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Abstract

The grand goal of Al research, and particularly Self Supervised Learning (SSL),
is to produce systems that can successfully solve any possible task. In contrast,
current evaluation methods available to Al researchers typically rely on a fixed
collection of hand-picked downstream benchmarks. Hence, a large amount of
effort is put into designing and searching for large collections of evaluation tasks
that can serve as a proxy for our grand goal. We argue that such a rigid evaluation
protocol creates a silent bottleneck in Al research. To remedy that, we define a
probabilistic space of downstream tasks obtained by adopting a distribution over
tasks and by defining Task Priors Under this view, one can evaluate a model’s
performance over the set of all possible downstream tasks. Beyond establishing a
new standard for evaluation, we believe that Task Priors will accelerate the pace
of research in SSL—where downstream task evaluation is generally the sole signal
that researchers have access to.
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(a) TSNE of Imagenette [S]] with standard labels. (b) Labels Generated by the Task Priorﬂ

Figure 1: Comparison of the naive way to evaluate a model, only on the specific choice of labels provided with
the dataset (Left) with the probabilistic view of targets generated by sampling from the Task Prior, giving us a
distribution we can evaluate on (Right). In our Task Priors framework, we can evaluate on an infinite space of
downstream tasks.
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1 Introduction

Pretrained backbone models today are released as a single checkpoint, yet in practice they can power
millions of distinct downstream tasks: from simple classification and retrieval services to large-scale
recommendation, autonomous perception, and more. On HuggingFace alone, top models such as
mobilenetv3, clip-vit, and bert can receive over 100 million downloads per month [18]]. As the number
of users and the diversity of applications grows, the space of possible downstream tasks users want
their models to perform well on tends toward infinity.

Yet our standard evaluation protocols remain tethered to a small, fixed suite of hand-picked bench-
marks—often half a dozen or so datasets (e.g., ImageNet, COCO, GLUE, SuperGLUE, WMT)
[6 131110, [17]. Each new benchmark can take months of expert labeling and tens or even hundreds
of thousands of dollars to assemble. Even large-scale benchmark suites that aggregate many tasks
— such as the Massive Text Embedding Benchmark (MTEB), which spans 56 different evaluation
datasets, or the similar Massive Image Embedding Benchmark (MIEB) — still represent only a
narrow slice of the possible task space [[12,[19]. Once built, a static benchmark can only ever probe a
tiny corner of the real-world tasks for which a model might be deployed. This disconnect creates a
structural bottleneck between the handful of evaluation suites we all agree to evaluate our models on
and the effectively infinite variety of tasks practitioners use our models for.

One way to break this bottleneck is simply to keep spending more time and money on ever-larger
benchmarks, but that approach quickly becomes unsustainable. Instead, we propose a surrogate
evaluation framework that treats downstream tasks as samples from a well-defined probabilistic space.
By adopting a “Task Prior”, a distribution over all possible targets informed by a pretrained feature
kernel, we can compute expectations and variances of a model’s downstream performance in closed
form, without training new classifiers or designing new benchmarks.

2 Task Priors

2.1 A Distribution Over Target Labels

Given our data X, we will define the one-hot matrix of class labels as Y. Now we can define a
graph, where two data points are connected when they are in the same class. This graph would have
adjacency matrix G = Y'Y . We would like to introduce a prior distribution over all such label
graphs G that reflects the likelihood of different downstream tasks.

We define a measure over all possible adjacency matrices, weighted by alignment with a pretrained
feature kernel K. This Task Prior allows us to compute expectations and variances of kernel alignment
scores in closed form, or to efficiently sample realistic downstream targets without training additional
classifiers. This will allow us to look into the average performance of our model, but also have the
ability to look into other statistical properties.

Suppose that we have a kernel function that measures similarity between data points & : R” x RP —
R. Let K then be a kernel matrix corresponding to X. For the rest of the paper we can assume this is
the centered kernel matrix corresponding to the features. Now if we have a graph adjacency matrix

G, we can read off the elements of the product, [GK];; = chvzl Gir k(x;,x}). In particular we
can see that the diagonal elements of this matrix are given as follows, where we use x; ~ x; to mean
that x; and x; are connected in graph G,

N
[GKlii = Y Gux k(i xk) = Y k(xx,%i).
k=1 XX

Summing over i gives the trace, Tr(GK) = vazl Y xp o, F(Xi,xx), which acts as a global

alignment score between the label graph G and the kernel K. We can treat the negative trace,
E(G) := — Tr(GK), as the “energy“ of a labeling: graphs that connect feature-similar points (high
trace of GK) have lower energy and are therefore more likely. This leads naturally to the Gibbs

measure
W(G) o e E@IT — (THGK)/T

'nterested readers can experiment with different class counts and temperature settings in this Colab notebook:
https://colab.research.google.com/drive/1gNOgoNSH87Acd0Dug-yop7Q0MuT8wir7


https://colab.research.google.com/drive/1qNOgoNSH87AcdODug-yop7Q0MuT8w1r7
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with temperature 7' > 0. As we increase the temperature, this distribution tends towards the uniform
distribution on all graphs, and we get more interesting behavior in the low temperature regime. The
properties of this distribution enable direction computation of the expectation and higher moments,
and enable efficient sampling algorithms which we develop in the sequel.

Definition 2.1. (Task Prior Distribution) Given a kernel matrix K on n data points, and a temperature
T > 0, we will define the following Gibbs measure on the space of all graphs, G as:
Tr(GK)

p(G)oce T, (1

where we denote by Zr k the corresponding partition function.

Although computing exactly the probability of observing a single graph can be quite challenging,
as computing the partition function would require 2V ’ computations, the specific structure of this
probability measure admits a neat factorization on a per-edge level.

Lemma 2.2. Suppose that we consider the Gibbs measure over all graphs G. Then, the probability
of a single edge 1, j being present is given by,

P(Gi; =1) = o(Ki;/T), ()
where o denotes the sigmoid function. Furthermore if (i,7) # (1, k), then,
P(Gi,j =1 A Gj,,j = 1) = O'(K,'J'/T)O'(Kl’k/T). (3)

The above lemma allows us to, given some kernel matrix driven by an assumption on similarity over
our data points, K, evaluate the performance of a representation model providing another kernel
matrix M.

Theorem 2.3. Given a kernel matrix K and associated Gibbs measure nuyx, and another kernel
matrix M, we can compute the expectation of Tr(MG) as follows,

EGuug [TMG)] = > M Pauu(Giy=1)= Y M;;0(Ki;/T). @

1<i,j<n 1<i,j<n

Furthermore, the variance satisfies,

Var(Tr(MG)) = > M7, o(K;;/T)(1 - o(K; ;/T)).

1<i,j<n

We will note that computing the mean and variance of Tr(MG), when G is distributed according to
the Task Prior, takes on the order of O(/N?) computations for N data points. In practice, computing a
model’s mean and variance now will take only milliseconds.

2.2 Empirically Sampling Tasks for Evaluation

Starting from the task-prior distribution uk over graphs introduced in the previous section, we
can view every edge as an independent Bernoulli variable whose success probability is o (K; ; /7).
However, for the purpose of measuring performance of a model with linear probes, we may instead
want to sample from the probability measure restricted on those graphs G which arise from one hot
labelings Y, where G = YY . We will denote by w1 the probability measure given by,

G) ifG =YY for some one-hotY € {0,1}V*4
i (G) o {SK( ) else o ’

Sampling from the restricted measure p%; is a much more challenging problem. For binary labelings
there are 2" possible states, so sampling and computing the partition function can be completely
intractable. We could use Markov Chain Monte Carlo (MCMC) methods such as the Metropolis-
Hastings algorithm to sample from this distribution, but this can also prove to be challenging in
practice. Instead, we propose an approximate sampling algorithm in O(n) time to sample a labeling
on n data points.

Suppose we write the labeling Y = [y1, . . . y»], and we denote by c a one hot vector corresponding to
class c. We operate sequentially, assigning a label to each new data point we see using the following ap-
proximation of the true measure uj, where p(y; = ¢y, ..., yi—1) & 5 exp(7 >, Kijliy,=c}):
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Figure 2: On Mini-ImageNet, task-prior estimates F'(K¢) and Var(E¢), computed from kernel matrices using
the strongest model as the prior, correlate with the ground-truth mean and variance of linear-probe accuracies
across tasks, using MIEB’s image-classification models and tasks. We observe a correlation of 0.79 between
the Task Prior expectation and average accuracy, and a correlation of 0.71 between the Task Prior variance and
variance in accuracies.

We can then achieve an algorithmic speedup by using the factorization of our kernel matrix as
K = ZZT (if we do not have access to the features, we can use for instance a Cholesky factorization
here). Then we have,

1 1
eXP(fZKi,jl{yj:c}) = exp(fzizzjl{yj:c}). 5)

J<i 7<1t

From (3)), we can devise our method for the sampling Algorithm[I] Using this algorithm, we are able
to quickly sample labelings of the data points according to the Task Prior, as demonstrated in Figure

3 Task Priors Predict Real Performance

We can use the equations in as a way to evaluate model performance in a very fast way, i.e.
without training any probes, or even assembling a collection of tasks / benchmarks. However, for this
framework to be useful to practitioners, the performance on a hand curated collection of downstream
tasks should follow the distribution implied by the Task Prior. In this section, we verify, for the
hand-curated collection of downstream tasks for image classification found in MIEB[19]], that our
framework is able to predict downstream task performance.

We focus our work on a selection of the 19 models easily available through huggingface[18]]. The
Massive Image Embedding Benchmark (MIEB) paper [[19] reports the accuracy of each of these
models on each of 13 downstream classification tasks. Using the strongest model as our Task Prior, we
find that the mean and variance of the linear probe accuracy across these downstream tasks correlate
to B, [Tr(GK)] and Var(Tr(GK)) respectively, as demonstrated in Figure 2} We observe a strong
correlation between the predictions made by our theory and the model performance as reported in
MIEB.

Ultimately, our results show how one can utilize the Task Prior framework to predict model perfor-
mance in a fast and easy way. We build on this work with further empirical evidence by evaluating
the models found in rimm [18]], which we showcase in Appendix [D.T]
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A Related Works

Many works aim to capture the performance of representation models primarily by intrinsic quantities
about the model’s features. For instance, RANKME measures the effective rank of the feature matrix
and shows an empirical correlation with average linear-probe accuracy across several tasks [3].
LIDAR argues that a method built on Linear Discriminant Analysis serves as a proxy for downstream
performance [16]. More recent works take a broader view, demonstrating that k-NN, few-shot
fine-tuning, and clustering evaluations may all disagree in systematic ways [11]]. Collectively, these
studies show that properties intrinsic to the representation can forecast downstream success, but they
still reduce performance to one or two scalar summaries.

A complementary line of work attacks the evaluation bottleneck by increasing the number of test
tasks. In NLP, suites such as MTEB (56 embedding datasets) [[12]] and HELM (42 scenarios, seven
axes of measurement) [9] provide broad coverage of downstream tasks. The same trend is exists in
vision, with works such as VideoEval packaging twenty diverse video understanding datasets together
[7], and frameworks such as MIEB [19] providing a curated collection of downstream tasks for vision
and multi-modal models.. While these mega-benchmarks can be quite helpful for practitioners, they
remain finite and expensive to create. Worse, even a hundred benchmarks sample only a vanishingly
small corner of the large task space practitioners can care about.

Our Task Priors framework can be viewed as the missing bridge between these two threads. Like
intrinsic metrics, it avoids needing a hand curated set of downstream targets, but like conglomerate
benchmarks, it explicitly reasons about many tasks. Our framework echoes several well-known results
from the classical theory of kernels. Notably, the trace term Tr(GK) parallels the Hilbert—Schmidt
Independence Criterion (HSIC) of Eq. (4) in [4]. Likewise, the term we get by taking the trace of
KG is precisely the same as “kernel alignment” studied in the context of generalization [1]], obtained
by flattening each matrix and taking their inner product, as (K, G) = Tr(KG).

There are some other related works that attack similar problems. In the computer vision space, VTAB
[20] takes a similar distributional view of tasks, but does not precisely characterize the distribution
of tasks. Similar to our derivations, [8] proposes a loss function based on the HSIC, which is an
interesting avenue for future research.

A.1 Limitations and Future Work

Despite these advances, several open issues remain. While the trace metrics correlate with probe
accuracy, the correlation is not exact; closing this theory—practice gap will require a deeper empirical
and theoretic study. Additionally, storing the full n? kernel is can be prohibitive for very large
datasets, although the matrices we observe are highly structured; further leveraging sparsity and
low-rank factorizations is an immediate direction for further work. Our analysis is domain-agnostic,
but its effectiveness on understanding the representations of Large Language Models [14]], and, more
generally, in natural language processing remains to be demonstrated. Tackling these questions
will not only sharpen the foundations introduced here but may also lead to Al systems that perform
consistently well across the vast landscape of tasks encountered in practice.



230 B Main Theoretical Results

231 B.1  Proof of lemma2.2]
232 Proof. Recall that y(G) = ﬁe% Tr(GK) Then we can compute that,

P(Gi; =1) =E.[Gy]

_ 1 Z o Tr(GK)

A
K g.q,, =1
= 1 E 6% Z:,j:l GmKw'

Z
TK g.q,, =1

o X | L s

Z
K g.G, =1 |1<ki<n

233 Now notice we can let:

234 o - / -

235 And then,

236 Notice though that we can write,

E H e%Kk,le,l = e%Ki,J § H e%Kk,sz,L

G:G; ;=1 | 1<k, I<n G:G; ;=0 | 1<k, I<n

237 So,

w, = GTKLJ - wo.-

238 Then we know that,

1K, . Kij
eT™hi -y eT K x
P(Gi,; =1) = = — = ()
w0—|—eT REAR I 1+6T' T

239 For the second part, we want to compute P(G; ;G; , = 1), which we can note is clearly equivalent
240 toP(G;; =1 A Gy =1). As before, we can compute,

P(G; ;G =1) = Eu[Gi ;G 1]
1 A Tr(GK)
i
Zrx G:Gi G =1

__1! S TGk,
Z
T’K G:Gi,jGLkil

— 1 E H B%Kk,sz,l

VA
T’K G:Gi,jGLkzl 1§k,l§n

241 We then let,

— }: ALKy, G
wy = H eTKr1Grt |

G:Giijlykzl lgk,lg'ﬂ,
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251
252

wy = § H 6%Kk,zcrk,z

G:G; ;G =0 | 1<k, I<n
Which, we can note if (7, j) # (I, k), then we have:

wo = § %Kk,le,l

G:G; ;G =0

— %Kk,sz,z + § H e%Kk,leJ

G:G; =0, Gl =0 G:Gi,j:O,Gl,kZI 1<k, l<n

+ § H G%Kk,zcrk,z

G:G; ;=1,G; =0 [1<k,I<n

= (e%(Ki,j+Kl,k))*1 § H G%Kk,z,Gk,z
G:G;;=1,G, =1 | 1<k,I<n

+ (e%Ki,j)*l E H e%Kk,LGk,L
G:G;;=1,G, =1 | 1<k,I<n

+ (B%Kz,k)*l Z H G%K’MG’“J

G:Gi,]':].,Gl'kzl 1§k,l§n

— (67%(Ki,j+Kz,k) +67%Ki,j +67%Kl=’“) z : H e%Kk,l,Gk,l,
G:Gi,jzl,Gl,k:]. 1§k,l§n

= (e—%(Ki,ﬁ'Kz,k) + e TKis 4 e—%Kl-,k) w.

Then we can write that,

wo + wy = (1 + e~ T tKur) | o= 1Kis 4 o= 1K) 4,

So then,
wi
PG, Gr=1) = ———
(GijGir =1) wo F o
- 1
N (1+ e~ T Kij+Kin) 4 o~ 7Kij e*%Kl«k)
1
(1+e 7Kij)(1 + e~ TKLR)
Ky Kk
= ()0 (FLE)

B.2 Proof of theorem 2.3

Proof. The first equality in the equation follows from the linearity of expectation, and the characteri-

zation that,
> MGy,
1<i,j<n
for M, G symmetric matrices. Then, notice that this is a weighted sum of independent Bernoulli
random variables. S0, Eg~,x [Gi ;| = Pg~uk (Gij = 1) and we can apply the above lemma and
we are done.



253 For the second part, since this is a sum of independent random variables, we may use,

Var(Tr(MG)) = Y M7, Var(Gi ;) (6)
1<4,5<n
= Z M; P(G;; =1)(1 - P(G;; =1)) @)
1<i,j<n
= Z M; ;0 (K; ;/T)(1 - o(K;;/T)). ®)
1<i,5<n
254 O

255 C  Sampling Algorithm

Algorithm 1 Prefix Sampler for Multi-Class Task Prior

Require: Z ¢ R"*" > factor so K ~ ZZ "
Require: 7' > 0 > temperature
Require: ¢ € N > number of classes

Ensure: labels € {0,...,q — 1}

1: allocate labels[1:n)

2: U<+ 0r><q > class-wise prefix sums
3: for 1=1...ndo
h + ( ) (Z]i,:] U) > length ¢ vector
hoe b max(h) > stabilize
p<exp(h); p<p/>p
¢ ~ CategoricalSample(p)
labels[i] <+ ¢

9: Ul c] += Z;,.
10: end for
11: return labels

AN AN

10
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Figure 4: Here we plot the expectation and variance of Tr(GM ), where M is the centered cosine
similarity kernel matrix for each models features generated from mini-imagenet[13]], where the
expectation is taken against p1 . Here we use K as the centered cosine similarity kernel matrix for
efficientnet_b5. Please see the appendix for more information and ablation on temperature and choice

of kernel.

D Additional Empirical Studies

D.1 Linear Probe Performance

We can use the equations in[2.3|as a way to evaluate model perfor-
mance in a very fast way, i.e. without training any probes, or even
assembling a collection of tasks / benchmarks. We demonstrate this
in Figure ] on a selection of models from timm and on a subset of
8,192 images from mini-imagenet [13]]. We use the centered cosine
similarity as the choice of kernel matrix here and in the rest of the
experiments in this paper. We find that the mean and variance are
negatively correlated, implying that models that perform well on av-
erage tend also to perform better across a variety of tasks. From the
selection of models we tested, we find that efficientnet [15] performs
the best, even beating more modern vision transformers [2].

A central claim of this paper is that the two kernel statistics,
E, . [Tr(GK)] and Var,,, (Tr(GK)), can predict a representation’s
downstream performance as measured by linear probes. Using our
sampling algorithm, we draw tasks from a prior p g induced by
efficientnet_bS5. For each of 33 models from timm [[18]], we train an
independent linear probe on every sampled task with efficientnet_b5
and record the resulting accuracies. We then compare this to simply
computing B, [Tr(GK)] and Var(Tr(GK)) as per[2.3]

We report the results of this study in Figure[5] where we find that
models that perform better on average also tend to have a better
variance over tasks. This is a finding we will corroborate by directly
measuring B, [Tr(GK)] and Var(Tr(GK)) in Figure[3]

We note that the expectation and variance of Tr(GK) as shown in
Figure 4] tends to exhibit the same trends as the models linear probe
performance on sampled tasks, as seen in Figure 5| where stronger
models tend to have a higher average accuracy / trace, as well as a
lower variance.
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Figure 3: Correlation between
the mean and variance of
Tr(GK) and the performance
of linear probes on the same
representations, with 95% con-
fidence intervals.
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Figure 5: Linear probe performance of a selection of models from timm on a distribution of binary

labels sampled by the Task Prior on the mini-Imagenet dataset. Here we use efficientnet_b5 as the
backbone model for the Task Prior distribution.

286 D.2 Ablation on Choice of Kernel

287 In Figure[f] we can see how the choice of Task Prior kernel matrix affects the downstream computation
288 of the mean and variance of Tr(MG). As we might expect, we see that generally the mean
289 Eg~ux [Tr(MG)] is higher when the Task Prior kernel K matrix is the same as the matrix being
200 evaluated M. We don’t see this same behavior with the variance Varg ., (Tr(MG)).

K_resnet50_8192 - K_resnet50_8192 . .- 02499
K_efficientnet_b5_8192 - 20 K_efficientnet_b5_8192 - - 0.2498
K_swin_base_patch4_window7_224_8192 K_swin_base_patch4_window7_224_8192 - 0.2497
15

K_convnext_base_8192 K_convnext_base_8192 - 0.2496
K_deit_base_patch16_224_8192 10 K_deit_base_patch16_224_8192 - 0.2495
K_resnet152_8192 s K resnet152 8192 0.2494
) 02493

K_vit_base_patch16_224 8192 K_vit_base_patch16_224 8192

Mean
Variance

MR R M
8 § &§ & &§ § § 8§ § § § § & §
22 2 2 2 2 32 22 2 2 2 2 2
mI mI m‘ m‘ mI a)‘ m‘ ml mI ml w‘ m‘ mI ml
S v 7 ¢ g o S 4 ¢ ¢ 5 o
8 8 & % 8 § 3§ 2 8 & % 8 § 3§
2 ] ] 2 N 2 ] ] 2 {
g % N 8 NogoN T oy N8 YooY
2 S e B g S e B o
g 2 5 ¢ g & g §F 2 5 ¢ g T g
g £ - - § £ § 2 5 2
£ g 3 3 g ¢ ¢ 3 3 g
8§ B8 ¢ ¢ ¢ g 8§ 8 ¢ ¢ ¢ g
¥ g £ z B 8 ¥ g £ z 8 U %
£ E S i d £ 2, S | i
g v‘ Y 3 3 g v' v 3 !
M-SV 2 M SV 2
] a o S a a
o ey ! o ! o
s & g s 5
o o
| M | ¥
@ ¥ @ ¥
'D\ 'QI
£ £
H H
g 3
4 Y4

Figure 6: Here, we show a comparison of how the choice of Task Prior kernel K, reflected here in the
color of the data points, affects the the evaluation of the mean and variance of Tr(MG). Each point
is computed via the exact formulas given in@ with a temperature of 7' = 0.01.
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291 D.3 Ablation on the Temperature Parameter

202 In Figure[7] we can see the effect of the sampler changing the temperature in the measure. We can
293 see how increasing temperature increases diversity but also brings us closer to a uniform distribution
294 over labels.

Figure 7: Here we show a TSNE plot of Imagenette, with labels generated by the sampling Algorithm
Elfor four choices of temperature.
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