
Under review as a conference paper at ICLR 2022

HIERARCHICAL CROSS CONTRASTIVE LEARNING OF
VISUAL REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid progress of self-supervised learning (SSL) has greatly reduced the la-
beling cost in computer vision. The key idea of SSL is to learn invariant visual
representations by maximizing the similarity between different views of the same
input image. In most SSL methods, the representation invariant is measured by a
contrastive loss which compares one of the network outputs after the projection
head to its augmented version. Albeit being effective, this approach overlooks the
information containing in the hidden layer of the projection head therefore could
be sub-optimal. In this work, we propose a novel approach termed Hierarchical
Cross Contrastive Learning(HCCL) to further distill the information mismatched
by the conventional contrastive loss. The HCCL uses a hierarchical projection
head to project the raw representations of the backbone into multiple latent spaces
and then compares latent features across different levels and different views. By
cross-level contrastive learning, HCCL not only regulates invariant on multiple
hidden levels but also crosses different levels, improving the generalization ability
of the learned visual representations. As a simple and generic method, HCCL can
be applied to different SSL frameworks. We validate the efficacy of HCCL under
classification, detection, segmentation, and few-shot learning tasks. Extensive ex-
perimental results show that HCCL outperforms most previous methods in various
benchmark datasets.

1 INTRODUCTION

Self-supervised learning (SSL) of visual representation aims to learn representations from image
pixels without semantic labels. Recently, contrastive representation learning has gained growing
attention by demonstrating state-of-the-art performance in SSL for large-scale image recognition,
closing the gap to supervised baselines (Chen et al., 2020; Grill et al., 2020; Chen & He, 2021).
Contrastive representation learning is essentially an instance-level discrimination task. It narrows
the distance of the representation generated by the same image, as an instance class, while pushing
away the representation generated by other images to learn invariant visual representations. In most
contrastive learning methods, the representation invariant is measured by a contrastive loss, which
compares one of the network outputs after the projection head to its augmented version. Some works
attempt to explore advanced training methods to keep the contrastive loss stable in SSL, by cluster-
ing, memory bank, momentum update or projector head(Caron et al., 2020; He et al., 2020; Grill
et al., 2020). Some other works seek to improve representation performance by increasing trans-
formation views with complicated augmentations. In this paper, we focus on improving contrastive
learning by studying the projection head.

As shown above, the projection head serves as a bridge to squeeze out redundant information in order
to retrain invariant information from the backbone for the contrastive loss module. However, only
the last output of the projection head is used, while hidden layers are overlooked, which loses many
valuable information according to the information bottleneck theory(Tishby et al., 2000; Tishby &
Zaslavsky, 2015). Inspired by the successful results of knowledge distillation in supervised repre-
sentation learning, we propose a cross-level contrastive learning method for SSL(Sun et al., 2019).
In this framework, contrastive losses are applied in the intermediate layers of projection heads. In
particular, a cross-layer assignment is adapted to create pairs between different views, as the rep-
resentation generated at the same level of projection heads of different transformed views is likely
to retrain similar information, which is not conducive to learning extra knowledge through contrast-

1

Under review as a conference paper at ICLR 2022

ing. The consistency assumption over the representation in different views and different layers has
been partially explored in many feature regularization approaches(Guo et al., 2020; Hou et al., 2019;
Wang et al., 2019; Huang et al., 2020). This phenomenon is investigated in BYOL, which shows
that the use of different projection heads for contrastive learning can achieve better performance.

In this paper, a series of experiments and analyses are proposed to validate our contributions. The
experimental results show the effectiveness of our method in improving the robustness of the pre-
training model for downstream tasks. Specifically, in the ImageNet(Deng et al., 2009) linear eval-
uation task, the standard ResNet-50(He et al., 2016) trained by our method achieves 73.5% top-1
accuracy. In the object detection and instance segmentation tasks, our method also outperforms ran-
dom initialization and existing image-level self-supervision methods on PASCAL VOC(Everingham
et al., 2010) and COCO(Lin et al., 2014) datasets. Last but not the least, compared to other SSL
methods, HCCL requires fewer training epoch to learn effective representations. For example, it
only takes 100 epochs to achieve 69.5% top-1 accuracy in the ImageNet linear evaluation task,
while other methods may take 200 epochs or more. Our main contributions can be summarized as
follows:

• In this paper, we propose a Hierarchical Cross Contrastive Learning (HCCL) method to
explore information from hidden layers of the projection head. Experiments show that our
method can achieve state-of-the-art results in a series of standard benchmarks.

• Ablation studies are proposed to evaluate the modules of CLIC. Experiments show that
cross-level assignments, multi-layer outputs and multi-predictors support the final perfor-
mance improvements.

• We evaluate the generalization of HCCL method in both SimSiam and BYOL frameworks.
The experiments show that HCCL can significantly improve performance and speed up
convergence.

2 RELATED WORK

Self-supervised learning or unsupervised visual representation learning has undergone a relatively
long period of development. Early works use generative methods to restore the distribution of input
data, usually including auto-encoders (Kingma & Welling, 2013; Vincent et al., 2008) and adver-
sarial learning (Goodfellow et al., 2014; Donahue et al., 2016; Dumoulin et al., 2016). However,
these methods are intended to restore the high-level details of the image that are not necessary for
downstream tasks. On the other hand, pixel-level reconstruction also costs a lot of calculations.

Some other methods learn specific representations by handcrafted pretext tasks. These pretext tasks
include colorization(Zhang et al., 2016; Larsson et al., 2016), jigsaw puzzle(Noroozi & Favaro,
2016; Misra et al., 2016), relative patch prediction (Doersch et al., 2015), inpainting(Pathak et al.,
2016), geometric transformations(Dosovitskiy et al., 2014), etc. However, the design of excuse
tasks relies on strong prior knowledge, and the representations learned by these methods usually
lack generality in downstream tasks.

Another type of works is the clustering based self-training (Bautista et al., 2016; Asano et al., 2019;
Caron et al., 2018; 2019; 2020). In general, they cluster the representations and learn to predict the
cluster assignment. DeepCluster (Caron et al., 2018; 2019) uses k-means to create pseudo labels
for samples. It clusters data using previous versions of representation and uses the cluster index of
each sample as a classification target for the new representation. SwAV calculates the assignment
from one view and predicts it from another (Caron et al., 2020). It produces soft assignment by the
Sinkhorn-Knopp algorithm (Cuturi, 2013) and performs online clustering under a balanced parti-
tion constraint for each batch. Clustering-based methods require a costly clustering phase to avoid
collapsing, and a large memory bank or large batches to provide sufficient samples for clustering.

Contrastive learning measures the similarity of pairs of samples in the representation space by using
contrast loss(Hadsell et al., 2006). It brings the representation of different views of the same sam-
ple closer and pushes the representation of views from different samples away. Dosovitskiy et al.
(2014) considers each image in a dataset as its own class represented by a feature vector and sepa-
rates each image. Since this method produces a huge classification header that is difficult to handle,
Wu et al. (2018) use a memory bank that stores previously-computed instance representation vectors
to replace the classifier. Several later works also follow and extend this approach(Misra & Maaten,

2

Under review as a conference paper at ICLR 2022

//�

//� //�

//�

fθ

fθ

encoder�

Xa

Xb

X

encoder�

 input
image�

predictor�h1

h2 h3 hn

view �

gθ
nhierarchical projection head �

view �

 cross
contra. loss�

gθ
nhierarchical projection head �

Figure 1: HCCL’s framework. HCCL minimizes the cross contrastive loss between the different
level output of hierarchical projection head. The encoder parameters and projection parameters of
the two branches are shared. ’=’ denotes stop gradient.

2020; Tian et al., 2020; Zhuang et al., 2019). MoCo(He et al., 2020) reduces the size of the memory
bank by maintaining a dynamic queue that stores negative sample representations. The representa-
tion in the queue is generated by a moving average encoder to improve consistency with the query
representation. SimCLR(Chen et al., 2020) removes the memory bank and uses the negative sam-
ples that exist in the current batch directly for learning. It introduces nonlinear projection heads
and complex composition of image transformations to improve the robustness of representations in
downstream tasks. BYOL(Grill et al., 2020) further examines the need for negative samples, using
a slow-moving average target network to produce stable targets for the online network. The online
network bootstraps its own representation by keeping pace with stable targets. By analysing certain
conditions for avoiding collapsing solutions, SimSiam(Chen & He, 2021) removed the momentum
encoder on the basis of BYOL. BARLOW TWINS(Zbontar et al., 2021) proposes an objective func-
tion that naturally avoids collapse by measuring the cross-correlation matrix between the outputs
of two siamese networks fed with different views of a sample and bringing it as close as possible
to the identity matrix. It causes the representation of different views of a sample to be similar,
while minimizing the redundancy between the components of these representations. The above-
mentioned self-supervised learning methods all express learning as image-level predictions using
global representations, and the gap between image-level pre-training and dense prediction tasks still
exists. Some works propose pixel-level self-supervised learning methods to improve the effect of
pre-training representations on dense prediction tasks(Wang et al., 2021; Roh et al., 2021; Xie et al.,
2021; Pinheiro et al., 2020).

3 METHOD

In this section, we describe the proposed HCCL in detail. First, we briefly introduce the pipeline
of the proposed HCCL shown in Figure 1, including the design of a hierarchical projection network
that maps representations to different latent spaces. Then we introduce the cross contradictive loss,
which allows explicit information interactions between different latent layers. Finally, we present
the implementation details in HCCL, such as image transforms, architecture, and optimization.

3.1 FRAMEWORK

HCCL builds on the cross-view prediction framework introduced in recent successful contrastive
learning approaches(Chen et al., 2020; Grill et al., 2020; Chen & He, 2021). The cross-view pre-
diction framework is based on a prediction problem that the representation of a transformed view of
an image should be predictive of the representation of another transformed view of the same image.
HCCL transforms an image X randomly to two distorted views Xa and Xb, by applying transfor-
mations sampled from the set T of image transformations. The two distorted views Xa and Xb

3

Under review as a conference paper at ICLR 2022

are then fed to non-linear mapping encoder fθ, typically a deep network with trainable parameters
θ, producing two raw representations yaand yb respectively. For fθ, HCCL allows various choices
of the network architecture without any constraints. yaand yb are representations used for transfer
tasks. After extracting the raw representation ya and yb, a hierarchical neural network projection
head gnθ that maps them to different latent space, produces n embedding Zna = {za1, za2, . . . ,zan}
and Znb = {zb1, zb2, . . . ,zbn}. Further, n prediction MLP head, denoted as h1, h2, . . . , hn, trans-
forms the projection embedding Zna and Znb to 2n vectors as Pna = {pa1,pa2, . . . ,pan} and
Pnb = {pb1,pb2, . . . ,pbn}. The following formulas summarizes the above pipeline:

Zna = gnθ (fθ(Xa)) (1)

Znb = gnθ (fθ(Xb)) (2)

pai = hi(zai) (3)

pbi = hi(zbi) (4)

where ya = fθ(Xa), yb = fθ(Xb) and i ∈ {1, 2, . . . , n}. Follow the same way as SimSiam(Chen
& He, 2021) and BYOL(Grill et al., 2020), HCCL matches one view’s prediction vector to the other
view’s projection embedding finally. The difference is that we have multiple projection embedding
and prediction vectors, and cannot directly use the original contrastive loss, so we designed a cross
contrastive loss to solve it.

3.2 CROSS CONTRASTIVE LOSS

Since Zn are extracted from different levels of the projection head, the high-level representations
are more invariant and the low-level representations are more informative. HCCL adopts an intu-
itive approach, that is, cross contrastive representations of different levels to trade off invariant and
informative. Given the projection embedding z and the prediction vector p, we minimize their mean
squared error of l2-normalized vectors:

D(p, z) = − p · z
||p||2 · ||z||2

(5)

where || · ||2 is l2-norm. After that, we define the cross contrastive loss as:

Lcross(Pn,Zn) = D(p1, zn) +

n∑
i=2

D(pi, zi−1) (6)

Here each level of prediction vector contrast with the previous level of projection representation
except the first level one. The first level of the prediction vector contrast with the final level of pro-
jection representation. Following BYOL and SimSiam, We symmetrize the loss Lcross in Eq.6 and
take a stop-gradient operation to projection embedding Zn. The form of total loss is implemented
as:

L = Lcross(Pna , stopgrad(Znb)) + Lcross(Pnb , stopgrad(Zna)) (7)

Here the encoder only receives gradient from branch Pa and Pbin the two terms. The pseudo-code
is provided in Algorithm refalgorithm

3.3 IMPLEMENTATION DETAILS

Image augmentations We use the same image augmentation set and parameters as BYOL(Grill
et al., 2020). Firstly, two different views are randomly cropped from each input image and resized
to 224 × 224, followed by horizontal flipping, color distortion, converting to grayscale, Gaussian
blurring, and polarization. The color distortion consists of a random sequence of brightness, con-
trast, saturation, hue adjustments. Random cropping and resizing are always applied, others are
applied randomly with a certain probability. For gaussian blurring and polarization, the probabilities
applied on the two distorted views are different.

Architecture We use ResNet-50(He et al., 2016) as our base parametric encoder network, the fully-
connected layer after global average pooling is removed and replaced by a hierarchical projection
network. Specifically, We adopt a 2-level projector network that projects the output of the global
average pooling layer to two latent spaces. Each level projector network has three linear layers and
each layer has 2048 output units. The first two linear layers of each level projector are followed

4

Under review as a conference paper at ICLR 2022

Algorithm 1 PyTorch-style pseudocode for HCCL

f: encoder networks
g: hierarchical projetcion head(with two levels)
h1, h2: two prediction networks
n: batch size

for x in loader: # load a minibatch x with n samples
x_a, x_b = augment(x) # two augmented views
y_a, y_b = f(x_a), f(x_b) # encoder output
z_a1, z_a2 = g(y_a) # proj outputs of view a
z_b1, z_b2 = g(y_b) # proj outputs of view b
p_a1, p_a2 = h1(z_a1), h2(z_a2) # pred outputs of view a
p_b1, p_b2 = h1(z_b1), h2(z_b2) # pred outputs of view b
loss = [L(p_a1, z_b2)/2 + L(p_a2, z_b1) + \\

L(p_b1, z_a2)/2 + L(p_b2, z_a1)]/2
loss.backward() # back-propagate
optimizer.step()

def L(t, s):
s = s.detach() # stop gradient
t = normalize(t)
s = normalize(s)
return -(t * s).sum(dim=1).mean()

by a batch normalization layer and rectified linear units(ReLU). Each level projector network is
followed by a prediction network which has two linear layers. The dimension of the prediction
network’s input and output is 2048 and the hidden layer’s dimension is 512. The prediction network
has batch normalization and ReLU applied to its hidden layer. Its output layer does not have batch
normalization or ReLU.

Optimization We adapt the same optimization protocol described in SimSiam(Chen et al., 2020).
We use SGD optimizer(You et al., 2017) with a momentum parameter of 0.9. We use cosine decay
learning rate schedule(Loshchilov & Hutter, 2016) and train for 800 epochs with a batch size of 512,
without restarts and warm-up. We set the initial learning rate to 0.025 and multiply the learning rate
by the batch size and divide it by 256(Goyal et al., 2017). In addition, we use a global weight decay
parameter of 1.5·10-4 while excluding the biases and batch normalization parameters from weights.
Following SimCLR(Chen et al., 2020) We use batch normalization synchronized across devices.
Training is distributed across 8 V100 GPUs and takes approximately 230 hours for a ResNet-50.
For 100, 200, 400, and other less epoch training, we set the initial learning rate to 0.05 and weight
decay parameter to 1·10-4. Since SimSiam(Chen et al., 2020) and BYOL(Grill et al., 2020) have
explained that the predictor network should adapt to the latest representation, so it is not necessary
to force it to converge before the representations. In our experiment, we keep the learning rate of
one predictor constant and set the learning rate of the other predictor to 10 times the initial learning
rate and decay normally.

4 EXPERIMENTS

In this section, we analyze the performance of HCCL’s representations after self-supervised pre-
training on the training set of the ImageNet ILSVRC-2012 dataset(Deng et al., 2009) by transfer
learning on different datasets and tasks. Firstly, we evaluate the pre-trained representation on Ima-
geNet in both linear classification on frozen features and semi-supervised learning. Then we assess
its transfer capabilities on other vision datasets and tasks, including classification, segmentation, and
object detection.

5

Under review as a conference paper at ICLR 2022

Table 1: Top-1 accuracy under linear evaluation on ImageNet. All methods are based on ResNet-
50 pre-trained with two 224×224 views. Evaluation is on a single crop and all best results are in
bold. ’†’ denotes improved reproduction from SimSiam.

Method Encoder momentum encoder 100ep 200ep 300ep 400ep 800ep
SimCLR† R50 66.5 68.3 - 69.8 70.4
SWAV† R50 66.5 69.1 - 70.7 71.8
Barlow Twins R50 - - 71.4 - 73.2
MoCoV2† R50

√
67.4 69.9 - 71.0 72.2

BYOL† R50
√

66.5 70.6 72.5 73.2 74.3
DINO ViT-S

√
67.8 - 72.5 - -

SimSiam R50 68.1 70.0 - 70.8 71.3
HCCL R50 69.5 71.4 - 72.4 73.5

4.1 LINEAR AND SEMI-SUPERVISED EVALUATIONS ON IMAGENET

Linear evaluation on ImageNet We first verify our method by training a linear classifier on Ima-
geNet on fixed representations, which are from ResNet’s global average pooling layer. Following a
common protocol, the linear classifier is trained for 90 epochs with a batch size of 1024 and a cosine
learning rate schedule. We set the initial learning rate to 0.1 and multiply the learning rate by the
batch size and divide it by 256. We minimize the cross-entropy loss with the LARS optimizer with
a momentum of 0.9 and weight decay of 0. At training time, the input image is randomly cropped,
resized to 224×224, and randomly flipped horizontally. At test time, the image is resized to 256×256
and center-cropped to a size of 224×224.

We compare with the state-of-the-art frameworks in Table 1 on ImageNet linear evaluation. All
competitors are based on original papers or reproduction trained in SimSiam(Chen & He, 2021). All
competitors are based on a standard ResNet50, with two 224×224 views used during pre-training.
Table 1 reports the top-1 accuracies obtained on the ImageNet validation set and the main proper-
ties of the methods. HCCL achieves competitive results with a top-1 accuracy of 73.5%, which is
comparable to the state-of-the-art methods. HCCL is trained with small batch size and used neither
negative samples nor a momentum encoder. It achieved the best results among all methods under
100-epoch and 200-epoch pre-training. HCCL only 0.8% below the performance of BYOL(Grill
et al., 2020). BYOL uses a momentum encoder, which means a greater training cost, because it
requires 4 times forward in one iteration, while HCCL only requires 2 times. In addition, HCCL
can also be flexibly applied to the SSL method with momentum encoder. We evaluated HCCL with
momentum encoder, it achieved better performance than BYOL.(See Appendix A.2)

Semi-supervised learning on ImageNet We simply fine-tune the whole ResNet-50 pre-trained with
our method on a small subset of ImageNet’s train set and evaluate the performance. We sample

Table 2: Semi-supervised learning on Ima-
geNet. All models are finetuned with 1% and
10% training examples. Results for the su-
pervised method are from Zhai et al. (2019).

Method TOP-1 TOP-5
1% 10% 1% 10%

Supervised 25.4 56.4 48.4 80.4
PIRL - - 57.2 83.8

SimCLR 48.3 65.6 75.5 87.8
BYOL 53.2 68.8 78.4 89.0
SWAV 53.9 70.2 78.5 89.9

Barlow Twins 55.0 69.7 79.2 89.3
HCCL 56.4 71.3 80.1 90.4

Table 3: Transfer learning on image clas-
sification task. We report top-1 accuracy on
iNat18 and Places-205 datasets, and classifi-
cation mAP on VOC07.

Method iNat18 Place-205 VOC07
Supervised 46.7 53.2 87.5

PIRL 29.7 51.0 78.8
SimCLR 37.2 52.5 85.5
MoCov2 38.6 51.8 86.4
SWAV 39.5 52.8 86.4
BYOL 47.6 54.0 86.6

Barlow Twins 46.5 54.1 86.2
HCCL 47.2 54.5 86.6

6

Under review as a conference paper at ICLR 2022

Table 4: Transfer Learning on object detection and instance segmentation task. All models
use the C4-backbone. We benchmark finetuned representations on the object detection task on
VOC07+12 using Faster R-CNN and on the detection and instance segmentation task on COCO
using Mask R-CNN(1× schedule).

Method VOC 07+12 det COCO Det COCO instance seg
AP50 AP75 AP AP50 AP75 AP APm50 APm75 APm

Random Init. 59.0 31.6 32.8 50.9 35.3 32.8 47.9 32.0 29.9
Supervised 81.3 58.8 53.5 58.2 41.2 38.2 54.7 35.2 33.3
SimCLR 81.8 61.4 55.5 57.7 40.9 37.9 54.6 35.3 33.3
MoCoV2 82.3 63.3 57.0 58.8 42.5 39.2 55.5 36.6 34.3

BYOL 81.4 61.1 55.3 57.8 40.9 37.9 54.3 35.0 33.2
SWAV 81.5 61.4 55.4 57.6 40.3 37.6 54.2 35.1 33.1

SimSiam 82.4 63.7 57.0 59.3 42.1 39.2 56.0 36.7 34.4
Barlow Twins 82.6 63.4 56.8 59.0 42.5 39.2 56.0 36.5 34.3

HCCL 82.6 64.3 57.2 60.1 42.3 39.5 56.5 36.7 34.6

1% and 10% of the labeled ImageNet training datasets in a class-balanced way by following Sim-
CLR(Chen et al., 2020). The image augmentations are the same as in the linear evaluation setting.
We train for 20 epochs with a batch size of 256 and a momentum of 0.9. We minimize the cross-
entropy loss with the SGD optimizer with Nesterov momentum and do not use any regularization
methods. We use a learning rate of 0.02 for the conv-net weights and 300 for the final linear layer,
and we decay the learning rates with a cosine learning rate schedule. Table 2 shows the comparisons
of our semi-supervised results against recent methods. We report both top-1 and top-5 accuracies
on the ImageNet validation set. HCCL is either on par or slightly outperforms previous competing
semi-supervised and semi-supervised approaches.

4.2 TRANSFER TO OTHER DATASETS AND TASKS

Image classification with fixed features We follow the exact settings from PIRL(Misra & Maaten,
2020) for training and evaluating linear classifiers on the iNaturalist2018(Van Horn et al., 2018),
Places205(Zhou et al., 2014) and VOC07(Everingham et al., 2010) datasets. For VOC07, We train a
linear SVM on the global average pooled final representations. For iNaturalist2018 and Places-205,
we train a linear classifier with SGD using a learning rate of 0.01 reduced by a factor of 10 at two
equally spaced intervals, a batch size of 256, a weight decay of 0.0001, and SGD momentum of 0.9.
We train the linear models for 30 epochs on Places-205 and 84 epochs on iNat18. We report the
top-1 accuracy computed using the 224 × 224 center crop on the validation set. The results in Table
3 show that HCCL almost outperforms all prior works on three datasets.

Object Detection and Instance Segmentation We evaluate our representations by transferring
them to localization-based tasks, like object detection and instance segmentation. Following the
setup in MOCO(He et al., 2020), we fine-tune all layers of the pre-trained models end-to-end in
the VOC07+12(Everingham et al., 2010) and COCO(Lin et al., 2014) datasets. We use Faster R-
CNN(Ren et al., 2015) with an R50-C4 backbone on VOC and use Mask R-CNN(He et al., 2017)
with an R50-C4 backbone on COCO.

We use the detection models as implemented in Detectron2 library(Wu et al., 2019) for training and
closely follow the finetune and evaluation settings from the public codebase of MoCo. For Pascal
VOC, We use the VOC07+12 trainval set for training, and report results on the VOC07 test set
averaged over 5 independent runs. We train a Faster R-CNN C4 backbone for 24K iterations using
a batch size of 16 across 8 GPUs using SyncBatchNorm. We set the initial learning rate to 0.1 and
reduce it by a factor of 10 after 18K and 22K iterations. We use linear warmup(Goyal et al., 2017)
with a slope of 0.333 for 1000 iterations. For COCO, We use the COCO 2017 train split for training
and report results on the val split averaged over 5 independent runs. We set the initial learning rate
to 0.03 and keep the other parameters the same as in the 1× schedule in MoCo’s codebase.

In Table4, we show that HCCL outperforms among these leading methods on both Pascal VOC and
COCO datasets. It means that HCCL’s representations are transferable beyond the classification
task.

7

Under review as a conference paper at ICLR 2022

//�

ya

yb

projection head�

loss�

projection head�

gθ

gθ

predictor�h

(a)

ya

yb

projection head�

loss�

projection head�

gθ

gθ

predictor�h2

//�

predictor�h1

loss�
//�

(b)

//�

ya

yb

projection head�

loss�

projection head�

gθ

gθ

predictor�h

(c)

ya

yb

projection head�

projection head�

gθ

gθ

predictor�h

//�

loss� loss�

(d)

ya

yb

projection head

loss

projection head

gθ

gθ

predictor h2

predictor h1

//

(e)

Figure 2: Comparison of different projection architectures. The projection head includes all
layers that can be shared between both branches. ’=’ denotes stop gradient.

5 ABLATIONS

We present extensive ablation experiments on HCCL to give an intuition of its behavior and per-
formance and show how each component contributes. We train HCCL for 100 epochs among all
ablation experiments, which performs consistent results compared to our baseline training of long
epochs. For reproducibility, all the experiment results are averaged over 3 independent trials. For
all the experiments in this section, we set the initial learning rate to 0.05 with batch size 512, the
weight decay to 10-4 as in SimSiam(Chen et al., 2020). We report the top-1 accuracy of training
linear classifiers on the ImageNet under the linear evaluation protocol the same as in Section 4.

5.1 INFLUENCE OF HIERARCHICAL PROJECTION HEAD AND CROSS CONTRASTIVE LOSS

In this subsection, we alter our hierarchical projection head and cross contrastive loss in several
ways to test the necessity of each term of them. Figure 2 recapitulates the different structure and
learning ways on projection head and Table 5 shows their results on a linear evaluation benchmark
of Imagenet.

Deep projection with single level We first confirm that the gain of HCCL is not brought about by a
deep projection head with a single level. In Figure 2(a), we use a 6 layer projection head the same as
in section 4, only single-level representation (the output of the final linear layer) are used to construct
the contrastive loss. Compared to HCCL, the performance drops by 0.8%, which means that the lack
of hierarchical representation and cross contrastive loss will cause performance degradation.

Hierarchical projection head without cross contrastive loss In Figure 2(b), we use a 6 layer
projection head the same as in section 4, and multi-level representation (the output of the final linear
layer and the 3rd linear layer) are used to construct the contrastive loss. Instead of cross contrastive
between different levels, we contrast representations of the same level with each other. Compared
with HCCL the performance reduced by 0.8%, which means that hierarchical representations must
be combined with a cross contrastive loss to improve performance.

Hierarchical projection head with single cross contrastive loss Figure 2(c) and Figure 2(b) use
the same hierarchical projection structure, the difference is that in Figure 2(c) we use the high-
level feature of view1 and the low-level feature of view2 for cross contrastive. Compared with the

Table 5: Influence of hierarchical projection head and cross contrastive loss. We report the top-1
accuracy of models trained with different choices on hierarchical projection head, cross contrastive
loss, and multi predictor.

Hierarchical Cross Contrastive Loss Multi Predictor Top-1 Acc
68.6√ √
68.6√
68.4√ √
68.7√
68.4√ √ √
69.5

8

Under review as a conference paper at ICLR 2022

Table 6: The levels and layers of projection
head. We examine the effect of different lev-
els and layers(in one level) for the hierarchi-
cal projection head. We do not apply a ReLU
activation nor a batch normalization on the fi-
nal linear layer of our MLPs.

Layers in one level
2 3 4

2 68.4 69.5 68.8
Levels 3 69.0 69.1 68.2

4 69.0 68.9 67.7

Table 7: Learning rate of Predictor. We re-
port top-1 accuracy at 100 epochs when ap-
plying a multiplier λl to the low-level predic-
tor and λh to the high-level predictor learn-
ing rate. ’fixed’ denotes using constant learn-
ing rate.

1l λh
Fixed 5 10 20 40

Fixed 68.3 69.2 69.4 69.2 69.4
5 68.9 69.1 69.3 69.2 69.5

λl 10 69.4 69.4 69.3 69.3 69.5
20 69.5 69.2 69.4 69.1 69.3
40 69.3 69.4 69.4 69.5

standard HCCL structure, the cross contrastive between the low-level feature of view1 and the high-
level of view2 is removed. It brings 1.0% drops compared with HCCL. Obviously that only a one-
way contrastive between high-level and low-level representations cannot improve the performance.

Hierarchical projection head with single predictor In Figure 2(d), we share a single predictor
among all level projections, which brings 0.7% drops. The output representations of different levels
of projection heads are distributed in different spaces, and the use of a shared single predictor will
destroy this distribution and lead to worse performance.

Deep projection with multi predictor We confirm that the gain of HCCL is not brought about by
multi predictor. In Figure 2(e), we use a 6 layer projection head the same as in section 4. The output
of the projection head is fed to two different predictors, and then the contrastive loss is constructed.
Compared to HCCL, the performance drops by 1.1%.

5.2 LEVELS AND DEPTH OF PROJECTOR NETWORK

Table 6 shows the influence of projector architecture on HCCL. We examine the effect of different
levels and depths for the projector network. Using the default projector network of level 2 and depth
3 yields the best performance. In addition, we find that our model performs worse when the projector
network has more layers, with a saturation of the performance for 3 layers and 2 levels.

5.3 PREDICTOR LEARNING RATE

In this subsection, we examine the effect of the combination of learning rates used by different pre-
dictors in HCCL. BYOL(Grill et al., 2020) and SimSiam(Chen & He, 2021) explains that predictors
should adapt to the latest representations and keep near-optimal, so use a sufficiently large learning
rate of predictor provides a reasonably good performance. We use the default HCCL structure of
level 2 and depth 3, with 2 different predictors. We multiply the learning rate of the predictors by a
constant λ compared to the learning rate used for the rest of the network; all other hyper-parameters
are unchanged. Table 7 provides the performance of the two predictors using constant learning rate
or different λ times learning rate. Results show that the predictor learning rate needs to be much
higher than the projector learning rate.

6 CONCLUSION

We propose HCCL, a simple yet effective method strategy that applies to a class of self-supervised
learning. The main idea of HCCL is to explore multiple outputs from hidden layers instead of the
output of the last one, and to compare latent features on different levels and views. We show that
HCCL regulates not only invariant on multiple hidden levels, but also across different levels, im-
proving the generalization ability of the learned visual representations. We also show that HCCL
can work in various SSL frameworks like BYOL and Simsiam. The results of the experiments sug-
gest that HCCL is particularly effective when computing resources are limited, which is widespread
in practice.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous
clustering and representation learning. arXiv preprint arXiv:1911.05371, 2019.

Miguel A Bautista, Artsiom Sanakoyeu, Ekaterina Tikhoncheva, and Bjorn Ommer. Cliquecnn:
Deep unsupervised exemplar learning. Advances in Neural Information Processing Systems, 29:
3846–3854, 2016.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 132–149, 2018.

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised pre-training of
image features on non-curated data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2959–2968, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Thirty-fourth
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26:2292–2300, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discrimi-
native unsupervised feature learning with convolutional neural networks. Advances in neural
information processing systems, 27:766–774, 2014.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

10

Under review as a conference paper at ICLR 2022

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

H. Guo, K. Zheng, X. Fan, H. Yu, and S. Wang. Visual attention consistency under image transforms
for multi-label image classification. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning lightweight lane detection
cnns by self attention distillation. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1013–1021, 2019.

Zeyi Huang, Yang Zou, Vijayakumar Bhagavatula, and Dong Huang. Comprehensive attention self-
distillation for weakly-supervised object detection. arXiv preprint arXiv:2010.12023, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations for auto-
matic colorization. In European conference on computer vision, pp. 577–593. Springer, 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6707–6717, 2020.

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning
using temporal order verification. In European Conference on Computer Vision, pp. 527–544.
Springer, 2016.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Pedro O Pinheiro, Amjad Almahairi, Ryan Y Benmalek, Florian Golemo, and Aaron Courville.
Unsupervised learning of dense visual representations. arXiv preprint arXiv:2011.05499, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28:
91–99, 2015.

11

Under review as a conference paper at ICLR 2022

Byungseok Roh, Wuhyun Shin, Ildoo Kim, and Sungwoong Kim. Spatially consistent represen-
tation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1144–1153, 2021.

Dawei Sun, Anbang Yao, Aojun Zhou, and Hao Zhao. Deeply-supervised knowledge synergy.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6997–7006, 2019.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XI 16, pp. 776–794. Springer, 2020.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 IEEE Information Theory Workshop (ITW), pp. 1–5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Lezi Wang, Ziyan Wu, Srikrishna Karanam, Kuan-Chuan Peng, Rajat Vikram Singh, Bo Liu, and
Dimitris N Metaxas. Sharpen focus: Learning with attention separability and consistency. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 512–521, 2019.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3024–3033, 2021.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Zhenguo Li, and Ping Luo. Detco:
Unsupervised contrastive learning for object detection. arXiv preprint arXiv:2102.04803, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6:12, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-
supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1476–1485, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European confer-
ence on computer vision, pp. 649–666. Springer, 2016.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. Advances in Neural Information Processing
Systems, 27:487–495, 2014.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning
of visual embeddings. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6002–6012, 2019.

12

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 THE PROOF OF HCCL’S CONVERGENCE

We consider a deep linear system where x ∈ Rd is the input image, W ∈ Rm×d extract d-
dimensional latent features from x. The augmented version of x is x̂. The fc layer wfc gener-
ates the final label y = wfc

>Wx. The ground-truth is denoted as y∗ = w∗fc
>W ∗x. The ma-

trix Ŵ1 ∈ Rm×d denotes the stopping-gradient copy of W1 ∈ Rm×d, Ŵ1 = StopGrad(W1).
Similary, W2, Ŵ2,P1,P2, P̂1, P̂2 ∈ Rm×m. The learning rates for {W1,W2} and {P1P2} are
{ηw, ηp} respectively.

With out loss of generality, we assume the features of x can be divided into two parts x = [x1,x2]
where x1 corresponds to the augmentation invariant part and x2 corresponds to the augmentation
parts. Similarily, x̂ = [x1; x̂2]. We futher assume that the invariant part and augmentation part
are independent and the augmentation is i.i.d. generated, that is, E{xx>} = Id×d, E{x1x1

>} =
Im×m, E{x2x2

>} = I(d−m)×(d−m), E{x1x2
>} = 0, E{x1x̂2

>} = 0, E{x2x̂2
>} = 0. Aligned

with x, matrix W can be divided into two parts too, W = [U ;V]. Ideally, ‖U∗‖ � 0 and
‖V ∗‖ = 0 gives the optimal solution. The measure the quality of self-supervised learning, we
define ρ = ‖V ‖/‖U‖ as the recovering error of invariant feature subspace. ρ = 0 means that the
SSL algorithm finds the perfect Wwithout lossing any userful information.

In our method, the loss function is

L =Ex,x̂

{
1

2
‖P1W1x− Ŵ2Ŵ1x̂‖2 +

1

2
‖P2W2W1x− Ŵ1x̂‖2

}
The gradients are

∇P1L =Ex,x̂

{
(P1W1x− Ŵ2Ŵ1x̂)x

>W1
>
}

=P1W1W1
> − Ŵ2Ŵ1diag(I;0)W1

>

=P1(UU> + V V >)−W2UU>

∇P2L =Ex,x̂

{
(P2W2W1x− Ŵ1x̂)x

>W1
>W2

>
}

=P2W2W1W1
>W2

> − Ŵ1diag(I;0)W1
>W2

>

=P2W2(UU> + V V >)W2
> −UU>W2

>

∇W1
L =Ex,x̂{P1

>(P1W1x− Ŵ2Ŵ1x̂)x
>+

+W2
>P2

>(P2W2W1x− Ŵ1x̂)x
>}

=P1
>P1W1 − P1

>Ŵ2Ŵ1diag(I;0)+

+W2
>P2

>P2W2W1 −W2
>P2

>Ŵ1diag(I;0)

=P1
>P1W1 − P1

>W2[U ;0] +W2
>P2

>P2W2W1 −W2
>P2

>[U ;0]

∇W2
L =Ex,x̂{P2

>(P2W2W1x− Ŵ1x̂)x
>W1

>}
=P2

>P2W2W1W1
> − P2

>Ŵ1diag(I;0)W1
>

=P2
>P2W2(UU> + V V >)− P2

>UU>

From ∇W1
L , we get

∇UL =P1
>P1U − P1

>W2U +W2
>P2

>P2W2U −W2
>P2

>U

∇V L =P1
>P1V +W2

>P2
>P2W2V

13

Under review as a conference paper at ICLR 2022

−0.5 0.0 0.5

−0.1

0.0

0.1

Figure 3: Differential equation trajectories

The SGD iterations are then

W
(t+1)
1 −W

(t)
1 =− ηw∇W1

L

W
(t+1)
2 −W

(t)
2 =− ηw∇W2L

P
(t+1)
1 − P

(t)
1 =− ηp∇P1

L

P
(t+1)
2 − P

(t)
2 =− ηp∇P2L

Clearly, the above SGD iterations correspond to highly non-linear differential equation systems
in high dimensional space. If we do not make further simplifications, there is little we can do
analytically. To get a deeper insight , we consider a special case where all matrices are diagonal ones.
This simplification allows us to discuss the dynamics analytically. To ensure that the discussion
under such simplification can generalize to the original problem, we verify our main conclusion via
numerical simulation.

To continuous our discussion, we assume that d = 2m, U = diag(u(1), u(2), · · · , u(m)), W2 =

diag(w
(1)
2 , w

(2)
2 , · · · , w(m)

2), P1 = diag(p
(1)
1 , p

(2)
1 , · · · , p(m)

1), P2 = diag(p
(1)
2 , p

(2)
2 , · · · , p(m)

2).
To avoid notation clutter, the superscript is omitted in the following discussion when it is clear from
the context.

The differential equations for the above SGD iterations are

u̇ =ηw(p1w2 − p21 + p2w2 − p22w2
2)u

v̇ =− ηw(p21 + p22w
2
2)v

ẇ2 =− ηw(u2 + v2)p22w2 + ηwp2u
2

ṗ1 =− ηp(u2 + v2)p1 + ηpu
2w2

ṗ2 =− ηp(u2 + v2)w2
2p2 + ηpu

2w2

Again, these equations are high-order ones. We use numerical simulation to plot their trajectories.
We initialized all variables in {±ξ} where ξ = 0.1 is a small number. The SGD learning rate ηw =
0.1, ηp = 1.0. Since there are 5 variables (including {u, v}), we try all the possible initialization
combinations and obtain 32 trajectories in Figure 3. The x-axis is u(t) and the y-axis is v(t) The
marker X indicates the termination point of the numerical simulation. It is easy to see that all
32 trajectories converge to limt→∞ v(t) = 0 and limt→∞ u(t) = ±0.5 6= 0. This means that the
differential equations indeed converge to the ideal solution where the coefficient of the augmentation
subspace converges to zero and the coefficient of the invariant subspace converges to a non-zero fixed
point.

A.2 HCCL WITH MOMENTUM ENCODER

For a fair comparison with BYOL, we also evaluated HCCL with momentum encoder. In this ex-
periment, HCCL has the same architecture as Figure 1, but the parameters of the two branches are
no longer shared. As in BYOL, the online network(the branch with predictor) is defined by a set of
weights θ, and is comprised of three stages: an encoder fθ, a hierarchical projection head gnθ and
n predictor h1, h2, ..., hn. The target network(the branch without predictor) uses a different set of

14

Under review as a conference paper at ICLR 2022

Table 8: Top-1 accuracy under linear evaluation on ImageNet. ’†’ denotes improved reproduc-
tion from SimSiam.

Method Encoder 100ep 200ep 400ep 800ep
BYOL† R50 66.5 70.6 73.2 74.3
HCCL + Momentum Encoder R50 70.9 72.8 74.2 74.9

weights ξ, and is comprised of two stages: an encoder fξ, a hierarchical projection head gξ. For en-
coder and projection head, the target parameters ξ are an exponential moving average of the online
parameters θ. Given a target decay rate τ ∈ [0, 1], after each training step we perform the following
update:

ξ = τξ + (1− τ)θ
We set τ = 0.996, other training settings are the same as in section 4. Limited by training resources,
we give the results under 100, 200, 400, 800 epoch in Table 8. Compared with BYOL, HCCL with
momentum encoder is significantly improved.

A.3 MEMORY FOOTPRINT AND TRAINING SPEED.

We compared the memory footprint and speed of SimSiam, BYOL, and HCCL during training. All
experiments are trained on 8 x V100 GPU with batchsize of 512 and mixed precision. Table 9 shows
that HCCL hardly increases memory footprint and training time compared to SimSiam and BYOL.

A.4 DIFFERENT WAY OF CROSS-CORRELATION.

We further study the performance of establishing cross-correlation relationships in different ways.
When the level of the hierarchical projection head increases, the cross-correlation combination be-
tween different levels will become more complicated. In this subsection, we explored the cross-
correlation combination based on the 3 levels hierarchical projection heads. Table 10 shows that
cross-correlation combinations between different levels can help improve performance. With more
levels of hierarchical projection architecture, the cross-correlation method will become very compli-
cated and cannot be verified one by one through experiments. We believe that the more cross-level
cross-correlation relationships are established, the better the performance will be. We will explore
this in future work.

A.5 ANALYZE OF HIERARCHICAL FEATURE.

In this subsection, we analyze the features extracted by the hierarchical projection head to further
explore the mystery behind HCCL.

A.5.1 Similarity between features of different levels of hierarchical projection head.

Using SimSiam and HCCL, we extracted the features of 50000 images on the Imagenet Val dataset.
Each image is randomly augmented to obtain two views. For SimSiam, each image can extract

Table 9: Memory footprint and Training
speed. ’Memory’ refers to the memory foot-
print on a single gpu during training. ’ME’
means momentum encoder.

Method Encoder Memory Speed
SimSiam R50 8220M 1290 im/s
BYOL R50 8400M 975 im/s
HCCL R50 8320M 1220 im/s
HCCL + ME R50 8660M 940 im/s

Table 10: Top-1 accuracy under different
way of cross-correlation. All method use 3
level hierarchical projection head.

Method Top-1 Acc
a 68.4
b 68.7
c 69.2

15

Under review as a conference paper at ICLR 2022

predictor h1 h2 h3

gθ
nhierarchical projection head

loss

gθ
nhierarchical projection head

//////

(a)

predictor h1 h2 h3

gθ
nhierarchical projection head

loss

gθ
nhierarchical projection head

//////

(b)

predictor h1 h2 h3

gθ
nhierarchical projection head

loss

gθ
nhierarchical projection head

//////

(c)

Figure 4: Different way of cross-correlation on 3 level hierarchical projection head. ’=’ denotes
stop gradient.

two features, and we calculate the similarity (cosine distance) of the two features. For HCCL, we
use a 2-level hierarchical projection head, so each image can extract four features, including two
high-level projectors features and two low-level projector features. We calculate the similarity of
high-level features, the similarity of low-level features, and the similarity between high-level and
low-level features. Figure 5 shows the cosine distance distribution of all samples in the data set.
We observed that the features extracted in the same layer of the projector are very similar in both
HCCL and SimSiam, and most of their cosine distances are less than 0.2. For HCCL, there are large
differences between low-level and high-level projector features. This is consistent with our view
that different layers of the projector extract different information. Intuitively, contrastive learning
between too similar features is not a good choice.

A.5.2 Feature similarity within and between classes.

We extracted the hierarchical projector features of 50000 images on the Imagenet Val dataset. Each
sample extracts low-level and high-level features respectively. For each class, we calculate the aver-
age cosine distance between all samples in the class, and the results are shown in Figure 6(a). Then
we calculate the average cosine distance between the samples of this class and the samples of other
classes, the results are shown in Figure 6(b). We can observe that the average cosine distance within
classes is smaller than that between classes, whether it is low-level or high-level projector features.
The difference is that the average cosine distance of high-level projector features is greater than
that of low-level projector features, both within and between classes. We believe that the high-level
projector makes semantic disturbance to the low-level features, making the distribution of features
more divergent. HCCL’s hierarchical projection head introduces diversity to the features, which is
equivalent to different ’data augmentation’ at the feature level. Finally, We use cross contrast loss to
learn invariance in these features that experience different disturbances.

16

Under review as a conference paper at ICLR 2022

(a) (b)

(c) (d)

Figure 5: Cosine distance distribution of view1 and view2 features. (a): SimSiam’s projector
features. (b) HCCL’s low level projector features. (c) HCCL’s low level and hightlevel projector
features. (d) HCCL’s high level projector features.

(a) (b)

Figure 6: Average cosine distance within and between classes. (a): Average cosine distance of
features in each class. (b): Average cosine distance of features between different class.

17

	Introduction
	Related Work
	Method
	Framework
	Cross Contrastive Loss
	Implementation details

	Experiments
	Linear and Semi-Supervised Evaluations on ImageNet
	Transfer to other datasets and tasks

	Ablations
	Influence of hierarchical projection head and cross contrastive loss
	Levels and depth of projector network
	Predictor learning rate

	Conclusion
	Appendix
	The proof of HCCL's convergence
	HCCL With momentum encoder
	Memory footprint and Training speed.
	Different way of cross-correlation.
	Analyze of hierarchical feature.
	Similarity between features of different levels of hierarchical projection head.
	Feature similarity within and between classes.

