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Abstract

Optimization problems in electromagnetic wave
manipulation and metasurface design are becom-
ing increasingly high-dimensional, often involv-
ing thousands of variables that need precise con-
trol. Traditional optimization algorithms face sig-
nificant challenges in maintaining both accuracy
and computational efficiency when dealing with
such ultra-high-dimensional problems. This paper
presents a novel Coevolutionary Emergent Systems
Optimization (CESO) algorithm that integrates co-
evolutionary dynamics, emergent behavior, and
adaptive mechanisms to address these challenges.
CESO features a unique multi-subsystem architec-
ture that enables parallel exploration of solution
spaces while maintaining interactive influences be-
tween subsystems. The algorithm incorporates an
efficient adaptive mechanism for parameter adjust-
ment and a distinctive emergent behavior simula-
tion mechanism that prevents local optima traps
through periodic subsystem reorganization. Ex-
perimental results on the CEC2017 benchmark
suite demonstrate CESO’s superior performance.
The algorithm’s practical effectiveness is validated
through a challenging application in electromag-
netic wave manipulation - OAM wave demulti-
plexing system (10,000 dimensions). In this ap-
plication, CESO achieves superior mode separa-
tion for OAM wave demultiplexing compared to
traditional algorithms. These results demonstrate
CESO’s significant advantages in solving practical
high-dimensional optimization problems.
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1 INTRODUCTION

Optimization problems in electromagnetic wave manipu-
lation and metasurface design are becoming increasingly
complex and high-dimensional. Modern metasurface appli-
cation, often involve thousands of phase variables that need
to be precisely controlled. For instance, the optimization
of cascaded metasurfaces for wave manipulation typically
requires tuning hundreds to thousands of unit cells, while
the phase optimization for intelligent reflecting surfaces
in electromagnetic wave control can reach dimensions of
several thousand. These high-dimensional challenges pose
significant difficulties for existing optimization algorithms,
particularly in maintaining both optimization accuracy and
computational efficiency.

While conventional metaheuristic algorithms such as Parti-
cle Swarm Optimization (PSO) and Differential Evolution
(DE) have shown remarkable success in low to medium di-
mensional problems, they often suffer from the "curse of di-
mensionality" when facing high-dimensional scenarios. This
manifests in several ways: (1) significantly degraded conver-
gence rates with increasing dimensions, (2) compromised
solution quality, and (3) exponentially growing computa-
tional demands. Recent advances in evolutionary algorithms
also face similar challenges, such as premature convergence
and computational inefficiency. For example, state-of-the-
art algorithms like Coati Optimization Algorithm (COA)
[Dehghani et al., 2023] and Subtraction-Average Based Op-
timization (SABO) [Trojovský et al., 2023] show dramatic
performance degradation in problems exceeding 1000 di-
mensions.

To address these challenges, we propose a novel Coevolu-
tionary Emergent Systems Optimization (CESO) algorithm.
CESO draws inspiration from complex adaptive systems
theory [Holland, 1995] and leverages the power of coevo-
lution and emergent behavior to create a more robust and
flexible optimization tool. This is a novel coevolutionary
framework that divides the population into multiple subsys-
tems, with each subsystem evolving independently while
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maintaining interactive influences. The proposed design sig-
nificantly enhances search capabilities in high-dimensional
spaces while maintaining computational efficiency. Mean-
while, it serves as an efficient adaptive mechanism that
incorporates subsystem - based parameter adjustment strate-
gies, enabling CESO to automatically tune its search pat-
terns based on the optimization progress. This mechanism
shows particular effectiveness in problems exceeding 1000
dimensions, significantly improving algorithm stability and
convergence speed. Last but not least, it is a unique emer-
gent behavior simulation mechanism that generates system
- level patterns through periodic subsystem reorganization
and dynamic interactions. This feature effectively prevents
local optima traps, which is particularly crucial in high-
dimensional spaces [Kwok, 2024].

Comprehensive validation on real-world electromagnetic
wave manipulation problems involving ultra-high dimen-
sions. We demonstrate CESO’s performance on a represen-
tative problem: OAM wave demultiplexing system (10000
dimensions). The results show CESO’s significant advan-
tages in solving practical high-dimensional electromagnetic
optimization problems, achieving superior mode separation
for OAM wave demultiplexing compared to traditional al-
gorithms.

On the CEC2017 benchmark suite[Wu et al.,2016], we com-
pared CESO with ten state-of-the-art algorithms across 30
test functions in 100-dimensional optimization tasks. The
results demonstrate that CESO not only achieves superior
solution quality but also exhibits better convergence proper-
ties and computational efficiency.

The remainder of this paper is organized as follows: Section
2 introduces the necessary background; Section 3 details
the CESO algorithm design; Section 4 reviews related work;
Section 5 presents experimental results; and Section 6 con-
cludes the paper and discusses future research directions.

2 BACKGROUND

2.1 OPTIMIZATION ALGORITHM
BACKGROUND

The development of optimization algorithms mirrors human
ingenuity evolution, from 18th-century foundations laid by
Gauss and Lagrange to the algorithmic innovations of the AI
era. As George Dantzig stated in his seminal work "Linear
Programming and Extensions" [Dantzig, 1963]: "Optimiza-
tion is one of the most fundamental paradigms in science
and engineering."

The optimization algorithm genealogy traces back to mathe-
matical methods like Newton-Raphson [Newton, 1687] and
gradient descent [Cauchy, 1847]. By the mid-20th century,
with the rise of computer science, Dantzig’s simplex method
[Dantzig, 1947] pioneered a new era in linear programming.

Subsequently, dynamic programming [Bellman, 1954] and
nonlinear programming techniques like BFGS [Broyden et
al., 1970] emerged, significantly expanding the scope of
solvable optimization problems.

Traditional mathematical optimization methods, while es-
tablishing solid theoretical foundations, often struggle with
real-world complex problems. This limitation has driven
the flourishing development of heuristic and metaheuristic
methods. The field has witnessed unprecedented activity
in recent years, with algorithms like Grey Wolf Optimizer
[Mirjalili et al., 2014] and Whale Optimization Algorithm
demonstrating remarkable performance in various applica-
tions. These nature-inspired methods have shown particular
promise in handling complex, non-linear, and multi-modal
optimization problems.

2.2 HIGH-DIMENSIONAL OPTIMIZATION
BACKGROUND

The challenge of high-dimensional optimization, first for-
malized through Bellman’s "curse of dimensionality" [Bell-
man, 1966], presents fundamental difficulties that transcend
traditional optimization approaches. As dimensionality in-
creases, the search space grows exponentially, while the rel-
ative density of optimal solutions typically decreases. This
phenomenon creates a paradoxical situation where more
computational resources yield diminishing returns, funda-
mentally challenging our traditional optimization strategies.

Modern high-dimensional optimization problems exhibit
complex characteristics that make them particularly chal-
lenging, such as various artificial intelligence tasks [zhang,
2024]. The search space becomes increasingly sparse in
higher dimensions, leading to what Friedman [Friedman,
1997] termed the "empty space paradox." This sparsity sig-
nificantly impacts the effectiveness of traditional search
strategies, as the concept of proximity becomes less mean-
ingful in high-dimensional spaces . Furthermore, the re-
lationship between variables becomes more complex and
interdependent, making it difficult to decompose problems
into simpler subproblems.

2.3 CESO ALGORITHM BACKGROUND

The theoretical underpinning of CESO synthesizes three
fundamental concepts: coevolutionary dynamics, emergent
behavior in complex systems, and adaptive mechanisms.
This integration creates a unique framework specifically
designed for high-dimensional optimization challenges.

Coevolutionary processes, first formally studied in biologi-
cal systems by Ehrlich and Raven [Ehrlich and Raven, 1964]
in their groundbreaking butterfly-plant research, demon-
strate how multiple species can reciprocally influence each
other’s evolution. This concept has profound implications



for optimization algorithms, suggesting that multiple inter-
acting populations can collectively explore solution spaces
more effectively than single populations. [Potter and De
Jong, 1994] pioneered this approach in computational op-
timization, showing that coevolutionary algorithms can de-
compose complex problems into manageable subcompo-
nents while maintaining essential interactions.

Emergence, a central concept in complex systems theory, de-
scribes how system-level patterns and behaviors arise from
simpler, lower-level interactions. [Goldstein, 1999] defines
emergence as "the arising of novel and coherent structures,
patterns and properties during self-organization in complex
systems." In optimization contexts, emergent behavior can
manifest as collective search patterns that transcend indi-
vidual solution behaviors. This phenomenon is particularly
relevant in high-dimensional spaces, where traditional direct
search strategies often fail.

Holland’s seminal work on Complex Adaptive Systems
(CAS) [Holland, 1995] provides the third theoretical pillar
for CESO. CAS theory emphasizes how systems of interact-
ing agents can develop collective behaviors more sophisti-
cated than individual components. This framework suggests
that optimization algorithms can benefit from incorporating
adaptive mechanisms at multiple scales, from individual
solution updates to population-level dynamics.

The synthesis of these concepts in CESO creates a distinc-
tive optimization paradigm. Coevolutionary mechanisms
enable parallel exploration of solution spaces through multi-
ple subsystems, while emergent behaviors arise from their
interactions, potentially discovering novel search patterns.
The adaptive components, inspired by CAS theory, allow
the algorithm to adjust its behavior based on both local and
global information, particularly crucial in high-dimensional
optimization where the relationship between variables be-
comes increasingly complex.

This theoretical foundation supports several key features of
CESO:

• Multiple interacting subsystems that promote both ex-
ploration and exploitation

• Self-organizing behaviors that emerge from subsystem
interactions

• Adaptive mechanisms that respond to the optimization
landscape

• Memory-based learning that leverages historical search
experiences

These features particularly address the challenges of high-
dimensional optimization , where traditional optimization
methods often struggle with the exponential growth of
search space and the increasing complexity of variable in-
teractions. The emergent properties of CESO help navigate
these challenges by generating sophisticated search patterns

that would be difficult to design explicitly.

3 CESO ALGORITHM

3.1 BASIC PRINCIPLES AND POPULATION
INITIALIZATION

CESO algorithm operates in a D-dimensional continuous
search space S ⊂ RD, where the search domain is rigor-
ously bounded by predefined lower and upper limits. The
algorithm’s foundational structure revolves around a popu-
lation of N individuals, with each individual representing
a potential solution to the optimization challenge at hand.
This approach builds upon established evolutionary compu-
tation principles while introducing novel mechanisms for
adaptive search and cooperative evolution.

The initialization phase plays a crucial role in establishing a
diverse starting point for the optimization process. For each
individual within the population, the algorithm employs
a uniform distribution strategy to ensure comprehensive
coverage of the search space. For each individual Xi (i = 1,
..., N), the initialization follows:

Xi = lb+ (ub− lb) ◦ ri, ri ∼ U(0, 1)D, i = 1, ..., N (1)

here, the Hadamard product (◦) facilitates component-wise
multiplication, ensuring that each dimension of the search
space is properly scaled within its bounds. The uniform
random vector ri guarantees unbiased initial exploration of
the search domain. Following initialization, the algorithm
evaluates the fitness of each individual through the objec-
tive function f(Xi), establishing a baseline for subsequent
optimization steps.

The population structure incorporates a sophisticated sub-
system organization, dividing the N individuals into M =
3 distinct yet interconnected subsystems. Each subsystem
contains approximately N/M individuals, forming coherent
groups that facilitate both localized search and global infor-
mation exchange. The fitness evaluation of subsystem k is
computed through a statistical aggregation of its members:

Fk =
1

|Sk|
∑
i∈Sk

f(xi), k = 1, ...,M (2)

where Sk represents the set of individuals in subsystem k and
|Sk| denotes its size.This subsystem architecture serves dual
purposes: it enables focused exploitation within each sub-
system while maintaining pathways for broader exploration
through carefully designed inter-subsystem interactions.

3.2 CESO ALGORITHM FLOW

Figure 1 illustrates the flowchart of CESO algorithm, which
comprises five essential components. The initialization



phase generates the initial population X(i),calculates fitness
values F(X), and divides the population into three subsys-
tems (M=3). Subsequently, the algorithm enters an iterative
process where each iteration begins by determining whether
the current iteration count t has reached the maximum it-
eration limit T. When this condition is satisfied, the algo-
rithm sequentially executes three core optimization phases:
the intra-learning phase facilitates knowledge accumula-
tion within subsystems through adaptation rate adjustment,
reference solution selection, and position updating; the intra-
interaction phase promotes collaborative evolution between
different subsystems by exchanging information based on
probability parameter β; and the exploration phase main-
tains population diversity by selecting elite solutions from
the memory archive or performing random exploration with
probability µ. Following each iteration, the update phase
records the global optimal solution and refreshes the mem-
ory archive. The algorithm terminates when the iteration
count reaches its predefined limit.

Figure 1: CESO Algorithm Flow

3.3 ADAPTIVE PARAMETER SYSTEM

CESO employs a sophisticated adaptive parameter system
that dynamically adjusts three key components throughout
the optimization process. This adaptive mechanism ensures
effective balance between exploration and exploitation while
maintaining robust performance across different problem
landscapes.

The base adaptation rate α(t) controls the intensity of local
search operations:

α(t) = α0(1− 0.5t/T ), α0 = 0.2 (3)

where t represents the current iteration and T is the max-
imum number of iterations. The decreasing nature of α(t)
gradually shifts the algorithm’s focus from exploration to
exploitation.This formulation ensures a gradual transition
from exploration-focused behavior in early iterations to
exploitation-dominated search in later stages. The decay

rate has been carefully calibrated to maintain sufficient ex-
ploration capability throughout the optimization process
while ensuring convergence to high-quality solutions.

The interaction strength β(t) governs the information ex-
change dynamics between subsystems, following an increas-
ing trajectory that promotes enhanced cooperation as the
search progresses:

β(t) = β0(1 + 0.3t/T ), β0 = 0.7 (4)

This progressive strengthening of inter-subsystem communi-
cation facilitates the integration of knowledge gained from
different regions of the search space, contributing to the
algorithm’s ability to escape local optima while maintaining
search stability.

The memory factor µ maintains a constant value of 0.1,
determined through extensive empirical studies to provide
optimal balance between historical knowledge utilization
and current search dynamics. This parameter plays a crucial
role in regulating the frequency and intensity of memory-
based learning operations.

The synergistic interaction of these parameters creates a
dynamic equilibrium characterized by the system plasticity
function:

Φ(t) = α(t)β(t)µ (5)

This mathematical framework ensures that the algorithm
maintains appropriate balance between exploration and ex-
ploitation throughout the optimization process, adapting to
the changing landscape of the search space while preserving
convergence properties.

3.4 SOLUTION GENERATION MECHANISM

The solution generation process in CESO consists of four
successive phases that work in concert to create new candi-
date solutions. Each phase contributes to different aspects
of the search process, ensuring comprehensive exploration
of the search space while maintaining the ability to exploit
promising regions.

3.4.1 Intra-subsystem Learning

Within each subsystem, individuals evolve through a com-
petitive selection and differential evolution mechanism that
promotes efficient local search. The update rule for each
individual follows a fitness-based competition strategy:

x′
i =

{
x1 + α(xr1 − xi), iff(xr1) < f(xr2)

x1 + α(xr2 − xi), otherwise.
(6)

where r1 and r2 are random indices from the same sub-
system. This mechanism promotes local exploitation by
learning from better-performing solutions within the subsys-
tem.



3.4.2 Inter-subsystem Interaction

The inter-subsystem interaction phase facilitates knowledge
transfer across different regions of the search space, occur-
ring with probability β(t). The mathematical formulation of
this interaction follows:

x′
i = x′

i + β(xr3 − x′
i) (7)

where β ∼ U(0, 1) and Xr3 is randomly selected from an-
other subsystem r3 ̸= k. This interaction mechanism fa-
cilitates global exploration and information sharing across
different regions of the search space.

3.4.3 Memory-based Learning

A memory archive M of size 0.2N maintains elite solutions
encountered during the optimization process. With probabil-
ity µ, individuals learn from the archive:The memory-based
learning phase leverages a sophisticated archive system M of
size ⌈0.2N⌉ that maintains elite solutions encountered dur-
ing the optimization process. The learning process occurs
with probability µ and follows:

x′′′
i = x′′

i + U(0, 1) ◦ (Mj − x′′
i ) (8)

where Mj is randomly selected from the memory archive.
The archive is updated through a replacement strategy:

Mworst = argmaxj∈Mf(Mj) (9)

Mworst ← xi, f(xi) < f(Mworst) (10)

This mechanism ensures the preservation and utilization of
high-quality solutions while maintaining population diver-
sity.

3.4.4 Adaptive Exploration

The final phase implements a controlled random exploration
mechanism that adapts to the optimization progress:

xnew = x′′′
i + γ(t)(ub− lb) ◦N(0, ID) (11)

where γ(t) = α(t)
(
1− t

T

)2
and N (0, ID) represents a D-

dimensional standard normal distribution. This component
ensures the algorithm maintains its ability to explore new
regions while gradually focusing on promising areas.

Subsequently, for the analysis of exploration and exploita-
tion balance, Hussain et al. proposed a method[Hussain
et al., 2019] to measure and analyze the exploitation and
exploration capabilities of metaheuristic algorithms:

D(t) = 1/N ·D
N∑
i=1

d∑
j=1

|xij(t)− xj(t)| (12)

where N represents the population size, D denotes the prob-
lem dimensionality, represents the j-th dimensional compo-
nent of the i-th individual at iteration t, and represents the
median value of the j-th dimension at iteration t.

Based on the diversity measure, the exploration and exploita-
tion rates are calculated as follows:

Exploration(t) = D(t)/D(0)× 100% (13)

Exploitation(t) = |D(0)−D(t)|/D(0)× 100% (14)

where represents the diversity value of the initial population
(diversity baseline at t=0). Due to space limitations, Fig
1 present the results of representative functions selected
from each test function category, specifically composition
function F22.

Figure 2: Exploration and Exploitation Intensity Analysis
on Function F22

As Fig. 2 showing,through the exploration-exploitation bal-
ance analysis of the CESO algorithm on the CEC2017 test
function suite, we can gain a deep understanding of the al-
gorithm’s search behavior characteristics across different
types of optimization problems. From the numerical opti-
mization results of the functions, it can be observed that
the algorithm exhibits strong exploration capabilities in the
early stages of optimization. As iterations progress, the ex-
ploration ratio gradually decreases while the exploitation
ratio steadily increases. This transition reflects the algo-
rithm’s ability to effectively shift from global search to local
refinement across various scenarios.

4 RELATED WORK

Over the past decades, optimization algorithms have evolved
significantly to address increasingly complex and high-
dimensional problems. We comprehensively review recent
advances in optimization algorithms, focusing particularly
on developments relevant to high-dimensional optimization
and emergent behavior.



4.1 EVOLUTION OF OPTIMIZATION
APPROACHES

Traditional mathematical optimization methods, including
Newton-Raphson [Newton, 1687] and gradient descent
[Cauchy, 1847], laid the foundation for optimization the-
ory. However, these methods often struggle with high-
dimensional, non-convex problems typical in modern appli-
cations. This limitation led to the development of population-
based metaheuristic methods.

Recent years have witnessed significant innovations in meta-
heuristic algorithms. The Grey Wolf Optimizer (GWO) [Mir-
jalili et al., 2014] demonstrated excellent performance by
simulating grey wolves’ social hierarchy and hunting behav-
ior. The Marine Predators Algorithm (MPA) [Faramarzi et
al., 2020] expanded optimization algorithm inspiration to
marine ecosystems, while the Political Optimizer [Askari et
al., 2020] drew insights from political processes.

4.2 EVOLUTIONARY COMPUTATION AND HIGH
DIMENSIONS

In evolutionary computation, significant progress has been
made in handling high-dimensional problems. The Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
[Hansen and Ostermeier, 2001] showed exceptional perfor-
mance in non-linear, non-convex optimization. Zhang et al.’s
Adaptive Differential Evolution (JADE) [Zhang and Sander-
son, 2009] improved convergence speed through adaptive
parameter control mechanisms.

However, as dimensionality increases, these algorithms face
significant challenges. The Success-History Based Adaptive
Differential Evolution (LSHADE) [Tanabe and Fukunaga,
2013] and Ensemble Evolution Algorithm (ES-CMA-ES)
[Awad et al., 2017] attempted to address these challenges
through adaptive parameter tuning and ensemble strategies,
yet still struggle with ultra-high dimensions.

4.3 EMERGENT BEHAVIOR IN OPTIMIZATION

The concept of emergence in optimization algorithms has
gained increasing attention. Studies by [Bar-Yam, 2004]
highlighted how complex system-level behaviors can arise
from simple local interactions. This perspective has influ-
enced recent algorithms like the Monarch Butterfly Opti-
mization (MBO) [Wang et al., 2019] and Harris Hawks
Optimization (HHO) [Heidari et al., 2019].

The introduction of coevolution concepts, pioneered by [Pot-
ter and De Jong, 2000]’s Cooperative Coevolutionary Al-
gorithm (CCGA), demonstrated the potential of decompos-
ing complex problems into interacting sub-problems. This
aligns with Holland’s observations about emergent behav-
iors in complex adaptive systems.

4.4 CURRENT CHALLENGES IN
HIGH-DIMENSIONAL OPTIMIZATION

Despite these advances, several key challenges remain:

The "curse of dimensionality" becomes particularly acute
beyond 100 dimensions, where most existing algorithms
show significant performance degradation. Recent studies by
highlight the persistent challenge of balancing exploration
and exploitation in high-dimensional spaces.

Computational efficiency remains a critical concern. While
algorithms like the Mayfly Optimization Algorithm (MOA)
[Zervoudakis and Tsafarakis, 2020] and Slime Mould Al-
gorithm (SMA) [Li et al., 2020] have made strides in this
direction, they still face scalability issues in ultra-high di-
mensions.

5 EXPERIMENTS

5.1 BASIC SETUP

All experiments were conducted using MATLAB R2020a
. For fair comparison, each algorithm was run 30 times in-
dependently. The basic parameters for CESO were set as:
population size N = 50, subsystem number M = 3, mem-
ory factor µ = 0.1, base adaptation rate α0 = 0.2, and base
interaction strength β0 = 0.7.

For comparison algorithms, we selected ten state-of-
the-art methods: Coati Optimization Algorithm (COA),
Subtraction-Average Based Optimization (SABO) [2023],
Love Evolution Algorithm (LEA) [Gao et al., 2024], Op-
tical Microscope Algorithm (OMA) [Cheng et al., 2023],
Aquila Optimizer (AO) [Abualigah et al., 2021], Dung bee-
tle optimizer (DBO) [Xue et al., 2022], Golden Jackal Op-
timizer (GJO) [Chopra et al., 2022], Whale Moth-Flame
Optimization (MFO) [Mirjalili, 2015], Optimization Algo-
rithm (WOA) [Mirjalili and Lewis, 2016], Newton-Raphson
Based Optimization (NRBO) [Sowmya et al., 2024], and
two other recent algorithms. All algorithms used their rec-
ommended parameter settings from their original papers.

5.2 CEC2017 BENCHMARK RESULTS

Due to space limitations, radar charts based on mean values
and computational time are presented to demonstrate the
superiority of the CESO algorithm

As showing in Figs. 3 and 4, the CESO algorithm exhibits
exceptional performance on the CEC2017 benchmark suite,
achieving top-ranking performance in 27 out of 30 test func-
tions and securing second place in two functions. Moreover,
it maintains one of the lowest computational costs among
all compared algorithms, highlighting its superior efficiency
in both solution quality and computational overhead.



Figure 3: Radar Chart of Algorithm Rankings Based on
Mean Performance

Figure 4: Radar Chart of Algorithm Rankings Based on
Average Runtime

5.3 OAM (ORBITAL ANGULAR MOMENTUM)
WAVE DEMULTIPLEXING SYSTEM

The manipulation and sorting of electromagnetic waves car-
rying different orbital angular momentum (OAM) states has
emerged as a crucial technology for increasing channel ca-
pacity in wireless communications. In this work, we present
a novel approach to demultiplex multiple OAM modes using
a system of cascaded phase-modulated metasurfaces, which
can effectively separate and focus different OAM states to
distinct spatial positions.

Our proposed system consists of four cascaded metasurface
layers operating at a wavelength of 12.5 mm, with each
layer discretized into a 50×50 grid with unit cell size of
3.5 mm. The incident OAM beams, characterized by their
topological charges l, are described by the complex field
distribution:

Ein(r, ϕ) = (
r

ω0
)|l|exp(− r2

ω2
0

)exp(ilϕ) (15)

where w0 represents the beam waist radius, and (r, ϕ) are
the polar coordinates.

The electromagnetic wave propagation between metasurface
layers is simulated using the angular spectrum method. The
field at a distance z can be calculated as[Liu et al., 2024]:

E(x, y, z) = F−1 {F {E(x, y, 0)} exp {ikzz}} (16)

where kz =
√

k20 − k2x − k2y is the z-component of the

wave vector, and F and F−1 denote the forward and inverse
Fourier transforms, respectively.

Each metasurface layer introduces a phase modulation
ϕ(x, y) to the incident field, modifying the complex field

amplitude according to[Jia et al., 2024]:

Eout(x, y) = Ein(x, y)exp(iϕ(x, y)) (17)

The optimization of the phase distributions is achieved using
the CESO algorithm with a population size of 100 and 1000
iterations. The objective function evaluates both the focus-
ing quality at designated target positions and the crosstalk
between different channels:

F = −
N∑

n=1

(

∫
ΩT
{En(x, y)}2 dxdy∫

all
[En(x, y)]

2
dxdy

−α
∫
ΩNT

[En(x, y)]
2
dxdy∫

all
[En(x, y)]

2
dxdy

)

(18)

The system architecture incorporates specific geometric pa-
rameters, with the source positioned 10 wavelengths from
the first metasurface layer, adjacent layers separated by 5
wavelengths, and the receiving plane located 20 wavelengths
from the final layer. This configuration ensures optimal wave
manipulation and mode separation.

Our numerical results demonstrate effective demultiplex-
ing of multiple OAM modes, with each mode being fo-
cused to its designated spatial position while maintaining
low crosstalk between channels. The system shows potential
for applications in high-capacity wireless communications
and optical information processing.

Figure 5: Electric Field Intensity Distribution at the Opti-
mized Receiving Plane.

As shown in Fig. 5, the CESO algorithm achieves excep-
tional OAM mode separation performance, with each mode
(l = -3 to 3) focused to distinct spatial positions. The inten-
sity distributions show well-defined focal spots with min-



imal crosstalk between channels, demonstrating effective
mode discrimination with low background noise.

Figure 6: Analysis of Multi-mode OAM Beam Stacking
Separation Effect

As shown in Fig. 6, the CESO-optimized system effectively
transforms the superimposed OAM beam (left) into seven
distinct focal spots (right). The normalized intensity pro-
file demonstrates clear separation of all OAM modes (l=-3
to l=3) with minimal crosstalk between adjacent channels,
where the central mode (l=0) achieves the highest focusing
quality. Upon passing through our optimized optical system,
this composite beam undergoes modal decomposition, re-
sulting in spatially separated focal points along the x-axis at
approximately 20mm intervals. This high-fidelity mode sep-
aration with intensity contrast ratios exceeding 5:1 between
peaks and valleys demonstrates the robustness of our CESO
optimization approach for complex wavefront engineering
tasks.

Figure 7: Phase Distribution and Intensity Profile at y=0
Optimized by CESO.

Figure 8: Phase Distribution and Intensity Profile at y=0
Optimized by PSO.

Figure 9: Phase Distribution and Intensity Profile at y=0
Optimized by WOA.

As shown in Figs. 7-9, significant differences in optimization
performance are observed among CESO, PSO, and WOA
algorithms. The CESO-optimized system demonstrates well-
structured phase distributions across all four layers, result-
ing in seven distinct peaks with normalized intensities ap-
proaching 1.0, indicating excellent OAM mode separation
and minimal crosstalk. In contrast, both PSO and WOA-
optimized systems show degraded performance with more
random phase distributions. The PSO result shows over-
lapping peaks with maximum intensity around 0.65, while
WOA exhibits chaotic intensity distributions with multiple
irregular peaks and substantial crosstalk, despite having
slightly more structured phase patterns than PSO. These
results clearly demonstrate CESO’s superior capability in
optimizing multilayer metasurface systems.

This comparative analysis clearly demonstrates CESO’s
superior capability in handling the ultra-high-dimensional
optimization problem (10,000 phase variables) compared to
traditional swarm intelligence algorithms like PSO. CESO’s



enhanced exploration and exploitation mechanisms enable
it to effectively optimize complex electromagnetic systems,
making it particularly suitable for large-scale metasurface
design problems where traditional algorithms struggle to
converge to optimal solutions.

6 CONCLUSIONS AND FUTURE
STUDIES

This paper presents CESO , a novel optimization algorithm
specifically designed to address ultra-high-dimensional opti-
mization challenges. Experimental results on the CEC2017
benchmark suite demonstrate CESO’s exceptional perfor-
mance, achieving top rankings in 27 out of 30 test functions
while maintaining competitive computational efficiency.
CESO’s practical effectiveness has been validated through
the challenging real-world application in electromagnetic
wave manipulation. CESO successfully optimized a com-
plex system of 10,000 phase variables, in the OAM wave
demultiplexing system, achieving clear separation and high
focusing quality for seven different OAM modes. Future
research directions could be extension of the current frame-
work to handle dynamic and multi-objective optimization
problems, particularly in the context of real-time adaptive
metasurface control.

Acknowledgements

This work was supported in part by National Natural Science
Foundation of China under Grant 62301262,China Postdoc-
toral Science Foundation under Grant 2022M720063,the
Natural Science Foundation of Jiangsu Province of China
under Grant BK20220440.

References

Seyedali Mirjalili Ali Asghar Heidari and Hossam Faris.
Harris Hawks Optimization: Algorithm and Applications.
Future Generation Computer Systems, 97:849–872, 2019.

Qasem Askari, Mohamed Saeed, and Irfan Younas. Po-
litical optimizer: A novel socio-inspired meta-heuristic
for global optimization. Knowledge-Based Systems, 195:
105709, 2020.

Noor H. Awad, Mostafa Z. Ali, and Ponnuthurai N. Sug-
anthan. Ensemble sinusoidal differential covariance ma-
trix adaptation with Euclidean neighborhood for solving
CEC2017 benchmark problems. In IEEE Congress on
Evolutionary Computation, pages 372–379, 2017.

Yaneer Bar-Yam. Making Things Work: Solving Complex
Problems in a Complex World. Knowledge Press, 2004.

Richard Bellman. The theory of dynamic programming.
Bulletin of the American Mathematical Society, 60(6):
503–515, 1954.

Richard Bellman. Dynamic Programming. Science, 153:
34–37, 1966.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimiza-
tion methods for large-scale machine learning. SIAM
Review, 60(2):223–311, 2018.

Charles G. Broyden. The Convergence of a Class of Double-
rank Minimization Algorithms: 2. The New Algorithm.
Journal of the Institute of Mathematics and Its Applica-
tions, 6(3):222–231, 1970.

Augustin-Louis Cauchy. Méthode générale pour la réso-
lution des systèmes d’équations simultanées. Comptes
Rendus Hebdomadaires des Séances de l’Académie des
Sciences, 25:536–538, 1847.

Min-Yuan Cheng and Moh Nur Sholeh. Optical Micro-
scope Algorithm: A New Metaheuristic Inspired by Mi-
croscope Magnification for Solving Engineering Opti-
mization Problems. Knowledge-Based Systems, 279:
110939, 2023.

Nitish Chopra and Muhammad Mohsin Ansari. Golden
Jackal Optimization: A Novel Nature-Inspired Optimizer
for Engineering Applications. Expert Systems with Appli-
cations, 198:116924, 2022.

George B. Dantzig. Maximization of a linear function of
variables subject to linear inequalities. Activity Analysis
of Production and Allocation, 13:339–347, 1947.

George B. Dantzig. Linear Programming and Extensions.
Princeton University Press, 1963.

Mohammad Dehghani, Zeinab Montazeri, Eva Trojovska,
and Pavel Trojovsky. Coati Optimization Algorithm: A
new bio-inspired metaheuristic algorithm for solving op-
timization problems. Knowledge-Based Systems, 259:
110011, 2023.

Paul R. Ehrlich and Peter H. Raven. Butterflies and plants:
A study in coevolution. Evolution, 18(4):586–608, 1964.

Afshin Faramarzi, Mohammad Heidarinejad, Seyedali Mir-
jalili, and Amir H. Gandomi. Marine predators algorithm:
A nature-inspired metaheuristic. Expert Systems with
Applications, 152:113377, 2020.

Jerome H. Friedman. On bias, variance, 0/1-loss, and the
curse-of-dimensionality. Data Mining and Knowledge
Discovery, 1(1):55–77, 1997.

Suash Deb Gai-Ge Wang and Zhihua Cui. Monarch Butter-
fly Optimization. Neural Computing and Applications,
31:1995–2014, 2019.



Jeffrey Goldstein. Emergence as a construct: History and
issues. Emergence, 1(1):49–72, 1999.

Nikolaus Hansen and Andreas Ostermeier. Completely de-
randomized self-adaptation in evolution strategies. Evo-
lutionary Computation, 9(2):159–195, 2001.

Jun He and Xinghuo Yu. Conditions for the convergence of
evolutionary algorithms. Journal of Systems Architecture,
47(7):601–612, 2001.

John H. Holland. Complex adaptive systems. Daedalus,
121(1):17–30, 1995.

Kashif Hussain, Mohd Najib Mohd Salleh, and Shi Cheng.
Metaheuristic research: a comprehensive survey. Artifi-
cial Intelligence Review, 52:2191–2233, 2019.

John R. Koza. Hidden Order: How Adaptation Builds Com-
plexity. Artificial Life, 2(3):333–335, 1995.

Nguyen Kwok. Modeling Emergent Behavior for Large-
Scale Optimization Problems. International Journal of
Swarm Intelligence and Evolutionary Computation, 13
(5):394, 2024.

Mohamed Abd Elaziz Ahmed A. Ewees Mohammed A.A.
Al-qaness Laith Abualigah, Dalia Yousri and Amir H.
Gandomi. Aquila Optimizer: A Novel Meta-Heuristic
Optimization Algorithm. Computers & Industrial Engi-
neering, 157:107250, 2021.

Seyedali Mirjalili. Moth-Flame Optimization Algorithm: A
Novel Nature-Inspired Heuristic Paradigm. Knowledge-
Based Systems, 89:228–249, 2015.

Seyedali Mirjalili and Andrew Lewis. The whale optimiza-
tion algorithm. Advances in Engineering Software, 95:
51–67, 2016.

Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew
Lewis. Grey wolf optimizer. Advances in Engineering
Software, 69:46–61, 2014.

Yurii Nesterov. Lectures on convex optimization. Springer,
2018.

Isaac Newton. Philosophiæ Naturalis Principia Mathemat-
ica. Royal Society, 1687.

Mitchell A. Potter and Kenneth A. De Jong. A cooperative
coevolutionary approach to function optimization. In
Parallel Problem Solving from Nature, volume 866, pages
249–257, 1994.

Mitchell A. Potter and Kenneth A. De Jong. Cooperative
Coevolution: An Architecture for Evolving Coadapted
Subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

Manoharan Premkumar Ravichandran Sowmya and Pradeep
Jangir. Newton-Raphson-Based Optimizer: A New
Population-Based Metaheuristic Algorithm for Continu-
ous Optimization Problems. Engineering Applications of
Artificial Intelligence, 128:107532, 2024.

Huiling Chen Shimin Li and Mingjing Wang. Slime Mould
Algorithm: A New Method for Stochastic Optimiza-
tion. Future Generation Computer Systems, 111:300–323,
2020.

Francisco J. Solis and Roger J-B. Wets. Minimization by
random search techniques. Mathematics of Operations
Research, 6(1):19–30, 1981.

Ryoji Tanabe and Alex S. Fukunaga. Success-history based
parameter adaptation for differential evolution. In IEEE
Congress on Evolutionary Computation, pages 71–78,
2013.

Xiang Wan Jie Zhao Tie Jun Cui, Mei Qing Qi and Qiang
Cheng. Coding Metamaterials, Digital Metamaterials and
Programmable Metamaterials. Light: Science & Applica-
tions, 3:e218, 2014.

Pavel Trojovsky and Mohammad Dehghani. Subtraction-
Average-Based Optimizer: A New Swarm-Inspired Meta-
heuristic Algorithm for Solving Optimization Problems.
Biomimetics, 8(2):149, 2023.

Jiankai Xue and Bo Shen. Dung Beetle Optimizer: A New
Meta-Heuristic Algorithm for Global Optimization. The
Journal of Supercomputing, 79(7):7305–7336, 2022.

Yulin Wang Jinpeng Wang Yuansheng Gao, Jiahui Zhang
and Lang Qin. Love Evolution Algorithm: A Stimulus-
Value-Role Theory-Inspired Evolutionary Algorithm for
Global Optimization. The Journal of Supercomputing, 80
(9):12346–12407, 2024.

Zhixiang Fan Bei Wu Fengzhong Qu Min-Jian Zhao-
Chao Qian Yuetian Jia, Huan Lu and Hongsheng Chen.
High-Efficiency Transmissive Tunable Metasurfaces for
Binary Cascaded Diffractive Layers. IEEE Transactions
on Antennas and Propagation, 72(5):4532–4540, 2024.

Xinke Wang Yufei Liu, Weizhu Chen and Yan Zhang. All Di-
electric Metasurface Based Diffractive Neural Networks
for 1-Bit Adder. Nanophotonics, 13(8):1449–1458, 2024.

Konstantinos Zervoudakis and Stelios Tsafarakis. A Mayfly
Optimization Algorithm. Computers & Industrial Engi-
neering, 145:106559, 2020.

Jingqiao Zhang and Arthur C. Sanderson. JADE: Adaptive
differential evolution with optional external archive. IEEE
Transactions on Evolutionary Computation, 13(5):945–
958, 2009.



Jingzhao Zhang, Tianxing He, and Suvrit Sra. Why gradient
clipping accelerates training: A theoretical justification
for adaptivity. In International Conference on Learning
Representations, 2019.

Qixian Zhang, Duoqian Miao, Qi Zhang, Changwei Wang,
Yanping Li, Hongyun Zhang, and Cairong Zhao. Learn-
ing adaptive shift and task decoupling for discriminative
one-step person search. Knowledge-Based Systems, 304:
112483, 2024.



Coevolutionary Emergent Systems Optimization with Application
to Ultra-High-Dimensional Metasurface Design: OAM Wave

Manipulation
Supplementary Material

Zhengxuan Jiang1, Guowen Ding1,2, Wen Jiang1

1 Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
2 Nanjing University, Nanjing, Jiangsu, China

This Supplementary Material should be submitted together with the main paper.

A CONVERGENCE ANALYSIS

The convergence properties of CESO can be established through a rigorous analysis of its Markov chain characteristics
and the interaction between its multiple subsystems [He and Yu, 2001]. We begin by establishing the global convergence
property for continuous optimization problems in bounded search spaces.

For a continuous objective function f : S → R and bounded search space S ⊂ RD, CESO converges to the global optimum
x∗ with probability 1 as T →∞ [Solis and Wets, 1981]. This convergence guarantee can be formally stated as:

P (limt→∞||xt − x∗|| = 0) = 1 (19)

The convergence of CESO is supported by three fundamental properties. First, the algorithm maintains a positive probability
of exploring any region around the global optimum, which can be expressed as:

P (||xnew − x∗|| < ε) > 0, ε > 0 (20)

This exploration property is ensured by the adaptive exploration component that injects Gaussian noise scaled by γ(t).Second,
the memory archive M implements a monotonic improvement mechanism, guaranteeing that:

f(Mt + 1) ≤ f(Mt) (21)

Third, each subsystem demonstrates consistent improvement in expected fitness, formalized as:

E

[
min
iεsk

f(xi, t+ 1)

]
≤ E

[
min
iεsk

f(xi, t)

]
(22)

B SEARCH DYNAMICS

The population diversity measure D(t) plays a crucial role in understanding the search dynamics of CESO. The evolution of
diversity follows a comprehensive equation that captures three key components:

D(t+ 1) = D(t)(1− α(t)) + β(t)Dinter(t) + γ(t)Dexplore(t) (23)

In this equation, α(t) governs the decay of existing diversity, preventing premature convergence while allowing for exploitation
of promising regions. The term β(t)Dinter(t) quantifies the diversity contribution from inter-subsystem interactions, facilitating
information exchange between different subsystems. The final term γ(t)Dexplore(t) represents the diversity introduced
through explorative actions, ensuring the algorithm maintains its ability to escape local optima.



Figure 10: Population Diversity Analysis under Different Parameter Settings.

As shown in Fig. 10,the evolution of population diversity D(t) reveals distinct behaviors under three parameter configurations.
With α0=0.2 and β0=0.7, the algorithm shows strong initial exploration, reaching a peak diversity of 1.2 before gradually
transitioning to exploitation. The setting of α0=0.3, β0=0.6 exhibits moderate diversity decay, while α0=0.4, β0=0.5 shows
the most rapid diversity reduction. These results indicate that lower α0 values combined with higher β0 values effectively
maintain population diversity and achieve better balance between exploration and exploitation throughout the optimization
process.

C PERFORMANCE BOUNDS

For objective functions exhibiting Lipschitz continuous gradients with constant L[Nesterov, 2018], we can establish rigorous
performance bounds for CESO. The Lipschitz condition ensures that the gradient changes smoothly across the search space:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (24)

Building on this foundation, we can derive bounds for the expected improvement in each iteration[Bottou et al., 2018]:

E [f(Xt)− f(Xt+1)] ≥ η(t)∥∇f(Xt)∥2 (25)

where the effective learning rate η(t) is defined as:

η(t) = α(t)(1− β(t)

2
− γ(t)

2
) (26)

This learning rate adapts throughout the optimization process, balancing the need for exploration in early stages with focused
exploitation in later stages.



Figure 11: Analysis of Learning Rate and Convergence Value.

As shown in Fig. 11,the experimental results demonstrate a strong correlation between the adaptive learning rate η(t)
and the optimization performance of CESO algorithm, as illustrated using the 21st function from CEC2017 benchmark
suite. The learning rate gradually decreases from 0.11 to 0.05 over 1000 iterations, while the objective value exhibits a
three-phase convergence pattern: rapid initial descent, steady optimization, and final fine-tuning. This synchronized evolution
between learning rate and optimization progress indicates that the adaptive mechanism effectively balances exploration and
exploitation, leading to robust performance on this challenging composition function.

D MEMORY UTILIZATION AND SUBSYSTEM DYNAMICS

The memory archive in CESO serves as a repository of high-quality solutions, with its utilization probability bounded by:

Pmem(t) ≥ µ(1− exp(−|M |/D)) (27)

This bound demonstrates how the memory mechanism becomes increasingly effective as the archive size |M| grows relative
to the problem dimension D.

The interaction between subsystems is characterized by the interaction matrix Q(t), where each element represents the
transition probability between subsystems:

Qij(t) = P (Xnew ∈ Si|X ∈ Sj) (28)

The mixing time of the subsystem interaction process, denoted as τmix , is bounded by:

τmix ≤ O

(
log(N)

λ2

)
(29)

where λ2 represents the second largest eigenvalue of Q(t). This bound provides insights into how quickly information
propagates between subsystems.



Figure 12: Interaction Matrix between Subsystems.

As Fig. 12 showing,the evolution of the subsystem interaction matrix Q(t) demonstrates the dynamic cooperative behavior
of CESO algorithm on CEC2017 F21 function. Initially starting with zero interactions, the matrix rapidly develops balanced
interaction probabilities around 0.5 by T/4, which is designed to ensure optimal information exchange between subsystems.
This balanced state near 0.5 continues throughout the optimization process with subtle adaptations, such as the slight
increase in interaction from subsystem 1 to 3 (0.5013 to 0.5016) and decrease from subsystem 2 to 3 (0.4935 to 0.4889),
reflecting fine-tuned search strategy adjustments. The the near-0.5 off-diagonal values enable effective information sharing,
collectively contributing to the algorithm’s robust performance on this complex function.

E INTEGRATED ANALYSIS

These theoretical results collectively establish CESO’s robustness and efficiency in high-dimensional optimization scenarios.
The algorithm achieves its performance through a carefully balanced interplay between subsystem evolution, memory-
based learning, and adaptive exploration. The adaptive parameter system ensures a smooth transition from exploration to
exploitation, while the memory mechanism preserves and utilizes high-quality solutions effectively.

The theoretical framework developed here not only provides guarantees for CESO’s convergence but also offers insights into
the roles of various components. The interaction between subsystems promotes information exchange while maintaining
diversity, the memory archive ensures consistent improvement, and the adaptive parameters facilitate efficient navigation of
the search space. These mechanisms work in concert to create a robust optimization algorithm capable of handling complex
fitness landscapes while maintaining computational tractability.

F IMPLEMENTATION DETAILS

The implementation of CESO requires careful consideration of several practical aspects to ensure efficient operation. The
algorithm maintains a balance between computational efficiency and solution quality through several key mechanisms:

Memory Management: The memory archive is implemented as a circular buffer to maintain O(1) update complexity.

Subsystem Organization: Subsystems are managed using dynamic indexing to avoid explicit data copying:

Sk = {i | ⌊i ·M/N⌋ = k}, k = 0, . . . ,M − 1 (30)

Boundary Handling: Solution components are constrained to the feasible region using the following mechanism:

xij = min(max(xij , lbj), ubj) (31)

where xij represents the j-th component of the i-th solution.



G COMPARISON WITH GENETIC ISLAND MODELS

G.1 RELATIONSHIP TO GENETIC ISLAND MODELS

While CESO shares conceptual foundations with genetic island models through the use of multiple sub-populations and inter-
population information exchange, several fundamental differences distinguish our approach from traditional island-based
evolutionary algorithms.

CESO employs fitness-based competitive selection for intra-subsystem learning rather than the standard genetic operators
typically used in island models. Our adaptive parameter system dynamically adjusts the interaction intensity between
subsystems through Equations 3-5, contrasting with island models that typically rely on fixed migration rates. Additionally,
CESO’s emergent behavior mechanism facilitates more complex and nuanced information exchange patterns that extend
beyond the simple individual migration strategies employed in conventional island models.

G.2 COMPARATIVE PERFORMANCE ANALYSIS

To provide a direct comparison with island-based approaches, we implemented an island model variant using CESO’s core
optimization mechanisms while replacing the memory archive with a periodic migration strategy. This variant employed a
ring topology structure with fixed generation intervals for exchanging elite individuals between islands.

Table 1: Comparison of CESO Memory Mechanism vs. Island Model Variants.

Algorithm Strategy Average Solution Quality

CESO Memory (0.2N) 7.92E+04
Island Model (M5) 2.23E+05
Island Model (M10) 2.53E+05
Island Model (M20) 3.41E+05

The experimental results demonstrate CESO’s significant superiority over island-based approaches. The CESO memory
mechanism with 0.2N configuration achieved substantially better performance than all island model variants. This perfor-
mance advantage stems from CESO’s dynamic adaptation capabilities through probabilistic memory access, which provides
more flexible information utilization patterns compared to the strictly periodic migration of island models. The continuous
maintenance of global optimal solutions in CESO’s memory archive ensures that historically excellent solutions remain
available for future guidance, while the non-destructive learning mechanism preserves beneficial solution characteristics
during knowledge transfer.

H COMPUTATIONAL COST ANALYSIS

H.1 OVERHEAD DISTRIBUTION AND PERFORMANCE IMPACT

Our comprehensive computational cost analysis was conducted on representative CEC2017 benchmark functions (F1, F7,
F16, and F26) as well as the 10,000-dimensional OAM wave multiplexing problem. Using a population size of 100 and
1,000 iterations, we systematically evaluated the computational overhead introduced by each CESO component.

Table 2: CESO Component-wise Computational Overhead Analysis.

Component Time (s) Percentage

Initialization 1.017 0.102%
Intra-subsystem Learning 6.360 0.640%
Inter-subsystem Interaction 3.380 0.340%
Memory-based Learning 0.537 0.054%
Adaptive Exploration 15.120 1.521%
Function Evaluation 967.213 97.341%



Function evaluation constitutes the dominant computational cost, accounting for 97.341% of total execution time. This
finding aligns with established patterns in evolutionary optimization where problem-specific function evaluations represent
the primary computational bottleneck. Among CESO’s algorithmic components, adaptive exploration requires the highest
overhead at 1.521% of total time, while the remaining components contribute minimally to overall computational burden.

H.2 COMPARATIVE PERFORMANCE EFFICIENCY

When compared against baseline optimization algorithms on the OAM wave multiplexing problem, CESO demonstrates
superior computational efficiency across all tested algorithms.

Table 3: Algorithm Performance Efficiency Comparison on OAM Wave Multiplexing Problem.

Algorithm Avg Iteration Time (s) Percentage Increase vs CESO

CESO 0.452 0% (baseline)
PSO 0.475 5.088%
DE 0.514 13.716%
WOA 0.487 7.743%
GWO 0.493 9.070%

CESO achieved the lowest average iteration time of 0.452 seconds, representing significant efficiency improvements over all
comparison algorithms. This computational efficiency advantage becomes increasingly significant as problem dimensionality
and complexity increase. The relative impact of CESO’s additional mechanisms diminishes with problem scale, making the
algorithm particularly well-suited for ultra-high-dimensional optimization tasks where solution quality improvements far
outweigh the minimal computational overhead.

I MEMORY ARCHIVE MECHANISM ANALYSIS

I.1 MEMORY SIZE OPTIMIZATION

Our systematic analysis of memory archive size sensitivity reveals a counterintuitive relationship between memory capacity
and algorithm performance. Testing memory sizes ranging from 0.1N to 0.4N on the CEC2017 function set demonstrates
that smaller memory archives actually provide superior performance.

Table 4: Memory Archive Size Sensitivity Analysis.

Memory Size Average Solution Quality

0.1N 6.74E+04
0.2N 7.92E+04
0.3N 7.43E+04
0.4N 8.77E+04

The 0.1N configuration achieved the best average solution quality, contradicting the initial expectation that larger memory
capacity would yield better performance. This phenomenon occurs because smaller memory capacity creates stronger
selection pressure, ensuring that only the highest quality solutions enter the archive. The resulting learning process operates
exclusively on truly exceptional examples, thereby improving learning efficiency. Additionally, smaller memory archives
exhibit higher update frequencies, with average element lifespans of 32.7 generations for 0.1N configurations compared
to 146.2 generations for 0.4N configurations, enabling more rapid adaptation to dynamic changes throughout the search
process.

I.2 MEMORY MECHANISM DESIGN AND IMPLEMENTATION

The memory archive implementation utilizes a fixed-size solution pool ranging from 0.1N to 0.2N elements, with each solu-
tion completely preserved alongside its corresponding fitness value. The archive employs a fitness-based worst replacement



strategy, ensuring that newly discovered global optimal solutions replace the poorest performing archived solutions. This
approach maintains the highest quality solution set discovered throughout the population’s evolutionary history.

Memory learning occurs through probabilistic access with a fixed probability µ = 0.1, providing balanced integration without
overwhelming the primary search mechanisms. Rather than simple copying, the learning process employs vector movement
operations of the form Xnew = Xnew + rand× (memory_solution−Xnew), which moves current solutions toward archived
solutions while preserving beneficial original characteristics. This approach proves particularly effective for knowledge
transfer in high-dimensional optimization spaces.

I.3 TEMPORAL IMPACT AND CONTRIBUTION ANALYSIS

The memory mechanism’s contribution evolves significantly throughout the optimization process, demonstrating adaptive
behavior that aligns with search progression. During the initial 20% of iterations, memory-based improvements account
for only 3.7% of total enhancements. However, this contribution increases substantially to 17.5% during the final 20% of
iterations, indicating the mechanism’s increasing importance as the search converges toward optimal regions.

Despite the seemingly modest overall contribution rate, removing the memory mechanism results in performance degradation
of 22-35%, demonstrating that the mechanism’s value extends far beyond simple contribution metrics. The memory
archive provides critical guidance during later search phases when exploitation becomes increasingly important relative to
exploration.

J ABLATION STUDY AND COMPONENT ANALYSIS

J.1 COMPONENT CONTRIBUTION ASSESSMENT

Through our novel improvement source tracking methodology, we systematically recorded intermediate solutions and fitness
changes during each improvement stage to precisely distinguish the contributions of different algorithmic components.

Table 5: CESO Component Contribution Assessment.

Improvement Source Improvement Percentage Average Improvement Quality

Intra-subsystem Learning 51.20% 4.60E+09
Inter-subsystem Interaction 40.50% 1.84E+09
Memory-based Learning 8.30% 2.25E+08

This analysis reveals that intra-subsystem learning contributes the majority of solution improvements at 51.20%, while inter-
subsystem interaction accounts for 40.50% of enhancements. The memory-based learning mechanism, while contributing
only 8.30% of improvements, demonstrates outsized impact on overall algorithm performance. This apparent discrepancy
reflects the precision-oriented nature of the memory mechanism, which provides targeted improvements rather than frequent
interventions. The mechanism’s design philosophy emphasizes strategic guidance rather than continuous modification,
aligning with the memory access probability setting of µ = 0.1.

J.2 SUBSYSTEM CONFIGURATION SENSITIVITY

Our investigation into subsystem number sensitivity reveals complex interactions between population subdivision and
problem dimensionality. Testing configurations with varying numbers of layers (L) and subsystems (M) across different
dimensional problems demonstrates non-linear relationships between these parameters and optimization performance.

Note: In this optimization problem, fitness values are negative, with larger absolute values indicating better performance.

For the 5,000-dimensional problem, the L2-M5 configuration achieved optimal performance. However, as dimensionality
increased to 7,500 dimensions, the L3-M4 configuration proved superior. Most notably, for the 10,000-dimensional case,
the L4-M3 configuration achieved the best result, suggesting that higher dimensional problems benefit from fewer, more
resource-concentrated subsystems.



Table 6: Subsystem Configuration Sensitivity Analysis.

Configuration Average Fitness Value Problem Dimension

L2-M3 (2 layers, 3 subsystems) -1.57067491 5,000
L2-M4 (2 layers, 4 subsystems) -1.56073315 5,000
L2-M5 (2 layers, 5 subsystems) -1.60597450 5,000
L3-M3 (3 layers, 3 subsystems) -1.66410895 7,500
L3-M4 (3 layers, 4 subsystems) -1.75102523 7,500
L3-M5 (3 layers, 5 subsystems) -1.72312346 7,500
L4-M3 (4 layers, 3 subsystems) -1.77185054 10,000
L4-M4 (4 layers, 4 subsystems) -1.74283489 10,000
L4-M5 (4 layers, 5 subsystems) -1.73061722 10,000

This dimensional scaling behavior indicates that ultra-high-dimensional problems require sufficient population concentration
within each subsystem to effectively explore vast search spaces. Excessive subdivision across too many subsystems may
dilute search effectiveness, preventing the formation of adequate collective intelligence in complex high-dimensional
landscapes. The experimental validation confirms the rationality of selecting M=3 as the default configuration for our
10,000-dimensional OAM wave multiplexing application.

K EXPERIMENTAL IMPLEMENTATION DETAILS

K.1 ALGORITHM IMPLEMENTATION AND FAIRNESS

All ten comparison metaheuristic algorithms were implemented using parameters and configurations from their original
published studies to ensure fair comparison. No parameter adjustments were made to any baseline algorithms, maintaining
the integrity of comparative evaluation. The OAM wave multiplexing experiments utilized 10 independent runs to assess
performance stability and statistical significance.

CESO demonstrated consistent performance across all experimental runs, with stable convergence behavior and reproducible
solution quality. Additional validation through switchable logic gate optimization via metasurface design further confirmed
algorithm stability and effectiveness across different application domains, with results to be included in the supplementary
materials of the final version.

K.2 PARAMETER SENSITIVITY AND TUNING

The nonlinear regulation of α and β parameters demonstrates significant impact on algorithm performance and overall
system plasticity. Current parameter selections represent optimal choices derived from systematic parameter comparison
studies. The α parameter controls the intensity of intra-subsystem competitive learning, while β governs the strength of
inter-subsystem interactions. These parameters work synergistically with the adaptive exploration mechanism to maintain
appropriate balance between exploitation and exploration throughout the optimization process.
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