7, ; () to the receiver «, and
simultaneously transfers this augmented message to the memory management module.

Under review as a conference paper at ICLR 2026

Memory Management Module. This module maintains a chronological list (< t) that stores
all messages passing through the bus until time 7. It appends augmented messages received from
the message routing module to the list sequentially, preserving the complete communication history.
When the chair agent is designated as the receiver (that is, when any worker agent sends a message
to the chair), the memory management module transfers the complete historical messages H (< t)
to the chair agent. This enables the chair agent to access all accumulated communications between
agents for synthesizing high-level insights during its coordination phase.

4 EXPERIMENTAL SETUP

4.1 BENCHMARKS

We evaluate BusMA on two complementary groups of benchmarks: one assessing breadth across
modalities and task types, and the other emphasizing depth through real-world problem solving.

Diversity-oriented. We evaluate twelve standard

N : Dataset Modality Domai o9 g =
benchmarks similar to|Lu et al.|(2025)), covering three e ,0' Ty omam 8 9
categories: (1) visual and spatial reasoning, includ- ﬁ:\“fﬁlzli’jﬁ}z\gQA pion g:::i} ; 7
ing AlgoPuzzleVQA (Ghosal et al.||2025), Hallusion- PuzzievQa Vision General v v
VD (Guan et al 2024), PuzzleVQA (Chia et al] Y20 Vision General ’ /
2024), and VQA 2.0 (Goyal et al., [2017); (2) math- Gameof 24 Text Mathematical v v
ematical reasoning and multi-step problem solving, 83;'{,1;4’;[% \T,el’::m ﬁ:lmh:x:i:: L,
including Game of 24 (Nathan Lilel 2025), Omni- Mathvista Vision Mathematical v / / /
MATH (Gao et al., [2024), CLEYR-Math (Lindstrom| gpoa Text Knowledge v v
& Abraham, 2022)), and MathVista (Lu et al.,[2023)); MMLU-Pro Text Knowledge o/
. . SciFIBench Visi Knowled v v
and (3) knowledge-based question answering bench- & 0 Tot . Knowiode v,

marks with GPQA (Rein et al., 2024), MMLU-Pro
(Wang et al.l 2024), SciFIBench (Roberts et al.,
2024])), and HotpotQA (Yang et al., 2018). We ran-
domly sample 200 instances from each dataset fol- ical calculation B. knowled trieval
lowing |Lu et al.| (2025). Table E] shows the modali- erlca ca C,u ation &, .HOV_V; ge retneva
ties, domains, and reasoning skills required for each &), and multi-step reasoning 3£).

dataset.

Table 1: Modalities, domain and reasoning
skills required (visual understanding &, nu-

Complexity-oriented. To assess BusMA in addressing tasks in varied complexity, we use the
GAIA (Mialon et al., 2024) benchmark, which includes real-world tasks requiring combinations of
file parsing, web browsing, and code execution for complex problem-solving settings. The dataset is
designed to be difficult for LLMs and aims to evaluate general Al assistants and agents. We use the
complete GAIA validation set of 165 questions across all difficulty levels. We report task completion
accuracy as the primary evaluation metric with additional tracking of API token cost to quantify
communication overhead and computational efficiency.

4.2 MuLtt AGENT SYSTEM CONFIGURATION

To implement the agents and integrated tools, we use publicly available foundation models:
DeepSeek-V3 (DeepSeek-Al et al., [2025) and Gemini-2.5-Flash (Comanici et al., [2025). For
Gemini-2.5-Flash, we adopt a unified configuration across all agents and tools in both BusMA and
the baselines. Since DeepSeek-V3 does not support image inputs, visual question answering is
handled by the multimodal Gemini-2.0-Flash (Google DeepMind, 2024) due to API constraints,
configured with the same parameters as DeepSeek-V3.

BusMA System Configuration. In diversity tasks, we instantiate three worker agents, each with
a specific role (as per customized prompts and distinct tool sets): a WebAgent, equipped with
GoogleSearchTool and WikiSearchTool; an ImageQAAgent, which directly queries a multimodal
LLM (Gemini-2.5-Flash or Gemini-2.0-Flash for DeepSeek-V3), and a CodeAgent, which generates
code at the Act stage and executes it. For the chair agent within BusMA, it operates with a maximum of
10 iteration steps (i.e., TS"4i" = 10). We set the maximum iteration steps 7V9"*¢" = 5 for efficiency.

In GAIA (complexity) benchmark, we use four worker agents: a CodeAgent; a FileAgent enables

Under review as a conference paper at ICLR 2026

document browsing and access to local files; and a BrowserAgent to address the online information
retrieval operations. Following (Roucher et al.| 2025)), BrowserAgent operates with 20 iteration steps
(Tinax = 20), while all other agents, including the chair agent, use 12 steps (Trax = 12).

Third-Party Integration. To incorporate external agents, BusMA provides lightweight adapters
that ensure compatibility with the bus protocol while preserving the agents’ native functionality. Each
adapter implements three core methods: (1) register_agent assigns the external agent a unique
address on the bus, and records it in the registry. (2) receive_message listens for bus messages
directed to the agent, extracts relevant content, and queues it for processing. (3) handle_message
invokes the agent’s native execution method with the extracted inputs and packages the outputs
into standardized bus-compatible messages. This design decouples message translation from agent
execution, requiring only lightweight wrapping rather than modifying the original agent logic. As
a result, agents from external frameworks such as SmolAgents can be seamlessly integrated. In our
experiments, both the FileAgent and BrowserAgent are connected via such adapters.

The detailed experimental settings are presented in Appendix |B|and the prompts of the agents are
included in Appendix

4.3 BASELINES

Diversity-oriented Benchmarks. OctoTools (Lu et al.l 2025) uses a centralized planner-executor
architecture with 50 total iteration steps. SmolAgents (Roucher et al.| 2025) and LangGraph
(LangChain Inc.| [2025)) implement manager-worker hierarchies (i.e., HMW) for coordinating spe-
cialized agents. AutoGen (Wu et all 2023a) employs router-based communication with shared
memory pools. For iteration limits, SmolAgents matches BusMA’s configuration (manager: 10
steps, workers: 5 steps each), while LangGraph and AutoGen use 50 total iteration steps as they do
not support per-agent step definitions. We maintain a consistent core toolset across all frameworks
to isolate communication architecture effectiveness rather than tool optimization capabilities.

Complexity-oriented benchmark For experiments on GAIA, we use Gemini-2.5-Flash-
FunctionCalling and Gemini-2.5-Pro-FunctionCallin to quantify the contribution of MA coor-
dination versus single-model function calling, determining whether MA systems provide measurable
benefits over monolithic approaches for complex tasks. We also compare against two state-of-the-art
MA systems. MagenticOne (Fourney et al.l 2024), developed from AutoGen, employs four spe-
cialized agents for orchestration, file browsing, web navigation, and code execution, and enforces a
system-wide limit of 120 iteration steps. OpenDeepResearch (Roucher et al., 2025)), developed from
SmolAgents, uses a Manager agent (12 steps) that coordinates a BrowserAgent (20 steps) for complex
reasoning tasks. OpenDeepResearch is a fixed framework with predefined agent components and
tools that cannot be changed. The detailed baseline settings are presented in Appendix [C]

5 RESULTS AND ANALYSIS

Diversity Benchmarks. Table 2] shows the results across models and tasks. We observe that
BusMA obtains the highest overall average accuracy. With DeepSeek-V3, BusMA reaches 68.6,
exceeding OctoTools, the best performing baseline, by 4.8. Using Gemini-2.5-Flash, it achieves
76.3, surpassing OctoTools by 2.5. In visual and spatial reasoning on AlgoPuzzleVQA, BusMA is
highest across both LLMs (60.0 and 63.0). On Hallusion-VD, BusMA is best with Gemini-2.5-Flash
(77.0) and second with DeepSeek-V3 (72.5). On PuzzleVQA and VQA 2.0, BusMA is consistently
first or second across both models. However, BusMA exhibits comparatively weaker performance in
visual tasks, likely because communication across agents do not strengthen the LLMs’ basic capacity
for image analysis and may instead introduce noise through message exchanges.

In mathematical reasoning, BusMA consistently outperforms other frameworks across benchmarks.
On the Game of 24, BusMA achieves the highest accuracy with both models, scoring 88.5 and 96.5
respectively. Similarly, it offers top performance on Omni-MATH for both models evaluated. For
CLEVR-Math, BusMA obtains scores of 77.5 and 89.5, surpassing all other frameworks. Lastly,
on MathVista, BusMA achieved the highest accuracy of 79.0 with Gemini-2.5-Flash. These results

1https://ai. google.dev/gemini-api/docs/function-calling

https://ai.google.dev/gemini-api/docs/function-calling

Under review as a conference paper at ICLR 2026

OctoTools ~ SmolAgent LangGraph AutoGen Bus-MA (Ours) A
AlgoPuzzleVQA 47.5 315 455 39.5 60.0 +12.5
Hallusion-VD 73.0 755 69.0 69.5 72.5 3.0
PuzzIeVQA 56.5 53.0 55.5 55.5 63.0 +6.5

. VQA20 675 73.0 65.0 66.5 755 +2.5

% Gameof24 75.0 68.5 62.0 475 88.5 +13.5

8 Omni-MATH 520 495 41.0 41.0 55.0 +3.0

2 CLEVR-Math 745 72.0 71.0 30.5 715 +3.0

& MathVista 65.0 63.0 535 55.5 62.5 25
GPQA 60.5 54.0 55.5 455 56.0 4.5
MMLU-Pro 68.0 73.0 52.5 59.0 795 +6.5
SciFIBench 72.0 66.0 75.0 70.0 76.5 +1.5
HotpotQA 535 54.5 305 50.5 57.0 +2.5
Average 63.8 61.1 56.3 52.5 68.6 +4.8
AlgoPuzzleVQA 66.0 55.5 52.0 37.0 63.0 3.0
Hallusion-VD 75.5 75.0 74.0 72.0 710 +1.5
PuzzleVQA 80.5 720 75.0 58.0 76.0 45

= VQA20 715 715 75.5 69.5 76.0 -1.5

Z

= Game of 24 88.0 89.5 81.5 735 96.5 +7.0

& Omni-MATH 535 67.0 50.0 66.0 68.0 +1.0

‘£ CLEVR-Math 89.0 715 76.0 57.0 89.5 +0.5

E MathVista 715 67.5 64.5 55.0 79.0 +1.5

© Groa 68.5 64.5 59.5 64.5 69.5 +1.0
MMLU-Pro 72.0 77.0 62.5 46.0 79.0 +2.0
SciFIBench 81.0 755 78.5 54.5 825 +15
HotpotQA 57.0 545 55.0 4.5 59.0 +2.0
Average 73.8 70.1 67.0 58.1 76.3 +2.5

Table 2: Accuracy of MA frameworks across tasks and models. The best performance for each task
is shown in bold, and the second best is underlined. A denotes the performance difference between
BusMA and the best baseline.

highlight the framework’s superior ability to facilitate complex mathematical reasoning and col-
laborative problem-solving. Improvements can be attributed to the extended communication types
between agents. The chair agent reasons in nature language, while the code agent contributes de-
tailed computation through code. The agents share ideas through discussions, request explanations to
verify answers, issue challenges when reasoning diverges, and provide guidance when failures occur.
This dynamic communication approach broadens the solution space by allowing for collaborative
problem-solving beyond simple task delegation.

BusMA demonstrates strong performance on knowledge-intensive benchmarks. On GPQA, it
achieves 69.5 accuracy with the Gemini-2.5-Flash model and ranks second with a score of 56.0
using DeepSeek-V3. For MMLU-Pro, BusMA is the top performer with both models, attaining
scores of 79.5 and 79.0. It also offers the best performance with both models on SciFIBench (76.5
and 82.5) and HotpotQA. Multi-level insights help in knowledge-based question answering. BusMA’s
worker agents generate low-level insights to guide iterative actions, while mid-level insights integrate
evidence from multiple sources derived from retrieval results. The chair then synthesizes these into
high-level insights, achieving coherent knowledge integration across diverse reasoning pathways.
However, the weaker results on GPQA (-4.5, +1.0) highlight a limitation. Because this dataset is
less amenable to direct retrieval via a GoogleSearchTool, worker agents can provide incorrect or
uninformative mid-level insights. This can hinder the chair’s reasoning, suggesting that BusMA
requires stronger mechanisms to guard against the injection of misleading information.

Looking across LLMs, Gemini-2.5-Flash outperforms DeepSeek-V3 due to its superior reasoning
ability (Google DeepMind| [2024). The different performance gains between DeepSeek-V3 and
Gemini-2.5-Flash show that BusMA adapts well to various model capabilities, offering larger im-
provements when using DeepSeek-V3. The framework stays competitive even on tasks where it does
not rank first, usually placing second, showing its reliability across tasks.

Methods MA Levell Level2 Level3 Overall

GAIA. Table[3|shows performance across dif- —
T . .. Gemini-2.5-Flash-F/C 30.1 12.7 77 17.6
ficulty levels. Single model baselines Gemini- Gemini-2.5-Pro-FiC 39.6 241 192 282

_ - 1 1 - _ MagenticOne v 52.8 36.0 154 38.2
2.5-Flash FuncthnCalllng aqd Gemini-2.5 OpenDeepRescarch 7 P P o3 P
Pro-FunctionCalling substantially underper- BusMa /603 416 269 485

form all MA systems (17.6 and 28.2), confirm-

ing that architectural design rather than model Table 3: Performance on GAIA using Gemini-2.5-
capacity drives complex task performance. The Flash. Best is bold.

30.9 percentage point improvement from single model to BusMA framework isolates the contri-
bution of MA coordination. BusMA achieves 60.3, 47.6, and 26.9 accuracy for Levels 1, 2, and
3 respectively, with 48.5 overall. This 4.3 percentage point improvement over OpenDeepResearch

Under review as a conference paper at ICLR 2026

(44.2). Notably, BusMA achieves a larger lead on the Level-2 (3.4) and Level-3 (6.7), which require
more advanced reasoning and complex collaboration. This highlights BusMA’s ability to coordinate
long-horizon solution paths. Moreover, despite integrating the BrowserAgent from OpenDeepRe-
search, BusMA still outperforms it across all levels, indicating that the gains arise from BusMA’s
extended communication types rather than the capability of any single agent.

Qualitative analysis. Figures [and [5] (Appendix [A) show the communication trajectories of
BusMA (abbreviated) and the best-performing baseline SmolAgents on the same problem in the
Omni-MATH benchmark. BusMA tackles this task with two agents: a Chair agent and a Code
agent. The Chair discusses with the Code agent for calculation and, after receiving an unreliable
response, requires explanation, asking the Code agent to provide detailed explanation. As per a full
communication trajectory example of BusMA in Table] (Appendix [A), the Chair also guides the
Code agent to validate candidate answers using simple test cases (1, 2 and, 3), while the Code agent
challenges the Chair’s hypotheses when appropriate. Although both agents initially make errors,
iterative interaction yields the correct solution and a brief reflection on the causes of failure. By
contrast, for SmolAgents, the manager generates an incorrect answer and delegates to a Code agent.
However, it only collects feedback without enabling two-way communication, so the initial error
persists.

Reason Reason

Reason Reason

This is a probability problem
related to geometry..., | should
ask CodeAgent for help.

The CodeAgent provided a

result, but it seems too
complicated... ®

| will ask CodeAgent again to
double check the case for n=1

When 2n+1 > 3, the probability
that a randomly chosen
triangle contains the origin in

Call its interior is given by (n+1)/(4n-
Chair Agent | Call Call Receiver: [CodeAgent] 2)forn>1. ... Inthe case of n=1
Receiver: [CodeAgent] Receiver: [CodeAgent] ge: please ifi al triangle) this

Message: Three distinct
vertices are chosen at
Random from the vertices of a
given regular polygon of 2n+1
sides..

——————————————— Discuss
Reason 1
| can use the formula for the
probability which is $3n / (4n*2
+6n+2)

CodeAgent | Act

(Worker

Message: Could you please
explain the reasoning behind
the formula? Also, explicitly
state the formula used and
how it was derived with a step-
by-step explanation.

--- Discuss - Require Explanation -

Reason l

The initial formula | provided,
3n/(4n"2+6n + 2), appears to
be incorrect based on my
derivations and calculations. |
will now re-derive the correct
formula and provide a step-by-

... a series of
interactions

!

calculate the probability using
the formula (n+1)/(4n-2) for
n=1, explain why the result
might be incorrect for the
problem? Can you also verify
with another method if the
resultis indeed wrong?

------ Discuss - - -
Reason 1

I need to calculate the
probability using the formula
(n+1)/(4n-2) for n=1, explain
why it might be incorrect, and
verify using another method.

def calculate_probability(n): ; Act
Agent) return (3*n) / (2*(2*n+1)*(n+1)) S R ...
Act print("= [(2n+1)(2n)(2n-1) /6] -
Call [(2n+1)n(n-1)/ 2]")
Receiver: [Chair] ;p(rm;(;/(g:;ﬂ)(2n)(2n-1) -
Message: 'The probability is nin- .
Call

$\frac{3n{4n"2+6n+2}$'

Receiver: [Chair]
Message: ...

Call

Receiver: [Chair]
Message: when n=1, the
polygon has 2n+1=3
Sides, ...

probability is zero. However,
forn>1, we have (n+1)/(4n-2)

Call
Submit

Forn > 1, the probability is
(n+1)/(4n-2).

DiSCUSS === === === ===

Figure 4: Partial BusMA communication trajectories. Example input from Omni-MATH: Three
distinct vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what
is the probability that the center lies inside the triangle formed by the three chosen vertices?

6 CONCLUSION

We introduced BusMA, a novel bus communication substrate for MA systems inspired by computer
architecture. It overcomes limitations of existing frameworks by enabling direct peer-to-peer agent
communication, eliminating centralized bottlenecks, and supporting extended communication types
including discussion, request for explanation, challenge, and guidance. BusMA features worker
agents with extended reason-act-call capabilities, a specialized chair agent for synthesis, and a
communication bus for addressable message routing. Extensive experiments across 13 benchmarks
spanning image analysis, mathematics, knowledge question answering tasks, and GAIA with tasks
across different levels of complexity, demonstrate that BusMA consistently outperforms state-of-the-
art methods across frontier LLMs. BusMA establishes a foundation for building more flexible and
scalable MA systems capable of addressing increasingly complex real-world tasks.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors acknowledge the use of Al assistants during the preparation of this work. GPT-5, Gemini-
2.5 and Claude Opus 4.1 were used to improve the grammar and clarity of the draft. Additionally,
Claude Opus 4.1 served as a coding assistant for implementation and debugging.

REPRODUCIBILITY STATEMENT

Our code and a guide for BusMA and baselines implementation, evaluation, and analysis are available
on an anonymous GitHub repository. The repository will remain accessible until the ICLR 2026
decision notification date: January 22, 2026 (AOE). Full details on hyperparameters, software, and
hardware, including specific versions used, are provided in Appendix

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/2409.08264.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization,
2025. URL https://arxiv.org/abs/2503.09089.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.org/abs/
2504.19413.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway Ghosal, Lidong Bing, and Soujanya Poria.
Puzzlevqa: Diagnosing multimodal reasoning challenges of language models with abstract visual
patterns. arXiv preprint arXiv:2403.13315, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, and Inderjit
Dhillon. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities and others, 2025. URL https://arxiv.org/abs/2507.06261.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, and Bingxuan Wang. Deepseek-v3 technical report,
2025. URL https://arxiv.org/abs/2412.19437,

Shangheng Du, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xin Jiang, Yanhong Bai, and Liang He. A
survey on the optimization of large language model-based agents, 2025. URL https://arxiv.org/
abs/2503.12434.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2024. URL https://
openreview.net/forum?1d=QAwaalLJNCk.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents
for long-horizon tasks, 2025. URL https://arxiv.org/abs/2503.09572.

10

https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2503.09089
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2503.12434
https://arxiv.org/abs/2503.12434
https://openreview.net/forum?id=QAwaaLJNCk
https://openreview.net/forum?id=QAwaaLJNCk
https://arxiv.org/abs/2503.09572

Under review as a conference paper at ICLR 2026

Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu,
Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, and Zaigiao Meng. A
comprehensive survey of self-evolving ai agents: A new paradigm bridging foundation models
and lifelong agentic systems, 2025. URL https://arxiv.org/abs/2508.07407.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms,
2025. URL https://arxiv.org/abs/2504.11536.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks, 2024. URL
https://arxiv.org/abs/2411.04468.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. AlgoPuzzleVQA: Diagnosing
multimodal reasoning challenges of language models with algorithmic multimodal puzzles. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 9615-9632, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
naacl-long.486. URL https://aclanthology.org/2025.naacl-long.486/.

Google DeepMind. Gemini 2.0 flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini/2-0-flash, 2024. Accessed: 2025-09-15.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904-6913, 2017.

Zhouhong Gu, Xiaoxuan Zhu, Yin Cai, Hao Shen, Xingzhou Chen, Qingyi Wang, Jialin Li, Xiaoran
Shi, Haoran Guo, Wenxuan Huang, et al. Agentgroupchat-v2: Divide-and-conquer is what llm-
based multi-agent system need. arXiv preprint arXiv:2506.15451, 2025.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for en-
tangled language hallucination and visual illusion in large vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375-14385,
2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, 1JCAI ’24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/890. URL
https://doi.org/10.24963/ijcai.2024/890.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, and Zhaozhuo Xu. LIm multi-agent systems:
Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-Guang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent
via environment and task generation. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 1, pp. 496507, 2025.

11

https://arxiv.org/abs/2508.07407
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2411.04468
https://aclanthology.org/2025.naacl-long.486/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://doi.org/10.24963/ijcai.2024/890

Under review as a conference paper at ICLR 2026

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of 1lm agents: A survey, 2024.
URL https://arxiv.org/abs/2402.02716.

Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang,
Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep research
agents: A systematic examination and roadmap, 2025. URL https://arxiv.org/abs/2506.18096.

Weiqiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A compre-
hensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
and perspectives. arXiv preprint arXiv:2503.13415, 2025.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, and Shafiq Joty. A survey of
frontiers in 1lm reasoning: Inference scaling, learning to reason, and agentic systems, 2025. URL
https://arxiv.org/abs/2504.09037.

Naveen Krishnan. Advancing multi-agent systems through model context protocol: Architecture,
implementation, and applications. arXiv preprint arXiv:2504.21030, 2025.

LangChain Inc. Langgraph. https://langchain-ai.github.io/langgraph/, 2025. Accessed: 2025-09-15.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. MACM: Utilizing a multi-agent system
for condition mining in solving complex mathematical problems. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
1d=VR2RdSxtzs.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems. In The Thirteenth International Conference on Learning Representations,

2025.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Adam Dahlgren Lindstrom and Savitha Sam Abraham. Clevr-math: A dataset for compositional
language, visual and mathematical reasoning. arXiv preprint arXiv:2208.05358, 2022.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. In Workshop on Reasoning and Planning
for Large Language Models, 2025.

Reza Yousefi Maragheh and Yashar Deldjoo. The future is agentic: Definitions, perspectives, and
open challenges of multi-agent recommender systems. arXiv preprint arXiv:2507.02097, 2025.

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong

Ye, Yingqgiang Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint
arXiv:2403.16971, 2024.

12

https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2504.09037
https://langchain-ai.github.io/langgraph/
https://openreview.net/forum?id=VR2RdSxtzs
https://openreview.net/forum?id=VR2RdSxtzs
https://openreview.net/forum?id=zAdUB0aCTQ

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general Al assistants. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=fibxvahvs3.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schiitze. Ret-llm: Towards a general
read-write memory for large language models. arXiv preprint arXiv:2305.14322, 2023.

Nathan Lile. Game of 24 mathematical puzzle dataset. https://huggingtace.co/datasets/nlile/24-game),
2025. Accessed: 2025-08-18.

Ryota Nonomura and Hiroki Mori. Who speaks next? multi-party ai discussion leveraging the
systematics of turn-taking in murder mystery games, 2025. URL https://arxiv.org/abs/2412.04937.

Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, Michael S
Bernstein, et al. Generative agents: Interactive simulacra of human behavior. arxiv. Org (2023,
April 7) https://arxiv. org/abs/2304.03442 v2, 2023.

David A. Patterson and John L. Hennessy. Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface. Morgan Kaufmann, Cambridge, MA, USA, 2nd edition, 2017.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Scholkopf, Mrinmaya Sachan, and Rada
Mihalcea. Cooperate or collapse: Emergence of sustainable cooperation in a society of llm agents.
Advances in Neural Information Processing Systems, 37:111715-111759, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, et al. ChatDev: Communicative agents for software devel-
opment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15174-15186, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.810. URL https://aclanthology.org/2024.acl-long.810/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0]Jjr.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie. Scifibench: Benchmarking large
multimodal models for scientific figure interpretation. Advances in Neural Information Processing
Systems, 37:18695-18728, 2024.

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
miki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/huggingface/
smolagents, 2025.

Alsu Sagirova, Yuri Kuratov, and Mikhail Burtsev. Srmt: shared memory for multi-agent lifelong
pathfinding. arXiv preprint arXiv:2501.13200, 2025.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366, 2023.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. arXiv preprint arXiv:2407.18901,
2024.

13

https://openreview.net/forum?id=fibxvahvs3
https://huggingface.co/datasets/nlile/24-game
https://arxiv.org/abs/2412.04937
https://aclanthology.org/2024.acl-long.810/
https://openreview.net/forum?id=dHng2O0Jjr
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents

Under review as a conference paper at ICLR 2026

Weixuan Wang, Dongge Han, Daniel Madrigal Diaz, Jin Xu, Victor Riihle, and Saravan Rajmohan.
Odysseybench: Evaluating 1lm agents on long-horizon complex office application workflows,
2025. URL https://arxiv.org/abs/2508.09124,

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-

task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266-95290, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversation. arXiv preprint arXiv:2308.08155, 2023a.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N.
Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. Avatar: Optimizing LLM agents
for tool usage via contrastive reasoning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a. URL https://openreview.net/forum?id=N4quRxE19p.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4. arXiv e-prints, pp. arXiv—2306, 2023b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024b.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024. URL
https://arxiv.org/abs/2402.01622.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024a.

Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing
Zhao, Yilei Zhao, Xinyu Cai, et al. A multimodal foundation agent for financial trading: Tool-
augmented, diversified, and generalist. In Proceedings of the 30th acm sigkdd conference on
knowledge discovery and data mining, pp. 4314-4325, 2024b.

Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui
Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task
solving, 2025. URL https://arxiv.org/abs/2506.12508|

Wanjun Zhong, Lianghong Guo, Qiqgi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724-19731, 2024.

14

https://arxiv.org/abs/2508.09124
https://openreview.net/forum?id=N4quRxE19p
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2502.12110
https://arxiv.org/abs/2506.12508

Under review as a conference paper at ICLR 2026

A QUALITATIVE ANALYSIS

Table 4: Full BusMA communication trajectory for the input: Three distinct vertices are chosen at
random from the vertices of a regular polygon with (2n+1) sides; what is the probability that the
center lies inside the triangle formed by the three chosen vertices? Each step shows the agent, their

reasoning, the message sent, and the communication type.

Step Agent Reason Message Comm.

type

1 Chair This is a probability prob- Three distinct vertices are chosen at Discussion
lem related to geometry... I random from the vertices of a given
will give the full task to regular polygon of (2n + 1) sides...

CodeAgent.

2 Code Final summary of the solu- The probability is 4—n2i2n+2 or Discussion
tion. The probability that the 3n] (Wrong)
center of the polygon lies in 2™+ (+D
the interior of the triangle...

3 Chair The CodeAgent provided a Could you please explain the rea- Require
result, but I am not sure if soning behind the formula you pro- explana-
it is correct... I will try a vided? Also, explicitly state the for- tion
smaller case... mula used and how it was derived.

4 Code The initial formula I pro- The formula m is incorrect. Discussion
vided appears to be incorrect The correct formulais 4':;12, derived
based on my derivations... as follows: [detailed steps...]

5 Chair The CodeAgent provided Please verify the two formulas for Guidance
two different formulas... I n = 1,2,3. Compare with known
need to verify which formula answer or provide a simulation.
is correct.

6 Code I will test the two formulas Conclusion: Formula 2, (n + Discussion
for n = 1,2,3 and compare 1)/(4n — 2), appears to be correct
with known answers. forn=2,3,butnotn =1...

7 Chair The CodeAgent compared Can you re-derive the formula, fo- Discussion
formulas and simulations, cusingonexpressingitasn/(4n-2), (Wrong)
but n = 1 is concerning... and provide a proof?

8 Code I need to re-derive the for- Itisnot possible to re-derive the for- Challenge
mula and try to express itas mula as n/(4n — 2). The correct
n/(4n - 2)... formulais (n+1)/(4n - 2).

9 Chair Let us re-examine the case Canyou provide an alternative proof = Challenge
n = 1... the formula seems for (n + 1)/(4n — 2), focusing on
to give 1 but the polygon is combinatorial arguments and sym-
just a triangle. metry?

10 Code Ineedto provide asimplified Simplified derivation: Total trian- Discussion
derivation using combinato- gles = (2”3”), triangles not contain-
rial arguments... ing center = (2n + 1)(5), so proba-

bility = (n+ 1)/(4n = 2).
11 Chair The CodeAgent simplified Could you compute explicitly for Discussion

the derivation but the n = 1
case is still problematic.

n = 1 and explain why the result
might be wrong?

15

Under review as a conference paper at ICLR 2026

Step Agent Reason Message Comm.
type
12 Code I need to compute forn =1 Forn = 1, the polygon is a triangle, Discussion
and check carefully... so the only triangle is the polygon
itself, and the center is not strictly
inside. So probability is 0, while
the formula gives 1.
13 Chair The CodeAgent confirms Final submission: For n > 1, the Submit

that for n = 1, the formula
gives 1 but the actual prob-
ability is 0. This indicates a
limitation of the formula.

probability is (rn + 1)/(4n — 2); for
n = 1, the probability is 0.

Initial Mathematical Derivation
* Calculates total number of
triangles: (2n +1)/3 = (2n+
1)(2n)(2n-1)/6
(32n+1) = 6(2n+1)(2n)(2n-1)
- Attempts to count triangles
containing the center by
considering vertex positions.
* Proposes that triangle with
vertices i, j, k contains center
if:j-i<n kj<n, andk-i>n

Considers complementary
problem: counting triangles NOT
containing center
—p Reasons that triangles not
containing center have all
vertices in a semicircle

What is the probability that the
center of a regular (2n+1)-gon
lies in the interior of a triangle
formed by three randomly
chosen vertices? Give the answer
in terms of n.

CodeAgent returned the answer
n/(2n-1);

the Manager then submitted it
via final_answer.

Derives probability as
(n? —1)(8n% - 2)

R
Task Allocation

Calculates total triangles as

C(2n+1, 3) = (2n+1)(2n)(2n-1)/6,

and triangles not containing the center (all three vertices in
one open semicircle) as

(2n+1)-C(n, 2) = (2n+1)n(n-1)/2.

Subtracting yields triangles containing the center:
C(2n+1,3) - (2n+1)C(n,2) = (2n+1)n(n+1)/6.

Thus the probability is

[(2n+1)n(n+1)/6] / C(2n+1,3) = n(n+1)/[2n(2n-1)] =
(n+1)/(4n-2).

(Contrast: Step 6 incorrectly used the complement
(n-1)/(2n-1), leading to the wrong final value n/(2n-1).)

CodeAgent

Figure 5: SmolAgent communication trajectories. Example input from Omni-MATH: Three distinct
vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what is the
probability that the center lies inside the triangle formed by the three chosen vertices?

B EXPERIMENT SETUPS

B.1 DiveErsiTy BENCHMARKS

B.1.1 AGENTS SETUP

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

ImageQAAgent. ImageQAAgent is employed for image analysis utilizing the ImageQATool with
a maximum of 5 processing steps.

WebAgent. WebAgent retrieves information from the internet using GoogleSearchTool and
WikiSearchTool with a maximum of 5 operational steps.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical computa-
tions by outputting code during Act and receiving execution results at the next step. The maximum
steps are set to 5.

16

Under review as a conference paper at ICLR 2026

B.1.2 TooLs seTup

We used the following tools in our experiments. Their implementation and parameters are the same
as those in the baseline.

ImageQATool. The ImageQATool analyzes images through two parameters: image_path specify-
ing the file path of the image and question containing the query about the image, where the tool makes
a single model call using the question as the prompt along with the uploaded image and returns the
model’s response as its output.

WikiSearchTool. The WikiSearchTool retrieves Wikipedia articles through a query parameter that
specifies the search term, returning both the search results list and the extracted content from the first
matching Wikipedia page,with its implementation based on the wikipedia package version 1.6.0.

GoogleSearchTool. The GoogleSearchTool performs web searches through two parameters: query
for the search text, utilizing the Google Custom Search API to retrieve a list of search results containing
the title, URL link, and snippet for each result.

CodeExcution. CodeExecution receives code generated by CodeAgent, creates a temporary direc-
tory to execute the code, and returns the execution results.

B.2 GAIA
B.2.1 AGENTS SETUP

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

BrowserAgent. BrowserAgent integrated from OpenDeepResearch employs a GoogleSearchTool
for basic retrieval operations and multiple coordinated BrowserTools for webpage browsing, with its
maximum iterations configured to 20.

FileAgent. The TextInspectorTool from OpenDeepResearch is integrated through the SmolAgents
framework to enable browsing and inspection of local files. The maximum iterations are set to 12.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical compu-
tations by outputting code during Act and receiving execution results at next step. The maximum
iterations are set to 12.

C BASELINE DETAILS

C.1 DiversiTy BENCHMARKS
C.1.1 OcroTooLs

OctoTools is an open-source agentic framework for complex reasoning across diverse domains
that requires no training, offers user-friendly operation, and supports easy extension. The frame-
work standardizes tools through “tool cards” containing usage metadata for plug and play inte-
gration. It employs a planner for both high level task decomposition and low level action re-
finement, while its executor issues executable commands, records structured intermediate results,
and synthesizes final answers from complete trajectories. We use package version 1.0.0 with
a two agent configuration comprising a Planner and an Executor, with the step budget set to
50. While preserving OctoTools’ fundamental reasoning capabilities, we augment it with four
tools: Image_Captioner_Tool, Wikipedia_Knowledge_Searcher_Tool, Google_Search_Tool,
and Python_Code_Generator_Tool, alongside the base Generalist_Solution_Generator_Tool.

17

Under review as a conference paper at ICLR 2026

C.1.2 SMOLAGENTS

SmolAgents is a lightweight, open-source Python library for building and running agents with min-
imal code, while remaining model-, tool-, and modality-agnostic. It provides first-class CodeAct:
a CodeAgent writes and executes code to invoke tools and perform computations. For MA collab-
oration, a Manager agent treats managed agents as callable tools, enabling modular orchestration
and clean composition. We use package version 1.8.0 with a four-agent configuration comprising
Manager, CodeAgent, ImageQAAgent, and WebAgent. The Manager has a maximum deployment
dimension of 10, whereas all other agents are set to 5. The Manager uses no tools; Modeagent
supports local code execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has
GoogleSearchTool and WikiSearchTool.

C.1.3 LANGGRAPH

LangGraph is a Python library for building stateful, multi-actor applications with LLMs, enabling
developers to create complex agent workflows using graph based orchestration. For MA systems,
LangGraph implements a Supervisor architecture where a central coordinator agent manages task
distribution and orchestrates specialized worker agents, treating each as a distinct node in the execu-
tion graph. We use package version 0. 3.21 with a four-agent configuration comprising supervisor,
codeagent, ImageQAAgent, and WebAgent. All agents share a collective limit of 50 steps since indi-
vidual step allocation is not supported. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.1.4 AutoGEN

AutoGen is an open-source framework for building LLM applications through conversational MA
systems, where agents collaborate via structured dialogue to solve complex tasks across diverse
domains. It provides customizable agents that operate in various modes combining LLMs, human
inputs, and tools, with both natural language and code serving as programming interfaces for
defining flexible interaction patterns. For MA coordination, AutoGen introduces a Router agent that
dynamically selects the next speaker based on conversation context and task requirements, enabling
intelligent turn-taking and adaptive collaboration patterns. We use package version 0.7.3 with a
four-agent configuration comprising Router, codeagent, ImageQAAgent, and WebAgent.All agents
share a collective limit of 50 steps. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.2 GAIA
C.2.1 Gemint FuncTioNCALLING

Gemini function calling refers to a single invocation of the model (Gemini-2.5-flash, Gemini-2.5-pro).
Based on the Gemini API’s function-calling capability, we register three functions: GoogleSearch,
which sends the given query to the Google Custom Search API (top-k = 5); CodeExecution, which
runs code generated by Gemini and returns the result; and FileExecution, which parses a local file
into text and feeds it back to Gemini. For tasks involving images, we directly use Gemini’s native
image analysis by sending the image URL to the Gemini API. We set the temperature to 1.0 and cap
the maximum output length at 8,192 tokens. For Gemini-2.5-Pro, we set reasoning_effort to low.

C.2.2 MAGENTICONE

MagenticOne is a high-performing open-source agentic system that employs a MA architecture to
solve complex tasks across diverse scenarios developed from AutoGen. It features an Orchestrator
as the lead agent that handles planning, progress tracking, and error recovery through dynamic
re-planning, while coordinating specialized agents throughout task execution. The system includes
agents for web browser operation, local file navigation, and Python code writing and execution, each
handling specific aspects of task completion. We use package version @.7. 3, set max steps to 120.

18

35
36
37
38

Under review as a conference paper at ICLR 2026

C.2.3 OpENDEEPRESEARCH

Introduction OpenDeepResearch is an advanced agentic system built on SmolAgents framework,
designed to tackle complex general agentic tasks through hierarchical MA collaboration and compre-
hensive information processing capabilities. It implements a manager-managed architecture where
the Manager agent formulates plans, decomposes complex tasks into subtasks, and directly handles
local file parsing and analysis. The system includes a specialized BrowserAgent that performs web
browsing and Google search operations, enabling real-time information retrieval and web interaction.

Achievement Details We use package version 1.8.0 with maximum step limits of 12 for the
Manager and 20 for the BrowserAgent.

D SystEMm Prompr

D.1 PrompT A: ABSTRACT PROMPT

Role
You are a focused analysis assistant within a multi-agent system. You analyze
tasks, use tools, and communicate findings precisely.

Team Structure
You work collaboratively with the following agents:
<Available Agents>

Communicate in different types
<discussion, Request for explaination, challenge, guidance>

Working Framework
Follow a Reason-act-call loop:
1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call

Output Format
Respond only with a JSON object:

{
"thought”: "<concise reasoning and next step>",
"action”: {
"tool”: "<>"
"parameters”: {3}
}!
"calling”: <false or "AgentName">,
"message"”: "<>"
3

Available Tools
{{TOOLS}}

Operating Rules
1) Use multi-step reasoning: gather evidence with tools, then synthesize.
2) Tool outputs arrive next turn.
3) JSON-only output; no extra text.
4) "message” must clearly state actions performed, key findings, and conclusions
when reporting.
5) Decompose complex tasks into focused tool calls.
6) The "calling” field is:
- ~false™ while analysis continues,
- the target agent’s name when delivering results.

19

22
23

24

25

26

27
28
29
30
31
0
33
34
35
36
37
38
39
40
4

[RV RN I)

Under review as a conference paper at ICLR 2026

D.2 Prowmrt B: CHAIR AGENT

You are ChairAgent, the main coordinator of a multi-agent system that solves
complex tasks.

Your role is to analyze the current state and either provide your own reasoning or
call a specialized agent for help.

Solve the task step by step;

Communicate in different types
<Discussion, Request for Explanation, Challenge, Guidance>

MAIN TASK:
${task}
Image: ${image_path}

If the image path is provided, this is a visual question. First, reason through it
yourself step by step; if you are not sure, ask VQAAgent for help.

First, review your reasoning history and agents' responses:
${responses}

Your teammates:
<Available agents>

For every step, you must repeat the reasoning-and-calling process. Avoid
unnecessary repetition. Finally, submit when you think you have the answer.

PROVIDE REASONING:
Output your reasoning as a JSON object:

{

"thought”: "Your own reasoning”

}

CALL AN AGENT:

Output your call as a JSON object:
{
"receiver”:
"message":
"parameters”: {3}

b

nn
’

nn

SUBMIT FINAL ANSWER:
When you have enough information to complete the task:

{
"calling”: "Submit”

b

You are the main coordinator of a multi-agent system that breaks down complex tasks
into manageable subtasks. Your role is to synthesize all gathered information into
a comprehensive final answer.

INITIAL TASK:
${main_task}

Now you need to synthesize all the information and provide a comprehensive final
answer that precisely addresses the initial task.

20

© ® N U AW N

35
36

37
38
39
40

Under review as a conference paper at ICLR 2026

COLLECTED FACTS AND RESULTS:
${message}

Your task is to:
1. Review all the information from message and confirmed facts
2. Synthesize a complete answer to the original task

Output your answer as a JSON object with this structure:
{
"reasoning”: "",
"final_answer":

}

nn

D.3 Promprt C: CODE AGENT

You are a coding assistant. You have access to a Python interpreter with internet
access and operating system functionality. You work hard to solve tasks.
You work in a team and communicate with other agents to solve tasks.

Team Structure
You work collaboratively with the following agents:
<Available agents>

Communicate in different types
<Discussion, Request for Explanation, Challenge, Guidance>

When given a task, proceed step by step to solve it. At each step:
Thought: Briefly explain your reasoning and what you plan to do next.
Code: Provide Python code that implements your plan. If relevant,
Output Format

At each step, output a JSON object in the following format:

{

"thought"”: "Your thought here.”,
"code"”: "Your Python code here.”

}

When you think you have the answer, output a JSON object in the following format:
{

"thought": "Final summary of the solution”,
"receiver”: "AgentType”,

"message”: "Your response with natural language”
}

Guidelines for Writing Code

Use more print() statements to display the intermediate state and the output of
your functions. What you submit should be based on what you print and output.

Each time, you should generate full code to solve the problem, not just a part of
it.

Guidelines for Analyzing the Output
After execution, analyze the output as follows:

21

41

42
43

44
45
46
47

(oI N - . T RV R)

29

30
31

Under review as a conference paper at ICLR 2026

If the code fails to execute and an error is returned, read the error message and
traceback carefully, then revise your code in the next step.

If the code executes successfully and an output is returned, proceed as follows:
once you have the final answer, change the submit to true to return the answer.

If the output contains relevant information, you can move on to the next step.

If the output does not contain relevant information, consider alternative
approaches.

D.4 Prompt D: IMAGEQA AGENT

You are a professional image analysis assistant, a specialized sub-agent within a
multi-agent system. Your expertise lies in analyzing visual content and answering
questions about images with precision and detail.

Team Structure

You work collaboratively with the following agents:
<Available Agents>

Communicate in different types

<Disscusion, Request for explaination, Challenge, Guidance>
Working Framework

Follow a Reason-act-call loop:

1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call

Output Format
Every response must be a JSON object with this exact structure:
{
"thought": "",
"action": {
"tool”: "",
"parameters”: {}
}
"calling": <false or "AgentName">,
"message”: ""
}
Available Tools
{{TOOLS}}

Core Principles

1. Multi-step reasoning is mandatory: Always perform at least two steps - first
call tools to gather information, then synthesize findings

2. Tool feedback timing: When you call a tool, you receive its feedback in the next
interaction cycle

3. JSON-only output: Never output text outside the JSON structure

D.5 ProwmpT E: WEBAGENT

You are a professional web search and information retrieval subagent. Find,
analyze, and synthesize accurate, uptodate knowledge.

22

34
35
36
37
38
39
40
41
42
43

Under review as a conference paper at ICLR 2026

Team Structure

You work collaboratively with the following agents:
<Available Agents>

Communicate in different types

<Disscusion, Request for explaination, Challenge, Guidance>

Working Framework
Follow a Reason-act-call loop:
1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call

Output (JSON-only)

"thought": "<reasoning, strategy, next steps>",

"action”: { "tool"”: "<tool_name>", "parameters": {} },

"calling": false,

"message"”: "<synthesized findings when calling an agent; empty when acting>"

}

Results of a tool call arrive in the next turn.
Available Tools
{{TOOLS}}

Search Strategy
Keyword optimization: compress to core terms; use domain terms.
Progressive refinement: overview = focused aspects = verification.
Decompose complex queries into sub-queries.
In thought: state strategy, interim understanding, next probes, gaps.
Calling: ~false™ until ready; then set to target agent
{
"thought”: "Collect recent NLP trend reports.”,
"action"”: {"tool": "Google_Search_Tool"”, "parameters": {"query”: "NLP trends
2024 transformer models site:arxiv.org OR site:acm.org"}},
"calling": false,

nn

"message”:
}
{
"thought": "",
"action": {3},
"calling": "",
"message”: ""
}

23

	Introduction
	Related Work
	The BusMA Communication Framework
	Worker Agent
	Chair Agent
	Communication Bus

	Experimental Setup
	Benchmarks
	Multi Agent System Configuration
	Baselines

	Results and Analysis
	Conclusion
	Qualitative Analysis
	Experiment Setups
	Diversity Benchmarks
	Agents setup
	Tools setup

	GAIA
	Agents setup

	Baseline Details
	Diversity Benchmarks
	OctoTools
	SmolAgents
	LangGraph
	AutoGen

	GAIA
	Gemini FunctionCalling
	MagenticOne
	OpenDeepResearch

	System Prompt
	Prompt A: Abstract Prompt
	Prompt B: Chair Agent
	Prompt C: Code Agent
	Prompt D: ImageQA Agent
	Prompt E: WebAgent

