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Abstract

The grand goal of AI research, and particularly Self Supervised Learning (SSL),1

is to produce systems that can successfully solve any possible task. In contrast,2

current evaluation methods available to AI researchers typically rely on a fixed3

collection of hand-picked downstream benchmarks. Hence, a large amount of4

effort is put into designing and searching for large collections of evaluation tasks5

that can serve as a proxy for our grand goal. We argue that such a rigid evaluation6

protocol creates a silent bottleneck in AI research. To remedy that, we define a7

probabilistic space of downstream tasks obtained by adopting a distribution over8

tasks and by defining Task Priors Under this view, one can evaluate a model’s9

performance over the set of all possible downstream tasks. Beyond establishing a10

new standard for evaluation, we believe that Task Priors will accelerate the pace11

of research in SSL–where downstream task evaluation is generally the sole signal12

that researchers have access to.13
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(a) TSNE of Imagenette [5] with standard labels. (b) Labels Generated by the Task Prior.1

Figure 1: Comparison of the naive way to evaluate a model, only on the specific choice of labels provided with
the dataset (Left) with the probabilistic view of targets generated by sampling from the Task Prior, giving us a
distribution we can evaluate on (Right). In our Task Priors framework, we can evaluate on an infinite space of
downstream tasks.
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1 Introduction14

Pretrained backbone models today are released as a single checkpoint, yet in practice they can power15

millions of distinct downstream tasks: from simple classification and retrieval services to large-scale16

recommendation, autonomous perception, and more. On HuggingFace alone, top models such as17

mobilenetv3, clip-vit, and bert can receive over 100 million downloads per month [18]. As the number18

of users and the diversity of applications grows, the space of possible downstream tasks users want19

their models to perform well on tends toward infinity.20

Yet our standard evaluation protocols remain tethered to a small, fixed suite of hand-picked bench-21

marks—often half a dozen or so datasets (e.g., ImageNet, COCO, GLUE, SuperGLUE, WMT)22

[6, 13, 10, 17]. Each new benchmark can take months of expert labeling and tens or even hundreds23

of thousands of dollars to assemble. Even large-scale benchmark suites that aggregate many tasks24

— such as the Massive Text Embedding Benchmark (MTEB), which spans 56 different evaluation25

datasets, or the similar Massive Image Embedding Benchmark (MIEB) — still represent only a26

narrow slice of the possible task space [12, 19]. Once built, a static benchmark can only ever probe a27

tiny corner of the real-world tasks for which a model might be deployed. This disconnect creates a28

structural bottleneck between the handful of evaluation suites we all agree to evaluate our models on29

and the effectively infinite variety of tasks practitioners use our models for.30

One way to break this bottleneck is simply to keep spending more time and money on ever-larger31

benchmarks, but that approach quickly becomes unsustainable. Instead, we propose a surrogate32

evaluation framework that treats downstream tasks as samples from a well-defined probabilistic space.33

By adopting a “Task Prior”, a distribution over all possible targets informed by a pretrained feature34

kernel, we can compute expectations and variances of a model’s downstream performance in closed35

form, without training new classifiers or designing new benchmarks.36

2 Task Priors37

2.1 A Distribution Over Target Labels38

Given our data X, we will define the one-hot matrix of class labels as Y. Now we can define a39

graph, where two data points are connected when they are in the same class. This graph would have40

adjacency matrix G = YY⊤. We would like to introduce a prior distribution over all such label41

graphs G that reflects the likelihood of different downstream tasks.42

We define a measure over all possible adjacency matrices, weighted by alignment with a pretrained43

feature kernel K. This Task Prior allows us to compute expectations and variances of kernel alignment44

scores in closed form, or to efficiently sample realistic downstream targets without training additional45

classifiers. This will allow us to look into the average performance of our model, but also have the46

ability to look into other statistical properties.47

Suppose that we have a kernel function that measures similarity between data points k : RD×RD →48

R. Let K then be a kernel matrix corresponding to X. For the rest of the paper we can assume this is49

the centered kernel matrix corresponding to the features. Now if we have a graph adjacency matrix50

G, we can read off the elements of the product, [GK]ij =
∑N

k=1 Gik k(xj ,xk). In particular we51

can see that the diagonal elements of this matrix are given as follows, where we use xj ∼ xi to mean52

that xj and xi are connected in graph G,53

[GK]ii =

N∑
k=1

Gik k(xi,xk) =
∑

xk∼xi

k(xk,xi).

Summing over i gives the trace, Tr(GK) =
∑N

i=1

∑
xk∼xi

k(xi,xk), which acts as a global54

alignment score between the label graph G and the kernel K. We can treat the negative trace,55

E(G) := −Tr(GK), as the ”energy“ of a labeling: graphs that connect feature-similar points (high56

trace of GK) have lower energy and are therefore more likely. This leads naturally to the Gibbs57

measure58

µ(G) ∝ e−E(G)/T = eTr(GK)/T ,

1Interested readers can experiment with different class counts and temperature settings in this Colab notebook:
https://colab.research.google.com/drive/1qNOgoNSH87AcdODug-yop7Q0MuT8w1r7
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with temperature T > 0. As we increase the temperature, this distribution tends towards the uniform59

distribution on all graphs, and we get more interesting behavior in the low temperature regime. The60

properties of this distribution enable direction computation of the expectation and higher moments,61

and enable efficient sampling algorithms which we develop in the sequel.62

Definition 2.1. (Task Prior Distribution) Given a kernel matrix K on n data points, and a temperature63

T > 0, we will define the following Gibbs measure on the space of all graphs, G as:64

µ(G) ∝ e
Tr(GK)

T , (1)

where we denote by ZT,K the corresponding partition function.65

Although computing exactly the probability of observing a single graph can be quite challenging,66

as computing the partition function would require 2N
2

computations, the specific structure of this67

probability measure admits a neat factorization on a per-edge level.68

Lemma 2.2. Suppose that we consider the Gibbs measure over all graphs G. Then, the probability69

of a single edge i, j being present is given by,70

P(Gi,j = 1) = σ(Ki,j/T ), (2)

where σ denotes the sigmoid function. Furthermore if (i, j) ̸= (l, k), then,71

P(Gi,j = 1 ∧ Gi,j = 1) = σ(Ki,j/T )σ(Kl,k/T ). (3)

The above lemma allows us to, given some kernel matrix driven by an assumption on similarity over72

our data points, K, evaluate the performance of a representation model providing another kernel73

matrix M .74

Theorem 2.3. Given a kernel matrix K and associated Gibbs measure µK, and another kernel75

matrix M, we can compute the expectation of Tr(MG) as follows,76

EG∼µK
[Tr(MG)] =

∑
1≤i,j≤n

Mi,jPG∼µK
(Gi,j = 1) =

∑
1≤i,j≤n

Mi,j σ(Ki,j/T ). (4)

Furthermore, the variance satisfies,77

Var(Tr(MG)) =
∑

1≤i,j≤n

M2
i,j σ(Ki,j/T )(1− σ(Ki,j/T )).

We will note that computing the mean and variance of Tr(MG), when G is distributed according to78

the Task Prior, takes on the order of O(N2) computations for N data points. In practice, computing a79

model’s mean and variance now will take only milliseconds.80

2.2 Empirically Sampling Tasks for Evaluation81

Starting from the task-prior distribution µK over graphs introduced in the previous section, we82

can view every edge as an independent Bernoulli variable whose success probability is σ(Ki,j/T ).83

However, for the purpose of measuring performance of a model with linear probes, we may instead84

want to sample from the probability measure restricted on those graphs G which arise from one hot85

labelings Y, where G = YY⊤. We will denote by µq
K the probability measure given by,86

µq
K(G) ∝

{
µK(G) if G = YY⊤ for some one-hot Y ∈ {0, 1}N×q

0 else
.

Sampling from the restricted measure µq
K is a much more challenging problem. For binary labelings87

there are 2n possible states, so sampling and computing the partition function can be completely88

intractable. We could use Markov Chain Monte Carlo (MCMC) methods such as the Metropolis-89

Hastings algorithm to sample from this distribution, but this can also prove to be challenging in90

practice. Instead, we propose an approximate sampling algorithm in O(n) time to sample a labeling91

on n data points.92

Suppose we write the labeling Y = [y1, . . . yn], and we denote by c a one hot vector corresponding to93

class c. We operate sequentially, assigning a label to each new data point we see using the following ap-94

proximation of the true measure µq
K , where p(yi = c|y1, . . . , yi−1) ≈ 1

C exp( 1
T

∑
j<i Ki,j1{yj=c}).95
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Figure 2: On Mini-ImageNet, task-prior estimates E(KG) and Var(EG), computed from kernel matrices using
the strongest model as the prior, correlate with the ground-truth mean and variance of linear-probe accuracies
across tasks, using MIEB’s image-classification models and tasks. We observe a correlation of 0.79 between
the Task Prior expectation and average accuracy, and a correlation of 0.71 between the Task Prior variance and
variance in accuracies.

We can then achieve an algorithmic speedup by using the factorization of our kernel matrix as96

K = ZZT (if we do not have access to the features, we can use for instance a Cholesky factorization97

here). Then we have,98

exp(
1

T

∑
j<i

Ki,j1{yj=c}) = exp(
1

T
Zi

∑
j<i

Zj1{yj=c}). (5)

From (5), we can devise our method for the sampling Algorithm 1. Using this algorithm, we are able99

to quickly sample labelings of the data points according to the Task Prior, as demonstrated in Figure100

1.101

3 Task Priors Predict Real Performance102

We can use the equations in 2.3 as a way to evaluate model performance in a very fast way, i.e.103

without training any probes, or even assembling a collection of tasks / benchmarks. However, for this104

framework to be useful to practitioners, the performance on a hand curated collection of downstream105

tasks should follow the distribution implied by the Task Prior. In this section, we verify, for the106

hand-curated collection of downstream tasks for image classification found in MIEB[19], that our107

framework is able to predict downstream task performance.108

We focus our work on a selection of the 19 models easily available through huggingface[18]. The109

Massive Image Embedding Benchmark (MIEB) paper [19] reports the accuracy of each of these110

models on each of 13 downstream classification tasks. Using the strongest model as our Task Prior, we111

find that the mean and variance of the linear probe accuracy across these downstream tasks correlate112

to EµK
[Tr(GK)] and Var(Tr(GK)) respectively, as demonstrated in Figure 2. We observe a strong113

correlation between the predictions made by our theory and the model performance as reported in114

MIEB.115

Ultimately, our results show how one can utilize the Task Prior framework to predict model perfor-116

mance in a fast and easy way. We build on this work with further empirical evidence by evaluating117

the models found in timm [18], which we showcase in Appendix D.1.118
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A Related Works192

Many works aim to capture the performance of representation models primarily by intrinsic quantities193

about the model’s features. For instance, RANKME measures the effective rank of the feature matrix194

and shows an empirical correlation with average linear-probe accuracy across several tasks [3].195

LIDAR argues that a method built on Linear Discriminant Analysis serves as a proxy for downstream196

performance [16]. More recent works take a broader view, demonstrating that k-NN, few-shot197

fine-tuning, and clustering evaluations may all disagree in systematic ways [11]. Collectively, these198

studies show that properties intrinsic to the representation can forecast downstream success, but they199

still reduce performance to one or two scalar summaries.200

A complementary line of work attacks the evaluation bottleneck by increasing the number of test201

tasks. In NLP, suites such as MTEB (56 embedding datasets) [12] and HELM (42 scenarios, seven202

axes of measurement) [9] provide broad coverage of downstream tasks. The same trend is exists in203

vision, with works such as VideoEval packaging twenty diverse video understanding datasets together204

[7], and frameworks such as MIEB [19] providing a curated collection of downstream tasks for vision205

and multi-modal models.. While these mega-benchmarks can be quite helpful for practitioners, they206

remain finite and expensive to create. Worse, even a hundred benchmarks sample only a vanishingly207

small corner of the large task space practitioners can care about.208

Our Task Priors framework can be viewed as the missing bridge between these two threads. Like209

intrinsic metrics, it avoids needing a hand curated set of downstream targets, but like conglomerate210

benchmarks, it explicitly reasons about many tasks. Our framework echoes several well-known results211

from the classical theory of kernels. Notably, the trace term Tr(GK) parallels the Hilbert–Schmidt212

Independence Criterion (HSIC) of Eq. (4) in [4]. Likewise, the term we get by taking the trace of213

KG is precisely the same as “kernel alignment” studied in the context of generalization [1], obtained214

by flattening each matrix and taking their inner product, as ⟨K,G⟩ = Tr(KG).215

There are some other related works that attack similar problems. In the computer vision space, VTAB216

[20] takes a similar distributional view of tasks, but does not precisely characterize the distribution217

of tasks. Similar to our derivations, [8] proposes a loss function based on the HSIC, which is an218

interesting avenue for future research.219

A.1 Limitations and Future Work220

Despite these advances, several open issues remain. While the trace metrics correlate with probe221

accuracy, the correlation is not exact; closing this theory–practice gap will require a deeper empirical222

and theoretic study. Additionally, storing the full n2 kernel is can be prohibitive for very large223

datasets, although the matrices we observe are highly structured; further leveraging sparsity and224

low-rank factorizations is an immediate direction for further work. Our analysis is domain-agnostic,225

but its effectiveness on understanding the representations of Large Language Models [14], and, more226

generally, in natural language processing remains to be demonstrated. Tackling these questions227

will not only sharpen the foundations introduced here but may also lead to AI systems that perform228

consistently well across the vast landscape of tasks encountered in practice.229
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B Main Theoretical Results230

B.1 Proof of lemma 2.2231

Proof. Recall that µ(G) = 1
ZT,K

e
1
T Tr(GK). Then we can compute that,232

P(Gi,j = 1) = Eµ[Gij ]

=
1

ZT,K

∑
G:Gi,j=1

e
1
T Tr(GK)

=
1

ZT,K

∑
G:Gi,j=1

e
1
T

∑n
i,j=1 Gi,jKi,j

=
1

ZT,K

∑
G:Gi,j=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 .

Now notice we can let:233

w1 =
∑

G:Gi,j=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 ,

234

w0 =
∑

G:Gi,j=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 .

And then,235

P(Gi,j = 1) =
w1

w0 + w1
.

Notice though that we can write,236

∑
G:Gi,j=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 = e
1
T Ki,j

∑
G:Gi,j=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 .

So,237

w1 = e
1
T Ki,j · w0.

Then we know that,238

P(Gi,j = 1) =
e

1
T Ki,j · w0

w0 + e
1
T Ki,j · w0

=
e

Ki,j
T

1 + e
Ki,j
T

= σ(
Ki,k

T
).

For the second part, we want to compute P(Gi,jGl,k = 1), which we can note is clearly equivalent239

to P(Gi,j = 1 ∧ Gl,k = 1). As before, we can compute,240

P(Gi,jGl,k = 1) = Eµ[Gi,jGl,k]

=
1

ZT,K

∑
G:Gi,jGl,k=1

e
1
T Tr(GK)

=
1

ZT,K

∑
G:Gi,jGl,k=1

e
1
T

∑n
i,j=1 Gi,jKi,j

=
1

ZT,K

∑
G:Gi,jGl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 .

We then let,241

w1 =
∑

G:Gi,jGl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 ,

8



242

w0 =
∑

G:Gi,jGl,k=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

 .

Which, we can note if (i, j) ̸= (l, k), then we have:243

w0 =
∑

G:Gi,jGl,k=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


=

∑
G:Gi,j=0,Gl,k=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l

+
∑

G:Gi,j=0,Gl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


+

∑
G:Gi,j=1,Gl,k=0

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


= (e

1
T (Ki,j+Kl,k))−1

∑
G:Gi,j=1,Gl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,l,Gk,l


+ (e

1
T Ki,j )−1

∑
G:Gi,j=1,Gl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


+ (e

1
T Kl,k)−1

∑
G:Gi,j=1,Gl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


= (e−

1
T (Ki,j+Kl,k) + e−

1
T Ki,j + e−

1
T Kl,k)

∑
G:Gi,j=1,Gl,k=1

 ∏
1≤k,l≤n

e
1
T Kk,lGk,l


= (e−

1
T (Ki,j+Kl,k) + e−

1
T Ki,j + e−

1
T Kl,k) w1.

Then we can write that,244

w0 + w1 = (1 + e−
1
T (Ki,j+Kl,k) + e−

1
T Ki,j + e−

1
T Kl,k) w1.

So then,245

P(Gi,jGl,k = 1) =
w1

w0 + w1

=
1

(1 + e−
1
T (Ki,j+Kl,k) + e−

1
T Ki,j + e−

1
T Kl,k)

=
1

(1 + e−
1
T Ki,j )(1 + e−

1
T Kl,k)

= σ(
Ki,j

T
)σ(

Kl,k

T
).

246

B.2 Proof of theorem 2.3247

Proof. The first equality in the equation follows from the linearity of expectation, and the characteri-248

zation that,249

Tr(MG) =
∑

1≤i,j≤n

Mi,jGi,j ,

for M,G symmetric matrices. Then, notice that this is a weighted sum of independent Bernoulli250

random variables. So, EG∼µK
[Gi,j ] = PG∼µK

(Gi,j = 1) and we can apply the above lemma and251

we are done.252
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For the second part, since this is a sum of independent random variables, we may use,253

Var(Tr(MG)) =
∑

1≤i,j≤n

M2
i,j Var(Gi,j) (6)

=
∑

1≤i,j≤n

M2
i,jP(Gi,j = 1)(1− P(Gi,j = 1)) (7)

=
∑

1≤i,j≤n

M2
i,jσ(Ki,j/T )(1− σ(Ki,j/T )). (8)

254

C Sampling Algorithm255

Algorithm 1 Prefix Sampler for Multi-Class Task Prior

Require: Z ∈ Rn×r ▷ factor so K ≈ ZZ⊤

Require: T > 0 ▷ temperature
Require: q ∈ N ▷ number of classes
Ensure: labels ∈ {0, . . . , q − 1}n

1: allocate labels[1:n]
2: U← 0r×q ▷ class-wise prefix sums
3: for i = 1 . . . n do
4: h← ( 1

T ) (Z[i, :] U) ▷ length q vector
5: h← h−max(h) ▷ stabilize
6: p← exp(h); p← p/

∑
p

7: c ∼ CategoricalSample(p)
8: labels[i]← c
9: U[:, c] += Zi,:

10: end for
11: return labels

10
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Figure 4: Here we plot the expectation and variance of Tr(GM), where M is the centered cosine
similarity kernel matrix for each models features generated from mini-imagenet[13], where the
expectation is taken against µK . Here we use K as the centered cosine similarity kernel matrix for
efficientnet_b5. Please see the appendix for more information and ablation on temperature and choice
of kernel.

D Additional Empirical Studies256

D.1 Linear Probe Performance257

1.5 0.0 1.5 3.0
Log Trace Average

60

65

70

75

80

85

90
Lin

ea
r P

ro
be

 A
cc

ur
ac

y
Pearson r=0.7815

1.3880 1.3876 1.3872 1.3868 1.3864
Log Trace Variance

100

0

100

200

300

400

500

600

Lin
ea

r P
ro

be
 V

ar
ia

nc
e

Pearson r=0.4198

Figure 3: Correlation between
the mean and variance of
Tr(GK) and the performance
of linear probes on the same
representations, with 95% con-
fidence intervals.

We can use the equations in 2.3 as a way to evaluate model perfor-258

mance in a very fast way, i.e. without training any probes, or even259

assembling a collection of tasks / benchmarks. We demonstrate this260

in Figure 4 on a selection of models from timm and on a subset of261

8, 192 images from mini-imagenet [13]. We use the centered cosine262

similarity as the choice of kernel matrix here and in the rest of the263

experiments in this paper. We find that the mean and variance are264

negatively correlated, implying that models that perform well on av-265

erage tend also to perform better across a variety of tasks. From the266

selection of models we tested, we find that efficientnet [15] performs267

the best, even beating more modern vision transformers [2].268

A central claim of this paper is that the two kernel statistics,269

EµK
[Tr(GK)] and VarµK

(Tr(GK)), can predict a representation’s270

downstream performance as measured by linear probes. Using our271

sampling algorithm, we draw tasks from a prior µK induced by272

efficientnet_b5. For each of 33 models from timm [18], we train an273

independent linear probe on every sampled task with efficientnet_b5274

and record the resulting accuracies. We then compare this to simply275

computing EµK
[Tr(GK)] and Var(Tr(GK)) as per 2.3.276

We report the results of this study in Figure 5, where we find that277

models that perform better on average also tend to have a better278

variance over tasks. This is a finding we will corroborate by directly279

measuring EµK
[Tr(GK)] and Var(Tr(GK)) in Figure 5.280

We note that the expectation and variance of Tr(GK) as shown in281

Figure 4, tends to exhibit the same trends as the models linear probe282

performance on sampled tasks, as seen in Figure 5, where stronger283

models tend to have a higher average accuracy / trace, as well as a284

lower variance.285
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Figure 5: Linear probe performance of a selection of models from timm on a distribution of binary
labels sampled by the Task Prior on the mini-Imagenet dataset. Here we use efficientnet_b5 as the
backbone model for the Task Prior distribution.

D.2 Ablation on Choice of Kernel286

In Figure 6, we can see how the choice of Task Prior kernel matrix affects the downstream computation287

of the mean and variance of Tr(MG). As we might expect, we see that generally the mean288

EG∼µK
[Tr(MG)] is higher when the Task Prior kernel K matrix is the same as the matrix being289

evaluated M. We don’t see this same behavior with the variance VarG∼µK
(Tr(MG)).290

K_
re

sn
et

50
_8

19
2

K_
ef

fic
ie

nt
ne

t_
b5

_8
19

2

K_
sw

in
_b

as
e_

pa
tc

h4
_w

in
do

w7
_2

24
_8

19
2

K_
co

nv
ne

xt
_b

as
e_

81
92

K_
de

it_
ba

se
_p

at
ch

16
_2

24
_8

19
2

K_
re

sn
et

15
2_

81
92

K_
vi

t_
ba

se
_p

at
ch

16
_2

24
_8

19
2

K_resnet50_8192

K_efficientnet_b5_8192

K_swin_base_patch4_window7_224_8192

K_convnext_base_8192

K_deit_base_patch16_224_8192

K_resnet152_8192

K_vit_base_patch16_224_8192
5

10

15

20

M
ea

n

K_
re

sn
et

50
_8

19
2

K_
ef

fic
ie

nt
ne

t_
b5

_8
19

2

K_
sw

in
_b

as
e_

pa
tc

h4
_w

in
do

w7
_2

24
_8

19
2

K_
co

nv
ne

xt
_b

as
e_

81
92

K_
de

it_
ba

se
_p

at
ch

16
_2

24
_8

19
2

K_
re

sn
et

15
2_

81
92

K_
vi

t_
ba

se
_p

at
ch

16
_2

24
_8

19
2

K_resnet50_8192

K_efficientnet_b5_8192

K_swin_base_patch4_window7_224_8192

K_convnext_base_8192

K_deit_base_patch16_224_8192

K_resnet152_8192

K_vit_base_patch16_224_8192 0.2493

0.2494

0.2495

0.2496

0.2497

0.2498

0.2499

Va
ria

nc
e

Figure 6: Here, we show a comparison of how the choice of Task Prior kernel K, reflected here in the
color of the data points, affects the the evaluation of the mean and variance of Tr(MG). Each point
is computed via the exact formulas given in 2.3, with a temperature of T = 0.01.
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D.3 Ablation on the Temperature Parameter291

In Figure 7, we can see the effect of the sampler changing the temperature in the measure. We can292

see how increasing temperature increases diversity but also brings us closer to a uniform distribution293

over labels.294

T = 1 T = 3 T = 9 T = 27

Figure 7: Here we show a TSNE plot of Imagenette, with labels generated by the sampling Algorithm
1 for four choices of temperature.
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