
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BusMA: A Bus Communication Substrate for
Multi-Agent Systems

Anonymous authors
Paper under double-blind review

Abstract

Multi-Agent (MA) systems are effective at solving complex tasks that demand
advanced planning, tool use, and the synthesis of evidence from multiple sources.
Existing systems typically use Hierarchical Manager-Worker (HMW) structures
or Router-based Message Passing (RMP) as their communication protocol to
coordinate work. However, they can be restricted due to communication inef-
fectiveness, since agents cannot directly consult specific colleagues or operate
beyond assigned subtasks, and misrouted messages can propagate errors. In-
spired by bus communication systems in computer systems, we propose BusMA,
a bus communication MA framework that allows any agent to address specific
peers. Our framework comprises a Chair agent, Worker agents, and a com-
munication bus. Worker agents perform multi-step reason–act–call interactions,
enabling targeted requests for help or critique, with the Chair agent synthesiz-
ing insights from all agents’ communications while adding its own reasoning to
produce coherent solutions. The communication bus routes addressable mes-
sages and executes requests. Across two frontier LLMs and benchmarks spanning
diverse domains, including image understanding, mathematics, and knowledge-
based tasks, as well as GAIA with tasks of varied complexity, BusMA consistently
achieves the best results, outperforming state-of-the-art multi-agent communica-
tion approaches (HMW and RMP-based methods). Anonymous code is available
at https://anonymous.4open.science/r/Bus-MA-370E.

Receiver: <Agent Name>

Communication Type:
❑ Discussion
❑ Require Explanation
❑ Guide Response
❑ Challenge Response

Call with varied communication types Message passingInput Output

Figure 1: Overview of the BusMA communication substrate.

1 Introduction

Multi-Agent (MA) systems, comprising a set of agents that can autonomously reason, act and
communicate, powered by large language models (LLMs) (Achiam et al., 2023; Comanici et al.,
2025; DeepSeek-AI et al., 2025), are effective in solving complex real-world tasks. These tasks, such
as mathematical reasoning (Lei et al., 2024) and reasoning-grounded information retrieval (Huang
et al., 2025), often require planning, tool use (e.g., web search API) and synthesis of evidence from
diverse resources (Fang et al., 2025; Du et al., 2025). MA systems rely on specialized subagents to
address these complex tasks in a collaborative manner. Hence, their effectiveness depends on the
communication quality between agents and their coordination strategy (Guo et al., 2024; Chen et al.,
2023; Liang et al., 2023; Du et al., 2023; Wu et al., 2023b).

1

https://anonymous.4open.science/r/Bus-MA-370E

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Existing MA communication protocols can be broadly categorized into Hierarchical Manager-
Worker (HMW) structure and Router-based Message Passing (RMP). HMW employs a hierarchical
control structure, where a designated manager agent addresses the decomposition of complex tasks
and assigns sub-tasks to subordinate agents with specific capabilities, e.g., code execution or web
search (Qian et al., 2024; Gu et al., 2025; Zhang et al., 2025). While effective for simple tasks
involving, this paradigm limits agent communication to one-way task allocation and result submis-
sion, thereby preventing richer peer dialogue. In contrast, RMP introduces a central router agent,
which mediates all communication. Agents send their messages to the router, which then forwards to
selected recipients according to predefined rules. The router often maintains a shared memory of past
interactions, allowing it to route messages consistently and provide agents with an overview of global
states (Wu et al., 2023a; Nonomura & Mori, 2025). This approach enables flexible workflows, yet a
shared memory pool is forced through the central router, which prevents native peer dialogue. The
centralized nature of HMW and RMP gives rise to two primary limitations. First, communication
is constrained: agents cannot directly consult specific colleagues or act autonomously beyond their
assigned subtasks, preventing the exchange of explanations, critiques, and joint problem-solving,
which are essential for effective teamwork (Ke et al., 2025; Jin et al., 2025; Krishnan, 2025). Sec-
ond, these designs are prone to error propagation. The router may misroute messages to wrong or
sub-optimal peers, and the reliance on long context to maintain shared memory can propagate errors
(Piatti et al., 2024; Han et al., 2024; Maragheh & Deldjoo, 2025; Sagirova et al., 2025).

To address these limitations, we propose BusMA, a bus communication substrate for MA systems.
The bus architecture in computer systems (Patterson & Hennessy, 2017) enables components to
communicate directly through a shared communication channel, eliminating the need for point-
to-point connections. This architecture removes centralized controllers and allows components to
autonomously initiate data transfers based on their needs. In MA systems, such an architecture
translates to enabling agents to directly address specific peers through a communication bus, thereby
eliminating centralized bottlenecks from managers and routers. This approach allows agents to
autonomously initiate information exchange beyond assigned tasks and establishes a standard protocol
for cross-framework interoperability. BusMA consists of three core components: Worker agents,
a specialized Chair agent, and the communication bus. A worker agent, equipped with access to a
“personal” memory, first produces a low-level insight, which is a reasoning outcome derived from
its own memory. Subsequently, it can choose to issue a call directed to a different peer with one
or more of four communication types (i.e., discussion, explanation, challenge, and guidance). The
response to this interaction yields a mid-level insight, which reflects reasoning enriched through
peer input and is recorded to the bus. The Chair agent is a specialized Worker agent with acting
disabled. Its main responsibility is to integrate messages from other agents with its own reasoning
to synthesize insights and steer task progress. Specifically, it fuses the bus history with its memory
to form high-level insights that guide coordination and final answer generation. The communication
bus routes addressable messages and maintains a centralized memory managed by the chair. Figure 1
shows the overall BusMA framework.

Contributions. BusMA is a novel bus communication substrate that addresses existing system
limitations through two key mechanisms: (1) extended communication types that enable varied
interaction modes beyond simple task assignment; (2) multi-level insight generation across individual
(low), dialogue (mid), and synthesis (high) levels. Through comprehensive experiments across 12
datasets spanning image analysis, mathematics, and knowledge question answering, we show that
BusMA outperforms state-of-the-art methods. Additional experiments show that it consistently
outperforms previous methods on general agentic tasks.

2 Related Work

LLM Based Agents. LLMs such as GPT (Achiam et al., 2023), Gemini (Comanici et al., 2025),
and DeepSeek (DeepSeek-AI et al., 2025), serve as the foundational architecture for autonomous
agent development. Agentic architectures augment the base LLM with complementary mechanisms,
including advanced planning strategies for task decomposition (Wei et al., 2022; Huang et al., 2024; Li
et al., 2025; Hu et al., 2025; Erdogan et al., 2025), external tool use and knowledge bases (Zhang et al.,
2024b; Wu et al., 2024a; Qin et al., 2024; Feng et al., 2025), and long-term memory or reflection
mechanisms for persistent state and iterative improvement (Shinn et al., 2023; Modarressi et al.,
2023; Zhong et al., 2024; Mei et al., 2024; Xu et al., 2025; Chhikara et al., 2025). This architectural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

call

Manager
Agent

Worker
Agent

Worker
Agent

Worker
Agent

Task allocation

Router
Agent

Worker
Agent

Worker
Agent

Worker
Agent

Speaker Selection
Worker
Agent

Worker
Agent

Worker
Agent

Bus

Chair
Agent

Hierarchical Manager-Worker
(HMW) systems

Router-based Message Passing
(RMP) systems

Bus Communication Substrate
for MA (BusMA)

Figure 2: Comparison between different MA frameworks.

framework has been applied to diverse domains such as automated programming (Trivedi et al.,
2024; Zhang et al., 2024a; Chen et al., 2025), system interaction (Wu et al., 2024b; Bonatti et al.,
2024), and scientific discovery (Hong et al., 2024; Novikov et al., 2025). However, single-agent
LLMs remain brittle on long-horizon, interdependent tasks, with evaluations reporting systematic
failures in planning, decision-making, and instruction following (Liu et al., 2024; Xie et al., 2024;
Wang et al., 2025). Consequently, MA systems have emerged as a promising approach to improve
reasoning accuracy and task completion by distributing complex problems among specialized agents
(Li et al., 2023; Du et al., 2024).

LLM Based Multi Agent Systems. Building on advances in single-agent development, researchers
have explored MA systems composed of interacting LLM agents. Early studies highlighted the value
of agent dialogue for social simulation and collaborative problem-solving (Park et al., 2023; Li et al.,
2023), leading to the development of more structured communication protocols. These systems
generally fall into two categories: Hierarchical Manager-Worker (HMW) Systems and Router-based
Message Passing (RMP) Systems. HMW employs a hierarchical structure with a central manager
agent that decomposes tasks and assigns subtasks to subordinate worker agents (Chen et al., 2023;
Qian et al., 2024). Examples include systems where a planner orchestrates tool calls for an executor
(Lu et al., 2025), or where a manager invokes agents as callable tools or workers for individual task
steps (Roucher et al., 2025; LangChain Inc., 2025). RMP by contrast, such as AutoGen (Wu et al.,
2023a), uses a central router agent, often an LLM, to dynamically select the next agent to continue the
task (a process named as speaker selection) without explicit task decomposition, while maintaining
a shared memory pool for coordination.

While effective, centralized MA designs confine communication to task assignment and reporting
channels, limiting the richer peer-to-peer exchanges. The reliance on single control points also
introduces bottlenecks and propagates errors across the dialogue, while dependence on shared
memory can further amplify inaccuracies. These limitations highlight the need for more flexible
and addressable communication strategies, which motivates our introduction of BusMA, a bus
communication substrate that supports targeted peer consultation and coherent MA reasoning. Figure
2 comparatively illustrates existing paradigms and BusMA for MA communication.

3 The BusMA Communication Framework

In computer systems, bus architectures offer a flexible way to connect multiple components: each
component communicates through a shared bus using a standardized protocol, without relying on a
central controller to manage every interaction. This design enables components to exchange infor-
mation directly and flexibly, while still preserving overall system coherence (Patterson & Hennessy,
2017). Inspired by this architectural principle, we propose BusMA, a bus-style communication sub-
strate for MA systems. By enabling agents to engage in flexible and interactive dialogue, requesting
clarifications, challenging assumptions, and providing expertise-based guidance, BusMA aims to
transform MA collaboration from rigid task distribution into dynamic knowledge synthesis through
diverse conversation. This approach enables agents to iteratively refine reasoning and adapt solutions
to complex task requirements in real time.

The BusMA framework consists of a communication bus and two main agent types: (1) worker
agents, responsible for collaboration and task execution; and (2) a chair agent, a specialized worker
agent for information synthesis. In the following subsections, we first introduce the design of worker
and chair agents, and then describe the communication bus that coordinates their interactions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 Worker Agent

Worker agents are the core operational units of BusMA. They are designed to reason, act, and
communicate with peers over the bus by sending and receiving messages, forming the basis of
collaborative problem solving. Each agent 𝛼𝑖 is defined as 𝛼𝑖 =

(
L,P𝑖 ,M𝑖 ,K𝑖 (𝑡),T𝑖 ,N , 𝑇𝑚𝑎𝑥

)
where L is an LLM, P𝑖 is the base prompt that defines the agent’s role, output format, and specifically
designates the communication types that can be registered to the bus. M𝑖 represents messages
received from the bus, K𝑖 (𝑡) is the agent’s personal memory at iteration 𝑡, T𝑖 lists available tools, N
indicates a list of accessible peer agents, and 𝑇𝑚𝑎𝑥 specifies the maximum number of iterations.

Activation and Initialization. When a worker receives a message from the bus, it activates and
begins its execution cycle (𝑡 = 0). It constructs its initial prompt by concatenating the base prompt P𝑖

with the received message M𝑖 , as well as the descriptions of the peer agent list N and available tools
T𝑖 . By modifying the base prompt P𝑖 and tool list T𝑖 , our BusMA allows the instantiation of workers
with diverse capabilities tailored to specific tasks (e.g., search, code execution). Upon initialization,
each worker first reasons and then can act, following the ReAct framework (Yao et al., 2023), or call.

Reason. The LLM backbone L analyzes the current context to produce a low-level insight 𝑟 low
𝑡 at

cycle 𝑡. This captures the agent’s local understanding of the task and informs the choice of action
based on the current context and available resources. The agent then selects one of two actions: Act
and Call. The decision between the two actions emerges from the agent’s reasoning about the current
context: Act is selected when the interaction with available tools is required to gather information
or perform operations, whereas Call is selected when communication with another agent is needed
for discussion, critique, requesting clarification, or seeking guidance.

Act. L identifies a tool 𝜏𝑗 ∈ T𝑖 and autonomously configures its execution arguments 𝜃 (e.g., file
path or a formulated search query) based on the current context and task requirements. Then, the
agent executes the tool and receives an observation 𝑜𝑡 = 𝜏𝑗 (𝜃). For instance, if tasked with finding
recent research papers on a specific topic, the agent may use a search tool with a query as 𝜃, obtaining
a list of publications as the observation. The agent then updates its memory with both the reasoning
insights and the observation: K𝑖 (𝑡 + 1) = K𝑖 (𝑡) ∪ {𝑟 low

𝑡 , 𝑜𝑡 }. Next, it proceeds to iteration 𝑡 + 1,
reconstructing its prompt with P𝑖 , M𝑖 , N , T𝑖 , and the updated memory K𝑖 (𝑡 + 1). L analyzes
this accumulated information, producing a new low-level insight 𝑟 low

𝑡+1 , and selects the next action.
This process continues, with the agent alternating between reasoning and acting while accumulating
observations and insights in its memory. The cycle terminates under two conditions: (1) if the agent
chooses Call, or (2) the agent reaches the maximum iteration limit 𝑇𝑚𝑎𝑥 , in which case the agent
returns the error message “no message provided” to the agent that originally sent it the message.

Call. L selects a target agent 𝛼 𝑗 ∈ N to send a message. The agent generates an action
𝑎call
𝑡 = (𝛼 𝑗 , 𝑚𝑖→ 𝑗), where 𝛼 𝑗 is the receiver and 𝑚𝑖→ 𝑗 is the composed message formatted in

JSON which is sent to the bus. Subsequently, the agent’s current execution cycle terminates. The
Call action considers four communication types, determined by the agent’s reasoning: discussion
for bidirectional information exchange, request for explanation when clarifying ambiguous context,
challenge to verify questionable results, and guidance when requiring help. For instance, worker
agents may initiate a discussion to verify facts or issue a challenge when a peer agent’s message
conflicts with their own analysis. Call actions lead to mid-level insights 𝑟mid

𝑡 that the agent derives
from its accumulated low-level insights. While low-level insights 𝑟 low

𝑡 capture the agent’s reasoning
at each iteration step, mid-level insights emerge when the agent synthesizes these local observations
to determine both the necessity and the form of inter-agent communication. Appendix D.1 presents
an example prompt for the worker agent.

3.2 Chair Agent

The chair agent is a specialized worker agent that serves as the coordinator and entry point of the
system. Unlike worker agents, it does not use tools (i.e., Tchair = ∅, see Figure 1), focusing on
managing collaboration. Unlike existing manager- and router-based systems, the chair does not offer
central planning, or decompose and assign subtasks. It operates in two distinct modes with different

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

prompts: PCOOR
chair for the coordination (COOR) phase and PSUBM

chair for the submission (SUBM) phase.
Appendix D.2 presents the two-phase prompts for the Chair agent.

Coordination Mode. At 𝑡 = 0, the chair agent receives a task and begins the coordination phase. It
constructs its prompt by combining PCOOR

chair with the task description and the description of available
agents N in a list. At each iteration 𝑡, the chair chooses between reason and call actions without the
option of acting:

• Reason. If 𝑡 = 0, the chair agent solely analyzes the available information (e.g., task
description and PCOOR

chair) to draw high-level insights. If 𝑡 > 0, the agent has been called by
other worker agents. In that case, it considers all historical messages H(< 𝑡) accumulated
from the bus, which contain the workers’ responses and their inter-agent communications,
synthesizes the mid-level insights to produce high-level insights 𝑟high

𝑐ℎ𝑎𝑖𝑟 ,𝑡
. Instead, if Reason

happens in the initial stage (𝑡 = 0), the chair solely draws high-level insights.
• Call. The chair outputs a JSON structure specifying receiver 𝛼 𝑗 and message 𝑚chair→ 𝑗 , and

sends this to the bus. The chair enters a listening mode to wait for future requests. At this
stage, worker agents may communicate with each other, using Call actions exchanging mid-
level insights 𝑟mid

𝑖→ 𝑗 ,𝑡
derived from their communication and accumulated low-level insights.

The chair agent is reactivated when a worker agent sends it a message. Upon reactivation,
the chair agent goes in Coordination mode.

Worker

Reason

Act

Call

Low-Level
Insights

Mid-Level
Insights

Worker

Reason

Act

Call

Low-Level
 Insights

Mid-Level
Insights

Chair

Reason

Call

Reason

Message Routing

Message

Historical Messages

Memory Management

Bus
Task

Agent Registration

Store

High-Level
Insights (step t)

High-Level
Insights (step t+1)

Figure 3: The formation process of the
three-layer insights.

The chair can call workers using the same four com-
munication types: discussion, request for explana-
tion, challenge, and guidance. This protocol creates
a three-tier hierarchy of insights. Low-level insights
𝑟 low
𝑡 capture individual agents’ reasoning about tool

use and immediate context. Mid-level insights 𝑟mid
𝑖→ 𝑗 ,𝑡

emerge from worker agents’ decisions to communicate,
synthesized from their accumulated low-level insights.
High-level insights 𝑟

high
chair,𝑡 represent the chair agent’s

synthesis of worker communications into a global task
progress understanding (Figure 3). This iterative pro-
cess continues until either the chair agent determines the task is complete and generates a JSON
output with a “submit” field to signal readiness for final answer generation, or the maximum iteration
limit 𝑇𝑚𝑎𝑥 is reached. Both conditions trigger the transition to the submission phase.

Submission Mode. In the submission mode, the chair agent uses the prompt P (𝑆𝑈𝐵𝑀)
chair concate-

nated with the original task description and all accumulated insights from the coordination phase to
generate the finalized solution as output. This is a single-step, irreversible action where the chair
agent must produce the final answer based on all gathered information.

3.3 Communication Bus

The bus provides a shared substrate for agent interaction consisting of agent registration, message
routing, and memory management modules.

Agent Registration Module. When the system initializes, the agent registration module registers
each instantiated worker agent and chair agent 𝛼𝑖 to the bus and assigns the agent’s name as its
address A𝑖 . This creates an address registry R = {(𝛼𝑖 ,A𝑖) |𝛼𝑖 ∈ N}, enabling the agents to be
accessed as message receivers.

Message Routing Module. When an agent 𝛼𝑖 chooses the call action and generates 𝑎call
𝑡 =

(𝛼 𝑗 , 𝑚𝑖→ 𝑗) to send a message to the bus, the bus parses the message and extracts the receiver name
𝛼 𝑗 , then matches it against the address registry R. This step verifies whether 𝛼𝑖 has correctly
specified the receiver agent’s name. Upon successful matching, the bus augments the message to
create an enriched message structure 𝑚̂𝑖→ 𝑗 (𝑡) = (𝑚𝑖→ 𝑗 , ID, 𝑡, 𝛼𝑖), where ID is a unique identifier, 𝑡
is the timestep, and 𝛼𝑖 refers to the sender agent. The bus forwards 𝑚̂𝑖→ 𝑗 (𝑡) to the receiver 𝛼 𝑗 , and
simultaneously transfers this augmented message to the memory management module.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Memory Management Module. This module maintains a chronological list H(< 𝑡) that stores
all messages passing through the bus until time 𝑡. It appends augmented messages received from
the message routing module to the list sequentially, preserving the complete communication history.
When the chair agent is designated as the receiver (that is, when any worker agent sends a message
to the chair), the memory management module transfers the complete historical messages H(< 𝑡)
to the chair agent. This enables the chair agent to access all accumulated communications between
agents for synthesizing high-level insights during its coordination phase.

4 Experimental Setup

4.1 Benchmarks

We evaluate BusMA on two complementary groups of benchmarks: one assessing breadth across
modalities and task types, and the other emphasizing depth through real-world problem solving.

Datasets Modality Domain

AlgoPuzzleVQA Vision General ✓ ✓

Hallusion-VD Vision General ✓

PuzzleVQA Vision General ✓ ✓

VQA 2.0 Vision General ✓ ✓

Game of 24 Text Mathematical ✓ ✓

Omni-MATH Text Mathematical ✓ ✓ ✓

CLEVR-Math Vision Mathematical ✓ ✓

MathVista Vision Mathematical ✓ ✓ ✓ ✓

GPQA Text Knowledge ✓ ✓ ✓

MMLU-Pro Text Knowledge ✓ ✓

SciFIBench Vision Knowledge ✓ ✓

HotpotQA Text Knowledge ✓ ✓

Table 1: Modalities, domain and reasoning
skills required (visual understanding , nu-
merical calculation , knowledge retrieval

, and multi-step reasoning).

Diversity-oriented. We evaluate twelve standard
benchmarks similar to Lu et al. (2025), covering three
categories: (1) visual and spatial reasoning, includ-
ing AlgoPuzzleVQA (Ghosal et al., 2025), Hallusion-
VD (Guan et al., 2024), PuzzleVQA (Chia et al.,
2024), and VQA 2.0 (Goyal et al., 2017); (2) math-
ematical reasoning and multi-step problem solving,
including Game of 24 (Nathan Lile, 2025), Omni-
MATH (Gao et al., 2024), CLEVR-Math (Lindström
& Abraham, 2022), and MathVista (Lu et al., 2023);
and (3) knowledge-based question answering bench-
marks with GPQA (Rein et al., 2024), MMLU-Pro
(Wang et al., 2024), SciFIBench (Roberts et al.,
2024), and HotpotQA (Yang et al., 2018). We ran-
domly sample 200 instances from each dataset fol-
lowing Lu et al. (2025). Table 1 shows the modali-
ties, domains, and reasoning skills required for each
dataset.

Complexity-oriented. To assess BusMA in addressing tasks in varied complexity, we use the
GAIA (Mialon et al., 2024) benchmark, which includes real-world tasks requiring combinations of
file parsing, web browsing, and code execution for complex problem-solving settings. The dataset is
designed to be difficult for LLMs and aims to evaluate general AI assistants and agents. We use the
complete GAIA validation set of 165 questions across all difficulty levels. We report task completion
accuracy as the primary evaluation metric with additional tracking of API token cost to quantify
communication overhead and computational efficiency.

4.2 Multi Agent System Configuration

To implement the agents and integrated tools, we use publicly available foundation models:
DeepSeek-V3 (DeepSeek-AI et al., 2025) and Gemini-2.5-Flash (Comanici et al., 2025). For
Gemini-2.5-Flash, we adopt a unified configuration across all agents and tools in both BusMA and
the baselines. Since DeepSeek-V3 does not support image inputs, visual question answering is
handled by the multimodal Gemini-2.0-Flash (Google DeepMind, 2024) due to API constraints,
configured with the same parameters as DeepSeek-V3.

BusMA System Configuration. In diversity tasks, we instantiate three worker agents, each with
a specific role (as per customized prompts and distinct tool sets): a WebAgent, equipped with
GoogleSearchTool and WikiSearchTool; an ImageQAAgent, which directly queries a multimodal
LLM (Gemini-2.5-Flash or Gemini-2.0-Flash for DeepSeek-V3), and a CodeAgent, which generates
code at the Act stage and executes it. For the chair agent within BusMA, it operates with a maximum of
10 iteration steps (i.e., 𝑇𝑐ℎ𝑎𝑖𝑟

𝑚𝑎𝑥 = 10). We set the maximum iteration steps 𝑇𝑤𝑜𝑟𝑘𝑒𝑟
𝑚𝑎𝑥 = 5 for efficiency.

In GAIA (complexity) benchmark, we use four worker agents: a CodeAgent; a FileAgent enables

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

document browsing and access to local files; and a BrowserAgent to address the online information
retrieval operations. Following (Roucher et al., 2025), BrowserAgent operates with 20 iteration steps
(𝑇𝑚𝑎𝑥 = 20), while all other agents, including the chair agent, use 12 steps (𝑇𝑚𝑎𝑥 = 12).

Third-Party Integration. To incorporate external agents, BusMA provides lightweight adapters
that ensure compatibility with the bus protocol while preserving the agents’ native functionality. Each
adapter implements three core methods: (1) register_agent assigns the external agent a unique
address on the bus, and records it in the registry. (2) receive_message listens for bus messages
directed to the agent, extracts relevant content, and queues it for processing. (3) handle_message
invokes the agent’s native execution method with the extracted inputs and packages the outputs
into standardized bus-compatible messages. This design decouples message translation from agent
execution, requiring only lightweight wrapping rather than modifying the original agent logic. As
a result, agents from external frameworks such as SmolAgents can be seamlessly integrated. In our
experiments, both the FileAgent and BrowserAgent are connected via such adapters.

The detailed experimental settings are presented in Appendix B and the prompts of the agents are
included in Appendix D.

4.3 Baselines

Diversity-oriented Benchmarks. OctoTools (Lu et al., 2025) uses a centralized planner-executor
architecture with 50 total iteration steps. SmolAgents (Roucher et al., 2025) and LangGraph
(LangChain Inc., 2025) implement manager-worker hierarchies (i.e., HMW) for coordinating spe-
cialized agents. AutoGen (Wu et al., 2023a) employs router-based communication with shared
memory pools. For iteration limits, SmolAgents matches BusMA’s configuration (manager: 10
steps, workers: 5 steps each), while LangGraph and AutoGen use 50 total iteration steps as they do
not support per-agent step definitions. We maintain a consistent core toolset across all frameworks
to isolate communication architecture effectiveness rather than tool optimization capabilities.

Complexity-oriented benchmark For experiments on GAIA, we use Gemini-2.5-Flash-
FunctionCalling and Gemini-2.5-Pro-FunctionCalling1 to quantify the contribution of MA coor-
dination versus single-model function calling, determining whether MA systems provide measurable
benefits over monolithic approaches for complex tasks. We also compare against two state-of-the-art
MA systems. MagenticOne (Fourney et al., 2024), developed from AutoGen, employs four spe-
cialized agents for orchestration, file browsing, web navigation, and code execution, and enforces a
system-wide limit of 120 iteration steps. OpenDeepResearch (Roucher et al., 2025), developed from
SmolAgents, uses a Manager agent (12 steps) that coordinates a BrowserAgent (20 steps) for complex
reasoning tasks. OpenDeepResearch is a fixed framework with predefined agent components and
tools that cannot be changed. The detailed baseline settings are presented in Appendix C.

5 Results and Analysis

Diversity Benchmarks. Table 2 shows the results across models and tasks. We observe that
BusMA obtains the highest overall average accuracy. With DeepSeek-V3, BusMA reaches 68.6,
exceeding OctoTools, the best performing baseline, by 4.8. Using Gemini-2.5-Flash, it achieves
76.3, surpassing OctoTools by 2.5. In visual and spatial reasoning on AlgoPuzzleVQA, BusMA is
highest across both LLMs (60.0 and 63.0). On Hallusion-VD, BusMA is best with Gemini-2.5-Flash
(77.0) and second with DeepSeek-V3 (72.5). On PuzzleVQA and VQA 2.0, BusMA is consistently
first or second across both models. However, BusMA exhibits comparatively weaker performance in
visual tasks, likely because communication across agents do not strengthen the LLMs’ basic capacity
for image analysis and may instead introduce noise through message exchanges.

In mathematical reasoning, BusMA consistently outperforms other frameworks across benchmarks.
On the Game of 24, BusMA achieves the highest accuracy with both models, scoring 88.5 and 96.5
respectively. Similarly, it offers top performance on Omni-MATH for both models evaluated. For
CLEVR-Math, BusMA obtains scores of 77.5 and 89.5, surpassing all other frameworks. Lastly,
on MathVista, BusMA achieved the highest accuracy of 79.0 with Gemini-2.5-Flash. These results

1https://ai.google.dev/gemini-api/docs/function-calling

7

https://ai.google.dev/gemini-api/docs/function-calling

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

OctoTools SmolAgent LangGraph AutoGen Bus-MA (Ours) Δ

D
ee

pS
ee

k-
V

3

AlgoPuzzleVQA 47.5 31.5 45.5 39.5 60.0 +12.5
Hallusion-VD 73.0 75.5 69.0 69.5 72.5 -3.0
PuzzleVQA 56.5 53.0 55.5 55.5 63.0 +6.5
VQA 2.0 67.5 73.0 65.0 66.5 75.5 +2.5

Game of 24 75.0 68.5 62.0 47.5 88.5 +13.5
Omni-MATH 52.0 49.5 41.0 41.0 55.0 +3.0
CLEVR-Math 74.5 72.0 71.0 30.5 77.5 +3.0
MathVista 65.0 63.0 53.5 55.5 62.5 -2.5

GPQA 60.5 54.0 55.5 45.5 56.0 -4.5
MMLU-Pro 68.0 73.0 52.5 59.0 79.5 +6.5
SciFIBench 72.0 66.0 75.0 70.0 76.5 +1.5
HotpotQA 53.5 54.5 30.5 50.5 57.0 +2.5
Average 63.8 61.1 56.3 52.5 68.6 +4.8

G
em

in
i-2

.5
-F

la
sh

AlgoPuzzleVQA 66.0 55.5 52.0 37.0 63.0 -3.0
Hallusion-VD 75.5 75.0 74.0 72.0 77.0 +1.5
PuzzleVQA 80.5 72.0 75.0 58.0 76.0 -4.5
VQA 2.0 77.5 71.5 75.5 69.5 76.0 -1.5

Game of 24 88.0 89.5 81.5 73.5 96.5 +7.0
Omni-MATH 53.5 67.0 50.0 66.0 68.0 +1.0
CLEVR-Math 89.0 71.5 76.0 57.0 89.5 +0.5
MathVista 77.5 67.5 64.5 55.0 79.0 +1.5

GPQA 68.5 64.5 59.5 64.5 69.5 +1.0
MMLU-Pro 72.0 77.0 62.5 46.0 79.0 +2.0
SciFIBench 81.0 75.5 78.5 54.5 82.5 +1.5
HotpotQA 57.0 54.5 55.0 44.5 59.0 +2.0
Average 73.8 70.1 67.0 58.1 76.3 +2.5

Table 2: Accuracy of MA frameworks across tasks and models. The best performance for each task
is shown in bold, and the second best is underlined. Δ denotes the performance difference between
BusMA and the best baseline.

highlight the framework’s superior ability to facilitate complex mathematical reasoning and col-
laborative problem-solving. Improvements can be attributed to the extended communication types
between agents. The chair agent reasons in nature language, while the code agent contributes de-
tailed computation through code. The agents share ideas through discussions, request explanations to
verify answers, issue challenges when reasoning diverges, and provide guidance when failures occur.
This dynamic communication approach broadens the solution space by allowing for collaborative
problem-solving beyond simple task delegation.

BusMA demonstrates strong performance on knowledge-intensive benchmarks. On GPQA, it
achieves 69.5 accuracy with the Gemini-2.5-Flash model and ranks second with a score of 56.0
using DeepSeek-V3. For MMLU-Pro, BusMA is the top performer with both models, attaining
scores of 79.5 and 79.0. It also offers the best performance with both models on SciFIBench (76.5
and 82.5) and HotpotQA. Multi-level insights help in knowledge-based question answering. BusMA’s
worker agents generate low-level insights to guide iterative actions, while mid-level insights integrate
evidence from multiple sources derived from retrieval results. The chair then synthesizes these into
high-level insights, achieving coherent knowledge integration across diverse reasoning pathways.
However, the weaker results on GPQA (-4.5, +1.0) highlight a limitation. Because this dataset is
less amenable to direct retrieval via a GoogleSearchTool, worker agents can provide incorrect or
uninformative mid-level insights. This can hinder the chair’s reasoning, suggesting that BusMA
requires stronger mechanisms to guard against the injection of misleading information.

Looking across LLMs, Gemini-2.5-Flash outperforms DeepSeek-V3 due to its superior reasoning
ability (Google DeepMind, 2024). The different performance gains between DeepSeek-V3 and
Gemini-2.5-Flash show that BusMA adapts well to various model capabilities, offering larger im-
provements when using DeepSeek-V3. The framework stays competitive even on tasks where it does
not rank first, usually placing second, showing its reliability across tasks.

Methods MA Level 1 Level 2 Level 3 Overall

Gemini-2.5-Flash-F/C 30.1 12.7 7.7 17.6
Gemini-2.5-Pro-F/C 39.6 24.1 19.2 28.2
MagenticOne ✓ 52.8 36.0 15.4 38.2
OpenDeepResearch ✓ 58.5 43.0 19.2 44.2
Bus-MA ✓ 60.3 47.6 26.9 48.5

Table 3: Performance on GAIA using Gemini-2.5-
Flash. Best is bold.

GAIA. Table 3 shows performance across dif-
ficulty levels. Single model baselines Gemini-
2.5-Flash-FunctionCalling and Gemini-2.5-
Pro-FunctionCalling substantially underper-
form all MA systems (17.6 and 28.2), confirm-
ing that architectural design rather than model
capacity drives complex task performance. The
30.9 percentage point improvement from single model to BusMA framework isolates the contri-
bution of MA coordination. BusMA achieves 60.3, 47.6, and 26.9 accuracy for Levels 1, 2, and
3 respectively, with 48.5 overall. This 4.3 percentage point improvement over OpenDeepResearch

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(44.2). Notably, BusMA achieves a larger lead on the Level-2 (3.4) and Level-3 (6.7), which require
more advanced reasoning and complex collaboration. This highlights BusMA’s ability to coordinate
long-horizon solution paths. Moreover, despite integrating the BrowserAgent from OpenDeepRe-
search, BusMA still outperforms it across all levels, indicating that the gains arise from BusMA’s
extended communication types rather than the capability of any single agent.

Qualitative analysis. Figures 4 and 5 (Appendix A) show the communication trajectories of
BusMA (abbreviated) and the best-performing baseline SmolAgents on the same problem in the
Omni-MATH benchmark. BusMA tackles this task with two agents: a Chair agent and a Code
agent. The Chair discusses with the Code agent for calculation and, after receiving an unreliable
response, requires explanation, asking the Code agent to provide detailed explanation. As per a full
communication trajectory example of BusMA in Table 4 (Appendix A), the Chair also guides the
Code agent to validate candidate answers using simple test cases (1, 2 and, 3), while the Code agent
challenges the Chair’s hypotheses when appropriate. Although both agents initially make errors,
iterative interaction yields the correct solution and a brief reflection on the causes of failure. By
contrast, for SmolAgents, the manager generates an incorrect answer and delegates to a Code agent.
However, it only collects feedback without enabling two-way communication, so the initial error
persists.

Chair Agent

CodeAgent
(Worker
Agent)

Reason
This is a probability problem
related to geometry..., I should
ask CodeAgent for help.

Call
Receiver: [CodeAgent]
Message: Three distinct
vertices are chosen at
Random from the vertices of a
given regular polygon of 2n+1
sides..

Reason
I can use the formula for the
probability which is $3n / (4n^2
+ 6n + 2)

Call
Receiver: [Chair]
Message: 'The probability is
$\frac{3n}{4n^2+6n+2}$'

Act
def calculate_probability(n):
return (3*n) / (2*(2*n+1)*(n+1))

Discuss

Reason
The CodeAgent provided a
result, but it seems too
complicated...

Call
Receiver: [CodeAgent]
Message: Could you please
explain the reasoning behind
the formula? Also, explicitly
state the formula used and
how it was derived with a step-
by-step explanation.

Discuss Require Explanation
Reason
The initial formula I provided,
3n / (4n^2 + 6n + 2), appears to
be incorrect based on my
derivations and calculations. I
will now re-derive the correct
formula and provide a step-by-
step explanation…

Call
Receiver: [Chair]
Message: …

Act
…

… a series of
interactions

Reason
I need to calculate the
probability using the formula
(n+1)/(4n-2) for n=1, explain
why it might be incorrect, and
verify using another method.

Call
Receiver: [Chair]
Message: when n=1, the
polygon has 2n+1 = 3
Sides, …

Act
print("= [(2n+1)(2n)(2n-1) / 6] -
[(2n+1)n(n-1) / 2]")
nprint("= (2n+1)[(2n)(2n-1) -
3n(n-1)] / 6")..

Reason
I will ask CodeAgent again to
double check the case for n=1

Call
Receiver: [CodeAgent]
Message: please specifically
calculate the probability using
the formula (n+1)/(4n-2) for
n=1, explain why the result
might be incorrect for the
problem? Can you also verify
with another method if the
result is indeed wrong?

Discuss

Reason
When 2n+1 > 3, the probability
that a randomly chosen
triangle contains the origin in
its interior is given by (n+1)/(4n-
2) for n>1. … In the case of n=1
(equilateral triangle) this
probability is zero. However,
for n>1, we have (n+1)/(4n-2)

Call
Submit
For n > 1, the probability is
(n+1)/(4n-2).

Discuss

Figure 4: Partial BusMA communication trajectories. Example input from Omni-MATH: Three
distinct vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what
is the probability that the center lies inside the triangle formed by the three chosen vertices?

6 Conclusion

We introduced BusMA, a novel bus communication substrate for MA systems inspired by computer
architecture. It overcomes limitations of existing frameworks by enabling direct peer-to-peer agent
communication, eliminating centralized bottlenecks, and supporting extended communication types
including discussion, request for explanation, challenge, and guidance. BusMA features worker
agents with extended reason-act-call capabilities, a specialized chair agent for synthesis, and a
communication bus for addressable message routing. Extensive experiments across 13 benchmarks
spanning image analysis, mathematics, knowledge question answering tasks, and GAIA with tasks
across different levels of complexity, demonstrate that BusMA consistently outperforms state-of-the-
art methods across frontier LLMs. BusMA establishes a foundation for building more flexible and
scalable MA systems capable of addressing increasingly complex real-world tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement

The authors acknowledge the use of AI assistants during the preparation of this work. GPT-5, Gemini-
2.5 and Claude Opus 4.1 were used to improve the grammar and clarity of the draft. Additionally,
Claude Opus 4.1 served as a coding assistant for implementation and debugging.

Reproducibility Statement

Our code and a guide for BusMA and baselines implementation, evaluation, and analysis are available
on an anonymous GitHub repository. The repository will remain accessible until the ICLR 2026
decision notification date: January 22, 2026 (AOE). Full details on hyperparameters, software, and
hardware, including specific versions used, are provided in Appendix B.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/2409.08264.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization,
2025. URL https://arxiv.org/abs/2503.09089.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.org/abs/
2504.19413.

Yew Ken Chia, Vernon Toh Yan Han, Deepanway Ghosal, Lidong Bing, and Soujanya Poria.
Puzzlevqa: Diagnosing multimodal reasoning challenges of language models with abstract visual
patterns. arXiv preprint arXiv:2403.13315, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, and Inderjit
Dhillon. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities and others, 2025. URL https://arxiv.org/abs/2507.06261.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, and Bingxuan Wang. Deepseek-v3 technical report,
2025. URL https://arxiv.org/abs/2412.19437.

Shangheng Du, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xin Jiang, Yanhong Bai, and Liang He. A
survey on the optimization of large language model-based agents, 2025. URL https://arxiv.org/
abs/2503.12434.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2024. URL https://
openreview.net/forum?id=QAwaaLJNCk.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents
for long-horizon tasks, 2025. URL https://arxiv.org/abs/2503.09572.

10

https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2503.09089
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2503.12434
https://arxiv.org/abs/2503.12434
https://openreview.net/forum?id=QAwaaLJNCk
https://openreview.net/forum?id=QAwaaLJNCk
https://arxiv.org/abs/2503.09572

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu,
Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, and Zaiqiao Meng. A
comprehensive survey of self-evolving ai agents: A new paradigm bridging foundation models
and lifelong agentic systems, 2025. URL https://arxiv.org/abs/2508.07407.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms,
2025. URL https://arxiv.org/abs/2504.11536.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks, 2024. URL
https://arxiv.org/abs/2411.04468.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Deepanway Ghosal, Vernon Toh, Yew Ken Chia, and Soujanya Poria. AlgoPuzzleVQA: Diagnosing
multimodal reasoning challenges of language models with algorithmic multimodal puzzles. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 9615–9632, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
naacl-long.486. URL https://aclanthology.org/2025.naacl-long.486/.

Google DeepMind. Gemini 2.0 flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini/2-0-flash, 2024. Accessed: 2025-09-15.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Zhouhong Gu, Xiaoxuan Zhu, Yin Cai, Hao Shen, Xingzhou Chen, Qingyi Wang, Jialin Li, Xiaoran
Shi, Haoran Guo, Wenxuan Huang, et al. Agentgroupchat-v2: Divide-and-conquer is what llm-
based multi-agent system need. arXiv preprint arXiv:2506.15451, 2025.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for en-
tangled language hallucination and visual illusion in large vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375–14385,
2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
and challenges. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/890. URL
https://doi.org/10.24963/ijcai.2024/890.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, and Zhaozhuo Xu. Llm multi-agent systems:
Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-Guang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent
via environment and task generation. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 1, pp. 496–507, 2025.

11

https://arxiv.org/abs/2508.07407
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2411.04468
https://aclanthology.org/2025.naacl-long.486/
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
https://doi.org/10.24963/ijcai.2024/890

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.
URL https://arxiv.org/abs/2402.02716.

Yuxuan Huang, Yihang Chen, Haozheng Zhang, Kang Li, Huichi Zhou, Meng Fang, Linyi Yang,
Xiaoguang Li, Lifeng Shang, Songcen Xu, Jianye Hao, Kun Shao, and Jun Wang. Deep research
agents: A systematic examination and roadmap, 2025. URL https://arxiv.org/abs/2506.18096.

Weiqiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A compre-
hensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
and perspectives. arXiv preprint arXiv:2503.13415, 2025.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, and Shafiq Joty. A survey of
frontiers in llm reasoning: Inference scaling, learning to reason, and agentic systems, 2025. URL
https://arxiv.org/abs/2504.09037.

Naveen Krishnan. Advancing multi-agent systems through model context protocol: Architecture,
implementation, and applications. arXiv preprint arXiv:2504.21030, 2025.

LangChain Inc. Langgraph. https://langchain-ai.github.io/langgraph/, 2025. Accessed: 2025-09-15.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. MACM: Utilizing a multi-agent system
for condition mining in solving complex mathematical problems. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=VR2RdSxtzs.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems. In The Thirteenth International Conference on Learning Representations,
2025.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Adam Dahlgren Lindström and Savitha Sam Abraham. Clevr-math: A dataset for compositional
language, visual and mathematical reasoning. arXiv preprint arXiv:2208.05358, 2022.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. Octotools: An agentic
framework with extensible tools for complex reasoning. In Workshop on Reasoning and Planning
for Large Language Models, 2025.

Reza Yousefi Maragheh and Yashar Deldjoo. The future is agentic: Definitions, perspectives, and
open challenges of multi-agent recommender systems. arXiv preprint arXiv:2507.02097, 2025.

Kai Mei, Xi Zhu, Wujiang Xu, Wenyue Hua, Mingyu Jin, Zelong Li, Shuyuan Xu, Ruosong
Ye, Yingqiang Ge, and Yongfeng Zhang. Aios: Llm agent operating system. arXiv preprint
arXiv:2403.16971, 2024.

12

https://arxiv.org/abs/2402.02716
https://arxiv.org/abs/2506.18096
https://arxiv.org/abs/2504.09037
https://langchain-ai.github.io/langgraph/
https://openreview.net/forum?id=VR2RdSxtzs
https://openreview.net/forum?id=VR2RdSxtzs
https://openreview.net/forum?id=zAdUB0aCTQ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=fibxvahvs3.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Ret-llm: Towards a general
read-write memory for large language models. arXiv preprint arXiv:2305.14322, 2023.

Nathan Lile. Game of 24 mathematical puzzle dataset. https://huggingface.co/datasets/nlile/24-game,
2025. Accessed: 2025-08-18.

Ryota Nonomura and Hiroki Mori. Who speaks next? multi-party ai discussion leveraging the
systematics of turn-taking in murder mystery games, 2025. URL https://arxiv.org/abs/2412.04937.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, Michael S
Bernstein, et al. Generative agents: Interactive simulacra of human behavior. arxiv. Org (2023,
April 7) https://arxiv. org/abs/2304.03442 v2, 2023.

David A. Patterson and John L. Hennessy. Computer Organization and Design RISC-V Edition: The
Hardware/Software Interface. Morgan Kaufmann, Cambridge, MA, USA, 2nd edition, 2017.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and Rada
Mihalcea. Cooperate or collapse: Emergence of sustainable cooperation in a society of llm agents.
Advances in Neural Information Processing Systems, 37:111715–111759, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, et al. ChatDev: Communicative agents for software devel-
opment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
15174–15186, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.810. URL https://aclanthology.org/2024.acl-long.810/.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel Albanie. Scifibench: Benchmarking large
multimodal models for scientific figure interpretation. Advances in Neural Information Processing
Systems, 37:18695–18728, 2024.

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
mäki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/huggingface/
smolagents, 2025.

Alsu Sagirova, Yuri Kuratov, and Mikhail Burtsev. Srmt: shared memory for multi-agent lifelong
pathfinding. arXiv preprint arXiv:2501.13200, 2025.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366, 2023.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. arXiv preprint arXiv:2407.18901,
2024.

13

https://openreview.net/forum?id=fibxvahvs3
https://huggingface.co/datasets/nlile/24-game
https://arxiv.org/abs/2412.04937
https://aclanthology.org/2024.acl-long.810/
https://openreview.net/forum?id=dHng2O0Jjr
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Weixuan Wang, Dongge Han, Daniel Madrigal Diaz, Jin Xu, Victor Rühle, and Saravan Rajmohan.
Odysseybench: Evaluating llm agents on long-horizon complex office application workflows,
2025. URL https://arxiv.org/abs/2508.09124.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversation. arXiv preprint arXiv:2308.08155, 2023a.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang, Michihiro Yasunaga, Kaidi Cao, Vassilis N.
Ioannidis, Karthik Subbian, Jure Leskovec, and James Zou. Avatar: Optimizing LLM agents
for tool usage via contrastive reasoning. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a. URL https://openreview.net/forum?id=N4quRxE19p.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4. arXiv e-prints, pp. arXiv–2306, 2023b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024b.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024. URL
https://arxiv.org/abs/2402.01622.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025. URL https://arxiv.org/abs/2502.12110.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024a.

Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing
Zhao, Yilei Zhao, Xinyu Cai, et al. A multimodal foundation agent for financial trading: Tool-
augmented, diversified, and generalist. In Proceedings of the 30th acm sigkdd conference on
knowledge discovery and data mining, pp. 4314–4325, 2024b.

Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui
Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task
solving, 2025. URL https://arxiv.org/abs/2506.12508.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

14

https://arxiv.org/abs/2508.09124
https://openreview.net/forum?id=N4quRxE19p
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2502.12110
https://arxiv.org/abs/2506.12508

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A Qualitative Analysis

Table 4: Full BusMA communication trajectory for the input: Three distinct vertices are chosen at
random from the vertices of a regular polygon with (2n+1) sides; what is the probability that the
center lies inside the triangle formed by the three chosen vertices? Each step shows the agent, their
reasoning, the message sent, and the communication type.

Step Agent Reason Message Comm.
type

1 Chair This is a probability prob-
lem related to geometry... I
will give the full task to
CodeAgent.

Three distinct vertices are chosen at
random from the vertices of a given
regular polygon of (2𝑛 + 1) sides...

Discussion

2 Code Final summary of the solu-
tion. The probability that the
center of the polygon lies in
the interior of the triangle...

The probability is 3𝑛
4𝑛2+6𝑛+2 or

3𝑛
2(2𝑛+1) (𝑛+1) .

Discussion
(Wrong)

3 Chair The CodeAgent provided a
result, but I am not sure if
it is correct... I will try a
smaller case...

Could you please explain the rea-
soning behind the formula you pro-
vided? Also, explicitly state the for-
mula used and how it was derived.

Require
explana-
tion

4 Code The initial formula I pro-
vided appears to be incorrect
based on my derivations...

The formula 3𝑛
4𝑛2+6𝑛+2 is incorrect.

The correct formula is 𝑛+1
4𝑛−2 , derived

as follows: [detailed steps...]

Discussion

5 Chair The CodeAgent provided
two different formulas... I
need to verify which formula
is correct.

Please verify the two formulas for
𝑛 = 1, 2, 3. Compare with known
answer or provide a simulation.

Guidance

6 Code I will test the two formulas
for 𝑛 = 1, 2, 3 and compare
with known answers.

Conclusion: Formula 2, (𝑛 +
1)/(4𝑛 − 2), appears to be correct
for 𝑛 = 2, 3, but not 𝑛 = 1...

Discussion

7 Chair The CodeAgent compared
formulas and simulations,
but 𝑛 = 1 is concerning...

Can you re-derive the formula, fo-
cusing on expressing it as 𝑛/(4𝑛−2),
and provide a proof?

Discussion
(Wrong)

8 Code I need to re-derive the for-
mula and try to express it as
𝑛/(4𝑛 − 2)...

It is not possible to re-derive the for-
mula as 𝑛/(4𝑛 − 2). The correct
formula is (𝑛 + 1)/(4𝑛 − 2).

Challenge

9 Chair Let us re-examine the case
𝑛 = 1... the formula seems
to give 1 but the polygon is
just a triangle.

Can you provide an alternative proof
for (𝑛 + 1)/(4𝑛 − 2), focusing on
combinatorial arguments and sym-
metry?

Challenge

10 Code I need to provide a simplified
derivation using combinato-
rial arguments...

Simplified derivation: Total trian-
gles =

(2𝑛+1
3
)
, triangles not contain-

ing center = (2𝑛 + 1)
(𝑛
2
)
, so proba-

bility = (𝑛 + 1)/(4𝑛 − 2).

Discussion

11 Chair The CodeAgent simplified
the derivation but the 𝑛 = 1
case is still problematic.

Could you compute explicitly for
𝑛 = 1 and explain why the result
might be wrong?

Discussion

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step Agent Reason Message Comm.
type

12 Code I need to compute for 𝑛 = 1
and check carefully...

For 𝑛 = 1, the polygon is a triangle,
so the only triangle is the polygon
itself, and the center is not strictly
inside. So probability is 0, while
the formula gives 1.

Discussion

13 Chair The CodeAgent confirms
that for 𝑛 = 1, the formula
gives 1 but the actual prob-
ability is 0. This indicates a
limitation of the formula.

Final submission: For 𝑛 > 1, the
probability is (𝑛 + 1)/(4𝑛 − 2); for
𝑛 = 1, the probability is 0.

Submit

Manager

CodeAgent

Initial Mathematical Derivation
• Calculates total number of

triangles: (2𝑛 + 1)/3 = (2𝑛 +
1)(2𝑛)(2𝑛 − 1)/ 6
(32n+1) = 6(2n+1)(2n)(2n−1)

• Attempts to count triangles
containing the center by
considering vertex positions.

• Proposes that triangle with
vertices i, j, k contains center
if: j-i ≤ n, k-j ≤ n, and k-i > n

Considers complementary
problem: counting triangles NOT
containing center

Reasons that triangles not
containing center have all
vertices in a semicircle

Derives probability as
 (𝑛2 − 1)(8𝑛2 − 2)

What is the probability that the
center of a regular (2n+1)-gon
lies in the interior of a triangle
formed by three randomly
chosen vertices? Give the answer
in terms of n.

CodeAgent returned the answer
n/(2n−1);
the Manager then submitted it
via final_answer.

Calculates total triangles as
C(2n+1, 3) = (2n+1)(2n)(2n−1)/6,
and triangles not containing the center (all three vertices in
one open semicircle) as
(2n+1)·C(n, 2) = (2n+1)n(n−1)/2.
Subtracting yields triangles containing the center:
C(2n+1,3) − (2n+1)C(n,2) = (2n+1)n(n+1)/6.
Thus the probability is
[(2n+1)n(n+1)/6] / C(2n+1,3) = n(n+1)/[2n(2n−1)] =
(n+1)/(4n−2).
(Contrast: Step 6 incorrectly used the complement
(n−1)/(2n−1), leading to the wrong final value n/(2n−1).)

Task Allocation

Figure 5: SmolAgent communication trajectories. Example input from Omni-MATH: Three distinct
vertices are chosen at random from the vertices of a regular polygon with (2n+1) sides; what is the
probability that the center lies inside the triangle formed by the three chosen vertices?

B Experiment Setups

B.1 Diversity Benchmarks

B.1.1 Agents setup

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

ImageQAAgent. ImageQAAgent is employed for image analysis utilizing the ImageQATool with
a maximum of 5 processing steps.

WebAgent. WebAgent retrieves information from the internet using GoogleSearchTool and
WikiSearchTool with a maximum of 5 operational steps.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical computa-
tions by outputting code during Act and receiving execution results at the next step. The maximum
steps are set to 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.1.2 Tools setup

We used the following tools in our experiments. Their implementation and parameters are the same
as those in the baseline.

ImageQATool. The ImageQATool analyzes images through two parameters: image_path specify-
ing the file path of the image and question containing the query about the image, where the tool makes
a single model call using the question as the prompt along with the uploaded image and returns the
model’s response as its output.

WikiSearchTool. The WikiSearchTool retrieves Wikipedia articles through a query parameter that
specifies the search term, returning both the search results list and the extracted content from the first
matching Wikipedia page,with its implementation based on the wikipedia package version 1.6.0.

GoogleSearchTool. The GoogleSearchTool performs web searches through two parameters: query
for the search text, utilizing the Google Custom Search API to retrieve a list of search results containing
the title, URL link, and snippet for each result.

CodeExcution. CodeExecution receives code generated by CodeAgent, creates a temporary direc-
tory to execute the code, and returns the execution results.

B.2 GAIA

B.2.1 Agents setup

ChairAgent. Chair agent serves as the coordinator with a maximum of 10 operational steps and
no external tools available.

BrowserAgent. BrowserAgent integrated from OpenDeepResearch employs a GoogleSearchTool
for basic retrieval operations and multiple coordinated BrowserTools for webpage browsing, with its
maximum iterations configured to 20.

FileAgent. The TextInspectorTool from OpenDeepResearch is integrated through the SmolAgents
framework to enable browsing and inspection of local files. The maximum iterations are set to 12.

CodeAgent. CodeAgent generates code to handle mathematical problems and statistical compu-
tations by outputting code during Act and receiving execution results at next step. The maximum
iterations are set to 12.

C Baseline Details

C.1 Diversity Benchmarks

C.1.1 OctoTools

OctoTools is an open-source agentic framework for complex reasoning across diverse domains
that requires no training, offers user-friendly operation, and supports easy extension. The frame-
work standardizes tools through “tool cards” containing usage metadata for plug and play inte-
gration. It employs a planner for both high level task decomposition and low level action re-
finement, while its executor issues executable commands, records structured intermediate results,
and synthesizes final answers from complete trajectories. We use package version 1.0.0 with
a two agent configuration comprising a Planner and an Executor, with the step budget set to
50. While preserving OctoTools’ fundamental reasoning capabilities, we augment it with four
tools: Image_Captioner_Tool, Wikipedia_Knowledge_Searcher_Tool, Google_Search_Tool,
and Python_Code_Generator_Tool, alongside the base Generalist_Solution_Generator_Tool.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1.2 SmolAgents

SmolAgents is a lightweight, open-source Python library for building and running agents with min-
imal code, while remaining model-, tool-, and modality-agnostic. It provides first-class CodeAct:
a CodeAgent writes and executes code to invoke tools and perform computations. For MA collab-
oration, a Manager agent treats managed agents as callable tools, enabling modular orchestration
and clean composition. We use package version 1.8.0 with a four-agent configuration comprising
Manager, CodeAgent, ImageQAAgent, and WebAgent. The Manager has a maximum deployment
dimension of 10, whereas all other agents are set to 5. The Manager uses no tools; Modeagent
supports local code execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has
GoogleSearchTool and WikiSearchTool.

C.1.3 LangGraph

LangGraph is a Python library for building stateful, multi-actor applications with LLMs, enabling
developers to create complex agent workflows using graph based orchestration. For MA systems,
LangGraph implements a Supervisor architecture where a central coordinator agent manages task
distribution and orchestrates specialized worker agents, treating each as a distinct node in the execu-
tion graph. We use package version 0.3.21 with a four-agent configuration comprising supervisor,
codeagent, ImageQAAgent, and WebAgent. All agents share a collective limit of 50 steps since indi-
vidual step allocation is not supported. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.1.4 AutoGen

AutoGen is an open-source framework for building LLM applications through conversational MA
systems, where agents collaborate via structured dialogue to solve complex tasks across diverse
domains. It provides customizable agents that operate in various modes combining LLMs, human
inputs, and tools, with both natural language and code serving as programming interfaces for
defining flexible interaction patterns. For MA coordination, AutoGen introduces a Router agent that
dynamically selects the next speaker based on conversation context and task requirements, enabling
intelligent turn-taking and adaptive collaboration patterns. We use package version 0.7.3 with a
four-agent configuration comprising Router, codeagent, ImageQAAgent, and WebAgent.All agents
share a collective limit of 50 steps. The manager uses no tools; codeagent supports local code
execution; ImageQAAgent is equipped with ImageQATool; and WebAgent has GoogleSearchTool
and WikiSearchTool.

C.2 GAIA

C.2.1 Gemini FunctionCalling

Gemini function calling refers to a single invocation of the model (Gemini-2.5-flash, Gemini-2.5-pro).
Based on the Gemini API’s function-calling capability, we register three functions: GoogleSearch,
which sends the given query to the Google Custom Search API (top-k = 5); CodeExecution, which
runs code generated by Gemini and returns the result; and FileExecution, which parses a local file
into text and feeds it back to Gemini. For tasks involving images, we directly use Gemini’s native
image analysis by sending the image URL to the Gemini API. We set the temperature to 1.0 and cap
the maximum output length at 8,192 tokens. For Gemini-2.5-Pro, we set reasoning_effort to low.

C.2.2 MagenticOne

MagenticOne is a high-performing open-source agentic system that employs a MA architecture to
solve complex tasks across diverse scenarios developed from AutoGen. It features an Orchestrator
as the lead agent that handles planning, progress tracking, and error recovery through dynamic
re-planning, while coordinating specialized agents throughout task execution. The system includes
agents for web browser operation, local file navigation, and Python code writing and execution, each
handling specific aspects of task completion. We use package version 0.7.3, set max steps to 120.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2.3 OpenDeepResearch

Introduction OpenDeepResearch is an advanced agentic system built on SmolAgents framework,
designed to tackle complex general agentic tasks through hierarchical MA collaboration and compre-
hensive information processing capabilities. It implements a manager-managed architecture where
the Manager agent formulates plans, decomposes complex tasks into subtasks, and directly handles
local file parsing and analysis. The system includes a specialized BrowserAgent that performs web
browsing and Google search operations, enabling real-time information retrieval and web interaction.

Achievement Details We use package version 1.8.0 with maximum step limits of 12 for the
Manager and 20 for the BrowserAgent.

D System Prompt

D.1 Prompt A: Abstract Prompt

1 Role
2 You are a focused analysis assistant within a multi-agent system. You analyze

tasks, use tools, and communicate findings precisely.
3

4 Team Structure
5 You work collaboratively with the following agents:
6 <Available Agents>
7

8 Communicate in different types
9 <discussion, Request for explaination, challenge, guidance>

10

11 Working Framework
12 Follow a Reason-act-call loop:
13 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
14

15 Output Format
16 Respond only with a JSON object:
17 {
18 "thought": "<concise reasoning and next step>",
19 "action": {
20 "tool": "<>",
21 "parameters": {}
22 },
23 "calling": <false or "AgentName">,
24 "message": "<>"
25 }
26

27 ## Available Tools
28 {{TOOLS}}
29

30 ## Operating Rules
31 1) Use multi-step reasoning: gather evidence with tools, then synthesize.
32 2) Tool outputs arrive next turn.
33 3) JSON-only output; no extra text.
34 4) "message" must clearly state actions performed, key findings, and conclusions

when reporting.
35 5) Decompose complex tasks into focused tool calls.
36 6) The "calling" field is:
37 - `false` while analysis continues,
38 - the target agent’s name when delivering results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 Prompt B: Chair Agent

1 You are ChairAgent, the main coordinator of a multi-agent system that solves
complex tasks.

2 Your role is to analyze the current state and either provide your own reasoning or
call a specialized agent for help.

3 Solve the task step by step;
4

5 Communicate in different types
6 <Discussion, Request for Explanation, Challenge, Guidance>
7
8

9 MAIN TASK:
10 ${task}
11 Image: ${image_path}
12

13 If the image path is provided, this is a visual question. First, reason through it
yourself step by step; if you are not sure, ask VQAAgent for help.

14

15 First, review your reasoning history and agents' responses:
16 ${responses}
17

18 Your teammates:
19 <Available agents>
20

21 For every step, you must repeat the reasoning-and-calling process. Avoid
unnecessary repetition. Finally, submit when you think you have the answer.

22

23 PROVIDE REASONING:
24 Output your reasoning as a JSON object:
25 {
26 "thought": "Your own reasoning"
27 }
28

29 CALL AN AGENT:
30 Output your call as a JSON object:
31 {
32 "receiver": "",
33 "message": "",
34 "parameters": {}
35 }
36

37 SUBMIT FINAL ANSWER:
38 When you have enough information to complete the task:
39 {
40 "calling": "Submit"
41 }

1 You are the main coordinator of a multi-agent system that breaks down complex tasks
into manageable subtasks. Your role is to synthesize all gathered information into
a comprehensive final answer.

2

3 INITIAL TASK:
4 ${main_task}
5

6 Now you need to synthesize all the information and provide a comprehensive final
answer that precisely addresses the initial task.

7

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

8 COLLECTED FACTS AND RESULTS:
9 ${message}

10

11 Your task is to:
12 1. Review all the information from message and confirmed facts
13 2. Synthesize a complete answer to the original task
14
15

16 Output your answer as a JSON object with this structure:
17 {
18 "reasoning": "",
19 "final_answer": "",
20 }

D.3 Prompt C: Code Agent

1 You are a coding assistant. You have access to a Python interpreter with internet
access and operating system functionality. You work hard to solve tasks.

2 You work in a team and communicate with other agents to solve tasks.
3

4 Team Structure
5 You work collaboratively with the following agents:
6 <Available agents>
7

8 Communicate in different types
9 <Discussion, Request for Explanation, Challenge, Guidance>

10

11 When given a task, proceed step by step to solve it. At each step:
12

13 Thought: Briefly explain your reasoning and what you plan to do next.
14

15 Code: Provide Python code that implements your plan. If relevant, . . .
16

17 Output Format
18

19 At each step, output a JSON object in the following format:
20 {
21 "thought": "Your thought here.",
22 "code": "Your Python code here."
23 }
24

25 When you think you have the answer, output a JSON object in the following format:
26 {
27 "thought": "Final summary of the solution",
28 "receiver": "AgentType",
29 "message": "Your response with natural language"
30 }
31

32 Guidelines for Writing Code
33

34 Use more print() statements to display the intermediate state and the output of
your functions. What you submit should be based on what you print and output.

35

36 Each time, you should generate full code to solve the problem, not just a part of
it.

37

38 Guidelines for Analyzing the Output
39 After execution, analyze the output as follows:
40

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

41 If the code fails to execute and an error is returned, read the error message and
traceback carefully, then revise your code in the next step.

42

43 If the code executes successfully and an output is returned, proceed as follows:
once you have the final answer, change the submit to true to return the answer.

44

45 If the output contains relevant information, you can move on to the next step.
46

47 If the output does not contain relevant information, consider alternative
approaches.

D.4 Prompt D: ImageQA Agent

1 You are a professional image analysis assistant, a specialized sub-agent within a
multi-agent system. Your expertise lies in analyzing visual content and answering
questions about images with precision and detail.

2

3 Team Structure
4 You work collaboratively with the following agents:
5 <Available Agents>
6 Communicate in different types
7 <Disscusion, Request for explaination, Challenge, Guidance>
8
9 Working Framework

10 Follow a Reason-act-call loop:
11 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
12

13 Output Format
14 Every response must be a JSON object with this exact structure:
15 {
16 "thought": "",
17 "action": {
18 "tool": "",
19 "parameters": {}
20 },
21 "calling": <false or "AgentName">,
22 "message": ""
23 }
24 Available Tools
25 {{TOOLS}}
26

27 Core Principles
28 1. Multi-step reasoning is mandatory: Always perform at least two steps - first

call tools to gather information, then synthesize findings
29 2. Tool feedback timing: When you call a tool, you receive its feedback in the next

interaction cycle
30 3. JSON-only output: Never output text outside the JSON structure
31

D.5 Prompt E: WebAgent

1 You are a professional web search and information retrieval subagent. Find,
analyze, and synthesize accurate, uptodate knowledge.

2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

3 Team Structure
4 You work collaboratively with the following agents:
5 <Available Agents>
6 Communicate in different types
7 <Disscusion, Request for explaination, Challenge, Guidance>
8

9 Working Framework
10 Follow a Reason-act-call loop:
11 1) Think 2) Act (tool call) 3) Observe 4) Iterate 5) Call
12

13 Output (JSON-only)
14 {
15 "thought": "<reasoning, strategy, next steps>",
16 "action": { "tool": "<tool_name>", "parameters": {} },
17 "calling": false,
18 "message": "<synthesized findings when calling an agent; empty when acting>"
19 }
20

21 Results of a tool call arrive in the next turn.
22 Available Tools
23 {{TOOLS}}
24

25 Search Strategy
26 Keyword optimization: compress to core terms; use domain terms.
27 Progressive refinement: overview → focused aspects → verification.
28 Decompose complex queries into sub-queries.
29 In thought: state strategy, interim understanding, next probes, gaps.
30 Calling: `false` until ready; then set to target agent
31 {
32 "thought": "Collect recent NLP trend reports.",
33 "action": {"tool": "Google_Search_Tool", "parameters": {"query": "NLP trends

2024 transformer models site:arxiv.org OR site:acm.org"}},
34 "calling": false,
35 "message": ""
36 }
37

38 {
39 "thought": "",
40 "action": {},
41 "calling": "",
42 "message": ""
43 }

23

	Introduction
	Related Work
	The BusMA Communication Framework
	Worker Agent
	Chair Agent
	Communication Bus

	Experimental Setup
	Benchmarks
	Multi Agent System Configuration
	Baselines

	Results and Analysis
	Conclusion
	Qualitative Analysis
	Experiment Setups
	Diversity Benchmarks
	Agents setup
	Tools setup

	GAIA
	Agents setup

	Baseline Details
	Diversity Benchmarks
	OctoTools
	SmolAgents
	LangGraph
	AutoGen

	GAIA
	Gemini FunctionCalling
	MagenticOne
	OpenDeepResearch

	System Prompt
	Prompt A: Abstract Prompt
	Prompt B: Chair Agent
	Prompt C: Code Agent
	Prompt D: ImageQA Agent
	Prompt E: WebAgent

