
High-Order Flow Matching:
Unified Framework and Sharp Statistical Rates

Maojiang Su∗† Jerry Yao-Chieh Hu∗† Yi-Chen Lee∗‡ Ning Zhu§ Jui-Hui Chung♯

Shang Wu† Zhao Song♮ Minshuo Chen† Han Liu†

†Northwestern University ‡National Taiwan University §University of Glasgow ♯Princeton University
♮Simon Institute of Computing, UC Berkeley

{smj,jhu,shangwu2028}@u.northwestern.edu, b10202055@ntu.edu.tw
zhuning0519@gmail.com, juihui@princeton.edu, {minshuo.chen, hanliu}@northwestern.edu

Abstract
Flow matching is an emerging generative modeling framework that learns
continuous-time dynamics to map noise into data. To enhance expressiveness
and sampling efficiency, recent works have explored incorporating high-order tra-
jectory information. Despite the empirical success, a holistic theoretical foundation
is still lacking. We present a unified framework for standard and high-order flow
matching that incorporates trajectory derivatives up to an arbitrary order K. Our
key innovation is establishing the marginalization technique that converts the in-
tractable K-order loss into a simple conditional regression with exact gradients
and identifying the consistency constraint. We establish sharp statistical rates of
the K-order flow matching implemented with transformer networks. With n sam-
ples, flow matching estimates nonparametric distributions at a rate Õ(n−Θ(1/d)),
matching minimax lower bounds up to logarithmic factors.

1 Introduction

We present a unified theoretical framework and establish sharp statistical rates for standard and variant
flow-matching generative models with high-order velocity fields. A rigorous theoretical understanding
of such models is crucial in the current era of rapidly advancing generative AI. Flow-based generative
models, particularly those employing Flow Matching (FM) principles [Lipman et al., 2022, Liu et al.,
2022], have emerged as a powerful class of methods, achieving state-of-the-art performance across
diverse domains such as image, speech, and video generation [Esser et al., 2024, Le et al., 2023,
Polyak et al., 2024]. Standard flow matching has focused on learning first-order trajectory dynamics
by matching the instantaneous velocity field [Lipman et al., 2022, Liu et al., 2022, Lipman et al.,
2024, Gat et al., 2024, Chen and Lipman, 2023].

However, there is a growing interest in leveraging richer dynamical information, such as high-order
time derivatives of the trajectory, with the intuition that this could lead to more expressive models,
smoother generation paths, improved physical plausibility, or more efficient sampling strategies. This
trend is evident in recent empirical works. For instance, High-Order Matching for One-Step Shortcut
Diffusion (HOMO) [Chen et al., 2025] and Force Matching (ForM) [Cao et al., 2025] have shown
that supervising on acceleration and jerk leads to improved smoothness, stability, and precision in
generative tasks, particularly in high-curvature regions where first-order methods falter.
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Despite these promising empirical explorations into high-order dynamics, there lacks a comprehensive
theoretical framework that incorporates derivatives up to an arbitrary orderK. Rigorous understanding
of its statistical properties is also missing. This paper addresses these gaps by introducing High-
Order Flow Matching, a generalized theoretical framework for flow-based generative modeling.
Specifically, High-Order Flow Matching defines a K-order velocity field ft. This field is constructed
by concatenating K individual d-dimensional column vector fields u1, . . . , uK . Each uk component
is designed to capture aspects of the flow dynamics, with u1 representing the primary velocity and
uk (with k > 1) capturing higher-order temporal information of an underlying flow. To complete
the theoretical foundation of High-Order Flow Matching, we analyze its statistical rates when
implemented with transformers [Vaswani et al., 2017] to align with modern developments in practice.

Contributions. Our contributions are two-fold:

• High-Order Flow Matching: A Unified Theoretical Framework. We present a unified frame-
work for Flow Matching models. We first introduce the flow ODEs of any order (Definition 3.1)
and the mass conservation formula (Theorem 3.2). A key technical innovation is the high-order
marginalization technique (Theorem 3.3). This approach, incorporating a consistency constraint,
leads to a tractable loss for K-order flow matching (Theorem 3.4). We then prove that High-Order
Flow Matching subsumes standard first-order Flow Matching (when K = 1, Proposition 3.1)
and provides a unified theoretical foundation for understanding emerging high-order flow model
approaches. For example, the objective in HOMO [Chen et al., 2025], which target velocity and
acceleration, are instantiated by High-Order Flow Matching for K = 2.

• Statistical Rates for High-Order Flow Matching with Transformers. We provide the first
rigorous statistical analysis of the High-Order Flow Matching framework when implemented with
transformer architectures. We establish sharp approximation rates for transformers learning the
K velocity components u1, . . . uK (Theorem 4.1), derive corresponding estimation error rates
(Theorem 4.2), and further provide end-to-end distribution estimation rates under the 2-Wasserstein
metric (Theorem 4.3). In addition, we show that these rates are nearly minimax optimal up to
logarithmic factors (Theorem 4.4). Importantly, our rates match the established near-minimax
optimal rates of standard flow matching [Jiao et al., 2024, Fukumizu et al., 2024].

Organization. Section 2 reviews preliminary concepts about standard flow matching. Section 3
details the High-Order Flow Matching framework, its properties, and its connections to existing
methods. Section 4 presents statistical results. Section 5 summarizes our work and discusses the
implications of our findings. The appendix includes the supplementary theoretical backgrounds
(Appendix B), the detailed proofs of the main text (Appendices C to G), the statistical rates for
standard first-order flow matching transformers (Appendix I) and its proof (Appendices J to N).

Notation. We denote the index set {1, . . . , I} by [I]. Let x[i] denote the i-th component of a vector
x. Let Z denote integers and Z+ denote positive integers. Given random variables X and Y with
marginal densities µx and µy respectively, we denote the 2-Wasserstein distance between µx and µy

by W2(µx, µy). Given a matrix Z ∈ Rd×L, ∥Z∥2 and ∥Z∥F denote the 2-norm and the Frobenius
norm. Let uk ∈ Rd be column vectors for k ∈ [K], we denote col(u1, . . . , uK) ∈ Rkd as the vertical
concatenation of u1, . . . , uK . Let Div · be the divergence operator.

2 Preliminaries
In this section, we provide a high-level overview of the Flow Model and Flow Matching (FM).

Flow Model. The flow model transforms X0 = x0 from a source distribution P (e.g., the Gaussian
distribution) into samples X1 = x1 from a target distribution Q. A flow ψ : [0, 1] × Rd → Rd is a
time-dependent mapping implementing ψ : (t, x) 7→ ψt(x). The flow model is a continuous-time
Markov process (Xt)0≤t≤1 defined by applying a flow ψt to the random variable X0 ∼ P :

Xt = ψt(X0), t ∈ [0, 1].

On the other hand, a time-dependent velocity field u : [0, 1]×Rd → Rd implementing u : (t, x) 7→ ut

defines a unique flow ψ via the following ordinary differential equation (ODE):

dψt

dt = ut(ψt(x)) with initial condition ψ0(x) = x. (2.1)
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Given a flow ψt, the marginal probability density function (PDF) of flow modelXt = ψt(X0) ∼ pt is
a continuous-time probability path (pt)0≤t≤1. The probability path pt follows push-forward equation:

pt(x) = [ψt]∗p0(x) := p0(ψ−1
t (x)) ·

∣∣∣∣det
[
∂ψ−1

t

∂x

]∣∣∣∣. (2.2)

Further, by the equivalence of flows and velocity fields [Lipman et al., 2024], given invertible C1

diffeomorphism ψt, there exists a unique smooth conditional velocity field ut taking form:

ut(x) = ψ̇t(ψ−1
t (x)), with ψ̇t = d

dtψt. (2.3)

For an arbitrary probability path pt, we define a velocity field ut that generates pt if its flow ψt

satisfies (2.2). Continuous Normalizing Flow [Chen et al., 2018] models the velocity field ut with a
neural network uθ. Once we obtain a well-trained uθ, we generate samples from solving ODE (2.1).

Flow Matching. Instead of training flow model by maximizing the log-likelihood of training data
[Chen et al., 2018], flow matching [Lipman et al., 2022] is a simulation-free framework to train flow
generative models without the need of solving ODEs during training. The Flow Matching objective
is designed to match the probability path (pt)0≤t≤1, which allows us to flow from source p0 = P to
target p1 = Q. Suppose ut generates such probability path pt, the flow matching loss is

LFM(θ) = E
t,Xt∼pt

[∥uθ(Xt, t) − ut(Xt)∥2
2], (2.4)

where t ∼ U [0, 1], uθ is a neural network with parameter θ. Flow Matching simplifies the problem
of designing a probability path pt and its corresponding velocity field ut by adopting a conditional
strategy. Formally, conditioning on any arbitrary random vector Z ∈ Rm with PDF pZ , the marginal
probability path pt satisfies

pt(x) =
∫
pt(x|z)pZ(z)dz. (2.5)

Suppose conditional velocity field ut(x|z) generates pt(x|z), Lipman et al. [2022] show that following
marginal velocity field ut generates marginal probability path pt under mild assumptions:

ut(x) :=
∫
ut(x|z)pZ|t(z|x)dz with pZ|t(z|x) = pt(x|z)pZ(z)

pt(x) , (2.6)

where the second equation follows from the Bayes’ rule. Combining above, the tractable conditional
flow matching loss LCFM, which satisfies ∇θLCFM(θ) = ∇θLFM(θ), is defined as:

LCFM(θ) = E
t,Z∼pZ ,Xt∼pt(·|Z)

[∥uθ(Xt, t) − ut(Xt|Z)∥2
2]. (2.7)

Affine Conditional Flows. The conditional flow matching loss works with any choice of conditional
probability path and conditional velocity fields. In this paper, we consider the affine conditional flow
with independent data coupling following [Lipman et al., 2022, 2024]:

ψt(x|x1) = µtx1 + σtx, (2.8)

where µt, σt : [0, 1] → [0, 1] are monotone smooth functions satisfying

µ0 = σ1 = 0, µ1 = σ0 = 1, and
dµt

dt ,−
dσt

dt > 0 for t ∈ (0, 1). (2.9)

Setting Z = X1 ∼ Q, X0 ∼ N(0, I), the flow ψt induces the probability flow pt(Xt|X1) =
N(µtX1, σ

2
t I) and velocity field

ut(x|x1) = ψ̇t(ψ−1
t (x|x1)|x1) = σ̇t(x− µtx1)

σt
+ µ̇tx1. (2.10)

Further, using the law of unconscious statistician with Xt = ψt(X0|X1), the conditional flow
matching loss takes the form

LCFM(θ) = E
t,X1∼q,X0∼N(0,I)

[
∥uθ(µtX1 + σtX0, t) − (µ̇tX1 + σ̇tX0)∥2

2
]
. (2.11)
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In practice, for collected i.i.d. data points {xi}n
i=1, (2.11) is implemented with Monte-Carlo simula-

tion. To avoid instability, we often clip the interval [0, 1] with t0 and T . Namely, for any velocity
estimator uθ, we consider the empirical loss function L̂CFM(uθ):

L̂CFM(uθ) := 1
n

n∑
i=1

∫ T

t0

1
T − t0

E
X0∼N(0,I)

[
∥uθ(µtxi + σtX0, t) − (µ̇txi + σ̇tX0)∥2

2
]
dt. (2.12)

Transformers. Throughout the paper, we parameterize uθ by transformers. Due to space limit, we
defer formal definition of transformer networks to Appendix B.

3 High-Order Flow Matching
This section extends the flow matching framework in Section 2 to incorporate high-order trajectory
information. Recall that these high-order dynamics are proven to be relevant to further improving the
performance and stability of flow matching. Specifically, in Section 3.1, we first define a high-order
velocity field ft using an ODE system and subsequently prove its equivalence to the mapping flow ψt

(Theorem 3.1). Furthermore, we derive the corresponding Liouville’s equation (Theorem 3.2), which
demonstrates mass conservation for this high-order system. Building on this foundation, Section 3.2
addresses the learning objective. We first propose the high-order Flow Matching loss (Definition 3.2).

However, similar to flow matching [Lipman et al., 2022], direct optimization is intractable. To address
this, we establish the high-order marginalization trick under consistency constraint (Theorem 3.3).
The method allows us to derive a tractable high-order conditional flow matching loss that preserves
the original loss’s gradients (Theorem 3.4). Section 3.3 clarify how that High-Order Flow provides
a unifying theory. Specifically, we demonstrate that high-order flow matching subsumes existing
flow-based generative modeling techniques, with standard Flow Matching serving as a foundational
instance within our framework.

3.1 High-Order Flow Model
For t ∈ [0, 1], let ψt and pt be the time-dependent flow mapping and probability paths follows
Section 2. Instead of using velocity field ut to construct flow ψt via the ODE (2.1), we propose using
K-order velocity field ft : RKd → RKd to construct ψt:

Definition 3.1 (High-Order Velocity). Let t ∈ [0, 1], a flow ψt can define a K-order velocity field
ft : RKd → RKd via the following ODE:

d
dtyt =


d1

dt1ψt(x)
d2

dt2ψt(x)
...

dK

dtK ψt(x)

 =


u1(x(0)

t , t)
u2(x(0)

t , t)
...

uK(x(0)
t , t)

 = ft(yt) with ψ0(x) = x, (3.1)

where yt = col(ψt(x), d
dtψt(x), . . . , dK−1

dtK−1ψt(x)) := col(x(0)
t , x

(1)
t , . . . , x

(K−1)
t ) ∈ RKd and uk :

Rkd × [0, 1] → Rd is k-th order velocity field for all k ∈ [K]. Moreover, notice that X(0)
t = ψt(X0)

is random variable since X0 ∼ p. Then, the extended state variable of order K is the random vector

Yt = col(X(0)
t , . . . , X

(K−1)
t ) ∈ RKd with X

(k)
t := dk

dtkψt(x)|
x=X

(0)
0
. (3.2)

For k = 0, . . . ,K − 1, define pk
t : Rd → R as the probability density function of X(k)

t . Denote
ρt : RKd → R as the probability density function of Yt = [X(0)

t , . . . , X
(K−1)
t ]⊤ at time t. For

simplification, we define Yt satisfy d
dtYt = ft(Yt) if (3.1) and (3.2) hold.

Remark 3.1 (Total Derivative Constraints). The ODE (3.1) imposes a sequence of total derivative
constraints on the velocity fields u1(x(0)

t , t), . . . , uK(x(0)
t , t), for any k ∈ [K]:

uk(x(0)
t , t) = dk

dtkψt(x) = d
dtu

k−1(x(0)
t , t) = ∂

∂t
uk−1(x(0)

t , t) + ∇uk−1(x(0)
t , t) · u1(x(0)

t , t),
(3.3)
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where u0(x(0)
t , t) = x

(0)
t . This recursive relation reveals that the velocity fields induced by the flow

ψt are not independent, but instead coupled through the structure of the ODE via (3.3).

Remark 3.1 guarantees the equivalence between flows ψt and K-order velocity field ft.

Theorem 3.1 (Flow–Velocity Equivalence via ODE). Define the class of structured k-order velocity
fields as those of the form:

ft(yt) = col(u1(x(0)
t , t), . . . , uK(x(0)

t , t)) ∈ RKd, yt = col(x(0)
t , . . . , x

(K−1)
t ) ∈ RKd,

where uk : RKd × [0, 1] → is locally lipschitz in yt and continues in t for any k ∈ [K]. Suppose
the velocity fields u1(x(0)

t , t), . . . , uK(x(0)
t , t) satisfy total derivative constraints (3.3). Then, for any

initial condition y0 ∈ RKd, the ODE d
dtyt = ft(yt) exists a unique local solution yt, which defines a

K-times differentiable flow ψt(x) := x
(0)
t and satisfy dk

dtkψt(x) = x
(k)
t for all k ∈ [K].

Conversely, any K-times differentiable flow ψt : Rd → Rd defines a velocity field ft via (3.1).

Proof. Please see Appendix C.1 for a detailed proof.

Recalling from Section 2 and the flow-velocity equivalence established in Theorem 3.1, the K-order
velocity field ft governs the evolution of the probability density ρt for the K-order state Yt. The
precise relationship describing this evolution is captured by the mass conservation formula:

Theorem 3.2 (Mass Conservation of High-Order Flow). Let yt = (x(0)
t , . . . , x

(K−1)
t )⊤ ∈ RKd. Let

velocity field ft(yt) = (u1(x(0)
t , t), . . . , uK(x(0)

t , t))⊤ ∈ RKd, where uk(x(0)
t , t) is locally Lipschitz

and integrable for all k ∈ [K]. Let ρt : RKd → R be a time-varying probability density over the
extended state Yt ∈ RKd follows Definition 3.1. Then the following statements are equivalent:

1. The pair (ft, ρt) satisfies the Liouville’s equation on the extended space:

∂

∂t
ρt(y) + ∇y · (ρt(y)ft(y)) = 0, for all t ∈ [0, 1).

2. Following Definition 3.1, the probability law of Yt evolves under the flow:

d
dtYt = ft(Yt), with Y0 ∼ ρ0, Yt ∼ ρt. (3.4)

For some arbitrary probability path ρt, we define ft generates ρt if (3.4) holds.

Proof. Please see Appendix C.2 for a detailed proof.

3.2 High-Order Flow Matching
To model the K-order velocity field ft, we introduce following high-order flow matching loss:

Definition 3.2 (High-Order Flow Matching Loss). Let ft denote the ground truth K-order velocity
field and fθ

t be its estimator parameterized by a neural network. Let ρt be the probability density
function of Yt. Then, the K-order Flow Matching objective minimizes the following regression loss:

LK
FM(θ) = E

t,Yt∼ρt

[D(ft(Yt), fθ
t (Yt))],

where D is a dissimilarity measure between vectors, such as the squared ℓ2-norm.

Similar to standard flow matching, the ground truth velocity ft is intractable. To address this, we
adopt the conditional flow matching loss to train our model, leveraging the equivalence between
the flow matching loss and its conditional counterpart. As a preliminary step, we introduce the
marginalization trick for high-order flow matching.

Theorem 3.3 (Marginalization). Recall that for some arbitrary probability path ρt, ft generates ρt

if Yt ∼ ρt for all t ∈ [0, 1). Let Z be a random variable, if ft(x|z) is conditionally integrable and gen-
erates the conditional probability path ρt(·|z), then the marginal velocity ft :=

∫
ft(y|z)pt(z|y)dz

generates the marginal probability path pt.2
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Proof. Please see Appendix C.3 for a detailed proof.
Now we are ready to prove the higher version of the equivalence between the flow matching loss and
conditional flow matching loss. We first define the tractable K-order conditional flow matching loss:

LK
CFM(θ) = E

t,Z,Yt∼ρt|Z (·|Z)
[D(ft(Yt|Z), fθ

t (Yt))]. (3.5)

Following Lipman et al. [2024], we specify the dissimilarity metric D(·, ·) as a Bregman divergence,
which measures the distance between vectors u, v ∈ RKd as D(u, v) := Φ(u) − [Φ(v) + (u −
v)⊤∇Φ(v)] where Φ : RKd → R is a strictly convex function defined on a convex domain Ω ⊂ RKd.
Bregman divergences possess a key property allowing interchanging gradients and expectations
[Holderrieth et al., 2025, Lipman et al., 2024]:

∇vD(E[Y ], v) = E[∇vD(Y, v)] for any random vector Y ∈ RKd. (3.6)

This property implies that the gradients of the flow matching loss and the conditional flow matching
loss are identical, making the two objectives equivalent for training.

Theorem 3.4 (Gradient Equivalence of Losses). Let the Flow Matching loss LK
FM be defined as in

Definition 3.2, and the Conditional Flow Matching loss LK
CFM be defined as in (3.5). Then, when

D(·, ·) is a Bregman divergence, the gradients of the two losses coincide:

∇LK
FM(θ) = ∇LK

CFM(θ).

Proof. Please see Appendix C.4 for a detailed proof.
We now consider training the model using the pre-constructed conditional flowψt(x | x1) as described
in Section 2. By the equivalence between flows and high-order velocity fields (Theorem 3.1), there
exists a unique smooth conditional K-order velocity field ft such that the conditional trajectory yt

satisfies the ODE: d
dtyt = ft(yt), in accordance with (3.1). Following Definition 3.1, we specify

ψt(x | x1) = µtx1 + σtx, which induces a family of k-th order velocity fields uk. By Definition 3.1,
for all k ∈ [K], we have

uk(x(0)
t , t) = dk

dtk x
(0)
t = dk

dtkψt(x).
(

By Definition 3.1
)

Because ψt is an invertible diffeomorphism, we define x′ = ψ−1
t (x) and obtain

uk(ψt(x), t) = uk(x′, t) = dk

dtkψt(ψ−1
t (x′)).

Extending this to the conditional setting, the conditional k-th order velocity field becomes

uk(x, t|X(0)
1 ) = dk

dtkψt(ψ−1
t (x|X(0)

1 )|X(0)
1 ). (3.7)

Combining the results above, we now revisit the tractable training loss by setting Z = X
(0)
1 ∼ q:

LK
CFM(θ) = E

t,X
(0)
1 ∼q,Yt∼ρ

t|X
(0)
1

(·|X(0)
1 )

[D(ft(Yt|X(0)
1 ), fθ

t (Yt))].
(

By (3.5)
)

For further simplifications, we adopt the squared ℓ2 norm as the Bregman divergence. Let uk denote
the k-th order velocity field, and uk,θ be its estimator parameterized by a neural network. Denoting
the distribution of the k-th order state as X(k)

t ∼ pk
t , the training objective becomes

LK
CFM(θ) = E

t,X
(0)
1 ∼q,Yt∼ρ

t|X
(0)
1

(·|X(0)
1 )

[
∥ft(Yt|X(0)

1 ) − fθ
t (Yt)∥2

2

] (
By (3.5)

)

= E
t,X

(0)
1 ∼q,Yt∼ρ

t|X
(0)
1

(·|X(0)
1 )

[ K∑
k=1

∥uk(Yt, t|X(0)
1 ) − uk,θ(Yt, t)∥2

2

] (
By Definition 3.1

)
2The marginal velocity ft implies a consistency constraint: uk

t (y) =
∫

uk
t (y|z) · pt(z|y)dz for all k ∈ [K].
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= E
t,X

(0)
1 ∼q

[ K∑
k=1

E
X

(0)
0 ∼p(·|X(0)

1 )
∥ dk

dtkψt(X(0)
0 |X(0)

1 ) − uk,θ(X(0)
t , t)∥2

2

] (
By (3.7)

)
=

K∑
k=1

E
t,X

(0)
1 ∼q,X

(0)
0 ∼p(·|X(0)

1 )

[
∥ dk

dtkψt(X(0)
0 |X(0)

1 ) − uk,θ(X(0)
t , t)∥2

2

]
. (3.8)

The intermediate states X
(1)
t , . . . , X

(k−1)
t are determined by X

(0)
0 via the relation X

(k)
t :=

dk

dtkψt(x)|
x=X

(0)
0

. Therefore, the inside expectation only needs to be taken over X(0)
0 .

Now, we consider the affine conditional flow ψt(x|x1) = µtx1 + σtx follows Section 2. Applying
(3.8), the high-order conditional flow matching loss takes the form

LK
CFM(θ) =

K∑
k=1

E
t,X

(0)
1 ∼q,X

(0)
0 ∼p(·|X(0)

1 )

[
∥(µ(k)

t X
(0)
1 + σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2

]
.

In practice, we train the general high-order velocity estimator u1,θ, . . . , uK,θ with i.i.d samples
{xi}n

i=1 by optimizing the empirical high-order conditional flow matching loss:

L̂K
CFM := 1

n

n∑
i=1

K∑
k=1

1
T − t0

∫ T

t0

E
X0∼p(·|X(0)

1 )

[
∥(µ(k)

t xi + σ
(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2

]
dt. (3.9)

A significant theoretical consequence of learning the complete K-order velocity field ft is the ability
to employ high-order numerical integration schemes for sampling. For instance, to solve the ODE
(3.1), we use K-th order Taylor expansion with step size h for the numerical integration:

x
(0)
t+h = xt + hu1,θ(x(0)

t , t) + h2

2! u
2,θ(x(0)

t , t) + · · · + hK

K! u
K,θ(x(0)

t , t). (3.10)

3.3 Unified Perspective on High-Order Flow Dynamics
We show that our K-order flow matching framework offers a significant unification perspective and a
theoretical foundation on existing flow-based generative modeling. Firstly, our framework subsumes
standard first-order Flow Matching [Lipman et al., 2022] as a direct special case.

Proposition 3.1 (Reduction to Standard First-Order Flow Matching). When K = 1, the entire
K-order flow matching framework, including the governing ODE, the probability path definition via
the continuity equation, and the K-order flow matching objective, becomes precisely equivalent to
the standard first-order Flow Matching framework as detailed in [Lipman et al., 2022, 2024].

Proof. Please see Appendix C.5 for a detailed proof.

Proposition 3.1 establishes our K-order framework as a strict generalization of standard first-order
Flow Matching. Beyond encompassing established methods, our K-order framework provides a
robust theoretical structure for understanding models that leverage high-order trajectory dynamics.

For instance, HOMO framework [Chen et al., 2025] defines its training objective ([Chen et al., 2025,
Definition 4.3]) by matching network predictions against the true velocity ẋ and acceleration ẍ of tra-
jectories. Removing the regularization term (aligns with our total derivative constraints Remark 3.1),
their loss is also a direct instantiation of our K-order framework’s objective (Definition 3.2) for
K = 2. Furthermore, while the Force Matching (ForM) model [Cao et al., 2025] introduces specific
relativistic constraints, its fundamental generative mechanism involves matching a target “force” field
([Cao et al., 2025, Definition 4.1]). Given that force is proportional to acceleration, if separated from
its relativistic regularization, aligns with matching the second-order information captured within our
K = 2 framework.

In summary, the K-order flow matching framework serves as a unifying theoretical structure. It
not only subsumes standard flow matching but also provides formal grounding for models that
have intuitive or empirical benefits of incorporating richer, high-order dynamical information. The
subsequent statistical analysis in Section 4 builds upon this unified perspective.
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4 Statistical Rates of High-Order Flow Matching Transformers
This section characterizes sharp statistical rates for K-order flow matching transformers. Building
on Section 2 and Section 3, we consider the case of affine conditional flow with independent data
coupling. We focus on transformer architectures as Flow matching (FM) with transformers powers
today’s best generative models, including MovieGen [Polyak et al., 2024] and Voicebox [Le et al.,
2023] by Meta, and Rectified Flow [Esser et al., 2024] by Stability AI. Section 4.1 and Section 4.2
establish bounds for the approximation and estimation of the K-order velocity. Based on the K-order
velocity estimation rates, Section 4.3 analyzes the distribution estimation rate under the 2-Wasserstein
metric. Finally, Section 4.4 presents the nearly minimax optimality of theK-order velocity estimators.

Transformers. We defer standard definition of transformer to Appendix B due to the page limit.

4.1 High-Order Velocity Approximation
To establish a statistical theory for K-order flow matching transformers, we first investigate an
approximation theory for the K-order velocity under sub-Gaussian assumption. In particular, we
characterize the regularity of the target density function q(x1) with Hölder smoothness, defined by:

Definition 4.1 (Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote the smoothness parameter,

where k1 = ⌊β⌋ and γ ∈ [0, 1). Given a function f : Rd → R, the Hölder space Hβ(Rd) is defined
as the set of α-differentiable functions satisfying: Hβ(Rd) :=

{
f : Rd → R | ∥f∥Hβ(Rd) < ∞

}
,

where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) :=
∑

∥α∥1<k1

sup
x

|∂αf(x)| + max
α:∥α∥1=k1

sup
x ̸=x′

|∂αf(x) − ∂αf(x′)|
∥x− x′∥γ

∞
.

Also, we define the Hölder ball of radius B by Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

With Definition 4.1, we state our assumption on the target density function q(x1):

Assumption 4.1 (Sub-Gaussian Property and Hölder Smoothness of Target Distribution). The target
distribution q(x1) ∈ Hβ(Rdx , B). Further, there exist two positive constants C1 and C2 such that
q(x1) ≤ C1 exp

(
−C2∥x1∥2

2/2
)
.

Assumption 4.1 provides a tail bound for the approximation error, and we leverage it to address the
error outside the bounded domain where our transformer approximation applies. We now present the
approximation theory for high-order flow matching transformers.

Theorem 4.1 (K-order Velocity Approximation with Transformers). Assume Assumption 4.1.
Suppose the k-th order velocity field uk(x, t) is Lk-Lipschitz for all k ∈ 0, . . . ,K − 1 in ℓ2-distance.
Let ϵ ∈ (0, 1) be the precision parameter satisfying ϵ ≤ O(N−β) for some N ∈ N and smoothness
parameter β > 0. Then, there exists transformers u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r

R such that for
any x ∈ Rdx and t ∈ [0, 1], it holds:

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt = O

(
N−2β · (logN)

dx
2 −1).

Further, for all k ∈ [K], the parameter bounds in transformer network class satisfy

CKQ, C
2,∞
KQ = O(λ−1N2β(2d+1)(logN)2d+1); COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1); CE = O(1); CT = O(Lk−1),

where λ−1 = O(Nβ logN)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Please see Appendix D for a detailed proof.

4.2 High-Order Velocity Estimation
In this section, we apply the approximation results in Section 4.1 to derive K-order velocity esti-
mation rates (Theorem 4.2). Given a set of i.i.d samples {xi}n

i=1, we train transformer networks
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u1,θ, . . . , uK,θ by minimizing the high-order empirical conditional flow matching loss (3.9):

L̂K
CFM = 1

n

n∑
i=1

K∑
k=1

1
T − t0

∫ T

t0

E
X0∼N(0,I)

[
∥(µ(k)

t xi + σ
(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2

]
dt.

We evaluate the performance of estimators u1,θ, . . . , uK,θ through the K-order flow matching risk:

Definition 4.2 (High-Order Flow Matching Risk). Let uk,θ be the estimator of the k-th order
velocity field uk. Let Θ be the collection of parameters of u1,θ, . . . , uK,θ. We define the flow
matching risk RK(Θ) as the sum of the expected mean-squared difference between uk,θ and uk:

RK(Θ) :=
K∑

k=1

1
T − t0

∫ T

t0

E
x∼p0

t

[
∥uk(x, t) − uk,θ(x, t)∥2

2
]

dt,

where the density function p0
t represents the probability density function of X(0)

t (Definition 3.1).

Further, we assume the path coefficients of the affine conditional flow preserve regularity.

Assumption 4.2 (Path Regularity). Consider the affine conditional flow ψt(x|X(0)
1 ) = µtX

(0)
1 +

σtx, the k-th derivative of path coefficients σt and µt are continuous on [t0, T ], where t0, T ∈ [0, 1].

Assuming k-th order velocity Lipschitz continuity and affine path regularity (Assumption 4.2), the
following theorem presents the upper bounds on estimation error RK(Θ) with sample size n.

Theorem 4.2 (High-Order Velocity Estimation with Transformer). Assume Assumption 4.1 and
Assumption 4.2. Let ûk,θ ∈ T h,s,r

R be the estimator of the k-th order velocity field uk trained by
minimizing the high-order empirical conditional flow matching loss (3.9). Let Θ̂ be the collection of
parameters of ûk,θ for k ∈ [K]. Suppose the k-th order velocity field uk(x, t) is Lk Lipschitz for all
k = 0, . . . ,K − 1. Suppose we choose the transformers as in Theorem 4.1, then

E
{xi}n

i=1

[
RK(Θ̂)

]
= O

(
n− 1

10d · (logn)10dx

)
,

where d is the feature dimension.

Proof. Please see Appendix E for a detailed proof.

4.3 High-Order Distribution Estimation
Based on the K-order velocity estimation result in Theorem 4.2, we further analyze the distribution
estimation rate for K-order flow matching transformer. The next theorem presents the upper bounds
on the expectation of 2-Wasserstein distance between the target and estimated distribution induced by
estimators uk,θ trained by optimizing the empirical conditional loss (3.9).

Theorem 4.3 (High-Order Distribution Estimation under 2-Wasserstein Distance). Assume As-
sumption 4.1 and Assumption 4.2. Let P̂K

T be the estimated distribution at time T . Then, it holds

E
{xi}n

i=1

[W2(P̂K
T , PK

T )] = O
(
n− 1

18d · (logn)6dx

)
,

where d is the feature dimension.

Proof. Please see Appendix F for a detailed proof.

4.4 High-Order Minimax Optimal Estimation
We show that the K-order flow matching transformers achieves nearly minimax optimal rate:

Theorem 4.4 (Minimax Optimality of High-Order Flow Matching Transformers). Assume that
the target density function satisfies q(x1) ∈ Hβ([−1, 1]dx , B) and q(x1) ≥ C for some positive
constant C. Then, under the setting of 18d(β + 1) = dx + 2β, the distribution estimation rate of
flow matching transformers presented in Theorem 4.3 matches the minimax lower bound of Hölder
distribution class in 2-Wasserstein distance up to a logn and Lipchitz constants factors.
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Proof. Please see Appendix G for a detailed proof.

Remark 4.1 (Comparison with Existing Works). Flow matching with ReLU networks is nearly
minimax-optimal on Besov densities in W2 [Fukumizu et al., 2024], and kernel methods achieve
comparable rates in W1 [Kunkel and Trabs, 2025]. We extend these results to all orders K and to the
major powerhouse in practice: transformer architectures. Our analysis proves that flow-matching
transformers attain near-minimax rates on Hölder densities in W2 with assuming Lipschitz velocities,
subsuming the first-order case at K = 1. Please see Appendix I for details.

5 Discussion, Limitation, and Open Question
Section 3 and Section 4 establish a unified theoretical framework for High-Order Flow Matching
and offer a sharp statistical analysis of High-Order Flow Matching transformers. As discussed in
Section 3.3, this framework subsumes the not only original first-order [Lipman et al., 2024, 2022] but
also many high-order flow matching models [Chen et al., 2025, Cao et al., 2025]. Furthermore, the
established sharp statistical rates provide rigorous support for all models under this unified framework.
This broad theoretical guarantee, covering both first-order and high-order approaches, helps explain
the empirical success of the high-order flow models.

While our analysis provides foundational statistical guarantees, the compelling empirical evidence
and our current theoretical framework present an intriguing open question: it does not elucidate a
significant improvement in statistical rates with increasing order K. In addition, while our framework
offers a unified perspective for numerous empirical studies, these often assume the validity of the
consistency constraint within the marginalization process (Theorem 3.3). Our research indicates
that the general validity of this constraint, or indeed the derivation of similar conclusions under
broader conditions, remains an open question. We identify three primary directions for future work
stemming from these considerations: (i) Sampling Efficiency: The High-Order Flow Matching
framework enables the use of a K-th order Taylor expansion sampler. This sampler achieves a local
truncation error of O(hK+1) per step, with all K velocity components uk,θ evaluable in parallel.
Future empirical work should investigate whether this high-order accuracy per step translates into
practical benefits, such as requiring fewer function evaluations for a target sample quality or faster
convergence to high-fidelity samples. (ii) Stable Approximation Error Propagation: In standard
flow matching using Runge-Kutta Methods, the sequential nature means approximation errors in uθ

evaluations may propagate and amplify within a single step as they influence subsequent intermediate
calculations. However, our K-order flow matching approach solves the ODE without this feedback
loop, which might leads to more stable error propagation. (iii) Relaxing the Consistency Constraint:
A significant direction for future research involves exploring methods to either remove or relax the
consistency constraint highlighted in Theorem 3.3.

6 Concluding Remarks
In this work, we introduce High-Order Flow Matching, a generalized theoretical framework for
flow-based generative modeling. Specifically, we characterize the relationship between flow ψt,
K-order velocity field ft, probability path ρt through governing ODE and mass conservation formula
(Definition 3.1 and Theorem 3.2). Then we purpose the K-order flow matching loss and establish a
tractable equivalent conditional K-order flow matching loss (Theorem 3.4) via high-order marginal-
ization trick (Theorem 3.3). Further, we prove that High-Order Flow Matching subsumes standard
first-order Flow Matching for K = 1 (Proposition 3.1) and providing a unified theoretical foundation
for understanding emerging high-order flow model approaches such as HOMO [Chen et al., 2025].
Our second primary contribution is the first rigorous statistical analysis of this High-Order Flow
Matching framework when implemented with transformers. We establish sharp approximation,
estimation, and distribution learning rates (Theorems 4.1 to 4.3), and demonstrate their near-minimax
optimality up to logarithmic factors (Theorem 4.4).

Related Work. We defer an extended discussion on related work to Appendix A due to page limits.
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Impact Statement

This theoretical work advances the fundamental understanding of flow matching generative models
and presents no foreseeable negative social impacts.

A Related Work

In the following, we discuss the recent success of the techniques used in our work. We begin with the
universal approximation theory of transformers. Then, we discuss the recent theoretical progress in
flow matching framework, including approximation, estimation and minimax optimality theories.

Universality of Transformers. The universality of transformers refers to their capability to approx-
imate arbitrary sequence-to-sequence functions with any desired precision. It is a key to connect
flow matching Transformer architectures with meaningful statistical estimations in this work. Yun
et al. [2019] first prove this capability with deep stacks of self-attention and feed-forward layers
through the idea of contextual mapping by assuming a minimal separation among all hidden represen-
tations. Subsequent work by [Alberti et al., 2023] extend the guarantee to variants that employ sparse
attention mechanisms. Building upon these works, Hu et al. [2025b], Kajitsuka and Sato [2023]
show that a transformer block with a single self-attention layer is sufficient to achieve universal
approximation with refined contextual mapping techniques. Beyond contextual mapping, Jiang and
Li [2024] derive explicit Jackson-type approximation rates for single-layer, one-head Transformers,
with errors governed by the low-rank structure of the target attention kernel and by head/FFN budgets.
Hu et al. [2025a], Liu et al. [2025] show sequence-to-sequence universality of minimal Transformers
(attention-only) via interpolation and max-affine partition constructions. In particular, Liu et al.
[2025] prove that a single-head self- or cross-attention module achieves universal approximation
under L∞ for continuous targets and extends to Lp.

Remark A.1 (Approximation with High- vs Low-Temperature Softmax Transformers). We remark
that, the current statistical rates rely on high-temperature region of softmax attention (i.e., Softmaxλ(·)
with small λ, as in Lemma H.2, Theorem H.1 and (H.25)) to cancel the double-exponential factor
reported in [Hu et al., 2024, Remark 3.4]. Is it possible to circumvent with above mentioned different
approximation results. For example, Hu et al. [2025a] establish universal approximation in the
low-temperature regime (large λ). It suggests that analogous statistical guarantees may also hold
without resorting to high-temperature softmax scaling. We leave this for future explorations.

Flow Matching and High-Order Flow Matching. Flow Matching generative modeling [Lipman
et al., 2024, Gat et al., 2024, Chen and Lipman, 2023, Lipman et al., 2022, Liu et al., 2022] has
advanced the state-of-the-art in various fields and applications, including images [Esser et al., 2024] ,
speeches [Le et al., 2023], audios [Polyak et al., 2024] and biomedical data [Huguet et al., 2024].
These standard flow matching frameworks learn first-order trajectory dynamics (velocity field) to
smoothly transport a simple source distribution to the target data distribution. However, there is a
growing interest for the role of high-order dynamics in generative modeling with improved accuracy
and efficiency, which has been applied in various empirical explorations. For instance, Cao et al.
[2025] integrate special relativistic mechanics to enhance the stability of generative modeling by
supervising on second-order dynamics (acceleration) to ensure sample velocities remain bounded
within a safe limit. Similarly, Liang et al. [2025] also augment flow auto-regressive transformers with
second-order supervision by capturing complex dependencies through high-order dynamics.

Statistical Rates and Minimax Optimality of Flow Models. Benton et al. [2023], Albergo and
Vanden-Eijnden [2022] measure the convergence of flow models by the L2-risk of the velocity field
but omit explicit convergence rates. Jiao et al. [2024] work in the latent space of an autoencoder and
derive explicit convergence rates for flow models; however, they do not consider the smoothness of the
target density class. Su et al. [2025] establish statistical rates for discrete flow matching by deriving
a model-agnostic, intrinsic error bound. Fukumizu et al. [2024] demonstrate that flow matching
achieves nearly minimax-optimal distribution estimation rates in Besov density function spaces under
the 2-Wasserstein distance using ReLU network architectures. Kunkel and Trabs [2025] establish
similar results under the 1-Wasserstein distance by employing the kernel density estimators. In this
work, we provide the first theoretical evidence of the minimax optimality of any order flow matching
using transformer architectures, and our results recover the first order case as a special instance.
Notably, we show that flow matching transformers (FMTs) achieve nearly minimax optimal rates
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in Hölder density function spaces under the 2-Wasserstein distance without imposing the Lipschitz
continuity assumption on the velocity field. Please see Appendix I for a detailed analysis.

B Supplementary Background: Transformer Block

In this section, we introduce the transformer architecture and its Lipschitzness property. Appendix B.1
provides a formal definition of the transformer network class that we use throughout the paper. Further,
Appendix B.2 shows that a transformer block is Lipschitz continuous over a compact domain.

B.1 Transformers

Our notation follows [Hu et al., 2025c, 2024]. To begin with, given a matrix Z ∈ Rd×L, we denote
the i-th column and the j-th row by Z:i and Zj: respectively.

Transformer Block. Let F (SA) : Rd×L → Rd×L denote the self-attention layer. We use h and s to
denote the number of heads and hidden dimension in the self-attention layer, and then we have

F (SA) (Z) := Z +
h∑

i=1
W i

O · (W i
V Z) Softmax((W i

KZ)⊤(W i
QZ)), (B.1)

where Softmax(·) is the column-wise softmax function, W i
V ,W

i
K ,W

i
Q ∈ Rs×d, and W i

O ∈ Rd×s

are the weight matrices. Let r be the MLP dimension. Then, we define the feed-forward layer:

F (FF)(Z) := Z +W2ReLU(W1Z + b1) + b2, (B.2)

where W1 ∈ Rr×d and W2 ∈ Rd×r are weight matrices, and b1 ∈ Rr, and b2 ∈ Rd are bias.

Definition B.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimension,
r-MLP dimension, and with positional encoding E ∈ Rd×L as

Fh,s,r (Z) := F (FF)
(

F (SA) (Z + E)
)

: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition B.2 (Transformer Network Function Class). Let T h,s,r denote the transformer network
function class where each function f ∈ T h,s,r is a composition of transformer blocks Fh,s,r, i.e.,

T h,s,r := {fT : Rd×L 7→ Rd×L | fT = Fh,s,r ◦ · · · ◦ Fh,s,r}.

Flow Matching Transformer. Following architecture of diffusion transformers (DiTs) in [Hu et al.,
2025c, 2024, Peebles and Xie, 2023], we adopt the reshape layer R that converts a vector input
x ∈ Rdx into the sequential matrix input format Z ∈ Rd×L for transformer with dx = d · L.

Definition B.3 (Reshape Layer). The reshape layerR(·) : Rdx → Rd×L transforms dx-dimensional
input into a d × L matrix. For any dx = i × i image input, R(·) converts it into a sequence
representation with feature dimension d := p2 (p ≥ 2) and sequence length L := (i/p)2. Further, We
define the reverse reshape layer R−1(·) : Rd×L → Rdx as the inverse of R(·).

Finally, we define the following transformer network function class with the reshape layer. To
simplify, we define WKQ := (WK)⊤WQ and WOV := WOWV .

Definition B.4 (Transformer Network Function Class with Reshape Layer T h,s,r
R ). The transformer

network class with reshape layer T h,s,r
R (CT , C

2,∞
KQ , CKQ, C

2,∞
OV , COV , CE , C

2,∞
F , CF , LT ) satisfies:

• T h,s,r
R := {R−1 ◦ fT ◦R : Rdx → Rdx | fT ∈ T h,s,r};

• Transformer network output bound: supZ ∥fT (Z)∥2 ≤ CT ;

17



• Parameter bound in F (FF): max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞
F , max{∥W1∥2, ∥W2∥2} ≤ C2

F ;

• Parameter bound in F (SA): ∥WKQ∥2 ≤ CKQ, ∥WOV ∥2 ≤ COV , ∥WKQ∥2,∞ ≤ C2,∞
KQ ,

∥WOV ∥2,∞ ≤ C2,∞
OV ,

∥∥E⊤
∥∥

2,∞ ≤ CE , where 2,∞-norm follows ∥ · ∥2,∞ := maxj∈[L] ∥Z:j∥2;

• Lipschitz of fT ∈ T h,s,r: ∥fT (Z1) − fT (Z2)∥F ≤ LT ∥Z1 − Z2∥F , for any Z1, Z2 ∈ Rd×L.

We remark that these norm bounds are critical to quantify the complexity of the network class.

B.2 Lipschitzness of Transformer Network

In this section, we show the Lipschitzness for our transformer network class Definition B.2. We begin
with a helper lemma and the Lipschitzness of softmax function under inverse-temperature scaling:

Lemma B.1 (Lipschitzness from Bounded Jacobian, Lemma A.6 of [Edelman et al., 2022]). Let
∆d−1 := {x ∈ Rd | x ≥ 0, ∥x∥1 = 1} and cf > 0 be some constant. Suppose that f : Rd → ∆d−1

is a differentiable function satisfying ∥Jf(x)∥1,1 ≤ cf for all x. Then, for any x1, x2 ∈ Rd, it holds

∥f(x1) − f(x2)∥1 ≤ cf ∥x1 − x2∥∞.

We then give the Lipschitz property of the softmax function:

Lemma B.2 (Lipschitzness of Softmax with Inverse Temperature, Modified from Corollary A.7 of
[Edelman et al., 2022]). Let y, z ∈ Rd. Denote the softmax function with inverse temperature
λ > 0 by Softmaxλ(x)[i] := exp(λx[i])/

∑
k exp(λx[k]) for x ∈ Rd, k ∈ [d]. Then, it holds

∥ Softmax
λ

(y) − Softmax
λ

(z)∥1 ≤ 2λ∥y − z∥∞.

Proof. Our proof follows [Edelman et al., 2022] and incorporates inverse temperature scaling β > 0.
Define Softmaxλ(x)[i] := pi for i ∈ [d]. Jacobian has Ji,i = λpi(1 − pi) and Ji,j = −λpipj for
i ̸= j. Then, this yields J = λ(diga(p) − pp⊤) and ∥J∥1,1 ≤ 2λ. Then we apply Lemma B.1.

This completes the proof.
Therefore, Lemma B.2 implies the Lipschitzness of a self-attention layer given bounded weight
matrices WKQ and WOV . Furthermore, with bounded W1,W2 in the feed-forward layer and
|ReLU(x) − ReLU(y)| ≤ |x− y| for any x, y ∈ R, we have Lipschitzness of a transformer block.
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C Proofs in Section 3

In this section, we formalize the high-order flow matching. Appendix C.1 establishes the flow–velocity
equivalence through an ordinary differential equation argument (Theorem 3.1). Appendix C.2 ensures
the mass conservation in high-order flows (Theorem 3.2). Appendix C.3 derives the marginalization
property (Theorem 3.3). Appendix C.4 shows the gradient equivalence between the flow matching
and conditional flow matching objectives (Theorem 3.4). Finally, Appendix C.5 unifies the framework
by proving that K-order flow matching collapses to the standard first-order case (Proposition 3.1).

C.1 Proof of Theorem 3.1

In this section, we present the main proof of Theorem 3.1.

Theorem C.1 (Theorem 3.1 Restated: Flow–Velocity Equivalence via ODE). Define the class of
structured k-order velocity fields as those of the form:

ft(yt) = col(u1(x(0)
t , t), . . . , uK(x(0)

t , t)) ∈ RKd, yt = col(x(0)
t , . . . , x

(K−1)
t ) ∈ RKd,

where uk : RKd × [0, 1] → is locally lipschitz in yt and continues in t for any k ∈ [K]. Suppose
the velocity fields u1(x(0)

t , t), . . . , uK(x(0)
t , t) satisfy total derivative constraints (3.3). Then, for any

initial condition y0 ∈ RKd, the ODE d
dtyt = ft(yt) exists a unique local solution yt, which defines a

K-times differentiable flow ψt(x) := x
(0)
t and satisfy dk

dtkψt(x) = x
(k)
t for all k ∈ [K].

Conversely, any K-times differentiable flow ψt : Rd → Rd defines a velocity field ft via (3.1).

Proof. We prove both directions:

From velocity field ft to flow ψt: Let y0 = (x(0)
0 , . . . , x

(K−1)
0 )⊤ ∈ RKd be any initial condition.

Then, the system (3.1)

d
dtyt = ft(yt), with initial condition y0,

is a standard autonomous first-order ODE on RKd with a Lipschitz right-hand side. By the Pi-
card–Lindelöf theorem, there exists a unique local solution yt. Let us define the flow ψt(x) := x

(0)
t

and since yt is differentiable, ψt is differentiable. By repeatedly applying the total derivative con-
straint (3.3), we can establish that dk

dtkψt(x) = x
(k)
t for all k ∈ [K]. Specifically, for any k ∈ [K],

we have:

x
(k)
t = uk(x(0)

t , t)
(

By definition of the ODE
)

= d
dtu

k−1(x(0)
t , t)

(
By (3.3)

)
= d

dtx
(k−1)
t

(
By definition of the ODE

)
= dk

dtkψt(x).
(

By induction
)

This confirms that the k-th order velocity field corresponds exactly to the k-th time derivative of the
flow ψt.

From flow ψt to velocity field ft: Suppose there is a K-times differentiable flow ψt. Define

yt = [ψt(x), d
dt ψt(x), . . . , dK−1

dtK−1ψt(x)]⊤,

ft(yt) = col( d
dt ψt(x), . . . , dK

dtK ψt(x)).
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Then, by direct differentiation:

d
dtyt = ft(yt).

This completes the proof of the bidirectional equivalence.

C.2 Proof of Theorem 3.2

In this section, we provide the proof of Theorem 3.2.

Theorem C.2 (Theorem 3.2 Restated: Mass Conservation of High-Order Flow). Let yt =
(x(0)

t , . . . , x
(K−1)
t )⊤ ∈ RKd. Let velocity field ft(yt) = (u1(x(0)

t , t), . . . , uK(x(0)
t , t))⊤ ∈ RKd,

where uk(x(0)
t , t) is locally Lipschitz and integrable for all k ∈ [K]. Let ρt : RKd → R be a

time-varying probability density over the extended state Yt ∈ RKd follows Definition 3.1. Then the
following statements are equivalent:

1. The pair (ft, ρt) satisfies the Liouville’s equation on the extended space:

∂

∂t
ρt(y) + ∇y · (ρt(y)ft(y)) = 0, for all t ∈ [0, 1).

2. Following Definition 3.1, the probability law of Yt evolves under the flow:

d
dtYt = ft(Yt), with Y0 ∼ ρ0, Yt ∼ ρt. (C.1)

For some arbitrary probability path ρt, we define ft generates ρt if (C.1) holds.

Proof. We prove both directions:

From ODE (C.1) to Liouville’s Equation: Let ϕ : RKd → R be any smooth function with compact
support (i.e., a test function). We first compute the time derivative of following quantity

E[ϕ(Yt)] =
∫
ϕ(y)ρt(y)dy. (C.2)

Since the Yt satisfy the ODE (C.1), the derivative of the expectation becomes:

d
dt E[ϕ(Yt)] = E[ d

dtϕ(Yt)]
(

By swiching the expectation and derivation
)

= E[∇yϕ(Yt) · d
dtYt]

(
By the chain rule

)
= E[∇yϕ(Yt) · ft(Yt)]

(
By the ODE (C.1)

)
=
∫

∇yϕ(y) · ft(y)ρt(y)dy

= −
∫
ϕ(y)∇ · (ft(y)ρt(y))dy.

(
By the integration by parts

)
Therefore, for any test function ϕt, it holds∫ d

dtϕ(y)ρt(y) + ϕ(y)∇ · (ft(y)ρt(y))dy = 0,

which leads to Liouville’s equation

d

dt
ρt(y) + ∇y · (ρt(y)ft(y)) = 0.
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From Liouville’s Equation to ODE (C.1): According to the equivalence between the flow ψt and
its associated velocity field ft (Theorem 3.1), the ODE (C.1) admits a unique local solution ỹt, which
defines a unique flow ψ̃t. By the pushforward formula and the definition in Definition 3.1, this flow
induces the distribution Ỹt ∼ ρ̃t. Moreover, ρ̃t satisfies the Liouville equation associated with the
velocity field ft.

Since the Liouville equation admits a unique solution in the space of probability densities starting
from the same initial distribution ρ0, and both ρt and ρ̃t solve the same continuity equation with
initial condition ρ0, we conclude that ρt = ρ̃t. This completes the proof.

C.3 Proof of Theorem 3.3

This section presents the proof of Theorem 3.3.

Theorem C.3 (Theorem 3.3 Restated: Marginalization). Recall that for some arbitrary probability
path ρt, ft generates ρt if Yt ∼ ρt for all t ∈ [0, 1). Let Z be a random variable, if ft(x|z) is
conditionally integrable and generates the conditional probability path ρt(·|z), then the marginal
velocity ft :=

∫
ft(y|z)pt(z|y)dz generates the marginal probability path pt.

Proof. Applying the mass conservation follows Theorem 3.2, we only need to verify that the ft and
ρt satisfy high-order continuity equation, i.e. Liouville’s Equation:

d
dtρt(y) =

∫ d
dtρt|Z(y|z)pZ(z)dz

(
By the law of total probability

)
=
∫

−∇ · [ft(y|z)ρt(y|z)]pZ(z)dz
(

By Liouville’s equation
)

= − ∇ ·
∫
ft(y|z)ρt(y|z)pZ(z)dz

(
By switching differentiation and integration

)
= − ∇ ·

∫
[ft(y|z)ρt(y|z)pZ(z)/ρt(y)] · ρt(y)dz

= − ∇ · [ft(y)ρt(y)].
(

By the definition of ft(y) and the Bayes’ rule
)

This completes the proof.

C.4 Proof of Theorem 3.4

In this section, we prove Theorem 3.4.

Theorem C.4 (Theorem 3.4 Restated: Gradient Equivalence of Losses). Let the Flow Matching
loss LK

FM be defined as in Definition 3.2, and the Conditional Flow Matching loss LK
CFM be defined as

in (3.5). Then, when D(·, ·) is a Bregman divergence, the gradients of the two losses coincide:

∇LK
FM(θ) = ∇LK

CFM(θ).

Proof. Similar to the Theorem 4 of [Lipman et al., 2024], the result follows from the Marginalization
Trick (Theorem 3.3) and the expectation-swapping property of Bregman divergences (3.6). A direct
computation then shows that:

∇θLK
FM(θ) = ∇θ E

t,Yt∼ρt

D(ft(Yt), fθ
t (Yt))

(
By the definition of Flow Matching Loss

)
= E

t,Yt∼ρt

∇θD(ft(Yt), fθ
t (Yt))(

By swaping the expectation and the gradient computation
)

= E
t,Yt∼ρt

∇vD(ft(Yt), fθ
t (Yt))∇θf

θ
t (Yt)

(
By the chain rule

)
= E

t,Yt∼ρt

∇vD( E
Z∼pz|t(·|y)

[ft(Yt|Z)], fθ
t (Yt))∇θf

θ
t (Yt)(

By the marginalization trick follows Theorem 3.3
)
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= E
t,Yt∼ρt

E
Z∼pz|t(·|y)

[∇vD([ft(Yt|Z)], fθ
t (Yt))∇θf

θ
t (Yt)](

By the property of Bregman divergence follows (3.6)
)

= E
t,Yt∼ρt

E
Z∼pz|t(·|y)

[∇θD([ft(Yt|Z)], fθ
t (Yt))]

(
By the chain rule

)
= ∇θ E

t,Z,Yt∼ρt|Z (·|Z)
[D(ft(Yt|Z), fθ

t (Yt))]
(

By the Bayes’ rule
)

= ∇θLK
CFM(θ).

This completes the proof.

C.5 Proof of Proposition 3.1

This section gives the main proof of Proposition 3.1.

Proposition C.1 (Proposition 3.1 Restated: Reduction to Standard First-Order Flow Matching).
When K = 1, the entire K-order flow matching framework, including the governing ODE, the
probability path definition via the continuity equation, and the K-order flow matching objective,
becomes precisely equivalent to the standard first-order Flow Matching framework as detailed in
[Lipman et al., 2022, 2024].

Proof. The equivalence follows by setting K = 1 in the definitions of our K-order framework.

1. State Variable and ODE: From Definition 3.1, when K = 1, Yt = X
(0)
t = Xt. The ODE

system d
dtYt = ft(Yt) simplifies to d

dtXt = u1(Xt), which is the governing ODE for standard
flow models ([Lipman et al., 2022, 2024]). The K-order velocity field ft becomes u1.

2. Probability Path and Continuity Equation: The K-order mass conservation formula (Theo-
rem 3.2) for K = 1 reduces to the standard Mass Conservation Formula (Theorem 2 in [Lipman
et al., 2024]).

3. Loss Objective: The K-order flow matching loss (Definition 3.2), which targets matching fθ
t to

ft simplifies to matching only the u1 component: Et,Xt∼pt
[D(u1

t (Xt), u1,θ
t (Xt))]. This is the

standard Flow Matching objective (Eq. (5) in [Lipman et al., 2022]). The conditional formulation
via Theorem 3.3 similarly simplifies to the conditional Flow Matching loss used for standard FM.

Thus, all core components of the K-order framework align with standard Flow Matching.
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D Proof of Theorem 4.1

In this section, we prove Theorem 4.1 following steps similar to the velocity approximation in
Appendix J: (i) applying the universal approximation of transformers (ii) leveraging the sub-Gaussian
property of the target distribution to bound the approximation error of the K order velocity field.

Organizations. Appendix D.1 introduces helper lemmas. Appendix D.2 presents the main proof.

D.1 Auxiliary Lemmas

In this section, we introduce four auxiliary lemmas. In Lemma D.1, we give the lower-bound and
upper-bounds on pt(x). In Lemma D.2, we state the classical Gaussian tail bounds. In Lemma D.3, we
approximate the k-th order velocity field over a bounded domain. To control the error in unbounded
regions, we exploit the sub-gaussian assumption of the target distribution q(x1) in Lemma D.4.

We begin with the bounds on pt(x).

Lemma D.1 (Bounds on the Density Function, Lemma A.9 of [Fu et al., 2024]). Recall that
pt(x) =

∫
Rdx

pt(x|x1)q(x1)dx1 and pt(x|x1) = 1
σdx

t (2π)dx/2 exp
(
−∥x− µtx1∥2

2/2σ2
t

)
. Assume

Assumption 4.1. Then, there exist a positive constant C4 such that

C4

σdx
t

· exp
(

−∥x∥2
2 + 1
σ2

t

)
≤ pt(x) ≤ C1

(µ2
t + C2σ2

t )dx/2 · exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
.

Then, we apply standard results for Gaussian tail bounds. We remark that the main purpose of stating
Lemma D.2 is to streamline the main proof of Theorem 4.1 in Appendix D.2.

Lemma D.2 (Gaussian Tail Bounds). Consider a random vector X := (X1, . . . , Xdx)⊤ ∼
N(0, σ2

t I). Let ωdx
:= 2π

dx
2 /Γ( dx

2 ). Then, the following two inequalities hold:∫
∥X∥>D

exp
(

−∥X∥2
2

2σ2
t

)
dX ≤ ωdx

σ2
tD

dx−2 exp
(

− D2

2σ2
t

)
,∫

∥X∥>D

∥X∥2
2 exp

(
−∥X∥2

2
2σ2

t

)
dX ≤ ωdx

· (σ2
tD

dx + dxσ
4
tD

dx−2) exp
(

− D2

2σ2
t

)
.

Proof. We first express the integral in spherical coordinates for X∫
∥X∥>D

exp
(
−∥X∥2

2/2σ2
t

)
dX = ωdx

∫ ∞

D

rdx−1 exp
(

− r2

2σ2
t

)
dr.

Let JD :=
∫∞

D
rdx−1 exp

(
− r2

2σ2
t

)
dr. Setting u := rdx−2 and dv := r exp

(
− r2

2σ2
t

)
dr, we have

du = (dx − 2)rdx−3dr, and v = −σ2
t exp

(
− r2

2σ2
t

)
.

Then,

J(D) =
[

− rdx−2σ2
t exp

(
− r2

2σ2
t

)]∞

r=D

+ (dx − 2)σ2
t

∫ ∞

D

rdx−3 exp
(

− r2

2σ2
t

)
dr (D.1)

= σ2
tD

dx−2 exp
(

− D2

2σ2
t

)
+ (dx − 2)σ2

t

∫ ∞

D

rdx−3 exp
(

− r2

2σ2
t

)
dr(
By integration by parts

)
≤ σ2

tD
dx−2 exp

(
− D2

2σ2
t

)
.

(
By dropping the second term

)
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We obtain the final bound∫
∥X∥>D

exp
(

−∥X∥2
2

2σ2
t

)
dX ≤ ωdx

σ2
tD

dx−2 exp
(

− D2

2σ2
t

)
.

This completes the proof of the first inequality. For the second inequality, we have∫
∥X∥>D

∥X∥2
2 exp

(
−∥X∥2

2
2σ2

t

)
)dX

= ωdx

∫ ∞

D

r2rdx−1 exp
(

− r2

2σ2
t

)
dr

= ωdx

∫ ∞

D

rdx+1 exp
(

− r2

2σ2
t

)
dr.

Let K(D) :=
∫∞

D
rdx+1 exp

(
− r2

2σ2
t

)
dr, u := rd and dv := r exp

(
− r2

2σ2
t

)
dr. Then,

du = dxr
dx−1dr, and v = −σ2

t exp
(

− r2

2σ2
t

)
.

Therefore, the integration by parts gives

K(D)

=
[

− rdxσ2
t exp

(
− r2

2σ2
t

)]∞

r=D

+
∫ ∞

D

σ2
t exp

(
− r2

2σ2
t

)
dxr

dx−1dr

= σ2
tD

dx exp
(

− D2

2σ2
t

)
+ dxσ

2
t

∫ ∞

D

rdx−1 exp
(

− r2

2σ2
t

)
dr.

Recalling (D.1)

JD :=
∫ ∞

D

rdx−1 exp
(

− r2

2σ2
t

)
dr, and JD ≤ σ2

tD
dx−2 exp

(
− D2

2σ2
t

)
,

we have

K(D)

= σ2
tD

dx exp
(

− D2

2σ2
t

)
+ dxσ

2
t JD

≤ σ2
tD

dx exp
(

− D2

2σ2
t

)
+ dxσ

2
t · (σ2

tD
dx−2 exp

(
− D2

2σ2
t

)
)

(
By the bound on JD

)
=
(
σ2

tD
dx + dxσ

4
tD

dx−2) exp
(

− D2

2σ2
t

)
.

Then we obtain the final bound∫
∥X∥>D

∥X∥2
2 exp

(
−∥X∥2

2
2σ2

t

)
)dX ≤ ωdx

· (σ2
tD

dx + dxσ
4
tD

dx−2) exp
(

− D2

2σ2
t

)
.

This completes the proof of the second inequality.

Applying the universal approximation of transformers (Theorem H.2), we first approximate the k-th
order velocity field uk over a bounded domain with transformers uk,θ.

24



Lemma D.3 (Approximate k-th Order Flow with Transformers). Assume Assumption 4.1. Let D
be an absolute positive constant. Then, for any x ∈ [−I, I]dx , t ∈ [0, 1] and ϵ ∈ (0, 1), there exist a
transformer uk,θ(x, t) ∈ T h,s,r

R such that∫ 1

0

∫
[−I,I]dx

pt(x) · ∥uk,θ(x, t) − uk(x, t)∥2
2dxdt ≤ ϵ2,

for all k ∈ [K]. Furthermore, the parameter bounds in the transformer network class satisfy

CKQ, C
2,∞
KQ = O(λ−1I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(Iϵ−1Lk−1);CE = O(I);CT = O(Lk−1)

where λ−1 = O(I/ϵ)4d+3 is the inverse-temperature scaling in the softmax function and and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. By specifying the target function as f = uk and the transformer-based estimator as g = uk,θ

in Theorem H.2, and applying the bound pt(x) ≤ 1, the proof follows Theorem H.2 since the reshape
layer (Definition B.3) does not harm the uniform continuity. Further, by the Lipschitzness of the k-th
order flow, we have ∥uk(x, t)∥2 ≤ Lk−1. Then, the parameter bounds in transformer network follow
Lemma H.5, where we set the model output bound CT = O(Lk−1). This completes the proof.

To control the approximation error over an unbounded domain, we introduce tail bounds for the
probability flow pt(x) and the weighted squared norms of the uk, given by ∥uk(x, t)∥2

2 · pt(x).

Lemma D.4 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume Assump-
tion 4.1. Suppose the k-th order velocity field uk(x, t) is Lipschitz continuous for all k = 0, . . . ,K−1.
Let Lk denote the Lipschitz constant of uk, and then the velocity fields are uniformly bounded as∣∣uk(x, t)

∣∣ ≤ Lk−1 for any k ∈ [K]. Then, for any R1, t > 0 and k ∈ [K], the following hold∫
∥x∥∞>R1

pt(x)dx ≲ Rdx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
,∫

∥x∥∞>R1

∥uk(x, t)∥2
2 · pt(x)dx ≲ L2

k−1R
dx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
.

Proof. For the first inequality, it follows∫
∥x∥∞>R1

pt(x)dx

≤
∫

∥x∥∞>R1

exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
dx

(
By Lemma D.1

)
≤
∫

∥x∥2>R1

exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx−2

1 exp
(

− C2R
2
1

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)
For the second inequality, it follows∫

∥x∥∞≥R1

∥uk(x, t)∥2
2 · pt(x)dx

≲
∫

∥x∥∞≥R1

∥uk(x, t)∥2
2 · exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma D.1

)
≲
∫

∥x∥∞≥R1

L2
k−1 exp

(
−C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By the Lipchitzness of the k-th order flow

)
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≲ L2
k−1R

dx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)
This completes the proof.

D.2 Main Proof of Theorem 4.1

We now present the formal proof of Theorem 4.1.

Theorem D.1 (Theorem 4.1 Restated: K-order Velocity Approximation with Transformers).
Assume Assumption 4.1. Suppose the k-th order velocity field uk(x, t) is Lk-Lipschitz for
all k ∈ 0, . . . ,K − 1 in ℓ2-distance. Let ϵ ∈ (0, 1) be the precision parameter satisfying
ϵ ≤ O(N−β) for some N ∈ N and smoothness parameter β > 0. Then, there exists transformers
u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r

R such that for any x ∈ Rdx and t ∈ [0, 1], it holds:

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt = O

(
N−2β · (logN)

dx
2 −1).

Further, for all k ∈ [K], the parameter bounds in transformer network class satisfy

CKQ, C
2,∞
KQ = O(λ−1N2β(2d+1)(logN)2d+1); COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1); CE = O(I); CT = O(Lk−1),

where λ−1 = O(Nβ logN)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof of Theorem 4.1. For u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r
R , we set the transformer output bound

CT = O(Lk−1) for the k-th network and let R3 and ϵlow be two positive numbers to be chosen.

First, we decompose the target into three components and bound each of them

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt

=
K∑

k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt︸ ︷︷ ︸

(T1)

+
K∑

k=1

∫ T

t0

∫
∥x∥∞≤R3

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt︸ ︷︷ ︸

(T2)

.

• Bound on (T1). It holds

(T1)

=
K∑

k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt

≤ 2
K∑

k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t)∥2
2 · pt(x)dxdt+ 2

K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk(x, t)∥2
2 · pt(x)dxdt(

By expanding ℓ2-norm
)
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≲
K∑

k=1
L2

k−1

∫ T

t0

∫
∥x∥∞>R3

pt(x)dxdt+
K∑

k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk(x, t)∥2
2 · pt(x)dxdt(

By CT = O(Lk−1)
)

≲
K∑

k=1
L2

k−1

∫ T

t0

∫
∥x∥∞>R3

pt(x)dxdt
(

By the Lipschitzness of the k-th order flow
)

≲ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k−1

∫ T

t0

dt.
(

By Lemma D.4
)

≤ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k−1.

(
By t0, T ∈ (0, 1)

)
• Bound on (T2). For any ϵ ∈ (0, 1), it holds

(T2) =
K∑

k=1

∫ T

t0

∫
∥x∥∞≤R3

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt ≤ Kϵ2.

(
By Lemma D.3

)

By the upper-bound on (T1) and (T2), we have

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt

= (T1) + (T2)

≲ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k=1 +Kϵ2

≲ max
{
Rdx−2

3 exp
(

− C2R
2
3

2(µ2
t + C2σ2

t )

)
, ϵ2
}
.

Finally, for some N ∈ N and β > 0, we set

R3 :=

√
4β(µ2

t + C2σ2
t ) logN

C2
and ϵ := N−β .

This gives

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t) − uk(x, t)∥2
2 · pt(x)dxdt = O

(
N−2β · (logN)

dx
2 −1)

The transformer parameter bounds follow Lemma D.3 with I = O(
√

logN) and ϵ = N−β > 0:

CKQ, C
2,∞
KQ = O(λ−1N2β(2d+1)(logN)2d+1);COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1);CE = O(I);CT = O(Lk−1), (D.2)

where λ−1 = O(Nβ logN)4d+3 is the inverse-temperature scaling in the softmax function.

This completes the proof.
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E Proof of Theorem 4.2

In this section, we derive the estimation rate of the K order flow matching using transformers. We
decompose the proof of Theorem 4.2 into the following three parts due to its complexity.

• Step 0: Preliminaries. We introduce several essential definitions, including the K order condi-
tional flow matching loss, K order empirical risk and their domain truncation. These definitions
are the extensions from the velocity estimation analysis (see Appendix I.3 and Appendix L).

• Step 1: Controlling Error from Loss Function outside of the Truncated Domain. By leveraging
the sub-Gaussian tail bound and the Lipschitz continuity of the k-th order velocity field, we derive
an upper bound on the loss function outside of the truncated domain in Lemma E.1.

• Step 2: Upper Bound on the Covering Number. We present a unified upper bound on the
covering number that holds across K transformer networks u1,θ, . . . , uK,θ in Lemma E.2.

• Step 3: Generalization Error. We apply the covering number technique to bound the deviation
between the K order empirical risk and the K order true risk in Lemma E.3.

Organizations. Appendix E.1 includes preliminaries on the framework of estimators’ quality
evaluation. Appendix E.2 introduces auxiliary lemmas. Appendix E.3 presents the main proof.

E.1 Preliminaries

In this section, we consider affine conditional ψt(x|X(0)
1 ) = µtX

(0)
1 + σtx following Section 2.

Given k-th order velocity estimator uk,θ, we aim to bound the flow matching risk RK(Θ):

RK(Θ) :=
K∑

k=1

1
T − t0

∫ T

t0

E
x∼p0

t

[∥uk,θ(x, t) − uk(x, t)∥2
2]dt,

where the density function pt and the k-th order flow are induced by the flow ψt (Definition 3.1).

In practice, we use the K order conditional flow matching loss to train u1,θ, . . . , uK,θ ∈ T h,s,r
R .

Definition E.1 (High-Order Conditional Flow Matching Loss). Let q be the ground truth distribution
and the normal distribution N(0, I) be the source distribution p. Considering affine conditional flows
ψt(x|X1) = µtX1 + σtx, we define the K order conditional flow matching loss:

LK
CFM(Θ) :=

K∑
k=1

1
T − t0

∫ T

t0

E
X

(0)
1 ∼q,X

(0)
0 ∼p

[∥(µ(k)
t X

(0)
1 + σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2]dt.

Further, we define the K order loss function

ℓK(x;u1,θ, . . . , uK,θ) :=
K∑

k=1

1
T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t x+ σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2]dt.

Given a set of i.i.d sample {xi}n
i=1, we obtain transformers u1,θ, . . . , uK,θ by optimizing the empirical

conditional flow matching loss:

L̂K
CFM := 1

n

n∑
i=1

K∑
k=1

1
T − t0

∫ T

t0

E
X0∼N(0,I)

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2]dt.

Then, we define the K-order empirical risk:
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Definition E.2 (High-Order Empirical Risk). Let uk,θ be the estimator of the k-th order velocity
field uk. Further, consider i.i.d training samples {xi}n

i=1 and empirical conditional flow matching
loss L̂K

CFM = 1
n

∑n
i=1 ℓK(xi; ·). Then, we define the K order empirical risk:

R̂K(Θ) := 1
n

n∑
i=1

ℓK(xi;u1,θ, . . . , uK,θ) − 1
n

n∑
i=1

ℓK(xi;u1, . . . , uK).

Remark E.1. Let RK(ft) be the ground truth inputs of the high-order risk; that is, uk,θ = uk for
any k ∈ [K]. Then, by the definition of high-order velocity field in Definition 3.1, RK(ft) = 0 since
ft(yt) = (u1, . . . , uK) is the collection of K order ground truth velocity fields. Further, the gradient
equivalence Theorem 3.4 implies that RK(Θ) = RK(Θ) − RK(ft) = LK

CFM(Θ) − LCFM(ft).

Remark E.2. We use L̂K′

CFM and R̂′
K to denote the conditional flow matching loss and empirical

risk with training samples {x′
i}n

i=1. Then, by the i.i.d assumption on the training sample, we have
E{x′

i
}n

i=1
[L̂K′

CFM(Θ)] = LCFM(Θ), and therefore E{x′
i
}n

i=1
[R̂′

K(Θ)] = RK(Θ).

To obtain finite covering number, we introduce the K truncated loss and truncated risk.

Definition E.3 (Domain Truncation of High-Order Loss and Risk). Let D > 0 be constant. Given
the K order conditional flow matching loss ℓK(x;u1,θ, . . . , uK,θ) defined in Definition E.1, we
define its truncated counterparts on a bounded domain D := [−D,D]dx by

ℓtrunc
K (x;u1,θ, . . . , uK,θ) := ℓK(x;u1,θ, . . . , uK,θ)1{∥x∥∞ ≤ D}.

Given the K order conditional flow matching risk and the K order empirical risk, we define

Rtrunc
K (Θ) := RK(Θ)1{∥x∥∞ ≤ D}, R̂trunc

K (Θ) := R̂K(Θ)1{∥x∥∞ ≤ D}.

E.2 Auxiliary Lemmas

We follow the proof of velocity estimation in Appendix L.2 and Appendix L.3 to bound the K order
flow matching estimation error. Since direct computation of risk is infeasible, we first decompose
the K order flow matching risk RK into four terms. Then, we leverage the sub-Gaussian property
(Assumption I.1) and the Lipschitzness of transformer network class (Definition B.2) to bound each
term. Specifically, we introduce three lemmas to bound

1. the error from the domain truncation of loss function class (Lemma E.1),

2. the log covering number of loss function class (Lemma E.2), and

3. the generalization error bound (Lemma E.3).

Risk Decomposition. For simplicity, we shorthand RK(u1,θ, . . . , uK,θ) with RK . Let {x′
i}n

i=1 be a
different set of i.i.d samples independent of the training sample {xi}n

i=1. Then we decompose:

E
{xi}n

i=1

[RK ] = E
{xi}n

i=1

[ E
{x′

i
}n

i=1

[R̂′
K − R̂′ trunc

K ]]︸ ︷︷ ︸
(I)

+ E
{xi}n

i=1

[ E
{x′

i
}n

i=1

[R̂′ trunc
K − R̂trunc

K ]]︸ ︷︷ ︸
(II)

+ E
{xi}n

i=1

[R̂trunc
K − R̂K ]︸ ︷︷ ︸

(III)

+ E
{xi}n

i=1

[R̂K ]︸ ︷︷ ︸
(IV)

,
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where we use the fact that E{xi}n
i=1

[R̂K(Θ)] = RK(Θ) (Remark E.1). This decomposition follows
standard statistical learning theory technique, formulated in [Hu et al., 2025c, Fu et al., 2024].

High-Order Truncation Loss. We begin with the bounds on term (I) and term (III).

Lemma E.1 (Upper Bound on the High-Order Truncation Error). Let u1,θ, . . . , uK,θ ∈ T h,s,r
R be

transformers in Theorem 4.1. Then, for any t ∈ [t0, T ] it holds

E
x

[
∣∣ℓK(x;u1,θ, . . . , uK,θ) − ℓtrunc

K (x;u1,θ, . . . , uK,θ)
∣∣] ≲ KDdx exp

(
−1

2C2D
2
)

max
k

{L2
k}.

Proof. By Theorem 4.1, we have transformers output bounds CT = O(Lk−1) for all k.

For all k ∈ [K], we define

ℓk(x;uk,θ) := 1
T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t) − (µ(k)

t x+ σ
(k)
t X

(0)
0 )∥2

2]dt

ℓtrunc
k (x;uk,θ) := 1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t) − (µ(k)

t x+ σ
(k)
t X

(0)
0 )∥2

2]dt1{∥x∥∞ ≤ D}.

Then, it holds

E
x

[
∣∣ℓk(x;uk,θ) − ℓtrunc

k (x;uk,θ)
∣∣] (E.1)

= E
x

[
∣∣ℓk(x;uk,θ)1[∥x∥ ≥ D]

∣∣] (
By Definition E.3

)
= 1
T − t0

∫ T

t0

∫
∥x∥>D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t) − (µ(k)

t x+ σ
(k)
t X

(0)
0 )∥2

2]q(x)dxdt(
By Definition E.1

)
≲

1
T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)∥2

2 + ∥µ(k)
t x+ σ

(k)
t X

(0)
0 ∥2

2]q(x)dxdt(
By expanding the ℓ2-norm

)
≲

1
T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)∥2

2 + ∥µ(k)
t x+ σ

(k)
t X

(0)
0 ∥2

2] exp
(

−1
2C2∥x∥2

2

)
dxdt(

By Assumption I.1
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[max
k

{L2
k} + ∥µ(k)

t x+ σ
(k)
t X

(0)
0 ∥2

2] exp
(

−1
2C2∥x∥2

2

)
dxdt(

By CT = O(maxk{Lk})
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

(max
k

{L2
k} + (σ(k)

t )2dx + (µ(k)
t )2∥x∥2

2) exp
(

−1
2C2∥x∥2

2

)
dxdt(

x0 ∼ N(0, I)
)

≲
Ddx−2 exp

(
− 1

2C2D
2)

T − t0

∫ T

t0

(
max

k
{L2

k} + (σ(k)
t )2dx

)
dt+

Ddx exp
(
− 1

2C2D
2)

T − t0

∫ T

t0

(µ(k)
t )2dt(

By Lemma D.2
)

≲ Ddx exp
(

−1
2C2D

2
)

max
k

{L2
k}.

(
By Assumption I.2

)
Therefore,

E
x

[
∣∣ℓK(x;u1,θ, . . . , uK,θ) − ℓtrunc

K (x;u1,θ, . . . , uK,θ)
∣∣]
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≤
K∑

k=1
E
x

[
∣∣ℓk(x;uk,θ) − ℓtrunc

k (x;uk,θ)
∣∣] (

By triangle inequality
)

≲KDdx exp
(

−1
2C2D

2
)

max
k

{L2
k}.

(
By (E.1)

)
This completes the proof.

Covering Number of High-Order Loss Function Class with Transformers. The next lemma
extends Lemma L.5 to its higher-order counterpart. Please see Definition L.4 for a precise definition.

Lemma E.2 (Covering Number Bounds for S(D), Lemma K.2 of [Hu et al., 2025c], Theorem
A.17 of [Edelman et al., 2022]). Let ϵc > 0. We define the loss function class by S(D) :=
{ℓK(x;u1,θ, . . . , uK,θ) : D → R | u1,θ, . . . , uK,θ ∈ T h,s,r

R }. Further, we define the norm of loss
functions by ∥ℓK∥∞D := maxx∈[−D,D]dx |ℓK |. Then, under transformer parameter configuration in
Theorem 4.1 the ϵc-covering number of S(D) with respect to ∥·∥∞D satisfies:

log N (ϵc,S(D), ∥·∥∞D) ≤ O
( log (nL/ϵc)

ϵ2c
D2Nβ(16d+12)(logN)8d+8

)
.

Proof. We first derive the log covering number of transformers u1,θ, . . . , uK,θ in Theorem 4.1. Then,
we extend the results to K order loss function class.

• Log-Covering Number of Transformers Network Class. From (D.2), for all k ∈ [K], we have

CKQ, C
2,∞
KQ = O(λ−1I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(Iϵ−1Lk−1);CE = O(I);CT = O(Lk−1),

where λ−1 = O(Nβ logN)4d+3 is the inverse-temperature scaling in the softmax function,
I = O(

√
logN) and ϵ = N−β > 0 some N ∈ N and β > 0.

By Lemma L.5, the bounds on log-covering number follow

log N (ϵc, T h,s,r
R , ∥·∥2)

≤ α2 log (nL/ϵc)
ϵ2c

(
(C2∞

F ) 4
3 + (λ(CF )2COV C

2,∞
KQ ) 2

3 +
(
(CF )2C2,∞

OV

) 2
3
)3

≲
α2 log (nL/ϵc)

ϵ2c

(
I4/3ϵ−4/3︸ ︷︷ ︸

(C2,∞
F

)
4
3

+ I4/3ϵ−4/3︸ ︷︷ ︸
(CF )4/3

ϵ2/3︸︷︷︸
(COV )2/3

I(8d+4)/3ϵ−8d/3−4/3︸ ︷︷ ︸
(λC2,∞

KQ
)2/3

+ I4/3ϵ−4/3︸ ︷︷ ︸
(CF )

4
3

ϵ2/3︸︷︷︸
(C2,∞

OV
)

2
3

)3

≲
α2 log (nL/ϵc)

ϵ2c
· (I(8d+8)/3ϵ−8d/3−2)3

= α2 log (nL/ϵc)
ϵ2c

· I8d+8ϵ−8d−6.

By Lemma L.5, we have

α ≲ (CF )2COV CKQ(D + CE)
≲ I2ϵ−2︸ ︷︷ ︸

(CF )2

· ϵ︸︷︷︸
(COV )

· I4d+2ϵ−4d−2︸ ︷︷ ︸
(CKQ)

·(D + CE)
(

By the definition of α
)

= DI4d+4ϵ−4d−3.

31



Altogether, for all uk,θ ∈ T h,s,r
R , we have

log N (ϵc, T h,s,r
R , ∥·∥2) ≲ log (nL/ϵc)

ϵ2c
D2I16d+16ϵ−16d−12.

Further, by ∥ · ∥∞ ≤ ∥ · ∥2, we have

log N (ϵc, T h,s,r
R , ∥ · ∥∞) ≲ log (nL/ϵc)

ϵ2c
D2I16d+16ϵ−16d−12. (E.2)

for all uk,θ ∈ T h,s,r
R .

• Log-Covering Number of Loss Function Class. Let δ > 0. Let u := {u1,θ, . . . , uK,θ} and
u := {u1,θ, . . . , uK,θ} be two sets of transformers network satisfying ∥uk,θ − us,θ∥∞ ≤ δ on
domain x ∈ [−D,D]dx for all uk,θ ∈ u and us,θ ∈ u. Further, let ψ⋆

t,k denote the ground truth
k-th order conditional velocity field (Definition E.1):

ψ⋆
t,k := µ

(k)
t x+ σ

(k)
t X

(0)
0 .

Then, the distance between two K order conditional loss functions ℓK,1(x;u1,θ, . . . , uK,θ) and
ℓK,2(x;u1,θ, . . . , uK,θ) follows:∣∣ℓK,1(x;u1,θ, . . . , uK,θ) − ℓK,2(x;u1,θ, . . . , uK,θ)

∣∣ (E.3)

= 1
T − t0

∣∣∣∣∣
K∑

k=1

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ − ψ⋆
t,k∥2

2]dt−
K∑

s=1

∫ T

t0

E
X0∼N(0,I)

[∥us,θ − ψ⋆
t,k∥2

2]dt

∣∣∣∣∣(
By Definition E.1

)
≤

K∑
k=1

1
T − t0

∣∣∣∣∣
∫ T

t0

E
X0∼N(0,I)

[(uk,θ + uk,θ − 2ψ⋆
t,k)⊤(uk,θ − uk,θ)]dt

∣∣∣∣∣ (By triangle inequality
)

≤
K∑

k=1

δ

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ + uk,θ − 2ψ⋆
t,k∥]dt

(
By ∥uk,θ − uk,θ∥∞ ≤ δ

)
≤

K∑
k=1

δ

T − t0

∫ T

t0

√
2 E

X0∼N(0,I)
[∥uk,θ + uk,θ∥2

2 + 2∥ψ⋆
t,k∥2

2]dt
(

By Jensen’s inequality
)

≲
K∑

k=1

δ

T − t0

∫ T

t0

√
max

k
{L2

k} + 2∥ψ⋆
t,k∥2

2dt
(

By CT = O(maxk{Lk})
)

≲
K∑

k=1

δmaxk{Lk}
T − t0

∫ T

t0

dt
(

By the Lipschitzness of k-th order flow
)

≲ δmax
k

{Lk}.

Finally, we extend the log covering number to the loss function class S(D) by setting

ϵ′c := Ω
(
ϵc max

k
{Lk}

)
.

This gives

log N (ϵ′c,S(D), ∥·∥∞D) ≤ log N (ϵc, T h,s,r
R , ∥ · ∥∞).

(
By (E.3)

)
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Therefore,

log N (ϵ′c,S(D), ∥·∥∞D)
≤ log N (ϵc, T h,s,r

R , ∥ · ∥∞)

≲
log (nL/ϵc)

ϵ2c
D2I16d+16ϵ−16d−12 (

By (E.2)
)

= O
( log (nL/ϵc)

(ϵ′c)2 D2I16d+16ϵ−16d−12 max
k

{L2
k}
)
.

(
By the definition of ϵ′

c

)
Finally, we substitute I = O(

√
logN) and ϵ = N−β > 0. This completes the proof.

Generalization Bound. Based on covering number bounds results in Lemma E.2, we now analyze
the upper bound of generalization error

∣∣∣E{xi}n
i=1

[Rtrunc
K (Θ̂) − R̂trunc

K (Θ̂)]
∣∣∣.

Lemma E.3 (Generalization Bound on K Order Flow Matching Risk). For ϵc > 0, let N :=
N (ϵc,S(D), ∥ · ∥∞D) be the covering number of function class of loss S(D) following Lemma E.2.
Let Θ̂ be the collection of parameters of transformers trained by optimizing LCFM(Θ) following
Definition E.1 with i.i.d training samples {xi}n

i=1. Then we bound the generalization error:

E
{xi}n

i=1

[
Rtrunc

K (Θ̂) − R̂trunc
K (Θ̂)

]
≤ R̂trunc

k (Θ̂) +O( 1
n

log N + ϵc).

Proof. Let ûk,θ ∈ T h,s,r
R be the approximator of the k-th velocity field uk obtained from minimizing

the high-order empirical conditional flow matching loss:

L̂K
CFM := 1

n

n∑
i=1

K∑
k=1

1
T − t0

∫ T

t0

E
X0∼N(0,I)

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2]dt.

Further, we define

Rtrunc
k (ûk,θ) := 1

T − t0

∫ T

t0

E
x∼pt

[∥uk(x, t) − uk,θ(x, t)∥2
2]1{∥x∥∞ ≤ D}dt,

and

R̂trunc
k (ûk,θ)

:= 1
n

n∑
i=1

1
T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 ) − uk,θ(X(0)

t , t)∥2
2]dt · 1{∥xi∥∞ ≤ D}

− 1
n

n∑
i=1

1
T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 ) − uk(X(0)

t , t)∥2
2]dt · 1{∥xi∥∞ ≤ D}

Since every network configurations and log covering number are identical across all K order velocity
fields from Theorem 4.1 and Lemma E.2, for any k ∈ [K], Lemma L.8 extends to∣∣∣∣ E

{xi}n
i=1

[Rtrunc
k (ûk,θ) − R̂trunc

k (ûk,θ)]
∣∣∣∣ ≤ 1

2 E
{xi}n

i=1

[Rtrunc
k (ûk,θ)] +O( 1

n
log N + ϵc).

Therefore, ∣∣∣∣ E
{xi}n

i=1

[Rtrunc
k (Θ̂) − R̂trunc

k (Θ̂)]
∣∣∣∣
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≤
K∑

k=1

∣∣∣∣ E
{xi}n

i=1

[Rtrunc
k (ûk,θ) − R̂trunc

k (ûk,θ)]
∣∣∣∣ (

By the triangle inequality
)

≲
K∑

k=1

1
2 E

{xi}n
i=1

[Rtrunc
k (ûk,θ)] +O( 1

n
log N + ϵc)

(
By Lemma L.8

)
= 1

2 · E
{xi}n

i=1

[Rtrunc
K (Θ̂)] +O( 1

n
log N + ϵc).

This implies

E
{xi}n

i=1

[Rtrunc
k (Θ̂)] ≤ 2 · R̂trunc

k (Θ̂) +O( 1
n

log N + ϵc).

Finally, we conclude that

E
{xi}n

i=1

[Rtrunc
k (Θ̂) − R̂trunc

k (Θ̂)] ≤ R̂trunc
k (Θ̂) +O( 1

n
log N + ϵc).

This completes the proof.

E.3 Main Proof of Theorem 4.2

We now present the main proof of Theorem 4.2.

Theorem E.1 (Theorem 4.2 Restated: High-Order Velocity Estimation with Transformer). Assume
Assumption 4.1 and Assumption 4.2. Let ûk,θ ∈ T h,s,r

R be the estimator of the k-th order velocity
field uk trained by minimizing the high-order empirical conditional flow matching loss (3.9). Let Θ̂
be the collection of parameters of ûk,θ for k ∈ [K]. Suppose the k-th order velocity field uk(x, t) is
Lk Lipschitz for all k = 0, . . . ,K − 1. Suppose we choose the transformers as in Theorem 4.1, then

E
{xi}n

i=1

[RK(Θ̂)] = O
(
n− 1

10d · (logn)10dx

)
,

where d is the feature dimension.

Proof of Theorem 4.2. Let {x′
i}n

i=1 be a different set of i.i.d samples independent of the training
sample {xi}n

i=1. Further, we use R̂′ to denote the empirical risk with samples {x′
i}n

i=1.

Then, we decompose E{xi}n
i=1

[RK(Θ̂)] as:

E
{xi}n

i=1

[
RK(Θ̂)

]
= E

{xi}n
i=1

[
E

{x′
i
}n

i=1

[
R̂′

K(Θ̂) − R̂′ trunc
K (Θ̂)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′ trunc

K (Θ)
]

− R̂trunc
K (Θ̂)

]
︸ ︷︷ ︸

(II)

+ E
{xi}n

i=1

[
R̂trunc

K (Θ̂) − R̂K(Θ̂)
]

︸ ︷︷ ︸
(III)

+ E
{xi}n

i=1

[
R̂K(Θ̂)

]
︸ ︷︷ ︸

(IV)

,

Then, we bound each term and incorporate them to obtain the bound on the estimation error.
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• Bound on (I) and III. By Lemma E.1, (I) and (III) are upper bounded by

(I), (III) ≲ KDdx exp
(

−1
2C2D

2
)

max
k

{L2
k}.

• Bound on (II). By the generalization error bound (Lemma E.3), we have

(II)
= E

{xi}n
i=1

[ E
{x′

i
}n

i=1

[R̂′trunc
K (Θ)] − R̂trunc

K (Θ)]

= E
{xi}n

i=1

[Rtrunc
K (Θ̂) − R̂trunc

K (Θ̂)]
(

By Remark E.2
)

≤ E
{xi}n

i=1

[R̂trunc
K (Θ̂)] +O( 1

n
log N + ϵc)

(
By Lemma E.3

)
≲ (IV) +Ddx exp

(
−1

2C2D
2
)

max
k

{L2
k} +O( 1

n
log N + ϵc)

(
By Lemma E.1

)
• Bound on (IV). Recall Remark E.1, Remark E.2. We have R̂K(Θ) := L̂CFM(Θ) − L̂CFM(ft),

where the collection of parameters of K transformers Θ̂ is trained by optimizing L̂CFM(Θ).

Therefore, it holds

R̂K(Θ̂) ≤ L̂CFM(Θ) − L̂CFM(ft) = R̂K(Θ).

Then, for any velocity estimator Θ, it holds

E
{xi}n

i=1

[R̂K(Θ̂)] ≤ E
{xi}n

i=1

[R̂K(Θ)] = RK(Θ). (E.4)

This implies

(IV) ≤ RK(Θ) ≲ N−2β · (logN)
dx
2 −1.

(
By Theorem 4.1

)
Altogether, the estimation error is upper bounded by

E
{xi}n

i=1

[RK(Θ̂)] (E.5)

= (I) + (II) + (III) + (IV)

≲ Ddx exp
(

−1
2C2D

2
)

︸ ︷︷ ︸
(T1)

+O( 1
n

log N + ϵc)︸ ︷︷ ︸
(T2)

+N−2β · (logN)
dx
2 −1︸ ︷︷ ︸

(T3)

,

where

log N = O
( log (nL/ϵc)

ϵ2c
D2Nβ(16d+12)(logN)8d+8

)
.

(
By Lemma E.2

)
Let γ := 16d + 12. Then, we set N := nη1/(γβ), ϵc := n−η2 and D :=

√
(2η3 logn)/C2, where

η1, η2, η3 ≥ 0 are constants satisfying 0 ≤ η1 + 2η2 < 1.3 This gives

(T1) = Ddx exp
(

−1
2C2D

2
)

≲ n−η3(logn)
dx
2 .

3The constraint 0 ≤ η1 + 2η2 < 1 is imposed in order to ensure (T2) converges as n → ∞.
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Further, we have

log N = O(nη1+2η2(logn)8dx+11),

implying

(T2) = O( 1
n

log N + ϵc) = O(nη1+2η2−1(logn)8dx+11 + n−η2).

Further,

(T3) = n− 2η1
γ (logn)

dx
2 −1.

Then, (E.5) becomes

E
{xi}n

i=1

[RK(Θ)]

≲ (T1) + (T2) + (T3)

= O
(
n− min

{
1−(η1+2η2), η2,

2η1
γ

}
· (logn)8dx+11

)
.

For any η1 and η2 satisfying

0 < η1 + 2η2 < 1,

we consider solving

min
{

1 − (η1 + 2η2), η2,
2η1

γ

}
.

The linear programming problem has simple solution

1 − (η1 + 2η2) = η2 = 2η1

γ
.

This gives

η1 = γ

γ + 6 , and η2 = 2
γ + 6 ,

and η1 + 2η2 ∈ (0, 1)is satisfied for any η1, η2 > 0.

Finally, by γ = 16d+ 12, these free parameters achieves balance and gives

E
{xi}n

i=1

[RK(Θ̂)] ≲ O
(
n− 2

γ+6 · (logn)8dx+11
)

= O
(
n− 1

8d+9 · (logn)8dx+11
)

This completes the proof.
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F Proof of Theorem 4.3

We now present the main proof of Theorem 4.3.

Theorem F.1 (Theorem 4.3 Restated: High-Order Distribution Estimation under 2-Wasserstein
Distance). Assume Assumption 4.1 and Assumption 4.2. Let P̂K

T be the estimated distribution at
time T . Then, it holds

E
{xi}n

i=1

[W2(P̂K
T , PK

T )] = O
(
n− 1

18d · (logn)6dx

)
,

where d is the feature dimension.

Proof of Theorem 4.3. We first consider two general ODE functions that describe the ground truth
velocity field and estimated velocity field respectively:

d
dtyt =


u1(x(0)

t , t)
u2(x(0)

t , t)
...

uK(x(0)
t , t)

 := f(y, t), d
dtyt =


u1,θ(x(0)

t , t)
u2,θ(x(0)

t , t)
...

uK,θ(x(0)
t , t)

 := fθ(y, t),

where the first d rows of yt ∈ RKd construct x(0)
t ∈ Rd.

According to the existence uniqueness theorem of ODEs, these two functions can induce another
following two corresponding flows ϕ(·) ∈ RKd and ϕθ(·) ∈ RKd defined for t ≥ s that satisfy:

d
dtϕ(y, s, t) = f(ϕ(y, s, t), t), ϕ(y, s, s) = y,

d
dtϕ

θ(y, s, t) = fθ(ϕθ(y, s, t), t), ϕθ(y, s, s) = y.

We define the first d rows of ϕ(·) construct the flow function ψt(x) and the first d rows of ϕθ(·)
construct the flow function ψθ

t (x). By applying Lemma M.2, it holds that

ϕθ(y, t0, T ) − ϕ(y, t0, T ) =
∫ T

t0

Dϕθ(ϕ(y, t0, s), s, T )(fθ(ϕ(y, t0, s), s) − f(ϕ(y, t0, s), s))ds.

We extract the first d rows of left-hand-side and it holds:

ψθ(x, t0, T ) − ψ(x, t0, T ) =
∫ T

t0

Dϕθ(ϕ(y, t0, s), s, t))[: d](fθ(ϕ(y, t0, s), s) − f(ϕ(y, t0, s), s))ds,

where Dϕθ(ϕ(y, t0, s), s, t))[: d] denotes the first d rows of the Jacobian matrix.

We then bound ψθ(x, t0, T ) − ψ(x, t0, T ) by using similar techniques in proof of Theorem I.4. It
shows that

∂

∂t
∥Dϕθ(ϕ(y, t0, s), s, t))[: d]∥2

≤ ∥ ∂
∂t
Dϕθ(ϕ(y, t0, s), s, t))[: d]∥2

(
By triangle inequality

)
= ∥Du1,θ(ψθ(ψ(x, t0, s), s, t)Dϕθ(ϕ(y, t0, s), s, t))[: d])∥2

(
By chain rule

)
≤ LT ∥Dϕθ(ϕ(y, t0, s), s, t))[: d])∥2.

(
By Lipschitz constant of transformer

)
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Therefore,

∥Dϕθ(ϕ(y, t0, s), s, t))[: d])∥2 ≲ exp{
∫ t

s

LT du} ≤ exp{
∫ 1

0
LT du} =: M.

(
By Lemma M.1

)
Now we have

∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2

≤ M2
∫ T

t0

(fθ(ϕ(y, t0, s), s) − f(ϕ(y, t0, s), s))2ds
(

By Lemma M.1
)

= M2(
∫ T

t0

(
K∑

k=1
∥uk,θ(ψ(x, t0, s), s) − uk(ψ(x, t0, s), s)∥2)ds)2 (

By definition of fθ
)

≤ M2
∫ T

t0

(
K∑

k=1
∥uk,θ(ψ(x, t0, s), s) − uk(ψ(x, t0, s), s)∥2

2)ds.
(

By Cauchy Schwarz inequality
)

Then, we take expectation with x ∼ p0
t0

on both sides

E
x∼p0

t0

[∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2]

≤ M2
K∑

k=1
E

x∼p0
t0

[
∫ T

t0

∥uk,θ(ψ(x, t0, s), s) − uk(ψ(x, t0, s), s)∥2
2ds]

= M2(T − t0)RK(Θ).
(

By definition of higher order risk in Definition 4.2
)

Finally, we bound the 2-Wasserstein distance between the estimated and true distributions following
Appendix M. By using the definition of the 2-Wasserstein metric, it follows that

W2(P̂K
T , PK

T ) ≤
√

E
x∼pt0

[∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2] ≲

√
RK(Θ)

Then,

E
{xi}n

i=1

[W2(P̂K
T , PK

T )] ≲
√

RK(Θ̂)

We apply the high-order velocity estimation results in Theorem 4.2

E
{xi}n

i=1

[RK(Θ̂)] = O
(
n− 1

8d+9 · (logn)8dx+11
)
.

This implies

E
{xi}n

i=1

[W2(P̂K
T , PK

T )] ≲ E
{xi}n

i=1

[
√

RK(Θ)] = O
(
n− 1

16d+18 · (logn)4dx+6
)
.

This completes the proof.
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G Proof of Theorem 4.4

Recall the Hölder density function class and its minimax optimal rate under 2-Wasserstein distance:

Lemma G.1 (Lemma N.2 Restated: Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]).
Consider the task of estimating a probability distribution P (x1) with density function belonging to
the space

P :=
{
q(x1) | q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,

Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}n

i=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}n
i=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible

estimators constructed from the data.

We now give the formal proof of Theorem 4.4.

Theorem G.1 (Theorem 4.4 Restated: Minimax Optimality of High-Order Flow Matching Transform-
ers). Assume that the target density function satisfies q(x1) ∈ Hβ([−1, 1]dx , B) and q(x1) ≥ C
for some constant C. Then, under the setting of 18d(β + 1) = dx + 2β, the distribution estimation
rate of flow matching transformers presented in Theorem 4.3 matches the minimax lower bound of
Hölder distribution class in 2-Wasserstein distance up to a logn and Lipchitz constants factors.

Proof of Theorem 4.4. Since the bounded support [−1, 1]dx guarantees the sub-Gaussian property in
Assumption I.1, the distribution estimation Theorem 4.3 holds under q(x1) ∈ Hβ([−1, 1]dx , B):

E
{xi}n

i=1

[W2(P̂T , PT )] ≲ O

(
n− 1

18d · (logn)6dx

)
.

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a logn and
Lipschitz constant factors under the setting

18d(β + 1) = dx + 2β.

This completes the proof.

Remark G.1. Since dx = d · L, the condition 18d(β + 1) = dx + 2β implies

d(18β + 18 − L) = 2β and β(18d− 2) = d(L− 18),

the transformesr achieve minimax optimal rate with reshape layer such that 18 ≤ L ≤ 18β + 18.
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H Preliminaries: Universal Approximation of Transformers

Prior works [Hu et al., 2025b, 2024, Kajitsuka and Sato, 2023, Yun et al., 2019] develop the universal
approximation of transformers for continuous functions. Here we revisit these methods to establish
a foundation for our analysis of k-th order flow matching transformers. Specifically, we revisit (i)
the ability of the transformer function class (defined in Appendix B) to approximate any continuous
function on a compact domain with arbitrary error, (ii) the parameter norm bounds required to achieve
the universal approximation. Notably, controlling the magnitude of these norm bounds is essential
for subsequent analysis on the velocity estimation error and distribution error.

Background: Contextual Mapping. Recall the reshape layer Definition B.3. Let Z ∈ Rd×L

represent input embeddings. where Z:,k ∈ Rd denotes the k-th token (column) of each Z sequence.
Further, givenM embeddings Z(1), . . . , Z(M) ∈ Rd×L , we say Z(i) is the i-th sequence for i ∈ [M ].
Then, we define the vocabulary corresponding to the i-th sequence at the k-th index in Definition H.1.

Definition H.1 (Vocabulary). We define the i-th vocabulary set for i ∈ [M ] by V(i) =⋃
k∈[L] Z

(i)
:,k ⊂ Rd, and the whole vocabulary set V is defined by V =

⋃
i∈[N ] V(i) ⊂ Rd.

In line with prior works [Hu et al., 2025b, 2024, Kajitsuka and Sato, 2023, Kim et al., 2022, Yun
et al., 2019], we assume the embeddings separateness to be (γmin, γmax, δ)-separated,

Definition H.2 (Tokenwise Separateness). Let Z(1), . . . , Z(M) ∈ Rd×L be embeddings. Then, we
say Z(1), . . . , Z(M) are tokenwise (γmin, γmax, δ)-separated if the following three conditions hold.

1. For any i ∈ [M ] and k ∈ [n], ∥Z(i)
:,k ∥ > γmin holds.

2. For any i ∈ [M ] and k ∈ [n], ∥Z(i)
:,k ∥ < γmax holds.

3. For any i, j ∈ [M ] and k, l ∈ [n] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Further, we say Z(1), . . . , Z(N) is (γ, δ)-separated when only conditions (ii) and (iii) hold. Also, if
only condition (iii) holds, we denote it as (δ)-separateness.

Building on the token separateness, we introduce the contextual mapping, that characterizes the ability
of transformers’ self-attention to capture the relationships among tokens across different sequences.
This allows transformers to utilize self-attention for full context representation.

Definition H.3 (Contextual Mapping). Let Z(1), . . . , Z(M) ∈ Rd×L be embeddings. Then, we say
a map T : Rd×L → Rd×L is a (γ, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [M ] and k ∈ [L], it holds

∥T (Z(i)):,k∥ < γ.

2. For any i, j ∈ [M ] and k, l ∈ [L] such that V(i) ̸= V(j) or Z(i)
:,k ̸= Z

(j)
:,l , it holds

∥T (Z(i)):,k − T (Z(j)):,l∥ > δ.

We introduce results from [Hu et al., 2025b] in Theorem H.1, which shows that a one-layer single-head
attention mechanism is a contextual mapping.

Helper Lemmas. Before presenting Theorem H.1, we restate several helper lemmas from [Hu
et al., 2025b, Kajitsuka and Sato, 2023] to simplify the proof.

Lemma H.1 (Boltz Preserves Distance, Lemma 1 of [Kajitsuka and Sato, 2023]). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(N) ∈ Rn with no duplicate entries in each vector:

z(i)
s ̸= z

(i)
t ,
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where i ∈ [N ] and s, t ∈ [L], s ̸= t. Also, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator has the following properties:∣∣∣Boltz
(
z(i)
)∣∣∣ ≤ γ,∣∣∣Boltz

(
z(i)
)

− Boltz
(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2γ

for all i, j ∈ [N ], i ̸= j.

We remark that Lemma H.1 gives the key step for constructing a contextual mapping via the self-
attention layer Lemma H.4. We extend the results to the case with inverse-temperature scaling.

Lemma H.2 (Boltz Preserves Distance with Finite Inverse-Temperature Scaling in Softmax). Let
z(1), . . . , z(M) ∈ Rn be (γ, δ)-tokenwise separated vectors with no duplicate entries in each vector:

z(i)
s ̸= z

(i)
t ,

where n ≥ 2, δ ≥ 4 lnn/λ for some λ > 0, i ∈ [M ] and s, t ∈ [L], s ̸= t. Further, we define

Boltzλ(z(i)) := z(i)⊤Softmaxλ(z(i)) for all i ∈ [M ],

where Softmaxλ(z(i))[k] = exp
(
λz(i)[k]

)
/
∑

j exp
(
λz(i)[j]

)
is the softmax function with inverse-

temperature scaling λ > 0. Then, the outputs of the Boltzmann operator has the following properties:∣∣∣Boltzλ

(
z(i)
)∣∣∣ ≤ γ, (H.1)∣∣∣Boltzλ

(
z(i)
)

− Boltzλ

(
z(j)
)∣∣∣ > δ′ = ln2(n) · e−2λγ

λ
(H.2)

for all i, j ∈ [M ], i ̸= j.

Proof. We first scale the input vectors by y(i)[j] := z(i)[j] · λ for all i ∈ [M ] and all j ∈ [n]. This
gives a (R,∆)-tokenwise separated vectors y(1), . . . , y(M) ∈ Rn, where R = λγ and ∆ = λδ.

Next, notice that softmaxλ(·) = softmax(λ·) and Boltzλ(·) = Boltz(λ·)/λ. Therefore, since the
condition δ ≥ 4 lnn/λ ensures ∆ ≥ 4 lnn, Lemma H.1 implies both (H.1) and (H.2).

This completes the proof.

Lemma H.3 (Lemma 13 of [Park et al., 2021]). For any finite subset X ⊂ Rd, there exists at least
one unit vector u ∈ Rd such that

1
|X |2

√
8
πd

∥x− x′∥ ≤
∣∣u⊤ (x− x′)

∣∣ ≤ ∥x− x′∥,

for any x, x′ ∈ X .

Lemma H.3 shows the existence of a unit vector u ∈ Rd that bounds the inner product of the
difference between points in a finite subset X ⊂ Rd. Next, we restate the construction of rank-ρ
weight matrices in a self-attention layer following [Hu et al., 2025b] in Lemma H.4.

Lemma H.4 (Construction of Weight Matrices, Lemma D.2 of [Hu et al., 2025b]). Given
(γmin, γmax, ϵ)-separated input embeddings Z(1), . . . , Z(M) ∈ Rd×L with finite vocabulary set
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V ⊂ Rd. There exists rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)⊤ (WQvc) − (WKvb)⊤ (WQvc)
∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1 and any va, vb, vc ∈ V with va ̸= vb. In addition, the matrices
are constructed as

WK =
ρ∑

i=1
piq

⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′
jq

′⊤
j ∈ Rs×d,

where qi, q
′
i ∈ Rd are unit vectors that satisfy Lemma H.3 for at least one i, and pi, p

′
i ∈ Rs satisfies

∣∣p⊤
i p

′
i

∣∣ = 5 (|V| + 1)4
d

δ

ϵγmin
.

Any-Rank Attention is Contextual Mapping. The next lemma shows that the any rank self-
attention mechanisms of transformers serve as contextual mappings (Definition H.3).

Theorem H.1 (Any-Rank Attention is (γ, δ)-Contextual Mapping, Lemma 2.2 of [Hu et al., 2025b]).
Consider (γmin, γmax, ϵ)-tokenwise separated embeddings Z(1), . . . , Z(M) ∈ Rd×L and vocabulary
set V =

⋃
i∈[N ] V(i) ⊂ Rd. Let Z(1), . . . , Z(N) ∈ Rd×L be embedding sequences with no duplicate

word token in each sequence; that is, Z(i)
:,k ̸= Z

(i)
:,l , for any i ∈ [M ] and k, l ∈ [L]. Then, there exists

a 1-layer single head attention with weight matrices WO ∈ Rd×s and WV ,WK ,WQ ∈ Rs×d, that is
a (γ, δ)-contextual mapping for embeddings Z(1), . . . , Z(M) with

γ = γmax + ϵ/4, δ = exp
(
−5λϵ−1|V|4dκγmax logL

)
/λ,

where κ = γmax/γmin and λ is the inverse-temperature scaling in the column-wise Softmax function.

We restate the proof of Theorem H.1 since it is crucial for subsequent analysis.

Proof. For completeness, we restate the proof from Lemma 2.2 of [Hu et al., 2025c].

The proof consists of two steps:

• Construct the Softmax Attention. We ensure that different input tokens are mapped to unique
contextual embeddings by configuring the weight matrices in Lemma H.4.

• Handle Identical Tokens in Different Contexts. We show that the construction from Lemma H.4
are able to handle identical tokens in different contexts by applying Lemma H.2.

We proceed the proof with these two steps.

Step 1: Attention Construction. We show the construction of matrices: WK ,WQ,WO and WV .

• Weight Matrices WK and WQ. First, we construct WK and WQ by:

WK =
ρ∑

i=1
piq

⊤
i ∈ Rs×d; WQ =

ρ∑
j=1

p′
jq

′⊤
j ∈ Rs×d,

where pi, p
′
j ∈ Rs and qi, q

′
j ∈ Rd. In addition, let δ = 4 lnn and p1, p

′
1 ∈ Rs be an arbitrary

vector pair that satisfies ∣∣p⊤
1 p

′
1
∣∣ = (|V| + 1)4

d
δ

ϵγmin
. (H.3)
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• Weight Matrices WV and WO. Next, we construct WO ∈ Rd×s and WV ∈ Rs×d by:

WV =
ρ∑

i=1
p′′

i q
′′⊤
i ∈ Rs×d, (H.4)

where q′′ ∈ Rd, q′′
1 = q1 and p′′

i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ = ϵ

4ργmax
. (H.5)

This can be accomplished, e.g., WO =
∑ρ

i=1 p
′′′
i p

′′
i

⊤ for any vector p′′′
i which satisfies ∥p′′′

i ∥ =
ϵ/(4ρ2γmax∥p′′

i ∥2) for any i ∈ [ρ].

For simplicity, we define sk
k′ := Softmax

[(
WKZ

(i))⊤ (
WQZ

(i)
:,k

)]
k′

.

Then, we combine the above weights construction and obtain

∥WO

(
WV Z

(i)
)

Softmax
[(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)]
∥ (H.6)

= ∥
L∑

k′=1
sk

k′WO

(
WV Z

(i)
)

∥
(

By the definition of sk
k′
)

≤
L∑

k′=1
∥sk

k′WO

(
WV Z

(i)
)

∥
(

By triangle inequality
)

≤ max
k′∈[L]

∥WO

(
WV Z

(i)
)

∥
(

By
∑L

k′=1 sk
k′ = 1

)
≤ ϵ

4γmax
· max

k′∈[L]

∣∣∣q⊤Z
(i)
:,k′

∣∣∣ (
By (H.4) and (H.5)

)
≤ ϵ

4γmax
· max

k′∈[L]

∣∣∣Z(i)
:,k′

∣∣∣ (
By Lemma H.3

)
≤ ϵ

4 .
(

By the (γmin, γmax, ϵ) separateness
)

for i ∈ [M ] and k ∈ [L].
Step 2: The Case of Identical Tokens in Different Contexts. For the second part, we show that
with the constructed weight matrices WO,WV ,WK ,WQ, the attention layer distinguishes duplicate
input tokens with different context, Z(i)

:,k = Z
(j)
:,l with different vocabulary sets V(i) ̸= V(j).

We define a(i), a(j) as

a(i) =
(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)
∈ Rn, a(j) =

(
WKZ

(j)
)⊤ (

WQZ
(j)
:,l

)
∈ Rn,

where a(i) and a(j) are tokenwise (γ, δ)-separated. Specifically, the following inequality holds

|a(i)
k′ | ≤ (|V| + 1)4

d
δ

ϵγmin
γ2

max.

Since V(i) ̸= V(j) and there is no duplicate token in Z(i) and Z(j), we use Lemma H.1 and obtain∣∣∣Boltz
(
a(i)
)

− Boltz
(
a(j)
)∣∣∣

=
∣∣∣∣(a(i)

)⊤
Softmax

[
a(i)
]

−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.7)
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> δ′

= (lnn)2e−2γ .

Additionally, using Lemma H.4 and (H.3), and assuming Z(i)
:,k = Z

(j)
:,l , we have∣∣∣∣(a(i)

)⊤
Softmax

[
a(i)
]

−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣∣ (H.8)

≤
ρ∑

i=1
γmax · (|V| + 1)4πd

8
δ

ϵγmin
·
∣∣∣(q⊤

i Z
(i)
)

Softmax
[
a(i)
]

−
(
q⊤

i Z
(j)
)

Softmax
[
a(j)
]∣∣∣.

By combining (H.7) and (H.8), we have

ρ∑
i=1

∣∣∣(q⊤
i Z

(i)
)

Softmax
[
a(i)
]

−
(
q⊤

i Z
(j)
)

Softmax
[
a(j)
]∣∣∣ > δ′

(|V| + 1)4
ϵγmin

dδγmax
. (H.9)

Using (H.5) and (H.9). we derive the lower bound of the difference between the self-attention outputs
of Z(i), Z(j) as follows:

∥F (SA)
S

(
Z(i)

)
:,k

− F (SA)
S

(
Z(j)

)
:,l

∥ > ϵ

4γmax

δ′

(|V| + 1)4
ϵγmin

dδγmax
,

where δ = 4 lnL and δ′ = ln2(L)e−2γ with γ = (|V| + 1)4
dδγ2

max/(ϵγmin). Finally, we extend the
bound to softmax function with inverse-temperature scaling λ > 0 using Lemma H.2.

This completes the proof.

Notably, Theorem H.1 shows that, for identical embeddings Z(i)
:,k = Z

(j)
:,l with distinct vocabularies

V(i) ̸= V(j), any-rank self-attention is able to distinguish two identical tokens in distinct contexts.

Universal Approximation of Transformer. We introduce the universal approximation result for
transformers with a single self-attention layer from [Hu et al., 2025b, Kajitsuka and Sato, 2023].

Theorem H.2 (Transformer Universal Approximation, Theorem B.1 of [Hu et al., 2025b] and
Proposition 1 of [Kajitsuka and Sato, 2023]). Let ϵ ∈ (0, 1) and p ∈ [1,∞). Let F (FF)

1 , F (FF)
2 be

two feed-forward layers and F (SA) be a single-head self-attention layer with softmax function defined
in (B.1) and (B.2). Then, for any permutation equivariant continuous function f on a compact domain
and any ϵ, there exists a g(Z) = F (FF)

2 ◦ F (SA) ◦ F (FF)
1 (Z) ∈ T h,s,r

R such that dp(f(Z), g(Z)) < ϵ,
where dp := (

∫
∥f(Z) − g(Z)∥p

pdZ)1/p and ∥ · ∥p is the element-wise ℓp-norm.

Proof. Since the universal approximation of transformer over any bounded domain differs only by
scaling and shifting the transformer’s parameters in F (FF)

1 and F (FF)
2 , Hu et al. [2025b], Kajitsuka

and Sato [2023] prove Theorem H.2 assuming that the target function f is normalized on domain
[0, 1]d×L for simplicity. To support subsequent derivations of transformer parameter bounds required
for ϵ-precision (Lemma H.5), we provide the proof on a more general bounded domains.

The proof consists of three steps: (i) Quantization by the First Feed-Forward Layer (ii) Contextual
Mapping by the Self-Attention Layer (iii) Memorization by the Second Feed-Forward Layer.

Let Ω := [−I, I]d×L be the domain of f . Without loss of generality, we consider I ∈ N.

First Step Quantization. First, we define a grid GD:

GD :=
{
C ∈ Ω | Ct,k = −I + st,k

D
, st,k = 1, . . . , 2ID for all t ∈ [d], k ∈ [L]

}
, (H.10)

where D ∈ N is the granularity of GD.
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Then, for Z ∈ Ω, we construct a piece-wise constant function approximator:

g1(Z) :=
∑

C∈GD

f(C)1
{
Z ∈ C + [−1/D, 0)d×L

}
(H.11)

By the uniform continuity of f , for any ϵ > 0, there exist a D such that

dp(f(Z), g1(Z)) < ϵ/3. (H.12)

We use a transformer to approximate g1(Z) using two feed forward layers and a self-attention layer.
First, we introduce the quantization function that discretizes the input into GD:

Quantization Function. We define the quantization function quantD : R → R:

quantD(z) :=


−I z < −I
−I + 1/D −I ≤ z < −I + 1/D
...

...
I I − 1/D ≤ z.

Within Ω, quantd×L
D (z) outputs regions identical to C + [−1/D, 0)d×L defined by the indicator

function in (H.11). We extend the quantization to quantd×L
D (Z) : Rd×L → Rd×L, where quantD(z)

is applied coordinate-wise. Then, we approximate quantD(z) with the following network4:

f1(z) := −I +
ID−1∑

t=−ID

ReLU [z/δ − t/δD] − ReLU [z/δ − 1 − t/δD]
D

≈ quantD(z), (H.13)

where δ > 0 determines the steepness of the change from one quantized level to the next. For
z ∈ R \ [−I, I], we add and subtract the first and last step functions scaled by I to obtain zero output:

fFF
1 (z) := f1(z) − I ·

(
ReLU [z/δ − I/δ] − ReLU [z/δ − 1 − I/δ]

)
+ I ·

(
ReLU [−z/δ − I/δ] − ReLU [−z/δ − 1 − I/δ]

)
, (H.14)

where fFF
1 (z) approximately quanitzes [−I, I] into {−I + 1/D, . . . , I} and project R \ [−I, I] to 0

by taking sufficiently small δ. Since every element shares identical weights, we realize (H.14) using
W ′

2ReLU
[
W′

1Z + b′
1
]

+ b′
2 by constructing W ′

1 ∈ RL·(4ID+4)×d and b′
1 ∈ RL·(4ID+4) as:

W ′
1 :=


W

(1)
1

W
(2)
1
...

W
(L)
1

 , b′
1 :=


b

(1)
1
b

(2)
1
...

b
(L)
1

 , where b
(i)
1 =



I
δ

I
δ − 1

...
− I

δ + 1
D

− I
δ − 1 + 1

D
− I

δ
− I

δ − 1
− I

δ
− I

δ − 1


for all i ∈ [L], (H.15)

4This is by the shifting and stacking step functions from [Yun et al., 2019].
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and W (1)
1 , . . . ,W

(L)
1 ∈ R(4ID+4)×d take the form:

W
(1)
1 =



1/δ 0 0 · · · 0
1/δ 0 0 · · · 0

...
...

...
. . .

...
1/δ 0 0 · · · 0
1/δ 0 0 · · · 0
1/δ 0 0 · · · 0
1/δ 0 0 · · · 0

−1/δ 0 0 · · · 0
−1/δ 0 0 · · · 0


,W

(2)
1 =



0 1/δ 0 · · · 0
0 1/δ 0 · · · 0
...

...
...

. . .
...

0 1/δ 0 · · · 0
0 1/δ 0 · · · 0
0 1/δ 0 · · · 0
0 1/δ 0 · · · 0
0 −1/δ 0 · · · 0
0 −1/δ 0 · · · 0


, · · · ,W (L)

1 =



0 0 0 · · · 1/δ
0 0 0 · · · 1/δ
...

...
...

. . .
...

0 0 0 · · · 1/δ
0 0 0 · · · 1/δ
0 0 0 · · · 1/δ
0 0 0 · · · 1/δ
0 0 0 · · · −1/δ
0 0 0 · · · −1/δ


.

The first 4ID rows of W ′
1 and b′

1 implement the ReLU terms in (H.13), and the last four rows
implement the ReLU terms in (H.14). Then, we construct W ′

2 ∈ Rd×L·(4ID+4) and b2 ∈ Rd by

W ′
2 =


1/D −1/D · · · 1/D −1/D −I I I −I
1/D −1/D · · · 1/D −1/D −I I I −I

...
...

...
...

...
...

...
. . .

...
1/D −1/D · · · 1/D −1/D −I I I −I

 , b′
2 =


−I
−I

...
−I

 . (H.16)

Besides the quantization, we include an additional penalty function to signify the case where the
inputs are not on the target domain [−I, I]d×L.

Penalty Function. We define the penalty function penalty : R → R

penalty(z) =


−2I z < −I
0 z ∈ [−I, I]
−2I z > I.

(H.17)

Again, we extend the penalty function to penaltyd×L(z) : Rd×L → Rd×L where penalty(z) is
applied coordinate-wise. By taking sufficiently small δ, we approximate penalty(z) by

fFF
2 (z) ≈ penalty(z),

where

fFF
2 := −2I

(
ReLU [(z − I)/δ] + ReLU [(z − I)/δ − 1]

)
︸ ︷︷ ︸

Approximate step from 0 to −2I at z = I

(H.18)

−2I
(

ReLU [(−z − I)/δ] + ReLU [(−z − I)/δ − 1]
)

︸ ︷︷ ︸
Approximate step from 0 to −2I at z = −I

.

Let I ∈ Rd×L be a matrix with all entries equal to I . Altogether, we define g2(Z) : Rd×L → Rd×L

g2(Z) = quantd×L
D (Z) + I︸ ︷︷ ︸

(A)

+ dL · penaltyd×L(Z)︸ ︷︷ ︸
(B)

. (H.19)

Term (A) first quantizes input [−I, I]d×L into GD and scales the grid to [0, 2I]d×L, denoted by G◦
D.

Term (B) ensures non-positive outputs for any Z ∈ Rd×L \ [−I, I]d×L.

Together, we approximate (H.19) using the first feed-forward block W2ReLU
[
W1Z + b1

]
+ b2 with

W1 ∈ RL·(4ID+8)×d, b1 ∈ RL·(4ID+8), W2 ∈ Rd×L·(4ID+8) and b2 ∈ Rd, where we stack 4L rows
to W ′

1, b
′
1 to implement the penalty function, scale weights in W ′

2, and set b2 as a zero vector.
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Second Step Contextual Mapping. Let G̃D ⊆ G◦
D denote the sub-grid on [0, 2I]d×L:

G̃D :=
{
G ∈ G◦

D | G:,k ̸= G:,l for all k, l ∈ [L]
}
. (H.20)

By the construction of G◦
D, the sub-grid G̃D is a collection of grids with pairwise distinct tokens, and

every G ∈ G̃D is a token-wise (1/D, 2I
√
d, 1/D)-separated sequences.

From the construction of F (SA) in (H.6), it holds:

∥F (SA)(Z):,k − Z:,k∥ < 1
8I

√
dD

max
k′∈[L]

∥Z:,k′∥,

Recall that the magnitude of every entry in FFF
1 (Z) is at most 2IdL by the construction of the

penalty function. Therefore, for all k′ ∈ [L], it holds:

max
Z∈Rd×L

∥FFF
1 (Z):,k′∥ ≤ 2IdL×

√
d.

This implies

∥F (SA)(Z):,k ◦ FFF
1 (Z):,k − FFF

1 (Z):,k∥ < dL

4D

Taking sufficiently large D, every element of output of Z ∈ Rd×L \ [−I, I]d×L is upper-bounded by:

F (SA) ◦ FFF
1 (Z)t,k <

1
4D for all t ∈ [d], k ∈ [L].

Also, for input on Z ∈ [0, 1]d×L, we have lower bound:

F (SA) ◦ FFF
1 (Z)t,k >

3
4D for all t ∈ [d], k ∈ [L].

Then, it remains to map sequences on (3/4D,∞)d×L to their corresponding target value, and map
sequences on on (−∞, 1/4D)d×L to zero.

Third Step Memorization. For a fixed C ∈ G̃D and a network input Z, we define u := F (SA)(C)
and S := F (SA) ◦ FFF

1 (Z). The goal is to use FFF
2 to implement g3 : Rd×L → Rd×L, where

g3(S)t,k = f(C − I)t,k · 1
[
ut,k = St,k

]
for all t ∈ [d], k ∈ [L],

and f is the target function. We use the bump function with three-piece ReLU to achieve this:

bumpR(S)t,k (H.21)
= ReLU [RFF(St,k − ut,k) − 1] − 2ReLU [RFF(St,k − ut,k)] + ReLU [RFF(St,k − ut,k) + 1] ,

where inputs with a deviation from the correct grid point ut,k greater than 1/RFF are mapped to zero.
Therefore, by taking sufficiently large RFF, (H.21) implements 1

[
ut,k = St,k

]
exactly.

Suppose that there exist a feed-forward block FFF
2 such that (H.21) holds for all t ∈ [d], k ∈ [L]. By

choosing the granularity D sufficiently large such that
∣∣∣GD \ G̃D

∣∣∣ is negligible, it holds

dp

(
FFF

2 ◦ F (SA) ◦ FFF
1 , g1

)
< 2ϵ/3 (H.22)
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Combining (H.12), we have

dp

(
FFF

2 ◦ F (SA) ◦ FFF
1 , f

)
< ϵ.

It remains to show that there exists a FFF
2 that implements (H.21) for all t ∈ [d], k ∈ [L]. This is possi-

ble since Theorem H.1 ensures that (γmin, γmax, ϵ)-tokenwise separated sequences are at least δ′ apart
from one another after the self-attention mapping, where δ′ = exp

(
−5λϵ−1|V|4dγ2

max logL/γmin
)
,

λ > 0 is the inverse-temperature constant and |V| is the size of the vocabulary set.

Specifically, for a fixed C and u = FSA(C), we construct a W (i)
1 ∈ R3dL×L and a b(i)

1 ∈ R3dL:

W
(i)
1 =



RFF 0 0 · · · 0
RFF 0 0 · · · 0
RFF 0 0 · · · 0

0 RFF 0 · · · 0
0 RFF 0 · · · 0
0 RFF 0 · · · 0
0 0 RFF · · · 0
0 0 RFF · · · 0
0 0 RFF · · · 0
...

...
...

. . .
...

0 0 0 · · · RFF
0 0 0 · · · RFF
0 0 0 · · · RFF
...

...
...

...
...

...
...

...
. . .

...
RFF 0 0 · · · 0
RFF 0 0 · · · 0
RFF 0 0 · · · 0
RFF 0 · · · 0

0 RFF 0 · · · 0
0 RFF 0 · · · 0
0 0 RFF · · · 0
0 0 RFF · · · 0
0 0 RFF · · · 0
...

...
...

. . .
...

0 0 0 · · · RFF
0 0 0 · · · RFF
0 0 0 · · · RFF



, b
(i)
1 =



−RFFu1,1
−RFFu1,1 − 1
−RFFu1,1 + 1

−RFFu2,1
−RFFu2,1 − 1
−RFFu2,1 + 1

−RFFu3,1
−RFFu3,1 − 1
−RFFu3,1 + 1

...
−RFFud,1

−RFFud,1 − 1
−RFFud,1 + 1

...

...
−RFFu1,L

−RFFu1,L − 1
−RFFu1,L + 1

−RFFu2,L

−RFFu2,L − 1
−RFFu2,L + 1

−RFFu3,L

−RFFu3,L − 1
−RFFu3,L + 1

...
−RFFud,L

−RFFud,L − 1
−RFFud,L + 1



(H.23)

where the first 3L rows ofW (i)
1 are repeated d times and S = F (SA) ◦FFF

1 (Z) is mapped to R3dL×L:

W
(i)
1 S + b

(i)
1
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=



RFF(S1,1 − u1,1) RFF(S1,2 − u1,1) · · · RFF(S1,L − u1,1)
RFF(S1,1 − u1,1) − 1 RFF(S1,2 − u1,1) − 1 · · · RFF(S1,L − u1,1) − 1
RFF(S1,1 − u1,1) + 1 RFF(S1,2 − u1,1) + 1 · · · RFF(S1,L − u1,1) + 1
RFF(S2,1 − u2,1) RFF(S2,2 − u2,1) · · · RFF(S2,L − u2,1)

RFF(S2,1 − u2,1) − 1 RFF(S2,2 − u2,1) − 1 · · · RFF(S2,L − u2,1) − 1
RFF(S2,1 − u2,1) + 1 RFF(S2,2 − u2,1) + 1 · · · RFF(S2,L − u2,1) + 1

...
...

. . .
...

RFF(Sd,1 − ud,1) RFF(Sd,2 − ud,1) · · · RFF(Sd,L − ud,1)
RFF(Sd,1 − ud,1) − 1 RFF(Sd,2 − ud,1) − 1 · · · RFF(Sd,L − ud,1) − 1
RFF(Sd,1 − ud,1) + 1 RFF(Sd,2 − ud,1) + 1 · · · RFF(Sd,L − ud,1) + 1

...
...

...
...

...
...

. . .
...

RFF(S1,1 − u1,L) RFF(S1,2 − u1,L) · · · RFF(S1,L − u1,L)
RFF(S1,1 − u1,L) − 1 RFF(S1,2 − u1,L) − 1 · · · RFF(S1,L − u1,L) − 1
RFF(S1,1 − u1,L) + 1 RFF(S1,2 − u1,L) + 1 · · · RFF(S1,L − u1,L) + 1
RFF(S2,1 − u2,L) RFF(S2,2 − u2,L) · · · RFF(S2,L − u2,L)

RFF(S2,1 − u2,L) − 1 RFF(S2,2 − u2,L) − 1 · · · RFF(S2,L − u2,L) − 1
RFF(S2,1 − u2,L) + 1 RFF(S2,2 − u2,L) + 1 · · · RFF(S2,L − u2,L) + 1

...
...

. . .
...

RFF(Sd,1 − ud,L) RFF(Sd,2 − ud,L) · · · RFF(Sd,L − ud,L)
RFF(Sd,1 − ud,L) − 1 RFF(Sd,2 − ud,L) − 1 · · · RFF(Sd,L − ud,L) − 1
RFF(Sd,1 − ud,L) + 1 RFF(Sd,2 − ud,L) + 1 · · · RFF(Sd,L − ud,L) + 1



.

Then, we construct the second matrix by W (i)
2 := W

′′(i)
2 W

′(i)
2 ∈ Rd×3dL with W

′(i)
2 ∈ RdL×3dL

and W
′′(i)
2 ∈ Rd×dL. For W

′(i)
2 , we set

W
′(i)
2 =


−2f(C − I)1,1 f(C − I)1,1 f(C − I)1,1 0 · · · 0

...
...

...
...

...
...

...
...

...
...

. . .
...

0 · · · 0 −2f(C − I)d,L f(C − I)d,L f(C − I)d,L

 ,

which maps the output of the first layer after ReLU operation to RdL×L:

W
′(i)
2 ReLU

[
W

(i)
1 S + b

(i)
1
]

=



f(C − I)1,1bump(S1,1 − u1,1) f(C − I)1,1bump(S1,2 − u1,1) · · · f(C − I)1,1bump(S1,L − u1,1)
f(C − I)2,1bump(S2,1 − u2,1) f(C − I)2,1bump(S2,2 − u2,1) · · · f(C − I)2,1bump(S2,L − u2,1)

...
...

. . .
...

f(C − I)d,1bump(Sd,1 − ud,1) f(C − I)d,1bump(Sd,2 − ud,1) · · · f(C − I)d,1bump(Sd,L − ud,1)
f(C − I)1,2bump(S1,1 − u1,2) f(C − I)1,2bump(S1,2 − u1,2) · · · f(C − I)1,2bump(S1,L − u1,2)
f(C − I)2,2bump(S2,1 − u2,2) f(C − I)2,2bump(S2,2 − u2,2) · · · f(C − I)2,2bump(S2,L − u2,2)

...
...

. . .
...

f(C − I)d,2bump(Sd,1 − ud,2) f(C − I)d,2bump(Sd,2 − ud,2) · · · f(C − I)d,2bump(Sd,L − ud,2)
...

...
...

...
...

...
. . .

...
f(C − I)1,Lbump(S1,1 − u1,L) f(C − I)1,Lbump(S1,2 − u1,L) · · · f(C − I)1,Lbump(S1,L − u1,L)
f(C − I)2,Lbump(S2,1 − u2,L) f(C − I)2,Lbump(S2,2 − u2,L) · · · f(C − I)2,Lbump(S2,L − u2,L)

...
...

. . .
...

f(C − I)d,Lbump(Sd,1 − ud,L) f(C − I)d,Lbump(Sd,2 − ud,L) · · · f(C − I)d,Lbump(Sd,L − ud,L)



.

(H.24)
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Recall that we have tokenwise (1/D, 2I
√
d, 1/D)-separated sequence after the quantization of the

target domain Ω, and |V | ≤ (2ID)d. Therefore, it suffices to set the scale of the bump function as

RFF := O(1/δ′) = O
(

exp
(
640λ(ID)4d+2d2 logL

))
.

(H.24) is a partition of L vertical blocks, each of dimension d× L. Then, if S is a permutation of u,
a single column within each block is comprised of correct target output since their bump function all
evaluates to one, and all other columns containing zeros. Also, The position of this all-ones column is
distinct for every block. Conversely, if S is not a permutation of u, (H.24) becomes the zero matrix.

Lastly, we construct W
′′(i)
2 by (Id, Id, · · · , Id) to sum over every column in each block matrix,

where the d× d identity matrix is concatenated L times.

Up to permutation equivariance, there are total q2 = (2ID)dL/L! possible u, so we stack W (i)
1 , b(i)

1
and W (ii)

2 with weights corresponding to each distinct u using the identical construction.

In sum, there exist a feed-forward block FFF
2 with W1 ∈ R3dLq2×d, a b1 ∈ R3dLq2 and a W2 ∈

Rd×3dLq2 that implements the bump function (H.21) for all t ∈ [d] and k ∈ [L].
This completes the proof.

Remark H.1. Note that Theorem H.2 uses 2 FFN layers and g ∈ T 1,1,r
R , where hidden dimension

r = O(dL(ID)dL/L!). By Definition B.2, T 1,1,r
R belongs to our transformer network class.

To eliminate the permutation equivariance required for the target function, we incorporate the
positional encoding to Theorem H.2 to break the symmetry following [Yun et al., 2019].

Corollary H.2.1 (Universal Approximation of Transformers with Positional Encoding, [Kajitsuka
and Sato, 2023]). Let ϵ ∈ (0, 1) and p ∈ [1,∞). Let F (FF)

1 , F (FF)
2 be two feed-forward layers and

F (SA) be a single-head self-attention layer with softmax function defined in (B.1) and (B.2). Then,
for any continuous function f on a compact domain and any ϵ, there exists a positional encoding
E ∈ Rd×L and a h(Z) = F (FF)

2 ◦ F (SA) ◦ F (FF)
1 (Z + E) ∈ T h,s,r

R such that dp(f, h) < ϵ, where
dp := (

∫
∥f(Z) − g(Z)∥p

pdZ)1/p and ∥ · ∥p is the element-wise ℓp-norm.

Proof. It suffices to show that the universal approximation remains valid with the inclusion of a
positional encoding E ∈ Rd×L to the weight matrices constructed in Theorem H.2.

Recall the (H.14) and (H.20). We have token-wise (1/D, 2I
√
d, 1/D)-separated sequences on

[0, 2I]d×L after quantization. Then, we add the positional encoding to the quantized sequences:

E :=

2I 4I · · · 2IL
...

...
. . .

...
2I 4I · · · 2IL

 ,

giving token-wise (2I
√
d, 2(L + 1)I

√
d, 1/D)-separated sequences, where the first column is in

[0, 4I]d, the second is in [0, 6I]d and so on. For each row, entries are monotonically increasing.

The second step contextual mapping remains valid by scaling the penalty function (H.18) to 2I(L+1).
By Theorem H.1, columns after the self-attention mapping are at least δ′ apart (in ℓ2-distance) from
each other, where δ′ = exp

(
−5λϵ−1|V|4dγ2

max logL/γmin
)

and |V| = O((ID)d).

Recall the bump function (H.21) and (H.24). The construction of W (i)
1 , b

(i)
1 and W (i)

2 follows by
setting the scale parameter RFF = O(1/δ) . Because of the lack of permutation equivariance here, it
necessitates to stack these matrices and biases for all q2 = (2ID)dL possible values u.

This completes the proof.

Parameter Norm Bounds for Transformer Approximation. Next lemma provides matrices norm
bounds required to achieve the universal approximation of transformer with any error ϵ.

50



Lemma H.5 (Transformer Matrices Bounds, Modified from Lemma F.4 and Lemma F.5 of [Hu
et al., 2025c]). Let ϵ ∈ (0, 1). Let Z ∈ [−I, I]d×L be an input sequence, where I is an absolute
positive constant and L ≥ 2. Let f(Z) : [−I, I]d×L → Rd×L be any Lipchitz continuous function
with respect to some norm dY . Then, for g ∈ T r,h,s

R that approximates f within ϵ precision, i.e.,
dY (f, g) < ϵ , the parameter bounds in the transformer network class follow:

CKQ, C
2,∞
KQ = O(λ−1I4d+2ϵ−4d−2); COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O

(
Iϵ−1 · max ∥f(Z)∥F

)
; CE = O(I),

where λ−1 = O(I/ϵ)4d+3 is the inverse-temperature scaling in the softmax function and O(·) hides
polynomial and logarithmic factors depending on d and L. Further, for all feed-forward layers,

max{∥b1∥∞, ∥b2∥∞} = O(Iϵ−1).

Proof. Hu et al. [2025c] provide parameter bounds for the universal approximation of transformers
on domain [0, 1]d×L. We specify these bounds for approximation on domain [−I, I]d×L

Recall the construction of weight matrices in the proof of Theorem H.2. We achieve the universal
approximation by choosing “sufficiently large” granularity D and “sufficiently small” δ (H.13).

To prove Lemma H.5, we first identify the order of δ,D and RFF in terms ϵ. Then, we derive norm
bounds on matrices in two feed-forward layers FFF

1 ,FFF
2 , and the self attention layer FSA.

Bound on δ. Recall the approximation of quantization function in (H.13). In each step function, we
have extra partition (1/D, 1/D + δ). Therefore, it suffices to take δ = o(1/D).

Bound on the Granularity D. Recall the contextual mapping step in the proof of Theorem H.2. The
total omitted duplicated points in the grid G◦

D are
∣∣∣G◦

D \ G̃D

∣∣∣ =
∣∣D−d · (2ID)dL

∣∣, where G̃D ⊆ G◦
D

is the sub-grid consisting of sequences with non-duplicated tokens. Further, by the extreme value
theorem, ∥f∥p

p ≤ BT for a constant BT > 0. Then, the difference between the target function f and
the piece-wise constant approximator g1 with granularity D is bounded by

dp(f, g1)

=
(∫

∥f(Z) − g1(Z)∥p
pdZ

) 1
p

= O
((
D−d(2ID)dL ·BT (1/D)dL

) 1
p

)
= O(D−d/p · IdL).

For p ∈ [1,∞), we have that ϵ = O(D−d/p ·IdL). This impliesD = O(ϵ−p/d ·I−L/p). Without loss
of generality, we drop I−L/p ∈ (0, 1) and drop the constant p. Then, we have that D = O(ϵ−1/d).

Next, recall the piece-wise constant approximation (H.10), (H.11) and (H.12).

For Lipchitz continuous target function f , there exist a grid GD on domain [−I, I]d×L such that

dp(f(Z), g1(Z)) < Lf ∥Z − Z ′∥2 ≤ Lf ∥Z − Z ′∥F ≤
√
dLLf/D,

where Z ′ ∈ GD and Lf is the Lipchitz constant with respect to the matrix 2-norm. Therefore, it
suffices to take ϵ =

√
dLLf/D. Altogether, we take D = O(ϵ−1) such that Theorem H.2 holds.

Next, we derive the norm bounds on transformer weight matrices.

• Bounds on WQ and WK in FSA. For the self-attention layer, we denote the separatedness of the
input tokens by (γmin, γmax, ϵs) and the separatedness of the output tokens by (γ, δs).
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Recall Theorem H.1. We construct rank ρ matrix WQ and WK in the self-attention layer by

WK =
ρ∑

i=1
piq

⊤
i ∈ Rs×d, WQ =

ρ∑
i=1

p′
iq

′⊤
i ∈ Rs×d,

with the identity p⊤
i p

′
i = (|V| + 1)4dδs/(ϵsγmin). Then, the bounds on WKQ follows

∥WKQ∥2 ≤ ∥WKQ∥F = ∥(WK)⊤WQ∥F = O
( δs|V|4

ϵsγmin

)
,

∥WKQ∥2,∞ = ∥(WK)⊤WQ∥2,∞ = O
( δs|V|4

ϵsγmin

)
.

We identify the order of each terms. Recall the first step quantization (H.13). We have total (DI)dL

input that are token-wise (1/D, 2I
√
d, 1/D)-separated.

Further, since there are at most DI possible values that each entry can take, we have vocabulary
|V| = O((DI)d) and γmin, ϵs = (2DI)−1. Further, from the proof of the second step contextual
mapping in Theorem H.1, we construct the self-attention such that δs · λ = 4 logL, where we
specify the choice of λ in (H.25). Finally, by D = O(ϵ−1) the bounds on WKQ follows

∥WKQ∥2 ≤ CKQ = O(λ−1ϵ−4d−2 · I4d+2); ∥WKQ∥2,∞ ≤ C2,∞
KQ = O(λ−1ϵ−4d−2 · I4d+2).

• Bounds on WO and WV in FSA. From the proof of contextual mapping Theorem H.1, we have,

WV =
ρ∑

i=1
p′′

i q
′′⊤
i ∈ Rs×d; WO =

ρ∑
i=1

p′′′
i p

′′
i

⊤ ∈ Rd×s,

with the identity ∥p′′′
i ∥ ≲ ϵs/(4ργmax∥p′′

i ∥) from (H.5), and p′′
i ∈ Rs is any nonzero vector.

With the (γmin = 1/D, γmax =
√
d, ϵs = 1/D) separateness and D = O(ϵ−1), we have

∥WV ∥2 = sup
∥x∥2=1

∥WV x∥2 ≤ CV = O (√ρ) = O
(√

d
)
,

∥WV ∥2,∞ = max
1≤i≤L

∥(WV )(:,i)∥2 ≤ C2,∞
V = O (ρ) = O (d) ,

∥WO∥2 = sup
∥x∥2=1

∥WOx∥2 ≤ CO = O
(√
ρ · ρ−1 · γ−1

max · ϵs
)

= O
(
d−1ϵ

)
∥WO∥2,∞ = max

1≤i≤L
∥(WO)(:,i)∥2 ≤ C2,∞

O = O
(
ρ · ρ−1 · γ−1

max · ϵs
)

= O
(
d−1/2ϵ

)
.

Therefore,

∥WOV ∥2 = ∥WOWV ∥2 ≤ COV = O(ϵ); ∥WOV ∥2,∞ = ∥WOWV ∥2,∞ ≤ C2,∞
OV = O(ϵ).

• Bounds on W1 and W2 in FFF
1 Recall(H.15). By δ = o(1/D) and D = O(ϵ−1), we have

max{∥W1∥2, ∥W2∥2} ≤ C2
F = O(ϵ−1 · IDL);

max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞
F = O(ϵ−1 · IDL).

• Bounds on W1 and W2 in FFF
2 . Recall the construction of bump function (H.24). We take

RFF = O
(

exp
(
640λ(ID)4d+2d2 logL

))
,
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where (γmin, γmax, ϵ) = (2I
√
d, 2(L+ 1)I

√
d, 1/D). Recall that D = O(ϵ−1). Then, we take

λ = (ID)−4d−2 · log ϵ−1

640d2 · logL . (H.25)

This gives

max{∥W1∥2, ∥W2∥2} ≤ C2
F = O

(
Iϵ−1 · max ∥f(Z)∥F

)
,

max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞
F = O

(
Iϵ−1 · max ∥f(Z)∥F

)
,

where Ω = [−I, I]d×L is the domain of the target function f .

• Bounds on Positional Encoding Matrix E. By Corollary H.2.1, we have:

E :=

2I 4I · · · 2IL
...

...
. . .

...
2I 4I · · · 2IL

 ,

Therefore, we have CE = O(I).

Finally, recall that (i) u = F (SA)(C) from (H.23) (ii) COV = O(ϵ) and (iii) RFF = ϵ−1 by (H.25).
Then, the bound on the bias holds by the construction in (H.15), (H.16) and (H.23).

This completes the proof.
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I Statistical Rates of Flow Matching Transformers (FMTs)

In this section, we present statistical rates for the first order flow, i.e., the velocity field, ut(x).

Specifically, we consider the target density function q1(x) in the Hölder space (Definition I.1) with
sub-Gaussian property. Then, we bound the approximation and estimation error for ut(x). Further,
we extend these results to derive distribution estimation rates under the 2-Wasserstein distance.
Compared to high-order flow matching statistical rates Section 4, we remove the requirement of
Lipschitz continuousness of the velocity field ut(x).

Organizations. Appendix I.1 presents velocity approximation under a generic Hölder smoothness
assumption. Appendix I.2 adopts a stronger Hölder smoothness assumption; this yields tighter
approximation error bounds toward minimax optimality in velocity estimation. Appendix I.3 utilizes
these approximation results to develop velocity estimation bounds and distribution estimation rates.
Finally, Appendix I.4 establishes the nearly minimax optimality of flow matching transformers.

I.1 Velocity Approximation: Generic Hölder Smooth Data Distributions

Establishing our statistical theory begins with approximating the velocity using transformers. We
present the corresponding velocity approximation theory under the Hölder smoothness assumption
on the initial data [Fu et al., 2024]. This theory ensures our approximation rate adaptive to the initial
data’s smoothness. First, we restate the definition of Hölder space and Hölder ball.

Definition I.1 (Definition 4.1 Restated: Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote

the smoothness parameter, where k1 = ⌊β⌋ and γ ∈ [0, 1). For a function f : Rd → R, the
Hölder space Hβ(Rd) is defined as the set of α-differentiable functions satisfying: Hβ(Rd) :={
f : Rd → R | ∥f∥Hβ(Rd) < ∞

}
, where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) := max
α:∥α∥1<k1

sup
x

|∂αf(x)| + max
α:∥α∥1=k1

sup
x ̸=x′

|∂αf(x) − ∂αf(x′)|
∥x− x′∥γ

∞
.

Also, we define the Hölder ball of radius B by Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

Before presenting the main result of velocity approximation, we state our two assumptions: (i) the
Generic Hölder Smooth assumption on the target distribution q(x1). (ii) the regularity assumption on
the first derivative of path coefficients. In particular, (i) and (ii) are the counterparts of Assumption 4.1
and Assumption 4.2 in the K order flow matching framework (Section 4) respectively. Notably, we
remove the Lipschitzness assumption via a more fine-grained analysis on the velocity field ut(x).

Assumption I.1 (Generic Hölder Smooth Data). The density function q(x1) belongs to Hölder ball
of radius B > 0 with Hölder index β > 0 (Definition 4.1), denoted by q(x1) ∈ Hβ(Rdx , B). Also,
there exist constant C1, C2 > 0 such that q(x1) ≤ C1 exp

(
−C2∥x1∥2

2/2
)

.

Assumption I.2 (Path Regularity). Consider the affine conditional flow ψt(x|x1) = µtx1 + σtx.
The first-derivative of path coefficients σ̇t and α̇t are continuous on [t0, T ], where t0, T ∈ (0, 1).

Remark I.1. We remark that such path assumption is general and applies to a number of common
scenarios. For instance, Lipman et al. [2024] present: (i) the conditional optimal transport schedule:
ψt(x|x1) = tx1 +(1−t)x, (ii) the polynomial schedule: ψt(x|x1) = tnx1 +(1−tn)x, (iii) the linear
variance preserving schedule: ψt(x|x1) = tx1 +

√
1 − t2x. These cases satisfy Assumption I.2.

We now present the velocity approximation for flow matching transformers.

Theorem I.1 (Velocity Approximation with Transformers under Generic Hölder Smoothness). As-
sume Assumption I.1 and Assumption I.2. For any precision parameter 0 < ϵ < 1 and smoothness
parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all t ∈ [t0, T ] with t0, T ∈ (0, 1),
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there exists a transformer uθ(x, t) ∈ T h,s,r
R such that∫ T

t0

∫
Rdx

∥ut(x) − uθ(x, t)∥2
2 · pt(x) dxdt = O

(
B2N−β · (logN)dx+ β

2 +1
)
.

Let d be the feature dimension and L be the sequence length defined by the flow matching reshape
layer in Definition B.3. Then, the parameter bounds in transformer network T h,s,r

R satisfy

CKQ, C
2,∞
KQ = O

(
λ−1N4βd+2β(logN)4dx+2);COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2 +1); CE = O(1); CT = O(

√
logN).

where λ−1 = O(Nβ · logN)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof Sketch. We adopt the following strategy:

• Step 1: Approximation on a Compact Domain via Transformer Universality. To reflect
the Hölder smoothness of the target density q(x1), we begin by applying a multivariate Taylor
expansion to construct a compactly supported approximation of velocity field ut(x). We then
approximate this function on a compact domain using the universal approximation of transformers.

• Step 2: Extension to the Full Domain via Sub-Gaussian Tails. We exploit the sub-Gaussian tail
behavior of the target distribution to control the approximation error outside the compact region.
Combining the errors from both regions yields the final approximation rate for the velocity field.

Please see Appendix J for a detailed proof.

I.2 Velocity Approximation: Stronger Hölder Smooth Data Distributions

We obtain tighter velocity approximation rates than Appendix I.1 by imposing stronger Hölder
smoothness assumption on the target distribution q(x1).

Assumption I.3 (Stronger Hölder Smooth Data). Let C, C1 and C2 be positive constants. The
density function satisfies q(x1) = exp

(
−C2∥x1∥2

2/2
)

· f(x1), where f belongs to Hölder space

f(x1) ∈ Hβ(Rdx , B) (Definition 4.1) and satisfies C1 ≥ f(x1) ≥ C for all x1.

The density lower bound prevents f(x) from taking small values, ensuring well-conditioned ap-
proximation. Without this bound, small values of f(x) require a chosen threshold to maintain
uniform approximation. A positive lower bound eliminates the need for such adjustments, keeping
the approximation error controlled across the domain and enabling efficient convergence.

Assuming Assumption I.3, we derive the velocity approximation for flow matching transformers.

Theorem I.2 (Velocity Approximation with Transformers under Stronger Hölder Smoothness).
Assume Assumption I.3 and Assumption I.2. For any precision parameter 0 < ϵ < 1 and smoothness
parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all t ∈ [t0, T ] with t0, T ∈ (0, 1),
there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x) − uθ(x, t)∥2
2 · pt(x)dxdt = O

(
B2N−2β(logN)dx+β

)
,

Further, the parameter bounds in the transformer network class follows Theorem I.1.

Proof Sketch. The proof strategy closely follows Theorem I.1:
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• Step 0: Velocity Decomposition. We invoke Assumption I.3 to decompose the velocity field into
a target function that is lower bounded. This step mitigates the influence of low-density regions
and enables a more refined approximation analysis, in contrast to the setting under Assumption I.1.

• Step 1: Approximation with Transformer Universality on Compact Domain. To capture the
Hölder regularity of the target density q(x1), we construct a compactly supported function as an
intermediary to approximate the velocity field ut(x) using multivariate Taylor expansion. We then
apply the universal approximation of transformers to approximate the constructed function.

• Step 2: Full Domain Approximation. We extend the approximation to the full space by lever-
aging the sub-Gaussian tail behavior, ensuring that the error outside the compact region remains
controlled. Then, we incorporate all errors terms to achieve the final approximation rates for ut(x).

Please see Appendix K for a detailed proof.

I.3 Velocity Estimation and Distribution Estimation

In this section, we study the statistical estimation problems and develop sample complexity results
based on the established approximation results in Appendix I.1 and Appendix I.2. Specifically, we
present the estimation error bound of flow matching transformers in Theorem I.3. Applying the
velocity estimation rates, we further study the distribution estimation in Theorem I.4.

Velocity Estimation Building on the transformer-based velocity approximation, we evaluate the
performance of the velocity estimator uθ trained with i.i.d. data points {xi}n

i=1 by optimizing the
empirical loss (2.12). To quantify this, we define flow matching risk:

Definition I.2 (Flow Matching Risk). Let q be the target distribution and X1 ∼ q. Given a
velocity estimator uθ, we define the flow matching risk R(uθ) as the expectation of the mean-squared
difference between the uθ and the ground truth ut:

R(uθ) := 1
T − t0

∫ T

t0

E
xt∼pt

[∥uθ(xt, t) − ut(xt)∥2
2] dt,

where marginal probability path pt and marginal velocity field ut are induced by affine conditional
flow ψt(x|x1) = µtx1 + σtx follows (2.2), (2.3), (2.5) and (2.6).

Let ûθ be the trained velocity estimator with i.i.d samples {xi}n
i=1. Then the following theorem

presents upper bounds on the expectation of R(ûθ) w.r.t training samples {xi}n
i=1, where xi ∼ q.

Theorem I.3 (Velocity Estimation with Transformer). Let d be the feature dimension. Suppose we
choose the transformers as in Theorem I.1 and Theorem I.2 correspondingly, then we have

• Assume Assumption I.1 and Assumption I.2. Then,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
16d+15 (logn)20dx+4β+20).

• Assume Assumption I.2 and Assumption I.3. Then,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
8d+9 (logn)20dx+4β+20).

Proof Sketch. Recall (2.12) from Section 2. We obtain the velocity estimator ûθ(x, t) ∈ T h,s,r
R by

minimizing the empirical conditional flow matching loss:

L̂CFM(uθ) := 1
n

n∑
i=1

∫ T

t0

1
T − t0

E
X0∼N(0,I)

[∥uθ(µtxi + σtX0, t) − (µ̇txi + σ̇tX0)∥2
2]dt.
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To derive the estimation error, we adopt a standard strategy in empirical process theory. This involves
bounding the generalization gap between empirical and true risk using covering number techniques:

• Step 1: Domain Truncation for Risk Control. We truncate the domain of the flow matching risk
and the flow matching loss to ensure the transformer network has a finite covering number. We
then control the error outside of the truncated domain by using the sub-Gaussian tail bound.

• Step 2: Analysis on the Complexity of the Transformer Network Class via Covering Number.
Using the norm bounds on transformer parameters from Appendix I.2, we derive an upper bound on
the covering number of the transformer networkfunction class. This captures the model complexity
required to achieve a desired approximation rate on the compact domain.

• Step 3: Final True Risk Upper Bound. We apply the covering number bound to control the
deviation between the empirical risk and the true risk. Lastly, we incorporate all sources of error
from previous steps to derive the final estimation rate for the learned velocity field ûθ(x, t) ∈ T h,s,r

R

via the minimization of the empirical conditional flow matching loss L̂CFM(uθ) in (2.12).

Please see Appendix L for a detailed proof.

Distribution Estimation. Next, we analyze the distribution estimation rate for the velocity estimator
ûθ through the 2-Wasserstein distance between estimated and true distributions. Based on the velocity
estimation results in Appendix I.3, the next theorem presents upper bounds on the 2-Wasserstein
distance between the target distribution and the estimated distribution induced by the velocity
estimator ûθ trained from optimizing the empirical conditional loss (2.12).

Theorem I.4 (Distribution Estimation under 2-Wasserstein Distance). Let P̂T denote the estimated
distribution at time T . Let d be the feature dimension.

• Assume Assumption I.1 and Assumption I.2. It holds

E
{xi}n

i=1

[W2(P̂T , PT )] = O(n− 1
32d+30 (logn)10dx+2β+10).

• Assume Assumption I.2 and Assumption I.3. It holds

E
{xi}n

i=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (logn)10dx+2β+10).

Proof Sketch. We derive the distribution estimation rate under the 2-Wasserstein distance by relating
it to the velocity estimation error through the flow dynamics. Our proof follows three steps:

• Step 1: Flow Deviation via Alekseev–Gröbner Lemma. We apply the Alekseev–Gröbner lemma
(Lemma M.2) to bound the deviation between the learned flow ψθ and the true flow ψ in terms of
the difference between the estimated velocity ûθ(x, t) and true velocity fields ut(x).

• Step 2: Bounding the Jacobian via Grönwall’s Inequality. The flow deviation bound given
by the Alekseev–Gröbner lemma involves the Jacobian matrix Dψθ. To ensure the deviation
remains controlled over time, we use Grönwall’s inequality (Lemma M.1) along with the Lipschitz
continuity of the network to upper bound the Jacobian norm by an exponential function.

• Step 3: From Velocity Error to Wasserstein Distance. We integrate the velocity error over time
and apply the definition of the 2-Wasserstein metric to relate the flow deviation to W2(P̂T , PT ).
Substituting the velocity estimation error from Theorem I.3 then gives the final convergence rate.

Please see Appendix M for a detailed proof.
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I.4 Minimax Optimal Estimation

In Theorem I.4, we present a fine-grained analysis of distribution estimation. In this section, we
further show that the derived estimation rates match the minimax lower bounds in Hölder space under
the 2-Wasserstein metric in specific setting. We begin by recalling the minimax optimal rate for
distribution estimation over Hölder smooth function classes.

Lemma I.1 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task of
estimating a probability distribution P (x1) with density belonging to the space

P :=
{
q(x1)|q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,

Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}n

i=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}n
i=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible

estimators constructed from the data.

Proof. Please see Appendix N for a detailed proof.
We show flow matching transformers match the minimax optimal rate under specific conditions.

Theorem I.5 (Minimax Optimality of Flow Matching Transformers). Under the setting of (16d+
18)(β + 1) = dx + 2β, the distribution estimation rate of flow matching transformers (Theorem I.4)
matches the minimax lower bound of Hölder distribution class in 2-Wasserstein distance up to a logn
and Lipschitz constants factors.

Proof. Please see Appendix N for a detailed proof.
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J Proof of Theorem I.1

In this section, we use transformers to approximate velocity and give an upper bound of the velocity
approximation error. We prove Theorem I.1 following the three steps shown in the proof sketch.

Organizations. Appendix J.1 introduces auxiliary lemmas. Appendix J.2 establishes a bound
on the velocity approximation error over a bounded domain by applying the universal approxima-
tion of transformers. Appendix J.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

J.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for velocity approximation. Specifically, we decompose
the velocity field ut(x) into three components in Lemma J.1 based on the setting of affine conditional
flows (Section 2). To approximate each component, we clip the integral domain of x1 in the integrals
defining Φ1(x, t), Φ2(x, t), and Φ3(x, t) to a closed and bounded region in Lemma J.2. This step
allows us to perform the approximation on a bounded domain while controlling the error introduced
by restricting the integral. Furthermore, we revisit the bounds on the density function pt(x) in
ℓ∞-distance, and extend these bounds to the velocity field ut(x) in Lemma J.3 and Lemma J.4.

Decomposition of Velocity Field. We present the next lemma to decompose the velocity field ut(x).
Constructing an approximator for ut(x) is difficult due to its complex structure. This decompo-
sition splits the velocity into three functions, each satisfying properties that make approximation
feasible. These components allow the use of sub-Gaussian assumptions on the target distribution
(Assumption I.1) and provide better control over the approximation error (Lemma J.9).

Lemma J.1 (Decomposition of Velocity Field). Under the flow matching setting (Section 2), the
velocity field follows a decomposition:

ut(x) = Φ1(x, t)−1 ·
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
,

where

Φ1(x, t) :=
∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) := x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) :=
∫
Rdx

(
x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Proof. By (2.5), the density function pt(x) has the form

pt(x) =
∫
pt(x|x1) · q(x1) dx1

= 1
σdx

t (2π)dx/2

∫
exp

(
−∥µtx1 − x∥2

2σ2
t

)
· q(x1) dx1.

Therefore, we have pt(x) = Φ1(x, t).

Then, we rewrite the velocity field at time t by

ut(x)

= 1
pt(x) ·

∫
Rdx

ut(x|x1)pt(x|x1)q(x1) dx1
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= 1
pt(x) ·

∫
Rdx

(
σ̇t(x− µt · x1)

σt
+ µ̇t · x1

)
· pt(x|x1)q(x1)dx1

(
By (2.6) and (2.8)

)
= 1
pt(x) ·

∫
Rdx

(
σ̇t(x− µt · x1)

σt
− µ̇t

µt
(x− µt · x1) + µ̇t

µt
· x
)

· pt(x|x1)q(x1)dx1

= Φ1(x, t)−1 ·
(
σ̇t · Φ3(x, t) − µ̇tσt

µt
· Φ3(x, t) + µ̇t

µt
· Φ2(x, t)

)
(

By the definition of Φ1, Φ2 and Φ3
)

= Φ1(x, t)−1 ·
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
.

This completes the proof.

Based on decomposition, we construct separate approximators for Φ1(x, t), Φ2(x, t), and Φ3(x, t).
Then, we approximate ut(x) by combining these approximations in Appendix J.2.

Clipping Integral Domain. Next lemma handles unbounded integral domain of Φ1(x, t), Φ2(x, t),
and Φ3(x, t). Lemma J.2 ensures that for any small error ϵ > 0 and any fixed x ∈ Rdx , a bounded
domain Bx dependent on ϵ and x exists, where the integral outside Bx remains bounded by ϵ.

Lemma J.2 (Clipping the Multi-Index Gaussian Integral, Lemma A.8 of [Fu et al., 2024] and Lemma
F.9 of [Oko et al., 2023]). Assume Assumption I.1. Let dx be the dimension of the target data
x1 and n ∈ N. Then, for any κ ∈ Zdx

+ with ∥κ∥1 ≤ n, x1 ∈ Rdx and 0 < ϵ ≤ 1/e, there exists a
constant C(n, dx) ≥ 1 such that∫

Rdx \Bx

∣∣∣∣(µt · x1 − x

σt

)κ∣∣∣∣ · q(x1)
σdx

t (2π)dx/2
· exp

(
−∥µtx1 − x∥2

2σ2
t

)
dx1 ≤ ϵ,

where ( µt·x1−x
σt

)κ := (( µt·x1[1]−x[1]
σt

)κ[1], . . . , ( µt·x1[dx]−x[dx]
σt

)κ[dx]) is a multi-index vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

µt
,
x+ σtC(n, dx)

√
log (1/ϵ)

µt

]
⋂[

C(n, dx)
√

log (1/ϵ), C(n, dx)
√

log (1/ϵ)
]dx

. (J.1)

Remark J.1. The rationale behind this error choice follows from the need to control the clipping
error, when we construct a polynomial-like approximator for the components of the decomposed
velocity Φ1, Φ2, and Φ3 on the bounded domain Bx,N . Specifically, these approximations capture
the smoothness of the density function in Hölder space and leads to an error of order N−β up to a
logarithmic factor. Therefore, the clipping error is set to match this order.

Bounds on Density Function and Velocity. We introduce two lemmas that provide bounds on the
density function pt(x) and the velocity field ut(x). These bounds are crucial because the maximum
output of the transformer network class plays a key role in analyzing the capacity of the loss function
class in estimation error analysis (Appendix I.3). We start with the bounds on pt(x) and ∇ log pt(x).

Lemma J.3 (Bounds on the Density Function, Lemma A.9 and Lemma A.10 of [Fu et al., 2024]).
Recall that pt(x) =

∫
Rdx

pt(x|x1)q(x1)dx1 and pt(x|x1) = 1
σdx

t (2π)dx/2 exp
(
−∥x− µtx1∥2

2/2σ2
t

)
.

Assume Assumption I.1. There exist a C7 > 0 such that

C7

σdx
t

· exp
(

−∥x∥2
2 + 1
σ2

t

)
≤ pt(x) ≤ C1

(µ2
t + C2σ2

t )dx/2 · exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
.

Moreover, there exist a positive constant C ′
7 such that

∥∇ log pt(x)∥∞ ≤ C ′
7

σ2
t

· (∥x∥2 + 1).
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By Lemma J.1, the velocity field ut(x) follows the decomposition

ut(x) = Φ1(x, t)−1 ·
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
.

With this expression, we apply Lemma J.3 to obtain bound on the velocity ut(x) in ℓ∞-distance.

Lemma J.4 (ℓ∞-Bounds on the Velocity Field). Assume Assumption I.1. Then, there exists a
positive constant C5 such that

∥ut(x)∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1).

Proof. Recalling from Lemma J.1, we have the velocity decomposition

ut(x) = Φ1(x, t)−1 ·
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
,

where

Φ1(x, t) =
∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =
∫
Rdx

(
x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

First, we rewrite the expression of Φ2(x, t) and Φ3(x, t). Then, we derive the bound on ut(x).

• Step 1. Rewrite Φ2(x, t) and Φ3(x, t). By the definition of Φ2(x, t) and Φ3(x, t), it holds

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1 = x · Φ1(x, t).

Therefore, for all i ∈ [dx], it holds∣∣∣∣ µ̇t

µt
· Φ2(x, t)[i]

∣∣∣∣ =
∣∣∣∣ µ̇tx[i]
µt

· Φ1(x, t)
∣∣∣∣. (J.2)

Next, since the gradient of pt(x) has the expression

∇pt(x) = −
∫ (

x− µt · x1

σ2
t

)
· 1
σdx

t (2π)dx/2
exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1,

we have Φ3(x, t) = −∇pt(x) · σt.

Therefore, for all i ∈ [dx], it holds∣∣∣∣(σ̇t − µ̇tσt

µt

)
· Φ3(x, t)[i]

∣∣∣∣ =
∣∣∣∣(σ̇t − µ̇tσt

µt

)
σt · ∇pt(x)[i]

∣∣∣∣. (J.3)
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• Step 2. Bound Velocity Field. Based on Step 1, the following holds for all i ∈ [dx]

|ut[i]|

=
∣∣∣∣Φ1(x, t)−1 ·

( µ̇t

µt
· Φ2(x, t)[i] + (σ̇t − µ̇tσt

µt
)Φ3(x, t)[i]

)∣∣∣∣
≤
∣∣∣∣Φ1(x, t)−1 ·

( µ̇t

µt
· Φ2(x, t)[i]

)∣∣∣∣+
∣∣∣∣Φ1(x, t)−1

(
(σ̇t − µ̇tσt

µt
) · Φ3(x, t)[i]

)∣∣∣∣(
By triangle inequality

)
=
∣∣∣∣Φ1(x, t)−1 ·

( µ̇tx[i]
µt

· Φ1(x, t)
)∣∣∣∣+

∣∣∣∣Φ1(x, t)−1
(

( µ̇tσ
2
t

µt
− σ̇tσt) · ∇pt(x)[i]

)∣∣∣∣(
By (J.2) and (J.3)

)
=
∣∣∣∣ µ̇t

µt
· x[i]

∣∣∣∣+
∣∣∣∣ µ̇tσ

2
t

µt
− σ̇tσt

∣∣∣∣ · |∇ log pt(x)[i]|
(

By ∇ log pt = ∇pt/pt

)
≤
∣∣∣∣ µ̇t

µt
· x[i]

∣∣∣∣+ C5

∣∣∣∣ µ̇tσ
2
t

µt
− σ̇tσt

∣∣∣∣ ·
∣∣∣∣ 1
σ2

t

· (∥x∥2 + 1)
∣∣∣∣. (

By Lemma J.3
)

Therefore, by symmetry,

∥ut(x)∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1).

This completes the proof.

J.2 Velocity Approximation on Bounded Domain

In this section, we approximate the velocity field ut(x) on a bounded domain through a two-step
approach. Specifically, the first step constructs three compactly supported continuous functions
Ψ1(x, t), Ψ2(x, t) and Ψ3(x, t) as approximators for Φ1(x, t), Φ2(x, t), and Φ3(x, t) in Lemma J.5,
Lemma J.6, and Lemma J.7 respectively. Then, the second step applies the universal approximation
to approximate Ψ1(x, t), Ψ2(x, t) and Ψ3(x, t) with transformers in Lemma J.8. Bu incorporating
these steps, we derive the velocity approximation on a bounded domain in Lemma J.9.

Before proceeding, we reiterate on the velocity expression. By Lemma J.1, ut(x) has the form

ut(x) = Φ1(x, t)−1 ·
( µ̇t

µt
Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
,

where

Φ1(x, t) =
∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =
∫
Rdx

(
x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Approximation of Φ1(x, t). This step builds on [Hu et al., 2025c, Fu et al., 2024].

By the expression of Φ1(x, t):

Φ1(x, t) =
∫ 1
σdx

t (2π)dx/2
exp
(

−∥µtx1 − x∥2

2σ2
t

)
· q(x1) dx1,
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we approximate q(x1) and exp
(

− ∥µtx1−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order Taylor

polynomial on a bounded domain Bx,N , introduced in the integral clipping (Lemma J.2). Altogether,
we approximate Φ1 with the local polynomial Ψ1(x, t) on Bx,N with the expression:

Ψ1(x, t) :=
∑

v∈[N ]dx

∑
∥nx∥1≤k1

R
∥nx∥1
B

nx!
∂nxΦ1

∂xnx

∣∣∣∣∣
x=RB( v

N − 1
2 )

g1(x, nx, v, t), (J.4)

where nx ∈ Zdx is a multi-index, RB > 0 is a constant depending on the Hölder ball radius B,

• g1(x, nx, v, t) :=
∏dx

i=1
∑

k2<p g2(x[i], nx[i], v[i], k2), and

• g2(x[i], nx[i], v[i], k2) := 1
σt

√
2π

∫ (
x1
RB

+ 1
2 − v[i]

N

)nx[i]
1

k2!

(
− |x[i]−µtx1[i]|2

2σ2
t

)k2
dx1.

Hu et al. [2025c], Fu et al. [2024] consider the setting of conditional diffusion transformer with
classifier-free guidance. In contrast, we apply (J.4) by removing the condition y ∈ Rdy .

Since Ψ1(x, t) is an approximator of Φ1(x, t), we need to ensure that it is lower bounded away from
zero so that the denominator of velocity ut(x) in Lemma J.1 does not blow up.

Therefore, we introduce an additional definition.

Definition J.1 (Truncated Density Approximator). Let ϵlow be a positive real number, and let
Ψ1(x, t) be a scalar-valued function defined in (J.4). Then, we define

Ψc
1(x, t) := max{Ψ1(x, t), ϵlow}.

We specify the choice of ϵlow in Lemma J.9. For now, we approximate Φ1(x, t) with Ψ1(x, t).

Lemma J.5 (Local Polynomial Approximation of Φ1, Lemma A.4 of [Fu et al., 2024]). Assume
Assumption I.1. Let Ψ1(x, t) be the approximator of Φ1(x, t). Then, for any t ∈ [0, 1] and x ∈ Rdx ,
it holds

|Ψ1(x, t) − Φ1(x, t)| ≲ BN−β (logN)
dx+k1

2 .

Next, we approximate Φ2(x, t).

Approximation of Φ2(x, t). By Lemma J.1, the following identity holds

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1 = x · Φ1(x, t). (J.5)

Building upon the local polynomial Ψ1(x, t), we use x · Ψ1(x, t) as the approximator of Φ2(x, t).

Next lemma gives the approximation error rate of Φ2(x, t) using Ψ2(x, t) := x · Ψ1(x, t)

Lemma J.6 (Local Polynomial Approximation of Φ2). Assume Assumption I.1. Let Ψ1(x, t) be
the local polynomial and Ψ2(x, t) := xΨ1(x, t). Let Cx(dx, β, C1, C2) be a positive constant. Then,
for any t ∈ [0, 1] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds for all i ∈ [dx]

|Ψ2(x, t)[i] − Φ2(x, t)[i]|∞ ≲ BN−β (logN)
dx+k1+1

2 .

Proof. Since Ψ2(x, t) = xΨ1(x, t) and Φ2(x, t) = xΦ1(x, t), for all i ∈ [dx], it holds

|Ψ2[i] − Φ2[i]| = |xΨ1[i] − xΦ1[i]|
≤ |x[i]| · |Ψ1 − Φ1|

(
By (J.5)

)
≲ x[i] ·BN−β (logN)

dx+k1
2

(
By Lemma J.5

)
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≲ BN−β (logN)
dx+k1+1

2 .
(

By x ∈ [−Cx

√
log N, Cx

√
log N ]dx

)
This completes the proof.

Approximation of Φ3(x, t). Similarly, we have approximation results for Φ3(x, t).

Lemma J.7 (Local Polynomial Approximation of Φ3, Lemma A.6 of [Fu et al., 2024]). Assume
Assumption I.1. Let Cx(dx, β, C1, C2) be a positive constant. There exists local polynomial Ψ3(x, t)
such that for all t > 0, i ∈ [dx] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds

|Ψ3(x, t)[i] − |σt∇pt(x)|[i]| ≲ BN−β(logN)
dx+k1+1

2 .

Remark J.2. We clarify that Lemma J.7 gives the approximation of Φ3(x, t) using Ψ3(x, t).
First, the density at time t has the form:

pt(x) =
∫
Rdx

1
σdx

t (2π)dx/2
exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Then, the gradient of pt(x) with respect to x has the form:

∇pt(x) =
∫
Rdx

−
(
x− µt · x1

σ2
t

)
1

σdx
t (2π)dx/2

exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

By Lemma J.1, we have Φ3(x, t) = |σt∇pt(x)|.
Therefore,

|Ψ3(x, t)[i] − Φ3(x, t)[i]| ≲ BN−β(logN)
dx+k1+1

2 .
(

By Lemma J.7
)

Velocity Approximation with Transformers on Bounded Domain. We first approximate the veloc-
ity approximator constructed with Ψ1(x, t),Ψ2(x, t) and Ψ3(x, t). We reiterate that transformers take
input d× L matrices, where d× L = dx. Then, the next lemma specifies the network configuration
for the approximating the velocity approximator with arbitrarily small error.

Lemma J.8 (Approximate Velocity Approximator with Transformers). Assume Assumption I.1.
Let Cx(dx, β, C1, C2) be a positive constant. Further, let Ψ(x, t) : [−Cx

√
logN,Cx

√
logN ]dx ×

[0, 1] → Rdx be the target function:

Ψ(x, t) := µ̇tΨ2(x, t)/µt + (σ̇t − µ̇tσt/µt)Ψ3(x, t)
Ψc

1(x, t) .

Then, for any t ∈ [0, 1] and any ϵ ∈ (0, 1), there exist a transformer g(x, t) ∈ T h,s,r
R such that∫ 1

0

∫
∥x∥∞≤Cx

√
log N

∥g(x, t) − Ψ(x, t)∥2
2dxdt ≤ ϵ2.

Furthermore, the parameter bounds in the transformer network class T h,s,r
R satisfy

CKQ, C
2,∞
KQ = O(λ−1(logN)4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(

√
logN · ϵ−1 · max ∥Ψ∥2); CE = O(1),

where λ−1 = O(logN/ϵ)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Since the path coefficients are smooth and the first-step approximators Ψ1(x, t), Ψ2(x, t),
and Ψ3(x, t) integrate polynomials, the target function is Lipschitz continuous on a compact domain.
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Further, the reshape layer Definition B.4 does not harm the continuity of the element-wise ℓ2-
norm. This continuity ensures that the function satisfies the conditions for applying the universal
approximation of transformers. Also, we concatenate t as a additional sequence. Then, we apply
Theorem H.2 with p = 2 and Z ∈ [−Cx

√
logN,Cx

√
logN ]d×(L+1).5 For any ϵ ∈ (0, 1), it holds

d2(g, f) =
(∫ ∫

∥g(x, t) − Ψ(x, t)∥2
2dxdt

)1/2
≤ ϵ.

(
By Theorem H.2

)
The parameter bounds in the transformer network class follow Lemma H.5.

This completes the proof.

Remark J.3. Lemma J.8 modifies Lemma I.6 of [Hu et al., 2025c] by adapting the transformer
approximation to decomposed velocity components (Lemma J.1), whereas their work focuses on
approximating ∇ log pt(x). Our flow matching framework eliminates the label y and reduces the
number of hidden dimensions to one.

Then, by analyzing the error accumulation from both the transformer approximation (Lemma J.8)
and the local polynomial approximations (Lemma J.5, Lemma J.6, and Lemma J.7), we establish a
bound on the velocity approximation error over a bounded domain.

Lemma J.9 (Velocity Approximation with Transformers on Bounded Domain). Assume Assump-
tion I.1 and Assumption I.3. Let t0, T ∈ (0, 1). Let Cx(β,C2) and C3 be two positive constants. Let
ϵlow := C3N

−β (logN)(dx+k1)/2. Then, there exist a transformer uθ(x, t) ∈ T h,s,r
R such that for all

x ∈ [−Cx

√
logN,Cx

√
logN ]dx , t ∈ [t0, T ] and pt(x) ≥ ϵlow, it holds∫ T

t0

∫
∥ut(x) − uθ(x, t)∥2

2(pt(x))2dxdt ≲
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
B2N−2β(logN)

3dx
2 +k1+1,

Furthermore, the transformer parameter bounds satisfy

CKQ, C
2,∞
KQ = O

(
λ−1N4βd+2β(logN)4dx+2); COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2 +1); CE = O(I); CT = O(

√
logN).

where λ−1 = O(Nβ · logN)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. We use the notation “≲” in our derivation when an inequality holds up to a constant factor.

We prove Lemma J.9 with following two steps.

• Step A: Approximate velocity with constructed function. We approximate the components
Φ1(x, t), Φ2(x, t), and Φ3(x, t) using local polynomials Ψ1(x, t), Ψ2(x, t), and Ψ3(x, t), respec-
tively. Based on the velocity decomposition given in Lemma J.1, we construct an approximation
Ψ(x, t) by combining these polynomial components to approximate the full velocity field ut(x).

• Step B: Approximate with Transformers. We leverage the universal approximation of transform-
ers (Appendix H) to approximate the constructed function Ψ. Based on this approximation, we
derive the final velocity approximation rates with the required bounds on model parameters.

By Lemma J.1, the velocity field ut(x) takes the form

ut(x) = Φ1(x, t)−1 ·
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
,

5Please see Appendix H for a detailed proof.
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where

Φ1(x, t) =
∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =
∫
Rdx

(
x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Moreover, by Lemma J.4, the bound on the velocity field in ℓ∞-distance follows

∥ut(x)∥∞ (J.6)

≤ |µ̇t|
µt

· ∥x∥∞ +
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1)
(

By Lemma J.4
)

≲
|µ̇t|
µt

·
√

logN +
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (
√

logN + 1).
(

By x ∈ [−Cx

√
log N, Cx

√
log N ]dx

)
Set the transformer network output bound CT equal to the right-hand side of the expression. Then
we are now ready to present the proof of Lemma J.9.

• Step A: Approximation via Local Polynomial.

We construct the approximator for ut(x) based on Lemma J.5, Lemma J.6, and Lemma J.7.
Specifically, we define Ψ(x, t) ∈ Rdx with each element given by

|Ψ(x, t)[i]| := min
{
µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

, U

}
, (J.7)

where U is the upper-bound of the ground truth velocity ut(x) under the sub-Gaussian assumption
(Assumption I.1) and

U := |µ̇t|
µt

·
√

logN + C5

∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (
√

logN + 1).(
By Lemma J.4 and x ∈ [−Cx

√
log N, Cx

√
log N ]dx

)
Notice that, for all i ∈ [dx], the difference between Ψ(x, t)[i] and ut(x)[i] follows

|ut(x)[i] − Ψ(x, t)[i]|

=
∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Φ1
− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

∣∣∣∣(
By the definition of ut and Ψ(x, t)

)
≤
∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]
Ψc

1

∣∣∣∣︸ ︷︷ ︸
(T1)

+
∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Φ1
− µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

∣∣∣∣︸ ︷︷ ︸
(T2)

.

(
By triangle inequality

)
Next, we bound (T1) and (T2).
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– Step A.1: Bound term (T1). Recall Definition J.1. By the definition of ϵlow, we set

Ψc
1(x, t) := max

{
Ψ1(x, t), C3 ·N−β (logN)

dx+k1
2
}
.

By Lemma J.5, we have

|Ψ1(x, t) − pt(x)| ≲ BN−β(logN)
dx+k1

2 , (J.8)

and (J.8) implies

pt(x) −KBN−β (logN)
dx+k1

2 ≤ Ψ1(x, t),

for some positive constant K. Next, recall that we consider

C3N
−β (logN)

dx+k1
2 ≤ pt(x).

By setting C3 = 2KB, it holds

KBN−β (logN)
dx+k1

2 = C3

2 N−β (logN)
dx+k1

2 ≤ pt(x)/2,

leading to

pt(x) − pt(x)/2 ≤ pt(x) −KBN−β (logN)
dx+k1

2 ≤ Ψ1(x, t).

As a result, pt(x)/2 ≤ Ψ1 ≤ Ψc
1 holds.

This allows us to replace the approximator Ψc
1 with pt(x) by dropping constant 1/2. Then,

(T1) (J.9)

=
∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]
Ψc

1

∣∣∣∣
≤ 2
pt

∣∣∣∣ µ̇t

µt
·
(

Φ2[i] − Ψ2[i]
)

+
(
σ̇t − µ̇tσt

µt

)
·
(

Φ3[i] − Ψ3[i]
)∣∣∣∣ (

By Ψc
1 > pt(x)/2

)
≤ 2
pt

|µ̇t|
µt

· |Φ2[i] − Ψ2[i]| + 2
pt

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣ · |Φ3[i] − Ψ3[i]|
(

By triangle inequality
)

≲
1
pt

·
(

|µ̇t|
µt

+
∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣) ·BN−β(logN)
dx+k1+1

2
(

By Lemma J.6 and Lemma J.7
)

≤ 1
pt

·
(

|µ̇t|
µt

+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) ·BN−β(logN)
dx+k1+1

2
(

By σt ∈ [0, 1]
)

≲
1
pt

·BN−β(logN)
dx+k1+1

2 .
(

By Assumption I.2
)

Next, we bound (T2).

– Step A.2: Bound term (T2). By Lemma J.4 and ∥x∥2 ≲
√

logN , it holds

|ut(x)[i]|

≤ |µ̇t|
µt

·
√

logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣ · (
√

logN + 1)

=
(

|µ̇t|
µt

+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) ·
√

logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣,
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for all i ∈ [dx]. Next, by the decomposition of velocity in Lemma J.1, it holds

µ̇t

µt
Φ2[i] +

(
σ̇t − µ̇tσt

µt

)
Φ3[i] ≲ Φ1

(
|µ̇t|
µt

+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) ·
√

logN + Φ1

∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣.
(J.10)

Therefore,

(T2) (J.11)

≤
∣∣∣∣ µ̇t

µt
Φ2[i] +

(
σ̇t − µ̇tσt

µt

)
Φ3[i]

∣∣∣∣ ·
∣∣∣∣ 1
Φ1

− 1
Ψ1

∣∣∣∣
≲ Φ1

(( |µ̇t|
µt

+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣)√logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) ·
∣∣∣∣ 1
Φ1

− 1
Ψ1

∣∣∣∣ (
By (J.10)

)
= 1

Ψ1
·
(( |µ̇t|

µt
+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣)√logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) · |Φ1 − Ψ1|(
By factoring out 1/Φ1 and 1/Ψ1

)
≤ 1
pt

·
(( |µ̇t|

µt
+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣)√logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) · |Φ1 − Ψ1|
(

By Ψc
1 > pt(x)/2

)
≲

1
pt

·
(( |µ̇t|

µt
+
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣)√logN +
∣∣∣∣ σ̇t

σt
− µ̇t

µt

∣∣∣∣) ·BN−β(logN)
dx+k1

2(
By Lemma J.5

)

Combining (J.9) and (J.11), we have

pt · |ut[i] − Ψ[i]| (J.12)
≤ (T1) · pt + (T2) · pt

≲
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)BN−β(logN)
dx+k1+1

2 ,
(

By (J.9) and (J.11)
)

for all i ∈ [dx].
Therefore,

p2
t · ∥ut(x) − Ψ(x, t)∥2

2 (J.13)

≤ p2
t · dx∥ut(x) − Ψ(x, t)∥2

∞
(

By ∥ · ∥2 ≤ dx∥ · ∥∞
)

≲
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
B2N−2β(logN)dx+k1+1.

(
By (J.12)

)
• Step B: Approximation with Transformer.

By Lemma J.8, there exists a transformer uθ(x, t) ∈ T h,r,s
R such that∫ ∫

∥uθ(x, t) − Ψ(x, t)∥2
2dxdt ≤ ϵ2. (J.14)

By setting ϵ := N−β , it holds∫ ∫
p2

t · ∥ut(x) − uθ(x, t)∥2
2dxdt

≤
∫ ∫

p2
t · ∥ut(x) − Ψ(x, t)∥2

2dxdt+
∫ ∫

p2
t · ∥Ψ(x, t) − uθ(x, t)∥2

2dxdt(
By triangle inequality

)
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≤
∫ ∫

p2
t · ∥ut(x) − Ψ(x, t)∥2

2dxdt+
∫ ∫

∥Ψ(x, t) − uθ(x, t)∥2
2dxdt

(
By 0 ≤ pt(x) ≤ 1

)
≲
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
B2N−2β(logN)dx+k1+1

∫ ∫
dxdt+

∫ ∫
∥Ψ(x, t) − uθ(x, t)∥2

2dxdt(
By (J.13)

)
≤
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
B2N−2β(logN)

3dx
2 +k1+1 +

∫ ∫
∥Ψ(x, t) − uθ(x, t)∥2

2dxdt(
By ∥x∥∞ ≤ Cx

√
log N and t ∈ [0, 1]

)
≲
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
B2N−2β(logN)

3dx
2 +k1+1.

(
By (J.14) and ϵ = N−β

)
By (J.6) and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , we have

U = O(
√

logN),

and by (J.12) we have

|ut[i] − Ψ[i]| = O(N−β(logN)
dx+k1+1

2 ).

This implies

∥Ψ(x, t)∥2 = O(
√

logN +N−β(logN)
dx+k1+1

2 ).

We take a looser bound on Ψ(x, t) such that it holds for all dx:

∥Ψ(x, t)∥2 ≤ dx∥Ψ(x, t)∥∞ = O((logN)
dx+k1+1

2 ).

Then, the parameter bounds follow Lemma J.8 with ϵ = N−β .

This completes the proof.

J.3 Main Proof of Theorem I.1

We establish the velocity approximation with transformers in Lemma J.9. However, it is valid
under two settings: (i) the bounded domain x ∈ [−Cx

√
logN,Cx

√
logN ]dx with some constant

Cx(β,C2) (ii) the mild and high density region pt(x) ≥ ϵlow. To obtain general approximation
results, we introduce two additional lemmas to tackle the uncontrolled region.

Lemma J.10 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume Assump-
tion I.1. Then, for any R4 > 1, t > 0, the following hold∫

∥x∥∞>R4

pt(x)dx ≲ Rdx−2
4 exp

(
− C2R

2
4

2(µ2
t + C2σ2

t )

)
,∫

∥x∥∞>R4

∥ut(x)∥2
2 · pt(x)dx ≲ Rdx

4 exp
(

− C2R
2
4

2(µ2
t + C2σ2

t )

)
.

Proof. For the first inequality, it follows∫
∥x∥∞>R4

pt(x)dx

≲
∫

∥x∥∞>R4

exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
dx

(
By Lemma J.3

)
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≤
∫

∥x∥2>R4

exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx−2

4 exp
(

− C2R
2
4

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2 and dropping constant terms

)
For the second inequality, it follows∫

∥x∥∞≥R4

∥ut(x)∥2
2 · pt(x)dx

≲
∫

∥x∥∞≥R4

∥ut(x)∥2
2 · exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma J.3

)
≲
∫

∥x∥∞≥R4

(
|µ̇t|
µt

· ∥x∥∞ +
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1)
)2

exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

)
dx(

By Lemma J.4
)

≲
∫

∥x∥∞≥R4

∥x∥2
2 exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By Assumption I.2

)
≤
∫

∥x∥2≥R4

∥x∥2
2 exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx

4 exp
(

− C2R
2
4

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)
This completes the proof.

Lemma J.11 (Bound on Low-Density Region, Modified from Lemma A.2 of [Fu et al., 2024]).
Assume Assumption I.1. Then, for any R5, ϵlow > 0, the following two inequalities hold∫

∥x∥∞≤R5

1{|pt(x)| < ϵlow} · pt(x)dx ≤ Rdx
5 · ϵlow,∫

∥x∥∞≤R5

1{|pt(x)| < ϵlow} · ∥ut(x)∥2
2 · pt(x)dx ≲ Rdx+2

5 · ϵlow.

Proof. The proof for the first inequality is identical to [Fu et al., 2024].

For the second inequality, it follows,∫
∥x∥∞≤R5

1{|pt(x)| < ϵlow} · ∥ut(x)∥2
2 · pt(x)dx

≲
∫

∥x∥∞≤R5

1{|pt(x)| < ϵlow} ·
(

|µ̇t|
µt

· ∥x∥∞ +
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1)
)2

· pt(x)dx(
By Lemma J.4

)
≤ ϵlow

∫
∥x∥∞≤R5

(
|µ̇t|
µt

· ∥x∥∞ +
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1)
)2

dx

≲ Rdx+2
5 · ϵlow.

(
By Assumption I.2

)
This completes the proof.
Next, we present the formal proof of Theorem I.1.

Theorem J.1 (Theorem I.1 Restated: Velocity Approximation with Transformers under Generic
Hölder Smoothness). Assume Assumption I.1 and Assumption I.2. For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all
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t ∈ [t0, T ] with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r
R such that∫ T

t0

∫
Rdx

∥ut(x) − uθ(x, t)∥2
2 · pt(x)dxdt = O

(
B2N−β · (logN)dx+ β

2 +1
)
.

Furthermore, the parameter bounds in transformer network T h,s,r
R satisfy

CKQ, C
2,∞
KQ = O

(
λ−1N4βd+2β(logN)4dx+2); COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2 +1); CE = O(I); CT = O(

√
logN).

where λ−1 = O(Nβ · logN)4d+3 is the inverse-temperature scaling in the softmax function and O(·)
hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof of Theorem I.1. Let R6 := Cx

√
logN and Cx :=

√
4β(µ2

t + C2σ2
t )/C2. Further, we have

CT = O(
√

logN); ϵlow = C3N
−β (logN)(dx+k1)/2

.
(

By Lemma J.9
)

First, we decompose the target into three components and bound each of them∫ T

t0

∫
∥uθ − ut∥2

2 · pt(x)dxdt

=
∫ T

t0

∫
∥x∥∞>R6

∥uθ − ut∥2
2pt(x)dx︸ ︷︷ ︸

(T1)

dt+
∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) < ϵlow}∥uθ − ut∥2
2pt(x)dx︸ ︷︷ ︸

(T2)

dt

+
∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) ≥ ϵlow}∥uθ − ut∥2
2pt(x)dxdt︸ ︷︷ ︸

(T3)

.

• Bound on (T1). It holds∫
∥x∥∞>R6

∥uθ − ut∥2
2 · pt(x)dx

≤ 2
∫

∥x∥∞>R6

∥uθ∥2
2 · pt(x) dx+ 2

∫
∥x∥∞>R6

∥ut∥2
2 · pt(x)dx

(
By expanding ℓ2-norm

)
≤ 2dx

∫
∥x∥∞>R6

∥uθ∥2
∞ · pt(x)dx+ 2

∫
∥x∥∞>R6

∥ut∥2
2 · pt(x)dx

(
By ∥·∥2

2 ≤ dx∥·∥2
∞

)
≲
∫

∥x∥∞>R6

logN · pt(x)dx︸ ︷︷ ︸
(T1.1)

+
∫

∥x∥∞>R6

∥ut∥2
2 · pt(x)dx︸ ︷︷ ︸

(T1.2)

.

(
By CT = O(

√
log N) from Lemma J.9

)
We bound (T1.1) by

(T1.1)

= logN ·
∫

∥x∥∞>R6

pt(x)dx

≲ logN ·Rdx−2
6 exp

(
− C2R

2
6

2(µ2
t + C2σ2

t )

) (
By Lemma J.10

)
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≲ logN · (logN)
dx−2

2 N−β .(
By the choice of R6 = Cx

√
log N and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
We bound (T1.2) by

(T1.2)

=
∫

∥x∥∞>R6

∥ut∥2
2 · pt(x) dx

≲

(
|µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·Rdx

6 exp
(

− C2R
2
6

2(µ2
t + C2σ2

t )

) (
By Lemma J.10

)
≲

(
|µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
· (logN)

dx
2 N−β .(

By the choice of R6 = Cx

√
log N and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
Therefore,

(T1) ≲ (T1.1) + (T1.2) ≲
(

|µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
· (logN)

dx
2 ·N−β .

• Bound on (T2). It holds∫
∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥uθ − ut∥2
2 · pt(x)dx

≤ 2
∫

∥x∥∞≤R6

1{pt(x) < ϵlow} ·
(
∥uθ∥2

2 + ∥ut∥2
2
)

· pt(x)dx
(

By expanding ℓ2-norm
)

≤ 2
∫

∥x∥∞≤R6

1{pt(x) < ϵlow} ·
(
dx · ∥uθ∥2

∞ + ∥ut∥2
2
)

· pt(x)dx
(

By ∥ · ∥2
2 ≤ dx∥ · ∥2

∞
)

≲
∫

∥x∥∞≤R6

1{pt < ϵlow} · ∥uθ∥2
∞ · pt(x)dx︸ ︷︷ ︸

(T2.1)

+
∫

∥x∥∞≤R6

1{pt < ϵlow} · ∥ut∥2
2 · pt(x) dx︸ ︷︷ ︸

(T2.2)

.

We bound (T2.1) by

(T2.1)

=
∫

∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥uθ(x)∥2
∞ · pt(x)dx

≲ logN ·
∫

∥x∥∞≤R6

1{pt(x) < ϵlow} · pt(x)dx
(

By CT = O(
√

log N) from Lemma J.9
)

≲ logN · ϵlowR
dx
6

(
By Lemma J.11

)
≲ logN · (logN)

dx
2 · ϵlow

(
By the choice of R6 = Cx

√
log N and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
≲ logN(logN)

dx
2 ·N−β (logN)

dx+k1
2

(
By the choice of ϵlow = C3N−β (log N)

dx+k1
2
)

We bound (T2.2) by

(T2.2)

=
∫

∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥ut∥2
2 · pt(x)dx
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≲ ϵlowR
dx+2
6

(
By Lemma J.11

)
≲ ϵlow(logN)

dx+2
2

(
By the choice of R6 = Cx

√
log N and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
≤ N−β (logN)

dx+k1
2 · (logN)

dx+2
2 .

(
By the choice of ϵlow = C3N−β (log N)

dx+k1
2
)

Therefore,

(T2) ≲ (T2.1) + (T2.2) ≲ N−β(logN)dx+ k1
2 +1.

• Bound on (T3). We bound term (T3) by

(T3)

=
∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) ≥ ϵlow} · ∥uθ − ut∥2
2 · pt(x)dxdt

=
∫ T

t0

∫
∥x∥∞≤R6

1
pt
1{pt(x) ≥ ϵlow} · dx∥uθ − ut∥2

2 · (pt(x))2dxdt
(

By multiplying pt/pt

)
≤
∫ T

t0

∫
∥x∥∞≤R6

1
ϵlow

1{pt(x) ≥ ϵlow} · dx∥uθ − ut∥2
2 · (pt(x))2dxdt

(
By 1/pt ≤ 1/ϵlow

)
≤ dx

ϵlow
·
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·B2N−2β(logN)

3dx
2 +k1+1 (

By Lemma J.9
)

≲ Nβ(logN)
−(dx+k1)

2 ·
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·B2N−2β(logN)

3dx
2 +k1+1(

By the choice of ϵlow
)

=
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·B2N−β · (logN)dx+ k1

2 +1.

By the upper-bound on (T1), (T2) and (T3), we have∫ T

t0

∫
∥ut(x) − uθ(x, t)∥2

2 · pt dxdt

≲ (T1) + (T2) + (T3)
(

By t0, T ∈ (0, 1)
)

=
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·O
(
B2N−β · (logN)dx+ k1

2 +1
)

≤
( |µ̇t|
µt

+
∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣)2
·O
(
B2N−β · (logN)dx+ β

2 +1
) (

By k1 ≤ β
)

≤ O
(
B2N−β · (logN)dx+ β

2 +1
)
.

(
By Assumption I.2

)
Furthermore, the transformer parameter bounds follow Lemma J.9.

This completes the proof.
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K Proof of Theorem I.2

In this section, we derives a tighter error bound for velocity approximation using transformers.

Organizations. Appendix K.1 introduces auxiliary lemmas. Appendix K.2 establishes a bound on
the velocity approximation error over a bounded domain by applying the universal approximation
of transformers. Appendix K.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

K.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for velocity field approximation. Specifically,
Lemma K.1 applies a stronger Hölder assumption to decompose the density function pt(x).
Lemma K.2 further decomposes the velocity into two components, differing from the decomposition
under a generic Hölder assumption. Then, Lemma K.3 and Lemma K.4 establish upper and lower
bounds for the decomposed components and the velocity in ℓ∞-distance, respectively.

We begin with the density function decomposition.

Lemma K.1 (Density Function Decomposition, Lemma B.1 of [Fu et al., 2024]). Assume Assump-
tion I.3. Then, the density function pt(x) and ∇ log pt(x) follow the decomposition:

pt(x) = 1
(µ2

t + C2 · σ2
t )dx/2 exp

(
−C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
h(x, t),

∇ log pt(x) = −C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t) ,

where h(x, t) :=
∫ f(x1)

(2π)dx/2σ̂dx
t

exp
(

−∥x1−µ̂tx∥2
2

2σ̂t

)
dx1, σ̂t := σt

(µ2
t +C2σ2

t )1/2 and µ̂t := µt

(µ2
t +C2σ2

t ) .

Then, we give the velocity field decomposition.

Lemma K.2 (Velocity Decomposition under Stronger Hölder Smoothness Assumption). Assume
Assumption I.3. Then, the velocity field ut(x) follows the decomposition:

ut(x) = µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t)

)
.

Remark K.1. The key aspect of Lemma K.2 is the velocity field ut(x) having a denominator
bounded away from zero. Specifically, we apply f(x1) ≥ C to derive the lower bound on h(x, t)
(Lemma K.3). This removes the need to impose an additional lower threshold on the density function
approximator. In contrast, under Assumption I.1, the approximator is constrained to stay above the
threshold ϵlow to prevent explosion, and therefore leads to slower approximation rate.

Proof. Our proof builds on [Fu et al., 2024].

By Lemma J.1, the velocity field ut(x) has the form

ut(x) = Φ1(x, t)−1
( µ̇t

µt
· Φ2(x, t) + (σ̇t − µ̇tσt

µt
)Φ3(x, t)

)
,

where

Φ1(x, t) =
∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,
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Φ3(x, t) =
∫
Rdx

(
x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp
(

−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Furthermore, we have

σt∇pt(x)

= − σt

∫ (
x− µt · x1

σ2
t

)
· 1
σdx

t (2π)dx/2
exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1

= −
∫ (

x− µt · x1

σt

)
· 1
σdx

t (2π)dx/2
exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1

= − Φ3(x, t).

Therefore,

ut(x)

= Φ−1
1

( µ̇t

µt
· Φ2 + (σ̇t − µ̇tσt

µt
)Φ3

)
= µ̇t

µt
x− (σ̇t − µ̇tσt

µt
)σt∇ log pt

(
By Φ2 = xΦ1 and Φ3 = −σt∇pt

)
= µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t)

)
.

(
By Lemma K.1

)
This completes the proof.

The next lemma bounds h(x, t).

Lemma K.3 (Lemma B.8 of [Fu et al., 2024]). Assume Assumption I.3. Then, it holds

C1 ≤ h(x, t) ≤ B,

∥∥∥∥ σ̂t

µ̂t
∇h(x, t)

∥∥∥∥
∞

≤
√

2
π
B.

Lemma K.3 ensures that h(x, t) remains bounded above and below by a constant. As a result, ut(x)
stays finite for all x. This eliminates the need for an additional threshold ϵlow (Definition J.1) in the
constructed approximator to prevent divergence, leading to a faster approximation rate.

Bound on Velocity Field. We give the ℓ∞-bound on ut(x) under stronger Hölder assumption.

Lemma K.4 (Bounds on Velocity Field). Assume Assumption I.3. Then, there exist a positive
constant C6 such that

∥ut(x)∥∞ ≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣.
Proof. Recalling from Lemma K.2 and Lemma K.3, the velocity field has the expression

ut(x) = µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t)

)
,

where σ̂t = σt/
√
µ2

t + C2σ2
t , µ̂t = µt/(µ2

t + C2σ
2
t ) and

h(x, t) =
∫
f(x1) 1

(2π)dx/2 · σ̂dx
t

· exp
(

−
∥x1 − µ̂t · x∥2

2
2σ̂t

)
dx1.
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By Lemma K.3 and Assumption I.2, it holds

∥∇h(x, t)
h(x, t) ∥∞ ≤ µ̂t

σ̂t
·
√

2
π
BC1 = O( 1

σt
).

(
By Lemma K.3

)
Therefore,

∥ut(x)∥∞

≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣ · ∥x∥∞ +

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣ ·
∥∥∥∥∇h(x, t)
h(x, t)

∥∥∥∥
∞(

By triangle inequality
)

≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣ · ∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣, (
By (
(

By Lemma K.3
)

)
)

for some positive constant C6.

This completes the proof.

K.2 Velocity Approximation on Bounded Domain

In this section, we approximate the velocity field ut(x) using transformers in two steps. The first step
constructs two compactly supported continuous functions, Q1(x, t) and Q2(x, t), as approximations
of h(x, t) and ∇h(x, t) (Lemma K.5 and Lemma K.6). The second step applies the universal
approximation of transformers to approximate Q1(x, t) and Q2(x, t) (Lemma K.7). Combining these
steps, we present the velocity approximation on a bounded domain in Lemma K.8.

Before proceeding, we reiterate the expression of decomposed velocity under Assumption I.3.

ut(x) = µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t)

)
.

Then, we construct two local polynomials as the approximators for h(x, t), and ∇h(x, t).

Approximation of h(x, t) and ∇h(x, t). The differences between

h(x, t) =
∫
f(x1) · 1

(2π)dx/2 · σ̂dx
t

· exp
(

−
∥x1 − µ̂t · x∥2

2
2σ̂t

)
dx1,

and

pt(x) =
∫
q(x1) · 1

(2π)dx/2 · σdx
t

· exp
(

−
∥x1 − µt · x∥2

2
2σt

)
dx1,

lie in (i) the target function f(x1) and q(x1) (ii) the path coefficients σ̂t, µ̂t and σt, µt.

We define local polynomial Ψ1(x, t) as the approximator for pt(x) in (J.4). Given the differences
between h and pt, the construction of an approximator for h(x, t) follows the formulation of Ψ1.

Formally, we approximate h(x, t) around x with:

Q1(x, t) :=
∑

v∈[N ]dx

∑
∥nx∥1≤k1

R
∥nx∥1
B

nx!
∂nxf

∂xnx

∣∣∣∣∣
x=RB( v

N − 1
2 )

g1(x, nx, v, t), (K.1)

where nx ∈ Zdx is a multi-index, RB > 0 is a constant depending on the Hölder ball radius B,

• g1(x, nx, v, t) :=
∏dx

i=1
∑

k2<p g2(x[i], nx[i], v[i], k2), and

76



• g2(x[i], nx[i], v[i], k2) := 1
σ̂t

√
2π

∫ (x1[i]
RB

+ 1
2 − v[i]

N

)nx[i]
1

k2!

(
−|x[i]−µ̂tx1[i]2|2

2σ̂t

)k2

dx1.

Remark K.2. Given the differences between h(x, t) and pt(x), we replace (i) ∂nxΦ1/∂x
nx with

∂nxf/∂xnx (ii) σt and µt with σ̂t and µ̂t respectively. Then, the formulation of Q1(x, t) follows
constructions identical to the density function approximator Ψ1(x, t).

Remark K.3. When the context is clear, we refer to Q1(x, t) as a local polynomial and distinguish
it from Ψ1(x, t). The generic Hölder assumption (Assumption I.1) applies to Ψ1(x, t), while the
stronger Hölder assumption (Assumption I.3) applies to Q1(x, t).

Then, we approximate h(x, t) using Q1(x, t).

Lemma K.5 (Approximate of h(x, t), Lemma B.4 of [Fu et al., 2024]). Assume Assumption I.3.
Let Q1(x, t) be the approximator of h(x, t), and Cx(dx, β, C1,C2) be a positive constant. Then, for
any t ∈ [0, 1] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds

|Q1(x, t) − h(x, t)| ≲ BN−β (logN)
k1
2 .

Based on the approximation of h(x, t) using local polynomial Q1(x, t), we construct a approximator
of ∇h(x, t) following similar formulation

Definition K.1 (Approximator of ∇h(x, t)). We define Q2(x, t) as the approximator of ∇h(x, t),
with each component Q2[i] following the form of local polynomial presented in (K.1).

Then, we approximate h′(x, t) and ∇h(x, t) with Q2(x, t).

Lemma K.6 (Approximate ∇h(x, t), Lemma B.6 of [Fu et al., 2024]). Assume Assumption I.3. Let
Cx(dx, β, C1, C2) be a positive constant. Then, for all x ∈ [−Cx

√
logN,Cx

√
logN ]dx , i ∈ [dx]

and t > 0, it holds ∣∣∣∣Q2(x, t)[i] − σ̂t

µ̂t
· ∇h(x, t)[i]

∣∣∣∣ ≲ BN−β (logN)
k1+1

2 .

Approximate Velocity Approximator with Transformers Before deriving the velocity approx-
imation with transformers on a bounded domain, we first approximate the velocity approximator
constructed with Q1(x, t) and Q2(x, t) using transformers.

Lemma K.7 (Approximate Velocity Approximators with Transformers Network). Assume As-
sumption I.3. Let Cx be a positive constant dependent on dx, β, C1 and C2. Then, for any
x ∈ [−Cx

√
logN,Cx

√
logN ]dx and t ∈ [0, 1], there exist a transformer T ∈ T h,s,r

R such that,∫ 1

0

∫
∥T (x, t) − µ̇t

µt
x+ (σ̇tσt − µ̇tσ

2
t

µt
)
( −C2x

µ2
t + C2σ2

t

+ µ̂t∇Q2[i]
σ̂tQ1

)
∥2

2dxdt ≤ ϵ2.

Further, the parameter bounds in the transformer network class follows Lemma J.8.

Proof. The proof closely follows Lemma J.8.

Approximate Velocity with Transformers on Bounded Domain. We incorporate the approxima-
tions with Q1, Q2 and T (x, t) to derive the velocity approximation on a bounded domain.

Lemma K.8 (Velocity Approximation with Transformers on Bounded Domain). Assume Assump-
tion I.3. Then, for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx and t ∈ [t0, T ] with a positive constant

Cx(dx, β, C1, C2) and t0, T ∈ (0, 1), there exist a uθ(x, t) ∈ T h,s,r
R such that∫ T

t0

∫
∥x∥∞≤Cx

√
log N

∥ut(x) − uθ(x, t)∥2
2pt(x)dxdt ≲ B2N−2β(logN)k1+dx .
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Further, the parameter bounds in the transformer network class follows Lemma J.9.

Proof. Building upon [Hu et al., 2025c, Fu et al., 2024], we prove Lemma K.8 with two steps.

• Step 1: Approximate velocity with constructed function. We approximate the decomposed
velocity field (Lemma K.2) and its components with approximator Q1(x, t) and Q2(x, t).

• Step 2: Approximate with transformers. We apply the universal approximation of transformers
presented in Appendix H to approximate the constructed function in Step 1.

Before proceeding, we recall some previous lemmas to prepare our proof.

By Lemma K.2, the velocity follows the decomposition under Assumption I.3:

ut(x) = µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ ∇h(x, t)
h(x, t)

)
,

where σ̂t = σt/(µ2
t + C2σ

2
t )1/2, µ̂t = µt/(µ2

t + C2σ
2
t ) and

h(x, t) =
∫
f(x1) 1

(2π)dx/2 · σ̂dx
t

· exp
(

−
∥x1 − µ̂t · x∥2

2
2σ̂t

)
dx1.

Furthermore, by Lemma K.4, the bound on ut(x) in ℓ∞-distance follows

∥ut(x)∥∞ ≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣ · ∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣.
First, we apply ∥x∥2 ≲

√
logN to Lemma K.4. Next, we apply Lemma K.4 and Lemma K.6 to

construct the first-step approximator Q(x, t) ∈ Rdx , with each element defined by:

∥Q[i]∥ := min
{
µ̇t

µt
x− (σ̇tσt − µ̇tσ

2
t

µt
)
(

−C2x

µ2
t + C2σ2

t

+ µ̂t∇Q2[i]
σ̂tQ1

)
, ∥ut(x)∥∞

}
. (K.2)

The first element consists of approximators for h(x, t) and ∇h(x, t). The second element ensures
that Ψ(x, t) does not output value larger than the maximum of ut(x) in ℓ∞.

• Step A: Approximation via Local Polynomial.

By symmetry, for all i ∈ [dx], the difference between Q(x, t)[i] and ut(x)[i] follows

|ut[i] −Q[i]|

=
∣∣∣∣(σ̇tσt − µ̇tσ

2
t

µt
)
(

∇h[i]
h

− µ̂tQ2[i]
σ̂tQ1

)∣∣∣∣
≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣ ·
∣∣∣∣(∇h[i]

h
− µ̂tQ2[i]

σ̂tQ1

)∣∣∣∣
=
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣ ·
∣∣∣∣∇h[i]

h
− ∇h[i]

Q1
)
∣∣∣∣︸ ︷︷ ︸

(T1)

+
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣ ·
∣∣∣∣∇h[i]
Q1

− µ̂tQ2[i]
σ̂tQ1

∣∣∣∣︸ ︷︷ ︸
(T2)

.

(
By triangle inequality

)
Next, we bound (T1) and (T2).
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Step A.1: Bound (T1). By Lemma K.3, we have C1 ≤ h ≤ B and∥∥∥∥ σ̂t

µ̂t
∇h(x, t)

∥∥∥∥
∞

≤
√

2
π
B.

Moreover, by Lemma K.5, it holds

|Q1(x, t) − h(x, t)| ≲ BN−β (logN)
k1
2 .

It implies that

h(x, t) −K ′BN−β (logN)
k1
2 ≤ Q1(x, t),

for some positive constant K ′. This gives

|Q1(x, t)| ≲ BN−β(logN)
k1
2 . (K.3)

Therefore,

(T1) =
∣∣∣∣∇h[i]

h
− ∇h[i]

Q1

∣∣∣∣
≤ |∇h[i]| ·

∣∣∣∣h−Q1

hQ1

∣∣∣∣
≤
√

2
π

µ̂t

σ̂t
B

∣∣∣∣h−Q1

hQ1

∣∣∣∣ (
By Lemma K.3

)
≲
B

σt
N−β(logN)

k1
2 .

Step 1.2: Bound (T2). It holds

(T2) =
∣∣∣∣∇h[i]
Q1

− µ̂tQ2[i]
σ̂tQ1

∣∣∣∣
≤ µ̂t

σ̂t

∣∣∣∣∣∣
Q2[i] − σ̂t

µ̂t

∇h[i]

Q1

∣∣∣∣∣∣ (
By factoring out µ̂t/σ̂t

)
≲
B

σt
N−β(logN)

k1+1
2 .

(
By (K.3) and Lemma K.6

)
Combining bounds on (T1) and (T2), it holds

|ut[i] −Q[i]| (K.4)

≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣ · ((T1) + (T2))

≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣BN−β(logN)
k1+1

2 ,

for all i ∈ [dx].
Therefore, by symmetry, it holds

∥ut(x) −Q(x, t)∥2
2 (K.5)

≤ dx∥ut(x) −Q(x, t)∥2
∞

(
By ∥ · ∥2 ≤ dx∥ · ∥∞

)
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≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1 .
(

By (K.4)
)

• Step B: Approximation with Transformers.

By Lemma K.7, there exists a transformer uθ(x, t) ∈ T h,r,s
R such that∫ ∫

∥uθ(x, t) − µ̇t

µt
x+ (σ̇tσt − µ̇tσ

2
t

µt
)( −C2x

µ2
t + C2σ2

t

+ µ̂t∇Q2[i]
σ̂tQ1

)∥2
2dxdt ≤ ϵ2.

By setting ϵ := N−β , the velocity approximation using transformers follows∫ ∫
pt∥ut(x) − uθ(x, t)∥2

2dxdt

≤
∫ ∫

pt∥ut(x) −Q(x, t)∥2
2dxdt+

∫ ∫
pt∥Q(x, t) − uθ(x, t)∥2

2dxdt(
By triangle inequality

)
≤
∫ ∫

∥ut(x) −Q(x, t)∥2
2dxdt+

∫ ∫
∥Q(x, t) − uθ(x, t)∥2

2dxdt
(

By 0 ≤ pt(x) ≤ 1
)

≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1

∫ ∫
dxdt+

∫
∥Q(x, t) − uθ(x, t)∥2

2dxdt
(

By (K.5)
)

≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣2B2N−2β(logN)k1+dx +
∫

∥Q(x, t) − uθ(x, t)∥2
2dxdt(

By t ∈ (0, 1) and ∥x∥∞ ≤ Cx

√
log N

)
≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1+dx ,
(

By Lemma K.7
)

≲ B2N−2β(logN)k1+dx .
(

By Assumption I.2
)

By Lemma K.4, it holds

∥ut(x)∥∞

≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣ · ∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣. (
By Lemma K.4

)
≲ O(

√
logN).

(
By Assumption I.2

)
Therefore, we set transformer output bound CT := O(∥ut(x)∥∞). Then, the parameter bounds in
the transformer network follow Lemma J.9.

This completes the proof.

K.3 Main Proof of Theorem I.2

In Lemma J.9, we give the velocity field approximation using transformer on a bounded domain x ∈
[−Cx

√
logN,Cx

√
logN ]dx under stronger Hölder assumption. To obtain general approximation

result, we introduce the next lemma that bounds the uncontrolled region.

Lemma K.9 (Truncation of x, Modified from Lemma B.2 of [Fu et al., 2024]). Assume Assump-
tion I.3. Then, for any R7 > 1 and t > 0, the following hold∫

∥x∥∞≥R7

pt(x)dx ≲ Rdx−2
7 exp

(
− C2R

2
7

2(µ2
t + C2σ2

t )

)
,
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∫
∥x∥∞≥R7

∥ut(x)∥2
2 · pt(x)dx ≲ Rdx

7 exp
(

− C2R
2
7

2(µ2
t + C2σ2

t )

)
.

Proof. The first part of the proof is identical to Lemma J.10

Recall Lemma J.3. The density function at time t is upper bounded by

pt ≤ C1

(µ2
t + C2σ2

t )dx/2 · exp
(

− C2∥x∥2
2

2(µ2
t + C2σ2

t )

) (
By dropping constant term

)
≲ exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
.

Furthermore, by Lemma K.4 we have

∥ut(x)∥∞ (K.6)

≤
∣∣∣∣ µ̇t

µt
+ (σ̇tσt − µ̇tσ

2
t

µt
)( C2

µ2
t + C2σ2

t

)
∣∣∣∣ · ∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt

µt

∣∣∣∣
≲ ∥x∥∞

(
By Assumption I.2

)
≤ ∥x∥2.

(
By ∥ · ∥∞ ≤ ∥ · ∥2

)
Therefore, the second inequality follows∫

∥x∥∞≥R7

∥ut(x)∥2
2pt(x)dx

≤ dx

∫
∥x∥∞≥R7

∥ut(x)∥2
∞pt(x)dx

(
By ∥ · ∥2 ≤ dx∥ · ∥∞

)
≲
∫

∥x∥∞≥R7

∥x∥2
2 · pt(x)dx

(
By (K.6)

)
≲
∫

∥x∥∞≥R7

∥x∥2
2 · exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma J.3

)
≲
∫

∥x∥2≥R7

∥x∥2
2 · exp

(
− C2∥x∥2

2
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx

7 exp
(

− C2R
2
7

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)
This completes the proof.

Next, we present the main proof of Theorem I.2

Theorem K.1 (Theorem I.2 Restated: Velocity Approximation with Transformers under Stronger
Hölder Smoothness). Assume Assumption I.3 and Assumption I.2. For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all
t ∈ [t0, T ] with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x) − uθ(x, t)∥2
2 · pt(x)dxdt = O

(
B2N−2β(logN)dx+β

)
,

Further, the parameter bounds in the transformer network class follows Theorem I.1.
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Proof of Theorem I.2. Recall Lemma K.8, Lemma K.9. We have CT = O(
√

logN) and we set

R3 :=

√
4β(µ2

t + C2σ2
t ) logN

C2
. (K.7)

Then, it holds∫ T

t0

∫
Rdx

∥uθ(x) − ut(x)∥2
2pt(x)dxdt

=
∫ T

t0

∫
∥x∥∞>R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt+

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt

≤ 2
∫ T

t0

∫
∥x∥∞>R3

(
∥uθ(x)∥2

2 + ∥ut(x)∥2
2
)
pt(x)dxdt+

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt(

By expanding ∥ · ∥2
2
)

≲
∫ T

t0

∫
∥x∥∞>R3

(logN + ∥ut(x)∥2
2) · pt(x)dxdt+

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt(

By CT = O(
√

log N)
)

≲ (logN ·Rdx−2
3 +Rdx

3 ) exp
(

− C2R
2
3

2(µ2
t + C2σ2

t )

)
+
∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt(

By Lemma K.9
)

≲ (logN)
dx
2 N−2β +

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x) − ut(x)∥2
2pt(x)dxdt

(
By (K.7)

)
≤ (logN)

dx
2 N−2β +B2N−2β(logN)k1+dx

(
By Lemma K.8

)
= O

(
B2N−2β(logN)k1+dx

)
.

(
By k1 ≤ β

)
Furthermore, the parameter bounds in transformer network follow Lemma K.8.

This completes the proof.
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L Proof of Theorem I.3

In this section, we prove Theorem I.3 following the three steps presented in the proof sketch.

Organizations. Appendix L.1 provides fundamental definitions of flow matching and discusses key
properties of the flow matching loss. Appendix L.2 introduces several auxiliary lemmas that support
our proof. Finally, Appendix L.3 presents the main proof of Theorem I.3.

L.1 Preliminaries

In this section, we consider affine conditional flows ψt(x|x1) = µtx1 +σtx follows Section 2. Given
a velocity approximator uθ, we aim to bound the following flow matching risk R(uθ):

R(uθ) :=
∫ T

t0

1
T − t0

E
Xt∼pt

[∥uθ(Xt, t) − ut(Xt)∥2
2] dt, (L.1)

where marginal probability path pt and marginal velocity field ut are induced by affine conditional
flow ψt(x|X1) = µtX1 + σtx follows (2.2), (2.3), (2.5) and (2.6).

In practice, we use conditional flow matching loss to train velocity estimator uθ:

Definition L.1 (Conditional Flow Matching). Let q be the ground truth distribution and the normal
distribution N(0, I) be the source distribution p. Considering affine conditional flows ψt(x|x1) =
µtX1 + σtx, we define the loss function and the conditional flow matching loss:

ℓ(x;uθ) := 1
T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uθ(µtx+ σtX0, t) − (µ̇tx+ σ̇tX0)∥2
2]dt,

LCFM(uθ) := 1
T − t0

∫ T

t0

E
X1∼q,X0∼N(0,I)

[∥uθ(µtx+ σtX0, t) − (µ̇tX1 + σ̇tX0)∥2
2]dt.

Remark L.1. Holderrieth et al. [2025] prove that the gradients of the flow matching loss (risk) and
the conditional flow matching loss coincide. Therefore, minimizing the flow matching loss (risk)
R(uθ) is equivalent to minimizing the conditional flow matching loss LCFM(uθ).

To better evaluate the estimator uθ, now we introduce the empirical flow matching risk R̂(uθ).

Definition L.2 (Empirical Risk). Consider a velocity estimator uθ ∈ T h,s,r
R and i.i.d training

samples {xi}n
i=1, the empirical conditional flow matching loss L̂CFM(uθ) := 1

n

∑n
i=1 ℓ(xi;uθ). Let

u⋆ := ut be the ground truth velocity field, we define empirical flow matching risk:

R̂(uθ) := L̂CFM(uθ) − L̂CFM(u⋆) = 1
n

n∑
i=1

ℓ(xi;uθ) − 1
n

n∑
i=1

ℓ(xi;u⋆).

Remark L.2. Notice that R(u⋆) = 0 since u⋆ is the ground truth velocity field. Furthermore, the
fact that the gradients of the flow matching loss (risk) and the conditional flow matching loss coincide
implies that R(uθ) = R(uθ) −R(u⋆) = LCFM(uθ) − LCFM(u⋆).

Remark L.3 (Unbiased Property). We use L̂′
CFM and R̂′ to denote the conditional flow matching

loss and empirical risk with training samples {x′
i}n

i=1. Then for any velocity estimator uθ, the i.i.d.
assumption implies that E{x′

i
}n

i=1
[L̂′

CFM(uθ)] = LCFM(uθ), leading to E{x′
i
}n

i=1
[R̂′(uθ)] = R(uθ).

Next, we introduce the truncated version of (i) loss function ℓ(x;uθ), (ii) conditional flow matching
loss LCFM(uθ), (iii) the conditional flow matching risk, R(uθ) (iv) the empirical risk R̂(uθ).
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Definition L.3 (Domain Truncation of Loss and Risk). Given ℓ(x;uθ), LCFM(uθ), R(uθ) and
R̂(uθ), we define their truncated counterparts on a bounded domain D := [−D,D]dx by

ℓtrunc(x;uθ) := ℓ(x;uθ)1{∥x∥∞ ≤ D}, Ltrunc
CFM(uθ) := L(uθ)1{∥x∥∞ ≤ D},

Rtrunc(uθ) := R(x;uθ)1{∥x∥∞ ≤ D}, R̂trunc(uθ) := R̂(uθ)1{∥x∥∞ ≤ D},

where D > 0 is a constant.

With Definition L.3, we refer to ℓtrunc(x;uθ), Ltrunc
CFM(uθ), Rtrunc(uθ) and R̂trunc(uθ) as truncated

loss, truncated CFM loss, truncated risk and truncated empirical risk respectively.

L.2 Auxiliary lemmas

Since the target distribution q(x1) is unknown, direct computation of the risk is infeasible. Therefore,
we first decompose the estimation error into four components and present supporting lemmas to
bound each of them. Then, we incorporate these results in the main proof in Appendix L.3.

Estimation Error Decomposition. Let ûθ be the optimizer of the empirical conditional flow
matching loss L̂CFM(uθ) using i.i.d samples {xi}n

i=1. Next, we introduce a different set of i.i.d
samples {x′

i}n
i=1 independent of the training sample {xi}n

i=1. Then, we decompose E{xi}n
i=1

[R(ûθ)]:

E
{xi}n

i=1

[R(ûθ)] = E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′(ûθ) − R̂′ trunc(ûθ)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′ trunc(ûθ) − R̂trunc(ûθ)

]]
︸ ︷︷ ︸

(II)

+ E
{xi}n

i=1

[
R̂trunc(ûθ) − R̂(ûθ)

]
︸ ︷︷ ︸

(III)

+ E
{xi}n

i=1

[
R̂(ûθ)

]
︸ ︷︷ ︸

(IV)

. (L.2)

We refer to terms (I) and (III) as truncation error, and we control these errors by leveraging the
sub-Gaussian assumption in Lemma L.1. Then, we derive the generalization bound to control term
(II) using covering number in Lemma L.5 and Lemma L.6. Finally, we apply the approximation error
using transformers to bound term (IV) in Lemma L.8.

Truncation Error. We apply the sub-Gaussian assumption to bound the truncation error.

Lemma L.1 (Upper Bound on the Truncation Error). Assume Assumption I.1. Let t0, T ∈ (0, 1)
and uθ(x, t) be the velocity approximators in Theorem I.1 and Theorem I.2. Then, it holds

E
x

[
∣∣ℓ(x;uθ) − ℓtrunc(x;uθ)

∣∣] ≲ Ddx exp
(

−1
2C2D

2
)

logN for any t ∈ [t0, T ].

Proof. Our proof builds on Section D.2 of [Fu et al., 2024]. By Theorem I.1 and Theorem I.2, the
transformers output bound CT = O(

√
logN). Then, for all approximator uθ ∈ T h,s,r

R , it holds

E
x

[
∣∣ℓ(x;uθ) − ℓtrunc(x;uθ)

∣∣]
= E

x
[|ℓ(x;uθ)1[∥x∥ ≥ D]|]

(
By Definition L.3

)
= 1
T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ − (µ̇tx+ σ̇tx0)∥2
2]q(x)dxdt

(
By Definition L.1

)
≤ 2
T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ∥2
2 + ∥µ̇tx+ σ̇tx0∥2

2]q(x)dxdt
(

By expanding the ℓ2-norm
)
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≲
2

T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ∥2
2 + ∥µ̇tx+ σ̇tx0∥2

2] exp
(

−1
2C2∥x∥2

2

)
dxdt(
By Assumption I.1

)
≲

2
T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[logN + ∥µ̇tx+ σ̇tx0∥2
2] exp

(
−1

2C2∥x∥2
2

)
dxdt(

By CT = O(
√

log N)
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

(logN + σ̇2
t d+ µ̇2

t ∥x∥2
2) exp

(
−1

2C2∥x∥2
2

)
dxdt

(
By x0 ∼ N(0, I)

)
≲
Ddx−2 exp

(
− 1

2C2D
2)

T − t0

∫ T

t0

(logN + σ̇2
t d)dt+

Ddx exp
(
− 1

2C2D
2)

T − t0

∫ T

t0

µ̇2
t dt(

By Lemma D.2
)

≲ Ddx exp
(

−1
2C2D

2
)

logN.
(

By Assumption I.2
)

This completes the proof.

Covering Number of Loss Function Class with Transformer Estimator. Recall (II) in (L.2):

(II) = E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′ trunc(ûθ) − R̂trunc(ûθ)

]]
.

To derive an upper bound on (II), we introduce (i) the covering number technique in Lemma L.5 and
Lemma L.6 (ii) the generalization error bound to bound in Lemma L.8.

We begin with the definition of covering number.

Definition L.4 (Covering Number). Let Ω be a compact domain and {xi}n
i=1 be data drawn from

distribution P . Denote the joint distribution {xi}n
i=1 ∼ Pn := P ⊗ · · · ⊗ P . Given a function class

F , a t ∈ Ω, a norm ∥ · ∥ and a ϵc > 0, the ϵc-covering number N (ϵ,F , {xi}n
i=1 × Ω, ∥ · ∥) is the

smallest size of a collection {fj}N
i=1 ⊂ F such that for any f ∈ F , there exists a j ∈ [N ] satisfying

sup
t

max
i

∥f(xi, t) − fj(xi, t)∥ ≤ ϵ. (L.3)

Also, we define the covering number with respect to the data distribution P and size n as

N (ϵ,F , Pn × Ω, ∥ · ∥) := sup
{xi}n

i=1∼P n

N (ϵ,F , {xi}n
i=1 × Ω, ∥ · ∥).

Further, for Ω = ∅, we denote the covering number by N (ϵ,F , {xi}n
i=1, ∥ · ∥) and N (ϵ,F , Pn, ∥ · ∥).

Remark L.4 (Covering Number of Transformer Network Class). We define the covering number
over domain {xi}n

i=1 × Ω to align with the flow matching loss formulation in Definition L.1, where
temporal dependence in transformers introduces no additional statistical error. Specifically, the loss
averages over the time component, unlike the n i.i.d. data points sampled from target distribution qn.

Next, we derive an upper bound on the covering number of transformer networks. Our proof builds
on [Edelman et al., 2022] and studies the class in Definition B.4, with a self-attention layer that
applies softmax under inverse-temperature scaling and a feed-forward layer with ReLU activation.

Covering Number of Linear Function Class. Our norm-based upper bound on the covering number
of the transformer network class extends the classical norm-based bound for the linear function class:

Lemma L.2 (Covering Number of Linear Function Class, Lemma 4.6 of [Edelman et al., 2022] and
[Zhang, 2002]). Let z1, . . . , zn ∈ Rd be sample points satisfying ∥zi∥ ≤ BX for all i ∈ [n]. Then,
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for linear function class F :=
{
f : z → Wz | W ∈ Rd′×d, ∥W∥2,1 ≤ BW , BW > 0

}
, it holds:

log N (ϵ,F , {zi}n
i=1; ∥ · ∥∞) ≲ B2

XB
2
W

ϵ2
log (d′n) for any ϵ > 0.

Remark L.5 (Covering Number Equivalence). We remark that Lemma L.2 applies to our feed-
forward layer for two reasons. First, the bias terms b1 and b2 admit an augmented form. By
appending a bottom row of ones to Z and set W̃1 := (W1, b1), it holds that W1Z + b1 = W̃1Z̃,
where W1 ∈ Rr×d, b1 ∈ Rr, and W̃1 ∈ Rr×(d+1), Z̃ ∈ R(d+1)×L. This two forms define the same
function class. Second, the norm bound in Lemma H.5 keeps the biases on the same order as the
matrices operator. Since our ≲ and O(·) notation hides polynomial and logarithmic factors in d and
L, Lemma L.2 gives the covering number for the linear class in our feed-forward layer with biases.

Following [Edelman et al., 2022], we extend Lemma L.2 to a transformer block. We view the block as
a composition of linear function classes. We construct covers for each linear function class, balance
the errors across components, and minimize the size of the concatenated cover using the next lemmas:

Lemma L.3 (Lemma A.8 of [Edelman et al., 2022]). Consider the following optimization problem:

min
x1,...,xn

n∑
i=1

αi

x2
i

subject to
n∑

i=1
ωixi = C (L.4)

for some αi, ωi and a constant C. Then, (L.4) has solution(∑n
i=1 α

1
3
i ω

2
3
i

)3

C2 when xi = C∑n
i=1 α

1
3
i ω

2
3

·
(αi

ωi

) 2
3
.

Equipped with Lemma L.3, we have the upper bound for the covering number of transformer block:

Lemma L.4 (Covering Number of Transformer Block, Modified from Corollary 4.5 of [Edelman et al.,
2022]). Let {xi}n

i=1 be sample points satisfying maxi ∥xi∥∞ ≤ D for some constant D > 0 and
R(·) : Rdx → Rd×L be the reshape layer (Definition B.3). Let {Zi}n

i=1 := {R(xi)}n
i=1, E ∈ Rd×L

be the positional encoding and T 1,s,r
R (Z) denote a two-layer transformer class (Definition B.1) with

single-head self-attention and s-hidden dimension and r-MLP dimension. Then, it holds:

log N
(
ϵ, T 1,s,r

R , {Zi}n
i=1; ∥ · ∥∞

)
≲

log(nL)
ϵ2c

α2
(

(C2,∞
F ) 4

3 +
(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3
,

where α := O
(
C2

FCOV CKQ(D + CE)
)
.

Proof. Our proof builds on [Edelman et al., 2022] by incorporating the scaling λ > 0 for the
column-wise softmax function. For Z ∈ [−D,D]d×L and WK ,WQ ∈ Rs×d, we define

FKQ :=
{
f : Z → (WKZ)⊤(WQZ) | WKQ = W⊤

KWQ, ∥WKQ∥2 ≤ CKQ

}
,

for some constant D > 0. Similarly, for WV ∈ Rs×d and WO ∈ Rd×s, we define

FOV :=
{
f : Z → WO ·WV Z | WOV = WOWV , ∥WOV ∥2 ≤ COV

}
.

Recall Remark L.5. For feed-forward layer, we define:

F (FF) :=
{
f : Z → W2ReLU[W1Z] | ∥W1∥2, ∥W2∥2 ≤ CF

}
.
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For simplicity, we denote the k-th column of Zi by z(k)
i for all i ∈ [n]. First observe that

max
i∈[n]

∥f(Zi) − f̂(Zi)∥2,∞ = max
i∈[n],k∈[L]

∥f(z(k)
i ) − f̂(z(k)

i )∥2 (L.5)

for any distinct f, f̂ in FKQ,FOV or F (FF). With this, we consider {Zi}n
i=1 as nL samples in

[−D,D]d and apply Lemma L.2 to construct covers CKQ, COV and CFF for FKQ, FOV and F (FF).

Covering Number for FKQ and FOV . Since Zi ∈ [−D,D]d×L, for any i, j ∈ [n] and k ∈ [L], we
have that ∥f(z(k)

i ) − f(z(k)
j )∥2

2 ≤ dD2 · ∥(W⊤
KWQ)Z∥2

2. Thus, by Lemma L.2 and (L.5), it holds

log N
(
ϵKQ,FKQ, {Zi}n

i=1; ∥ · ∥∞
)
≲
D3C2

KQ

ϵ2KQ

log (nL), (L.6)

where ≲ hides polynomial factors dependent on d and L. Similarly, for FOV , it holds

log N
(
ϵOV ,FOV , {Zi}n

i=1; ∥ · ∥∞
)
≲
D2C2

OV

ϵ2OV

log (nL), (L.7)

That is, we have cover CKQ, COV for FKQ, FOV whose sizes are upper-bounded by (L.6) and (L.7).

By triangle inequality and by Lemma B.2, for any WK ,WQ ∈ FKQ and any WO,WV ∈ FOV , there
exist some ŴK , ŴQ ∈ CKQ and ŴO, ŴV ∈ COV such that for all i ∈ [n] and all k ∈ [L], it holds

∥ŴO(ŴV z
(k)
i ) Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )] −WO(WV z

(k)
i ) Softmax[(WKz

(k)
i )⊤(WQz

(k)
i )]∥

(L.8)

≤ ∥ŴO(ŴV z
(k)
i ) Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )] −WO(WV z

(k)
i ) Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )]∥︸ ︷︷ ︸

(I)

+ ∥WO(WV z
(k)
i ) Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )] −WO(WV z

(k)
i ) Softmax[(WKz

(k)
i )⊤(WQz

(k)
i )]∥︸ ︷︷ ︸

(II) (
By triangle inequality

)
≲ ∥(ŴOŴV −WOWV )z(k)

i ∥︸ ︷︷ ︸
(I)

+ ∥WOWV z
(k)
i ∥∥ Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )] − Softmax[(WKz

(k)
i )⊤(WQz

(k)
i )]∥︸ ︷︷ ︸

(II)(
By ∥ Softmax[·]∥F ≤ dL

)
≲ ∥(ŴOŴV −WOWV )z(k)

i ∥︸ ︷︷ ︸
(I)

+COV D∥ Softmax[(ŴKz
(k)
i )⊤(ŴQz

(k)
i )] − Softmax[(WKz

(k)
i )⊤(WQz

(k)
i )]∥︸ ︷︷ ︸

(II)(
By ∥WOV ∥ ≤ COV and ∥z

(k)
i ∥∞ ≤ D

)
≲ ϵOV + COV D∥ Softmax[(ŴKz

(k)
i )⊤(ŴQz

(k)
i )] − Softmax[(WKz

(k)
i )⊤(WQz

(k)
i )]∥︸ ︷︷ ︸

(II) (
By (L.6)

)
≲ ϵOV + 2λCOV D∥(ŴKz

(k)
i )⊤(ŴQz

(k)
i ) − (WKz

(k)
i )⊤(WQz

(k)
i )∥︸ ︷︷ ︸

(II)

(
By Lemma B.2

)
≤ ϵOV + 2λCOV DϵKQ.

(
By (L.7)

)
Then, we have a cover for the self-attention layer

CSA :=
{
f : Z → ŴO(ŴV Z) Softmax[(ŴKZ)⊤(ŴQZ)] | ŴOŴV ∈ COV , Ŵ

⊤
K ŴQ ∈ CKQ

}
.
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Covering Number for F (FF). Similarly, we apply Lemma L.2 twice for the inner and outer linear
function function class operated by W1 and W2. Specifically, we construct cover C1 and C2 for

F (FF)
1 :=

{
f : Z → W1Z | ∥W1∥2 ≤ CF

}
and F (FF)

2 :=
{
f : Z → W2Z | ∥W2∥2 ≤ CF

}
respectively. Then, by Lemma L.2, we have cover C1 and C2 for

log N
(
ϵF,1,F (FF)

1 , {Zi}n
i=1; ∥ · ∥∞

)
≲
D2C2

F

ϵ2F,1
log (nL). (L.9)

and

log N
(
ϵF,2,F (FF)

2 , {Zi}n
i=1; ∥ · ∥∞

)
≲
D2C2

F

ϵ2F,2
log (nL). (L.10)

That is, we have cover C1, C2 for F (FF)
1 ,F (FF)

2 whose sizes are upper-bounded by (L.9) and (L.10).

Let F̂ (SA)(Z) denote the self-attention layer with weights chosen from cover CSA. For any W1,
WK ,WQ,WO,WV , there exist some Ŵ1 ∈ C1 and F̂ (SA) such that for all i ∈ [n], k ∈ [L], it holds

∥Ŵ1 ◦ F̂ (SA)(z(k)
i ) −W1 ◦ F (SA)(z(k)

i )∥ (L.11)

≤ ∥Ŵ1 ◦ F̂ (SA)(z(k)
i ) − Ŵ1 ◦ F (SA)(z(k)

i )∥ + ∥Ŵ1 ◦ F (SA)(z(k)
i ) −W1 ◦ F (SA)(z(k)

i )∥(
By traingle inequality

)
≲ CF ∥F̂ (SA)(z(k)

i ) − F (SA)(z(k)
i )∥ + ∥Ŵ1 ◦ F (SA)(z(k)

i ) −W1 ◦ F (SA)(z(k)
i )∥(

By norm bound on W1
)

≲ CF ∥F̂ (SA)(z(k)
i ) − F (SA)(z(k)

i )∥ + COV ∥(Ŵ1 −W1)(z(k)
i )∥(

By the norm bound on WO · WV

)
≤ CF (ϵOV + 2λCOV DϵKQ) + COV ϵF,1,

(
By (L.8) and (L.9)

)
Building on (L.11), we have the cover for F (F F ) ◦ F (SA):

∥Ŵ2ReLU[(Ŵ1F̂ (SA)(z(k)
i )] −W2ReLU[W1F (SA)(z(k)

i )]∥ (L.12)

≲ ∥Ŵ2Ŵ1F̂ (SA)(z(k)
i ) −W2Ŵ1F̂ (SA)(z(k)

i )∥︸ ︷︷ ︸
(I)

+ ∥W2Ŵ1F̂ (SA)(z(k)
i ) −W2W1F (SA)(z(k)

i )∥︸ ︷︷ ︸
(II)(

By triangle inequality and Lipschitzness of ReLU
)

≲ CFCOV ∥(Ŵ2 −W2)z(k)
i ∥︸ ︷︷ ︸

(I)

+ ∥W2Ŵ1F̂ (SA)(z(k)
i ) −W2W1F (SA)(z(k)

i )∥︸ ︷︷ ︸
(II) (

By norm bound on W1 and WOV

)
≲ CFCOV ∥(Ŵ2 −W2)z(k)

i ∥︸ ︷︷ ︸
(I)

+CF ∥Ŵ1F̂ (SA)(z(k)
i ) −W1F (SA)(z(k)

i )∥︸ ︷︷ ︸
(II)

(
By norm bund on W2

)
≲ CFCOV ϵF,2 + C2

F (ϵOV + 2λCOV DϵKQ) + CFCOV ϵF,1.
(

By (L.10) and (L.11)
)

The overall size of the ϵ-cover of a transformer block F1,s,r = F (FF) ◦ F (SA) is

Ctrans := {F (FF) ◦ F (SA) | ŴOŴV ∈ COV , Ŵ
⊤
K ŴQ ∈ CKQ, Ŵ1, Ŵ2 ∈ CFF}.

This gives

log |Ctrans| = log |CKQ| + log |COV | + log |CFF|,
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satisfying CFCOV (ϵF,1 + ϵF,2) + C2
F (ϵOV + 2λCOV DϵKQ) ≤ ϵ. Let

α1 := D3C2
KQ lognL; α2 := D2C2

OV log (nL); α3 := D2C2
F log (nL);

ω1 := 2λC2
FCOV D; ω2 := C2

FCOV D; ω3 := λCFCOV .

Finally, we apply Lemma L.3 and obtain the optimal size of the the cover Ctrans:

D2 log (nL)
(
C

2/3
KQλ

2/3C
4/3
F C

2/3
OV D

1/3 + C
4/3
OV C

4/3
F D2/3 + λ2/3C

2/3
OV C

4/3
F

)3

ϵ2
.

We extend the argument to two blocks by invoking the composition step in [Edelman et al., 2022].
For inputs with positional encoding E, we replace the bound D with D + CE , where ∥E∥ ≤ CE .

This completes the proof.

Remark L.6 (Looseness of the Covering Number Bound). The bound in Lemma L.4 is loose yet
sufficient for our two layer transformer class with inverse-temperature scaling and one attention head
(recall Appendix H). The extension from one block to two follows from the composition step in
Theorem A.17 of [Edelman et al., 2022], where it provides the complete induction argument.

Lemma L.5 (Covering Number Bounds for Transformer Network Class, Modified from Theorem
A.17 of [Edelman et al., 2022]). Let T h,s,r

R (CT , C
2,∞
KQ , CKQ, C

2,∞
OV , COV , CE , C

2,∞
F , CF , LT ) be

the class of functions of one transformer block satisfying the norm bound for matrix and the Lipschitz
property for feed-forward layers. Then, for all data points satisfying ∥xi∥2,∞ ≤ D, it holds

log N (ϵc, T h,s,r
R , Pn × [0, 1], ∥ · ∥2) (L.13)

≲
log(nL/ϵc)

ϵ2c
α2
(

(C2,∞
F ) 4

3 +
(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3
,

where α := O
(
C2

FCOV CKQ(D + CE)
)
.

Proof. Lemma L.4 shows Lemma L.5 with the absence of domain [0, 1]. That is,

log N (ϵc, T h,s,r
R , Pn, ∥ · ∥2) (L.14)

≲
log(nL)
ϵ2c

α2
(

(C2,∞
F ) 4

3 +
(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3
,

holds with data points drawn from Pn. To extend it to Pn × [0, 1], we discretize [0, 1] into a δ-grid
G :=

{
tk = k · δ | k = 0, 1, . . . , ⌊1/δ⌋, δ ∈ (0, 1)

}
. For simplicity, we denote |G| := m = O(1/δ).

Let T h,s,r
R,G be the transformer network class on domain [−D,D]dx × G. We first suppose that

N
(
ϵc, T h,s,r

R , Pn × [0, 1], ∥ · ∥2
)

≤ N
(
ϵc/2, T h,s,r

R,G , Pn × G, ∥ · ∥2
)

(L.15)

holds when δ := ϵc/(4LT ), where LT is the Lipschitz constant of the transformer block.

Then, since domain Pn × G is a set of sample points with size at most nm, (L.14) gives

N
(
ϵc/2, T h,s,r

R,G , Pn × G, ∥ · ∥2
)

(L.16)

≲
log(nmL)

(ϵc/2)2 α2
(

(C2,∞
F ) 4

3 +
(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3

Therefore, (L.15) and (L.16) implies (L.13):

N
(
ϵc, T h,s,r

R , Pn × [0, 1], ∥ · ∥2
)
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≤ N
(
ϵc/2, T h,s,r

R,G , Pn × G, ∥ · ∥2
) (

By (L.15)
)

≤ log(nmL)
(ϵc/2)2 α2

(
(C2,∞

F ) 4
3 +

(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3 (

By (L.16)
)

≲
log(nL/ϵc)

ϵ2c
α2
(

(C2,∞
F ) 4

3 +
(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3
.(

By δ = ϵc/LT and dropping lower order terms
)

Lastly, it suffices to prove that (L.15) holds when δ := ϵc/(4LT ). We show this by utilizing the
Lipchitz property of the transformer networks (Definition B.4.) Specifically, let {fj}N

j=1 be a ϵc/2
cover of T h,s,r

R,G . Then, for any f ∈ T h,s,r
R and t ∈ [0, 1], it holds:

∥f(xi, t) − fj(xi, t)∥2

≤ ∥f(xi, t) − f(xi, tk)∥2︸ ︷︷ ︸
(A)

+ ∥f(xi, tk) − fj(xi, tk)∥2︸ ︷︷ ︸
(B)

+ ∥fj(xi, tk) − fj(xi, t)∥2︸ ︷︷ ︸
(C)

.

(
By triangle inequality

)
We then show that the RHS is bounded by ϵc and this implies (L.15). For (A) and (C), it holds:

(A), (C) ≤ LT · |t− tk| ≤ LT · δ ≤ ϵc
4 ,

where the first inequality is by the Lipchitzness of the transformer network, the second inequality is
by the definition of the δ-grid G, and the last inequality is by taking δ := ϵc/(4LT ).

Further, (B) is bounded by ϵc/2 by the definition of {fj}N
j=1. Altogether, we have that

∥f(xi, t) − fj(xi, t)∥2 ≤ ϵc
4 + ϵc

2 + ϵc
4 = ϵc. (L.17)

Since (L.17) holds for all t, (L.3) in Definition L.4 holds after taking the supremum over t.

This completes the proof.

Equipped with Lemma L.5, we now derive the the covering number bounds of loss function class
under transformer weights configuration in Theorem I.1 and Theorem I.2.

Lemma L.6 (Covering Number Bounds for S(D)). Let ϵc > 0. We define the loss function class by
S(D) := {ℓ(x;uθ) : D → R|uθ ∈ T h,s,r

R }, where D := [−D,D]dx for some D > 0. Given a fixed
set of i.i.d. sample {xi}n

i=1 drawn from the target distribution q, we define the norm of loss functions
by ∥ℓ(x;uθ)∥qn := supxi

|ℓtrunc(xi;uθ(xi))|. Then, under parameter configuration in Theorem I.1
and Theorem I.2, the ϵc-covering number of S(D) with respect to ∥·∥∞D satisfies:

log N (ϵc,S(D), {xi}n
i=1, ∥ · ∥qn) ≤ O

( log (nL/ϵc)
ϵ2c

D4N16βd+12β(logN)20dx+4β+17
)
.

For all f(x, t) ∈ T h,s,r
R , t ∈ [0, 1] and {xi}n

i=1 ∼ qn, we equip the transformers with the norm:

∥f(x, t)∥qn,D :=
∥∥f(xi, t)1{∥xi∥2,∞ ≤ D}

∥∥
2.

Then, the ϵc-covering number of the transformer network class satisfies:

log N (ϵc, T h,s,r
R , qn × [0, 1], ∥ · ∥qn,D) ≤ O

( log (nL/ϵc)
ϵ2c

D2N16βd+12β(logN)20dx+4β+16
)
.

Proof. First, we apply transformers parameter bounds in Theorem I.1 and Theorem I.2. Then, we
extend the covering number bound to loss function calss S(D).
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• Log-Covering Number of Transformers Network Class. From Theorem I.1, we have

CKQ, C
2,∞
KQ = O

(
λ−1N4βd+2β(logN)4dx+2);COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2 +1); CE = O(I); CT = O(

√
logN).

By Lemma L.5, the bounds on log-covering number follow

log N (ϵc, T h,s,r
R , qn × [0, 1], ∥ · ∥2)

≤ α2 lognL/ϵc
ϵ2c

(
(C2,∞

F ) 4
3 +

(
λ(CF )2COV C

2,∞
KQ

) 2
3 +

(
(CF )2C2,∞

OV

) 2
3
)3

≲
α2 log(nL/ϵc)

ϵ2c

(
λ(CF )2COV C

2,∞
KQ

)2
,

(
By dropping lower order terms

)
where

(CF )2COV C
2,∞
KQ

= O(N4β(logN)2dx+2β+4︸ ︷︷ ︸
(CF )4

N−2β︸ ︷︷ ︸
(COV )2

N8βd+4β(logN)8dx+4︸ ︷︷ ︸
(λC2,∞

KQ
)2

)

= O(N8βd+6β(logN)10dx+2β+8).

Therefore,

log N (ϵc, T h,s,r
R , qn × [0, 1], ∥ · ∥2) ≲ α2 log(nLT )

ϵ2c
(N8βd+6β(logN)10dx+2β+8).

By Lemma L.5, we have

α ≲ (CF )2COV CKQ(D + CE)
≲ N2β(logN)dx+β+2︸ ︷︷ ︸

(CF )2

N−β︸ ︷︷ ︸
(COV )

N4βd+2β(logN)4dx+2︸ ︷︷ ︸
(λCKQ)

(D + CE)
(

By the definition of α
)

= O(DN4βd+3β(logN)5dx+β+4).

Altogether, we have

log N (ϵc, T h,s,r
R , qn × [0, 1], ∥ · ∥2) ≲ log (nLT )

ϵ2c
D2N16βd+12β(logN)20dx+4β+16.

Further, by ∥ · ∥∞ ≤ ∥ · ∥2, we have that

log N (ϵc, T h,s,r
R , qn × [0, 1], ∥ · ∥∞) ≲ log(nLT )

ϵ2c
D2N16βd+12β(logN)20dx+4β+16. (L.18)

• Log-Covering Number of Loss Function Class. Recall the of loss function Definition L.1 and
its truncated counterpart Definition L.3. Let δ > 0 and u1(x, t), u2(x, t) ∈ T h,r,s

R be any two
transformers satisfying maxi ∥u1(xi, t) − u2(xi, t)∥∞ ≤ δ for all i ∈ [n].
First, we derive the upper bound on the expectation of ∥ut(x|x1)∥:

E
X0∼N(0,I)

[∥ut(x|x1)∥2] (L.19)

= E
X0∼N(0,I)

[∥µ̇tx+ σ̇tX0∥]
(

By Definition L.1
)
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≤
√

E
X0∼N(0,I)

[∥µ̇tx+ σ̇tX0∥2
2]

(
By Jensen’s inequality

)
≤
√

E
X0∼N(0,I)

[µ̇2
t ∥x∥2

2 + σ̇2
t ∥X0∥2

2]
(

By expanding the ℓ2 norm
)

=
√

E
X0∼N(0,I)

[µ̇2
t ∥x∥2

2] + σ̇2
t

(
By X0 ∼ N(0, I)

)
≤
√
µ̇2

tD
2 + σ̇2

t .
(

By x ∈ [−D, D]dx
)

Then, the distance between loss function ℓ1(x;u1) and ℓ2(x;u2) follows:

|ℓ1(x;u1) − ℓ2(x;u2)| (L.20)

= 1
T − t0

∣∣∣∣∣
∫ T

t0

E
X0∼N(0,I)

[∥u1(x, t) − ut(x|x1)∥2
2 − ∥u2(x, t) − ut(x|x1)∥2

2]dt

∣∣∣∣∣(
By Definition L.1

)
= 1
T − t0

∣∣∣∣∣
∫ T

t0

E
X0∼N(0,I)

[(u1(x, t) + u2(x, t) − 2ut(x|x1))⊤(u1(x, t) − u2(x, t))]dt

∣∣∣∣∣
≤ δ

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥u1(x, t) + u2(x, t) − 2ut(x|x1)∥]dt
(

By ∥u1 − u2∥ ≤ δ
)

≤ δ

T − t0

∫ T

t0

√
E

X0∼N(0,I)
[∥u1(x, t) + u2(x, t) − 2ut(x|x1)∥2

2]dt
(

By Jensen’s inequality
)

≤ δ

T − t0

∫ T

t0

√
2 E

X0∼N(0,I)
[∥u1(x, t) + u2(x, t)∥2

2 + 2∥ut(x|x1)∥2
2]dt(
By expanding the ℓ2 norm

)
≲

δ

T − t0

∫ T

t0

√
E

X0∼N(0,I)
[logN + 2∥ut(x|x1)∥2

2]dt
(

By CT = O(
√

log N)
)

≲
δ

T − t0

∫ T

t0

√
logN + µ̇2

tD
2 + 4σ̇2

t dt
(

By (L.19)
)

≲ δ
√

logN +D2.
(

By Assumption I.2
)

Finally, we extend the log covering number to the loss function class S(D) by setting

ϵ′c := Ω
(
ϵc
√

logN +D2
)
.

This gives

log N (ϵ′c,S(D), ∥·∥∞D) ≤ log N (ϵc, T h,s,r
R , ∥ · ∥∞).

(
By (L.20)

)
Therefore,

log N (ϵ′c,S(D), ∥·∥∞D)
≤ log N (ϵc, T h,s,r

R , ∥ · ∥∞)

≲
log (nL)

ϵ2c
·D2N16βd+12β(logN)20dx+4β+16 (

By (L.18)
)

= O
( log (nL)

(ϵ′c)2 D4N16βd+12β(logN)20dx+4β+17
)
.

(
By the definition of ϵ′

c

)
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This completes the proof.

Generalization Bound. Based on covering number bounds results in Lemma L.6, we analyze the
upper bound of generalization error

∣∣∣E{xi}n
i=1

[Rtrunc(ûθ) − R̂trunc(ûθ)]
∣∣∣. Note that the following

distinction separates generalization bound for the flow-matching loss from classical learning theory.

The empirical risk (Definition L.2) takes the form ℓ(x;uθ) − ℓ(x;u⋆), where u⋆ denotes the ground
truth velocity. While most standard losses stay non-negative almost everywhere, the flow matching
loss may take negative values. We use the next lemma in (L.25), which bounds the second moment of
the flow matching loss in terms of its first moment. Without it, the sign issue breaks the derivation.

Lemma L.7 (Bounds on Second Moment of Flow Matching Loss, Modified from Lemma C.1 of
[Yakovlev and Puchkin, 2025] ). Assume Assumption I.1 and Assumption I.3. Then, it holds

E
x∼q

[∣∣ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)
∣∣2] ≲ κ · E

x∼q

[
ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)

]
,

where κ := D2 +
√

logN .

Proof. Recall Definition L.1 and Definition L.2. We have

ℓtrunc(x;uθ) := ℓ(x;uθ)1{∥x∥∞ ≤ D} and R̂(uθ) = 1
n

n∑
i=1

ℓ(xi;uθ) − 1
n

n∑
i=1

ℓ(xi;u⋆),

where u⋆(x, t) = 1
pt(x) ·

∫
Rdx

ut(x|x1)pt(x|x1)q(x1) dx1 is the ground truth velocity and

ℓ(x;uθ) := 1
T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uθ(µtx+ σtX0, t) − (µ̇tx+ σ̇tX0)∥2
2]dt.

For any xi, the flow matching loss takes the form ℓ(xi;uθ) − ℓ(xi;u⋆). To simplify notation, we
omit the indicator 1{∥x∥∞ ≤ D} when expanding ℓtrunc, with the understanding that we focus only
on the bounded domain where the flow matching loss is defined. Then, we compute∣∣ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)

∣∣
=

∣∣∣∣∣
∫ T

t0

1
T − t0

E
X0∼N(0,I)

[
∥uθ − (µ̇tx+ σ̇tX0)∥2

2 − ∥u⋆ − (µ̇tx+ σ̇tX0)∥2
2
]
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

t0

1
T − t0

E
X0∼N(0,I)

[
(uθ − u⋆)⊤(uθ + u⋆ − 2 · (µ̇tx+ σ̇tX0)

)]
dt

∣∣∣∣∣
≤
(∫ T

t0

1
T − t0

E
[
∥uθ − u⋆∥2

2
]
dt
) 1

2 ·
(∫ T

t0

1
T − t0

E
[
∥uθ + u⋆ − 2 · (µ̇tx+ σ̇tX0)∥2

2︸ ︷︷ ︸
(A)

]) 1
2
,

(L.21)

where we apply the Cauchy-Schwarz inequality for the last inequality. Next, we bound (A) using
previous results for the bounds on the true velocity, conditional velocity and transformer network.

Recall Lemma J.4. It holds

∥u⋆∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt
− σ̇t

σt

∣∣∣∣ · (∥x∥2 + 1),

and by Assumption I.3 we have ∥u⋆∥2
∞ ≲ ∥x∥2

2 and here we consider bounded domain ∥x∥∞ ≤ D.
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Further, under the transformer network configuration in either Theorem I.1 or Theorem I.2, we have
the transformer output bounds CT = O(

√
logN). Lastly, for µ̇tx+ σ̇tX0, it holds:

E
X0∼N(0,I)

[
∥µ̇tx+ σ̇tX0∥2

2
]

≤ E
X0∼N(0,I)

[
∥µ̇tx∥2

2 + ∥σ̇tX0∥2
2
]
≲ D2,

where we invoke Assumption I.3 and ∥x∥2
2 ≤ dxD

2 in the last inequality.

Altogether, we have

(A) ≤
∫ T

t0

1
T − t0

E
[
∥uθ∥2

2 + ∥u⋆∥2
2 + ∥2 · (µ̇tx+ σ̇tX0)∥2

2 ≲ D2 +
√

logN.

Therefore, (L.21) becomes:

∣∣ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)
∣∣2 ≲

(∫ T

t0

1
T − t0

E
[
∥uθ − u⋆∥2

2
]
dt
)

·
(
D2 +

√
logN

)
.

Then, we conclude that

E
x∼q

[∣∣ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)
∣∣2]

≲
(
D2 +

√
logN

)
·
∫ T

t0

1
T − t0

E
x∼q

[
E

X0∼N(0,I)

[
∥uθ − u⋆∥2

2
]
dt
]

=
(
D2 +

√
logN

)
·
∫ T

t0

1
T − t0

E
xt∼pt

[
∥uθ − u⋆∥2

2dt
]

︸ ︷︷ ︸
(B)

(
By tower property

)

=
(
D2 +

√
logN

)
· E

x∼q

[
ℓtrunc(x;uθ) − ℓtrunc(x;u⋆)

]
.

(
By Remark L.2

)
We remark that (B) is the conditional flow matching risk R(uθ) defined in (L.1).

This completes the proof.

Lemma L.8 (Generalization Bound, Modified from the Theorem C.4 of [Oko et al., 2023]). Let ûθ

be the velocity estimator trained by optimizing LCFM(uθ) following Definition L.1 with i.i.d training
samples {xi}n

i=1. For ϵc > 0, let N := N (ϵc,S(D), qn, ∥·∥∞) be the covering number of function
class of loss S(D) following Lemma L.6. Then we bound the generalization error:

E
{xi}n

i=1

[
Rtrunc(ûθ) − R̂trunc(ûθ)

]
≲ E

{xi}n
i=1

[R̂trunc(ûθ)] +O
( 1
n

log N + ϵc

)
.

Proof. We use L̂′
CFM and R̂′ to denote the conditional flow matching loss and empirical risk with

ghost training samples {x′
i}n

i=1. Further, let u⋆ denote the ground truth velocity field.

Then, following Remark L.3, we rewrite the generalization error:∣∣∣∣ E
{xi}n

i=1

[
Rtrunc(ûθ) − R̂trunc(ûθ)

]∣∣∣∣ (L.22)

=
∣∣∣∣ E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂

′trunc(ûθ)
]

− R̂trunc(ûθ)
]∣∣∣∣ (

By Remark L.3
)

=
∣∣∣∣ E
{xi,x′

i
}n

i=1

[
R̂

′trunc(ûθ) − R̂trunc(ûθ)
]∣∣∣∣ (

By the independence between x′
i and R̂(ûθ)

)
94



=

∣∣∣∣∣ 1n E
{xi,x′

i
}n

i=1

[( n∑
i=1

ℓtrunc(x′
i; ûθ) −

n∑
i=1

ℓtrunc(x′
i;u⋆)

)
−
( n∑

i=1
ℓtrunc(xi; ûθ) −

n∑
i=1

ℓtrunc(xi;u⋆)
)]∣∣∣∣∣.(

By Definition L.2
)

For ϵc > 0 to be chosen later, let J := {ℓ1, ℓ2, . . . , ℓN } be a ϵc-covering of the loss function
class S(D) with the minimum cardinality in the L∞ metric. Note that ℓ1, . . . , ℓN have domain
D = [−D,D]dx by Definition L.3 and Definition L.4. Further, let J be the random variable such that
∥ℓ(·, ûθ) − ℓJ(·, uJ)∥∞ ≤ ϵc. Moreover, we introduce following definitions for simplicity:

ω(x) := ℓtrunc(x; ûθ) − ℓtrunc(x;u⋆),
ωj(x) := ℓj(x;uj) − ℓtrunc(x;u⋆),

hj := max
{
A,
√

E
z
[ℓj(z;uj) − ℓtrunc(z;u⋆)]

}
,

Ω := max
1≤j≤N

∣∣∣∣∣
n∑

i=1

ωj(x′
i) − ωj(xi)
hj

∣∣∣∣∣,
where z ∼ q is independent of {xi, x

′
i}n

i=1. Then we can further bound (L.22) as follows:∣∣∣∣∣ 1n E
{xi,x′

i
}n

i=1

[
(

n∑
i=1

ℓtrunc(x′
i; ûθ) −

n∑
i=1

ℓtrunc(x′
i;u⋆)) − (

n∑
i=1

ℓtrunc(xi; ûθ) −
n∑

i=1
ℓtrunc(xi;u⋆))

]∣∣∣∣∣
(L.23)

≤

∣∣∣∣∣ 1n E
{xi,x′

i
}n

i=1

[(
n∑

i=1
(ωJ(x′

i) − ωJ(xi))]

∣∣∣∣∣+ 2ϵc
(

By the definitions of ωJ and covering number
)

≤ 1
n

E
{xi,x′

i
}n

i=1

[

∣∣∣∣∣(
n∑

i=1
(ωJ(x′

i) − ωJ(xi))

∣∣∣∣∣] + 2ϵc
(

By the property of expectation
)

≤ 1
n

E
{xi,x′

i
}n

i=1

[hJΩ] + 2ϵc
(

By the definitions of hj and Ω
)

≤ 1
n

√
E

{xi,x′
i
}n

i=1

[h2
J ] E

{xi,x′
i
}n

i=1

[Ω2] + 2ϵc
(

By Cauchy-Schwarz inequality
)

≤ 1
n

(n2 E
{xi,x′

i
}n

i=1

[h2
J ] + 1

2n E
{xi,x′

i
}n

i=1

[Ω2]) + 2ϵc
(

By AM-GM Inequality
)

= 1
2 E

{xi,x′
i
}n

i=1

[h2
J ] + 1

2n2 E
{xi,x′

i
}n

i=1

[Ω2] + 2ϵc.

Now we bound E{xi,x′
i
}n

i=1
[h2

J ] and E{xi,x′
i
}n

i=1
[Ω2] separately. For E{xi,x′

i
}n

i=1
[h2

j ], we have

E
{xi,x′

i
}n

i=1

[h2
j ] ≤ A2 + E

{xi,x′
i
}n

i=1

[E
z
[ℓj(z;uJ) − ℓtrunc(z;u⋆)]]

(
By the definition of hj

)
≤ A2 + E

{xi,x′
i
}n

i=1

[E
z
[ℓtrunc(z; ûθ) − ℓtrunc(z;u⋆)]] + 2ϵc

(
By the definition of ϵc

)
≤ A2 + E

{xi}n
i=1

[Rtrunc(ûθ)] + 2ϵc.
(

By Remark L.3
)

Then we start to bound E{xi,x′
i
}n

i=1
[Ω2]. By the definition of ωj(x) and the independence between

{xi}n
i=1 and {x′

i}n
i=1, we have

E
xi,x′

i

[ωj(xi)ωj(x′
i)

h2
j

]
= 1
h2

j

E
xi

[
ωj(xi)

]
· E

x′
i

[
ωj(x′

i)
] (

By the independence between hj and {xi, x′
i}n

i=1
)
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= 1
h2

j

(
E
xi

[
ωj(xi)

])2 (
By the independence between wj and {xi, x′

i}n
i=1
)

≥ 0. (L.24)

To use Bernstein’s Inequality, for any j, we bound the following expectation as

E
{xi,x′

i
}n

i=1

[ n∑
i=1

(ωj(xi) − ωj(x′
i)

hj

)2]
=

n∑
i=1

(
E

xi,x′
i

[(ωj(xi)
hj

)2
+
(ωj(x′

i)
hj

)2]
− 2 E

xi,x′
i

[ωj(xi)ωj(x′
i)

h2
j

])
≤

n∑
i=1

E
xi,x′

i

[(ωj(x)
hj

)2
+
(ωj(x′)

hj

)2]
.

(
By (L.24)

)
Recall that for any j ∈ [N ], ωj(x) := ℓj(x;uj) − ℓtrunc(x;u⋆). For any ℓ ∈ S(D), assume
|ℓtrunc(·;uθ)| ≤ κ, then for any i ∈ [n], j ∈ [N ], we have Exi,x′

i
[ωj(xi)] = Exi,x′

i
[ωj(x′

i)], which
leads to

E
xi,x′

i

[ωj(xi)] = E
xi,x′

i

[ωj(x′
i)]

= E
xi,x′

i

[ℓj(x′
i;uj) − ℓtrunc(x′

i;u⋆)]
(

By the definition of ωj(x)
)

= E
z
[ℓj(z;uj) − ℓtrunc(z;u⋆)]

≤ E
xi,x′

i

[h2
j ].

(
By the definition of hj

)
Then, it holds

E
{xi,x′

i
}n

i=1

[
n∑

i=1
(ωj(xi) − ωj(x′

i)
hj

)2]

≤
n∑

i=1
E

xi,x′
i

[(ωj(xi)
hj

)2 + (ωj(x′
i)

hj
)2]

≤ 2κ
n∑

i=1
E

xi,x′
i

[(ωj(xi)
h2

j

) + (ωj(x′
i)

h2
j

)]
(

By Lemma L.7
)

≤ 4nκ. (L.25)

Since
∣∣∣ωj(xi)−ωj(x′

i)
hj

∣∣∣ ≤ κ
A and E{xi,x′

i
}n

i=1
[ ωj(xi)−ωj(x′

i)
hj

] = 0, by Bernstein’s Inequality, we have
for any j ∈ [N ], h > 0,

Pr
[

(
n∑

i=1

ωj(xi) − ωj(x′
i)

hj
)2 ≥ h

]
= 2 Pr

[
n∑

i=1

ωj(xi) − ωj(x′
i)

hj
≥

√
h

]

≤ 2 exp
(

− h/2
κ(4n+

√
h

3A )

)
.

Thus, we have

Pr
[
Ω2 ≥ h

]
≤

N∑
j=1

Pr
[

(
n∑

i=1

ωj(xi) − ωj(x′
i)

hj
)2 ≥ h

] (
By union bound.

)
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≤ 2N exp
(

− h/2
κ(4n+

√
h

3A )

)
.

Thus, for any h0 > 0, we bound E{xi,x′
i
}n

i=1
[Ω2] as

E
{xi,x′

i
}n

i=1

[Ω2]

=
∫ h0

0
Pr
[
Ω2 ≥ h

]
dh+

∫ ∞

h0

Pr
[
Ω2 ≥ h

]
dh

≤ h0 +
∫ ∞

h0

2N exp
(

− h/2
κ(4n+

√
h

3A )

)
dh

(
By tail-sum formula

)
≤ h0 + 2N

∫ ∞

h0

[exp
(

− h

16κn

)
+ exp

(
−3A

√
h

4κ

)
]dh

≤ h0 + 2N [16κn exp
(

− h0

16κn

)
+ (8κ

√
h0

3A + 32κ
9A2 ) exp

(
−3A

√
h0

4κ

)
].

Taking A =
√

h0
12n and h0 = 16κn log N , we have

E
{xi,x′

i
}n

i=1

[Ω2] ≲ nκ log N .

Combining above, we bound the generalization error as∣∣∣∣ E
{xi}n

i=1

[Rtrunc(ûθ) − R̂trunc(ûθ)]
∣∣∣∣

≤ 1
2 E

{xi,x′
i
}n

i=1

[h2
J ] + 1

2n2 E
{xi,x′

i
}n

i=1

[Ω2] + 2ϵc
(

By (L.22)
)

≤ 1
2

(
A2 + E

{xi}n
i=1

[
Rtrunc(ûθ)

]
+ 2ϵc

)
+ 1

2n2O(nκ log N )

≲
1
2 E

{xi}n
i=1

[Rtrunc(ûθ)] +O
(κ
n

log N + ϵc
)
.

This implies

E
{xi}n

i=1

[
Rtrunc(ûθ)

]
≲ 2 · E

{xi}n
i=1

[
R̂trunc(ûθ)

]
+O(κ

n
log N + ϵc).

Therefore,

E
{xi}n

i=1

[
Rtrunc(ûθ) − R̂trunc(ûθ)

]
≲ E

{xi}n
i=1

[
R̂trunc(ûθ)

]
+O(κ

n
log N + ϵc).

This completes the proof.

L.3 Main Proof of Theorem I.3

We now give the formal proof of Theorem I.3.

Theorem L.1 (Theorem I.3 Restated: Velocity Estimation with Transformer). Let d be the feature
dimension. Suppose we choose the transformers as in Theorem I.1 and Theorem I.2 correspondingly,
then we have
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• Assume Assumption I.1 and Assumption I.2. Then,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
16d+15 (logn)20dx+4β+20).

• Assume Assumption I.2 and Assumption I.3. Then,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
8d+9 (logn)20dx+4β+20).

Proof of Theorem I.3. Let {x′
i}n

i=1 be a different set of i.i.d samples independent of the training
sample {xi}n

i=1. Further, we use R̂′ to denote the empirical risk with samples {x′
i}n

i=1.

Then, following (L.2), we decompose E{xi}n
i=1

[R(ûθ)] as:

E
{xi}n

i=1

[R(ûθ)] = E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′(ûθ) − R̂′trunc(ûθ)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′trunc(ûθ)

]
− R̂trunc(ûθ)

]
︸ ︷︷ ︸

(II)

+ E
{xi}n

i=1

[
R̂trunc(ûθ) − R̂(ûθ)

]
︸ ︷︷ ︸

(III)

+ E
{xi}n

i=1

[
R̂(ûθ)

]
︸ ︷︷ ︸

(IV)

.

Then, we bound each term and incorporate them to obtain the upper bound on the estimation error.

• Bound (I) and (III). By Lemma L.1, term (I) and term (III) are upper bounded by

(I), (III) ≲ Ddx exp
(

−1
2C2D

2
)

logN.

• Bound (II). By the generalization error bound (Lemma L.8), we have

(II) = E
{xi}n

i=1

[
E

{x′
i
}n

i=1

[
R̂′ trunc(ûθ)

]
− R̂trunc(ûθ)

]
(L.26)

= E
{xi}n

i=1

[Rtrunc(ûθ) − R̂trunc(ûθ)]
(

By E{x′
i
}n

i=1
[R̂

′trunc] = Rtrunc )
≲ E

{xi}n
i=1

[Rtrunc(ûθ)] +O( 1
n

log N + ϵc)
(

By Lemma L.8
)

≲ (IV) +Ddx exp
(

−1
2C2D

2
)

logN +O( 1
n

log N + ϵc).
(

By Lemma L.1
)

where N (ϵc,S(D), ∥·∥∞D) is the covering number (Definition L.4) of loss function class.

• Bound (IV). Recall that R̂(ûθ) := L̂CFM(ûθ) − L̂CFM(u⋆) and ûθ is trained by optimizing
L̂CFM(uθ) following Definition L.2. Therefore, for any velocity estimator uθ, it holds

R̂(ûθ) ≤ L̂CFM(uθ) − L̂CFM(u⋆) = R̂(uθ).
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Then, for any velocity estimator uθ, it holds

E
{xi}n

i=1

[R̂(ûθ)] ≤ E
{xi}n

i=1

[R̂(uθ)] = R(uθ). (L.27)

Altogether, the estimation error is upper bounded by

E
{xi}n

i=1

[R(ûθ)] (L.28)

= (I) + (II) + (III) + (IV)

≲ Ddx exp
(
−C2D

2) logN +O( 1
n

log N + ϵc) + 2(IV)

≤ O(N−2β(logN)dx/2+1) +O( 1
n

log N + ϵc) + 2(IV).
(

By setting D :=
√

2β log N/C2
)

Furthermore, the log covering number is upper bounded by

log N (ϵc,S(D), ∥ · ∥∞D) (L.29)

≤ O
( log(nL/ϵc)

ϵ2c
D4N16βd+12β(logN)20dx+4β+17

) (
By Lemma L.6

)
≤ O

( log(nL/ϵc)
ϵ2c

N16βd+12β(logN)20dx+4β+19
)
.

(
By D :=

√
2β log N/C2

)
Next, we bound the velocity field estimation error.

• Estimation Rates under Generic Hölder Smoothness. By Theorem I.1, it holds

(IV) ≤ R(uθ(x, t))
(

By (L.27)
)

=
∫ 1
T − t0

∫
Rdx

∥ut(x) − uθ(x, t)∥2
2pt(x)dxdt

= O(B2N−β · (logN)dx+ β
2 +1).

(
By Theorem I.1

)
Then, (L.28) becomes

E
{xi}n

i=1

[R(ûθ)]

≤ O(N−2β(logN)dx/2+1) +O
( 1
n

log N + ϵc
)

+O(B2N−β(logN)dx+ β
2 +1)

≤ O(N−2β(logN)dx/2+1) +O( log (nL/ϵc)
nϵ2c

Nν(logN)20dx+4β+19 + ϵc) +O(B2N−β(logN)dx+ β
2 +1),(

By (L.29)
)

where ν := 16βd+ 12β.

Let γ1, γ2 ∈ (0, 1) be two arbitrary numbers. We take N = nγ1/ν and ϵc = n−γ2 . Then,

E
{xi}n

i=1

[R(ûθ)]

≤ O(n− 2βγ1
ν (logn)

dx
2 +1) +O(n−1+γ1+2γ2(logN)20dx+4β+20 logn+ n−γ2) +O(B2n− βγ1

ν (logn)dx+ β
2 +1)

≤ O(n− min{ βγ1
ν ,1−γ1−2γ2,γ2}(logn)20dx+4β+21).

For any γ1, γ2 ∈ (0, 1) satisfying

γ1 + 2γ2 < 1,
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we consider

min{βγ1

ν
, 1 − γ1 − 2γ2, γ2}.

To simplify, we set

βγ1

ν
= 1 − γ1 − 2γ2 = γ2,

giving

γ1 = ν

ν + 3β , γ2 = β

ν + 3β .

Therefore,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
16d+15 (logn)20dx+4β+21).

• Estimation Rates under Stronger Hölder Smoothness. By Theorem I.2, it holds

(IV) ≤ R(uθ(x, t))
(

By (L.27)
)

=
∫ ∫

∥ut(x) − uθ(x, t)∥2
2 · pt(x)dxdt

= O(B2N−2β(logN)dx+β).

Then, (L.28) becomes

E
{xi}n

i=1

[R(ûθ)]

≤ O(N−2β(logN)
dx
2 +1) +O( 1

n
log N + ϵc) +O(B2N−2β(logN)dx+β)

≤ O(N−2β(logN)
dx
2 +1) +O( logn

nϵ2c
Nν(logN)20dx+4β+19 + ϵc) +O(B2N−2β(logN)dx+β),(

By (L.29)
)

where ν := 16βd+ 12β.

Let γ3, γ4 ∈ (0, 1) be two arbitrary numbers. We take N = nγ3/ν and ϵc = n−γ4 . Then,

E
{xi}n

i=1

[R(ûθ)]

≤ O(n− 2βγ3
ν (logn)

dx
2 +1) +O(n−1n2γ4nγ3(logn)20dx+4β+20 + n−γ4) +O(B2n− 2βγ3

ν (logn)dx+β)

≤ O(n− min{ 2βγ3
ν ,1−γ3−2γ4,γ4}(logn)20dx+4β+20).

For any γ3, γ4 ∈ (0, 1) satisfying

γ3 + 2γ4 < 1,

we consider

min{2βγ3

ν
, 1 − γ3 − 2γ4, γ4}.
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To simplify, we set

2βγ3

ν
= 1 − γ3 − 2γ4 = γ4,

giving

γ3 = ν

ν + 6β , γ4 = 2β
ν + 6β .

Therefore,

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
8d+9 (logn)20dx+4β+20).

This completes the proof.
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M Proof of Theorem I.4

In this section, we apply the Grönwall’s inequality and the Alekseev–Gröbner lemma to extend the
velocity estimation to distribution estimation under 2-Wasserstein distance.

Organizations. Appendix M.1 introduces auxiliary lemmas. Appendix M.2 presents the main
proof.

M.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for extending the velocity estimation to distribution
estimation in 2-Wasserstein distance. Specifically, we state the Grönwall’s inequality in Lemma M.1.
Furthermore, we introduce the Alekseev–Gröbner lemma that quantifies the deviation between
solutions of two distinct ODEs in terms of the discrepancy between their velocity in Lemma M.2.

We begin with the Grönwall’s inequality.

Lemma M.1 (Grönwall’s Inequality, [Gronwall, 1919]). Let a, b ∈ R with a < b. Let g(t) and y(t)
be two real-valued continuous functions defined on [a, b]. Then, if y(t) is differentiable on [a, b] and
satisfies:

d
dty(t) ≤ y(t)g(t), t ∈ [a, b],

it holds

y(t) ≤ y(a) exp
(∫ b

a

g(s)ds
)
.

Next, we introduce the Alekseev-Gröbner lemma.

Lemma M.2 (Alekseev-Gröbner Lemma, Lemma 16 of [Fukumizu et al., 2024], Proposition 2 of
[Benton et al., 2023], Theorem 14.5 of [Hairer et al., 1993]). Let u(x, t) and uθ(x, t) be smooth
vector fields and ψ(x, s, t) and ψθ(x, s, t) be the respective flows defined for t ≥ s that satisfy

d
dtψ(x, s, t) = u(ψ(x, s, t), t), ψ(x, s, s) = x

d
dtψθ(x, s, t) = uθ(ψθ(x, s, t), t), ψθ(x, s, s) = x.

Then,

ψθ(x, t0, T ) − ψ(x, t0, T ) =
∫ T

t0

Dψθ(ψ(x, t0, s), s, T )(uθ(ψ(x, t0, s), s) − u(ψ(x, t0, s), s))ds,

where the partial derivatives in the Jacobian matrix Dψθ(ψ(x, t0, s), s, T ) is with respect to its first
argument.

M.2 Main Proof of Theorem I.4

We now present the main proof of Theorem I.4.

Theorem M.1 (Theorem I.4 Restated: Distribution Estimation under Wasserstein Distance). Let
P̂T denote the estimated distribution at time T . Further, we define a constant ν := 16(L+ 1) + 12/d.

• Assume Assumption I.1 and Assumption I.2. It holds

E
{xi}n

i=1

[W2(P̂T , PT )] = O(n− 1
32d+30 (logn)10dx+2β+10).
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• Assume Assumption I.2 and Assumption I.3. It holds

E
{xi}n

i=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (logn)10dx+2β+10).

Proof of Theorem I.4. We bound the 2-Wasserstein distance between the estimated and true distri-
butions with the ℓ2 difference of the velocity field network and the true velocity field. Our proof
structure follows [Fukumizu et al., 2024, Theorem 3] and [Benton et al., 2023, Theorem 1].

The distributions P̂T and PT are the pushforwards of Pt0 by ψθ(·, t0, T ) and ψ(·, t0, T ). Thus, using
the definition of the 2-Wasserstein metric, it follows that

W2(P̂T , PT ) ≤
√

E
x∼pt0

[∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2].

We use Lemma M.2 to bound the ℓ2 difference of the flows. To that end, let us first bound the Jacobian
matrix Dψθ(ψ(x, t0, s), s, t). We have

∂

∂t
∥Dψθ(ψ(x, t0, s), s, t)∥2

≤ ∥ ∂
∂t
Dψθ(ψ(x, t0, s), s, t)∥2

= ∥Duθ(ψθ(ψ(x, t0, s), t), s, t)Dψθ(ψ(x, t0, s), s, t)∥2

≤ LT ∥Dψθ(ψ(x, t0, s), s, t)∥2,

where the first inequality follows from triangle inequality of the ∥ · ∥2-norm, and the second equality
follows from the flow ODE in the assumption of Lemma M.2, and the third inequality follows from
the Lipschitzness of transformer network (Definition B.2). Therefore,

∥Dψθ(ψ(x, t0, s), s, t)∥2 ≲ exp
{∫ t

s

LT du
}

≤ exp
{∫ 1

0
LT du

}
=: M.

(
By Lemma M.1

)
Now we have

∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2

≤ M2 · (
∫ T

t0

∥uθ(ψ(x, t0, s), s) − u(ψ(x, t0, s), s)∥2ds)2

≤ M2
∫ T

t0

∥uθ(ψ(x, t0, s), s) − u(ψ(x, t0, s), s)∥2
2ds,

where in the first line we apply Lemma M.2 and in the second line we apply the Hölder’s inequality.
Then, we take expectation with respect to x ∼ pt0 on both sides of the above inequality

E
x∼pt0

[∥ψθ(x, t0, T ) − ψ(x, t0, T )∥2
2] ≤ M2 E

x∼pt0
[
∫ T

t0

∥uθ(ψ(x, t0, s), s) − u(ψ(x, t0, s), s)∥2
2ds]

= M2
∫ T

t0

E
x∼ps

[∥uθ(x, s) − u(x, s)∥2
2]ds,

where the last equality follows since the samples ψ(x, t0, s) with x ∼ pt0 are the same as the samples
x ∼ ps by construction of the flow.

Therefore, we have

W2(P̂T , PT ) ≤ M · (
∫ T

t0

E
x∼ps

[∥uθ(x, s) − u(x, s)∥2
2]ds) 1

2 ,
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where ∫ T

t0

E
x∼ps

[∥uθ(x, s) − u(x, s)∥2
2]ds = (T − t0)R(uθ).

(
By Definition I.2

)
Then, by Assumption I.2, we have

E
{xi}n

i=1

[W2(P̂T , PT )] ≤ M · (T − t0) E
{xi}n

i=1

[
√

R(ûθ)] ≲M E
{xi}n

i=1

[
√

R(ûθ)].

Finally, we apply the flow estimation results in Theorem I.3 and get

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
16d+15 (logn)20dx+4β+20),

E
{xi}n

i=1

[R(ûθ)] = O(n− 1
8d+9 (logn)20dx+4β+20),

under Assumption I.1 and Assumption I.3 respectively. These imply

E
{xi}n

i=1

[W2(P̂T , PT )] ≲M E
{xi}n

i=1

[
√

R(ûθ)] = O(n− 1
32d+30 (logn)10dx+2β+10),

E
{xi}n

i=1

[W2(P̂T , PT )] ≲M E
{xi}n

i=1

[
√

R(ûθ)] = O(n− 1
16d+18 (logn)10dx+2β+10).

This completes the proof.
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N Proof of Theorem I.5

In this section, we prove the nearly minimax optimality results of flow matching transformers under
specified settings (Theorem I.5).

We begin with the definition of modulus of smoothness following [Oko et al., 2023].

Definition N.1 (Modulus of Smoothness). Let Ω be a domain in Rdx and f ∈ Lp′(Ω) be a function
for some p′ ∈ (0,∞]. We define the r-th modulus of smoothness of f by:

ωr,p′(f, t) := sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where ∆r
h(Ω) is the difference operator defined by

∆r
h(f)(x) :=


r∑

j=0

(
r

j

)
(−1)r−jf(x+ jh), if x+ jh ∈ Ω for all j,

0, otherwise.

Next, we define the Besov space.

Definition N.2 (Besov Space Bs
p′,q′ ). Let 0 < p′, q′ ≤ ∞, s > 0 and r := ⌊s⌋ + 1. The Besov

norm of a function f ∈ Lp′(Ω) is defined by ∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

, where

|f |Bs
p′,q′

:=


∫ ∞

0

((
t−sωr,p′(f, t)

)q′ dt
t

) 1
q′
, q′ < ∞,

0, q′ = ∞.

Given m,L > 0 we have the Besov space Bs
p′q′(L,m) := {f ∈ Lp′(Ω) | ∥f∥Bs

p′q′
< L, f ≥ m}.

The next lemma provides the minimax optimal rate for density in the Besov space Bs
p′,q′ .

Lemma N.1 (Theorem 3 of [Niles-Weed and Berthet, 2022]). Let Ω := [−1, 1]dx be the domain of
density q(x1) in Besov space Bs

p′,q′(L,m). Then, for any r, p′, q′ ≥ 1 and s > 0,

inf
P̂

sup
q∈Bs

p′,q′ (L,m)
E

{xi}n
i=1

[Wr(P̂ , P )] ≳ n− s+1
dx+2s ,

where {xi}n
i=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible

estimators constructed from the data.

Then, we revisit the definition of Wasserstein distance:

Definition N.3 (2-Wasserstein Distance). Let X and Y be two random variables with marginal
densities µx and µy respectively. We define the 2-Wasserstein distance by:

W2(µx, µy) :=
(

inf
π∈M(µx,µy)

∫
∥x− y∥pdπ(x, y)

) 1
p

,

where M(µx, µy) denotes the set of joint measures π with marginals µx and µy .

We then give the minimax optimal rate in the Hölder density function spaces.

Lemma N.2 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task of
estimating a probability distribution P (x1) with density function belonging to the space

P :=
{
q(x1)|q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,
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Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}n

i=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}n
i=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible

estimators constructed from the data.

Proof. Let Ω be some domains. Since Bs
∞,∞(Ω) = Hs(Ω) for any s ∈ R+ \ Z+, Lemma N.1

directly implies Lemma N.2. This completes the proof.

Next, we present the proof of Theorem I.5.

Theorem N.1 (Theorem I.5 Restated: Minimax Optimality of Flow Matching Transformers). Under
the setting of (16d + 18)(β + 1) = dx + 2β, the distribution estimation rate of flow matching
transformers (Theorem I.4) matches the minimax lower bound of Hölder distribution class in 2-
Wasserstein distance up to a logn and Lipschitz constants factors.

Proof of Theorem I.5. By Theorem I.4, we have the distribution estimation rate in 2-Wasserstein
distance under Assumption I.2 and Assumption I.3:

E
{xi}n

i=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (logn)10dx+2β+10).

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a logn and
Lipschitz constant factors under the setting

(16d+ 18)(β + 1) = dx + 2β.

This completes the proof.

O Experimental Validation

To provide empirical support for the proposed High-Order Flow Matching (HOFM) framework, we
conduct a series of synthetic experiments designed to evaluate the practical benefits of incorporating
higher-order dynamics. We compare the performance of standard first-order flow matching (equivalent
to our framework with K = 1) against second-order flow matching (K = 2).

O.1 Experimental Setup

Task and Datasets. We evaluate the models on 2D density matching tasks, transitioning a standard
multivariate Gaussian distribution, π0, to three complex target distributions, π1. Following the
experimental setting in [Chen et al., 2025], we use target distributions shaped as: (1) a square, (2) two
intertwined spirals, and (3) three intertwined spirals. These datasets are chosen to test the models’
ability to learn distributions with sharp corners and high-curvature manifolds.

Evaluation Metric. To quantify the quality of the generated samples, we measure the 2-Wasserstein
distance between the generated distribution and the target distribution. A lower Wasserstein distance
indicates a better match and, therefore, superior performance.

O.2 Results and Discussion

The results of our comparison are summarized in Appendix O.2. The findings demonstrate the
advantages of using second-order dynamics.

Across all three target distributions and for every sampling step count (10, 50, and 100), the second-
order model achieves a lower Wasserstein distance than the first-order model. This suggests that
incorporating higher-order information allows the model to learn more accurate and stable generation
paths, which aligns with the motivations discussed in Section 1.
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Distribution Sampling Steps First Order (K = 1) Second Order (K = 2)
Square 10 8.51 7.09

50 6.45 6.08
100 5.48 2.82

Two Spirals 10 114.39 74.57
50 73.37 68.47

100 66.15 46.71
Three Spirals 10 192.19 109.93

50 123.53 87.70
100 93.26 68.81

Table 1: Comparison of first-order and second-order flow matching on synthetic 2D datasets.

Furthermore, these results highlight a notable improvement in sampling efficiency. For instance, in
the Three Spirals task, the second-order model with only 50 sampling steps (Wasserstein distance of
87.70) outperforms the first-order model with 100 steps (93.26). This empirical evidence supports
the theoretical premise that HOFM lead to more efficient sampling strategies (Section 5).
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• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
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108



Justification: Assumptions are stated before every results, and we either give the complete proof
directly or refer it to the corresponding section in the appendix.
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paper (regardless of whether the code and data are provided or not)?
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reproduce that algorithm.
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recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: This paper does not includes experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

110

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
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• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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