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Abstract

Flow matching is an emerging generative modeling framework that learns
continuous-time dynamics to map noise into data. To enhance expressiveness
and sampling efficiency, recent works have explored incorporating high-order tra-
jectory information. Despite the empirical success, a holistic theoretical foundation
is still lacking. We present a unified framework for standard and high-order flow
matching that incorporates trajectory derivatives up to an arbitrary order K. Our
key innovation is establishing the marginalization technique that converts the in-
tractable K -order loss into a simple conditional regression with exact gradients
and identifying the consistency constraint. We establish sharp statistical rates of
the K -order flow matching implemented with transformer networks. With n sam-

ples, flow matching estimates nonparametric distributions at a rate 5(n_@(1/ ),
matching minimax lower bounds up to logarithmic factors.

1 Introduction

We present a unified theoretical framework and establish sharp statistical rates for standard and variant
flow-matching generative models with high-order velocity fields. A rigorous theoretical understanding
of such models is crucial in the current era of rapidly advancing generative Al. Flow-based generative
models, particularly those employing Flow Matching (FM) principles [Lipman et al., 2022, Liu et al.,
2022], have emerged as a powerful class of methods, achieving state-of-the-art performance across
diverse domains such as image, speech, and video generation [Esser et al., 2024, Le et al., 2023,
Polyak et al., 2024]. Standard flow matching has focused on learning first-order trajectory dynamics
by matching the instantaneous velocity field [Lipman et al., 2022, Liu et al., 2022, Lipman et al.,
2024, Gat et al., 2024, Chen and Lipman, 2023].

However, there is a growing interest in leveraging richer dynamical information, such as high-order
time derivatives of the trajectory, with the intuition that this could lead to more expressive models,
smoother generation paths, improved physical plausibility, or more efficient sampling strategies. This
trend is evident in recent empirical works. For instance, High-Order Matching for One-Step Shortcut
Diffusion (HOMO) [Chen et al., 2025] and Force Matching (ForM) [Cao et al., 2025] have shown
that supervising on acceleration and jerk leads to improved smoothness, stability, and precision in
generative tasks, particularly in high-curvature regions where first-order methods falter.
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Despite these promising empirical explorations into high-order dynamics, there lacks a comprehensive
theoretical framework that incorporates derivatives up to an arbitrary order /. Rigorous understanding
of its statistical properties is also missing. This paper addresses these gaps by introducing High-
Order Flow Matching, a generalized theoretical framework for flow-based generative modeling.
Specifically, High-Order Flow Matching defines a K -order velocity field f;. This field is constructed
by concatenating K individual d-dimensional column vector fields ', . .., u€. Each u* component
is designed to capture aspects of the flow dynamics, with u! representing the primary velocity and
u® (with & > 1) capturing higher-order temporal information of an underlying flow. To complete
the theoretical foundation of High-Order Flow Matching, we analyze its statistical rates when
implemented with transformers [Vaswani et al., 2017] to align with modern developments in practice.

Contributions. Our contributions are two-fold:

* High-Order Flow Matching: A Unified Theoretical Framework. We present a unified frame-
work for Flow Matching models. We first introduce the flow ODEs of any order (Definition 3.1)
and the mass conservation formula (Theorem 3.2). A key technical innovation is the high-order
marginalization technique (Theorem 3.3). This approach, incorporating a consistency constraint,
leads to a tractable loss for K -order flow matching (Theorem 3.4). We then prove that High-Order
Flow Matching subsumes standard first-order Flow Matching (when K = 1, Proposition 3.1)
and provides a unified theoretical foundation for understanding emerging high-order flow model
approaches. For example, the objective in HOMO [Chen et al., 2025], which target velocity and
acceleration, are instantiated by High-Order Flow Matching for K = 2.

« Statistical Rates for High-Order Flow Matching with Transformers. We provide the first
rigorous statistical analysis of the High-Order Flow Matching framework when implemented with
transformer architectures. We establish sharp approximation rates for transformers learning the
K velocity components u', ...« (Theorem 4.1), derive corresponding estimation error rates
(Theorem 4.2), and further provide end-to-end distribution estimation rates under the 2-Wasserstein
metric (Theorem 4.3). In addition, we show that these rates are nearly minimax optimal up to
logarithmic factors (Theorem 4.4). Importantly, our rates match the established near-minimax
optimal rates of standard flow matching [Jiao et al., 2024, Fukumizu et al., 2024].

Organization. Section 2 reviews preliminary concepts about standard flow matching. Section 3
details the High-Order Flow Matching framework, its properties, and its connections to existing
methods. Section 4 presents statistical results. Section 5 summarizes our work and discusses the
implications of our findings. The appendix includes the supplementary theoretical backgrounds
(Appendix B), the detailed proofs of the main text (Appendices C to G), the statistical rates for
standard first-order flow matching transformers (Appendix I) and its proof (Appendices J to N).

Notation. We denote the index set {1, ..., 1} by [I]. Let z[i] denote the i-th component of a vector
x. Let Z denote integers and Z denote positive integers. Given random variables X and Y with
marginal densities ji, and p, respectively, we denote the 2-Wasserstein distance between fi;, and pu,
by Wa(pz, pty)). Given a matrix Z € R4*E || Z||5 and || Z||r denote the 2-norm and the Frobenius
norm. Let u* € R? be column vectors for k € [K], we denote col(u!,. .. uf) € Rk as the vertical
concatenation of u', ..., u’. Let Div - be the divergence operator.

2 Preliminaries
In this section, we provide a high-level overview of the Flow Model and Flow Matching (FM).

Flow Model. The flow model transforms Xy = x( from a source distribution P (e.g., the Gaussian
distribution) into samples X; = z; from a target distribution Q. A flow ¢ : [0, 1] X RY 5> R%isa
time-dependent mapping implementing ¢ : (¢,x) — 1(z). The flow model is a continuous-time
Markov process (X¢)o<¢<1 defined by applying a flow ), to the random variable X, ~ P:

Xt = ’ll}t(X0>7 t E [O, 1]

On the other hand, a time-dependent velocity field u : [0, 1] x R — R? implementing u : (¢, 7) + uy
defines a unique flow 1) via the following ordinary differential equation (ODE):

diy

o = ug((x))  with initial condition g (z) = . 2.1



Given a flow 9, the marginal probability density function (PDF) of flow model X; = ¢ (X) ~ p: is
a continuous-time probability path (p;)o<¢<1. The probability path p; follows push-forward equation:

awzl} ’

2.2)

pe(x) = [Welepo(x) := po(e; ' (z)) - ’det[ o

Further, by the equivalence of flows and velocity fields [Lipman et al., 2024], given invertible C'!
diffeomorphism 1), there exists a unique smooth conditional velocity field u; taking form:

. B . . d
u(®) = $u( ' (2)),  with gy = . @3)
For an arbitrary probability path p;, we define a velocity field u, that generates p; if its flow ¢
satisfies (2.2). Continuous Normalizing Flow [Chen et al., 2018] models the velocity field u; with a
neural network u’. Once we obtain a well-trained u’, we generate samples from solving ODE (2.1).

Flow Matching. Instead of training flow model by maximizing the log-likelihood of training data
[Chen et al., 2018], flow matching [Lipman et al., 2022] is a simulation-free framework to train flow
generative models without the need of solving ODEs during training. The Flow Matching objective
is designed to match the probability path (p;)o<i<1, which allows us to flow from source py = P to
target p; = . Suppose u; generates such probability path p,, the flow matching loss is

Lem(0) = E [Ju’(Xe,t) — ue(Xo)]3], (2.4)

t,Xe~pe

where t ~ UJ0, 1], u? is a neural network with parameter §. Flow Matching simplifies the problem
of designing a probability path p; and its corresponding velocity field u; by adopting a conditional
strategy. Formally, conditioning on any arbitrary random vector Z € R™ with PDF p, the marginal
probability path p, satisfies

pi(x) = /pt(x|z)pz(z)dz. (2.5)

Suppose conditional velocity field u(z|z) generates p;(x|z), Lipman et al. [2022] show that following

marginal velocity field u; generates marginal probability path p; under mild assumptions:

pe(z|2)pz(2)
pe(x)

where the second equation follows from the Bayes’ rule. Combining above, the tractable conditional
flow matching loss Lcpy, which satisfies Vo Lcpm () = VoL (0), is defined as:

w(z) = / w(@l)pzp(da)dz with pg(zlz) = , 2.6)

Lepm(0) = E (X4, t) — we(X|2)|3)- 2.7
)=, B[ (Xet) —u(X2)3 @7
Affine Conditional Flows. The conditional flow matching loss works with any choice of conditional
probability path and conditional velocity fields. In this paper, we consider the affine conditional flow
with independent data coupling following [Lipman et al., 2022, 2024]:

Yy(x|z1) = py1 + oy, (2.8)
where p, 0 : [0,1] — [0, 1] are monotone smooth functions satisfying

d d
po=01=0 pm=0o=1, and -7 S0 for te(0,1). 2.9)
dt dt
Setting Z7 = X1 ~ @, Xo ~ N(0,I), the flow 1; induces the probability flow p;(X;:|X71) =
N(usX1,021) and velocity field

oi(z — )

Ot

w(z|z1) = Yo (Y |z |2r) = + [y (2.10)

Further, using the law of unconscious statistician with X; = ;(X|X1), the conditional flow
matching loss takes the form

Lepm(6) = E O X Xo, 1) — (i X1 + :X0)|12]. 2.11
crm(6) XN (D) [lu’ (e X1 + 0 Xo, t) — (e X1 + 64 Xo) 5] (2.11)



In practice, for collected i.i.d. data points {x;}?_;, (2.11) is implemented with Monte-Carlo simula-
tion. To avoid instability, we often clip the interval [0, 1] with ¢y and 7". Namely, for any velocity

estimator u?, we consider the empirical loss function Lcpy (u?):

- 1w (7 1
N Z 9 _ e 2
Lem(u) = n i—1 /to T —t Xofv;]::/(o,l) [l (i + 02.Xo, 1) = (fuzi + 60 Xo) ] e 2.12)

Transformers. Throughout the paper, we parameterize 1/ by transformers. Due to space limit, we
defer formal definition of transformer networks to Appendix B.

3 High-Order Flow Matching

This section extends the flow matching framework in Section 2 to incorporate high-order trajectory
information. Recall that these high-order dynamics are proven to be relevant to further improving the
performance and stability of flow matching. Specifically, in Section 3.1, we first define a high-order
velocity field f; using an ODE system and subsequently prove its equivalence to the mapping flow 1),
(Theorem 3.1). Furthermore, we derive the corresponding Liouville’s equation (Theorem 3.2), which
demonstrates mass conservation for this high-order system. Building on this foundation, Section 3.2
addresses the learning objective. We first propose the high-order Flow Matching loss (Definition 3.2).

However, similar to flow matching [Lipman et al., 2022], direct optimization is intractable. To address
this, we establish the high-order marginalization trick under consistency constraint (Theorem 3.3).
The method allows us to derive a tractable high-order conditional flow matching loss that preserves
the original loss’s gradients (Theorem 3.4). Section 3.3 clarify how that High-Order Flow provides
a unifying theory. Specifically, we demonstrate that high-order flow matching subsumes existing
flow-based generative modeling techniques, with standard Flow Matching serving as a foundational
instance within our framework.

3.1 High-Order Flow Model

For t € [0, 1], let ¢); and p; be the time-dependent flow mapping and probability paths follows
Section 2. Instead of using velocity field u; to construct flow 1), via the ODE (2.1), we propose using
K -order velocity field f; : RX? — R¥9 to construct 1;:

Definition 3.1 (High-Order Velocity). Lett € [0, 1], a flow ) can define a K-order velocity field
fi : RE? — REd yia the following ODE:

Ly | TN EED N vt o) =, G.)
L] I TR
where y; = col(y(z), Lvi(2), ..., Sty (@) == col(z{”, 2, ..., 2 ) € RE and u*

R*4 x [0,1] — R is k-th order velocity field for all k € [K]. Moreover, notice that Xt(o) = Y (Xp)
is random variable since X ~ p. Then, the extended state variable of order K is the random vector

_ dr
Y, =col(XV, .., xE ) e RE? with x) .= Fe(@)] (3.2)

x:XéO) !
Fork = 0,..., K — 1, define p¥ : R? — R as the probability density function of Xt(k). Denote
pr : RE? —5 R as the probability density function of ¥; = [X*, ..., X* “P|T at time ¢. For
simplification, we define Y; satisfy %Yt = f¢(Y}) if (3.1) and (3.2) hold.

Remark 3.1 (Total Derivative Constraints). The ODE (3.1) imposes a sequence of total derivative
constraints on the velocity fields ul(xgo), t),... 7UK(1‘§0), t), forany k € [K]:

dk d ._ 0 5_ _
W 1) = Trn(e) = S @ 1) = St @0 ) 1 Ve @)l @) 0),
(3.3)



where u° (xﬁo), t) = a:§°>. This recursive relation reveals that the velocity fields induced by the flow

1, are not independent, but instead coupled through the structure of the ODE via (3.3).

Remark 3.1 guarantees the equivalence between flows ; and K-order velocity field f;.

Theorem 3.1 (Flow—Velocity Equivalence via ODE). Define the class of structured k-order velocity
fields as those of the form:

Folye) = col(@! @, 1), ... ,uX (@, 1)) e REY, y, = col(al?,... a{" V) e REY,

where u* : R4 x [0, 1] — is locally lipschitz in y; and continues in ¢ for any k € [K]. Suppose
the velocity fields u' (zﬁ‘”, t),...,uf (x§0>, t) satisfy total derivative constraints (3.3). Then, for any
initial condition yo € R*?, the ODE Ly, = fi(y:) exists a unique local solution y;, which defines a
K -times differentiable flow ¢, (z) := xﬁo) and satisfy %wt(x) = xgk) forall k € [K].
Conversely, any K -times differentiable flow 1, : R* — R? defines a velocity field f; via (3.1).

Proof. Please see Appendix C.1 for a detailed proof. O

Recalling from Section 2 and the flow-velocity equivalence established in Theorem 3.1, the K -order
velocity field f; governs the evolution of the probability density p; for the K-order state Y;. The
precise relationship describing this evolution is captured by the mass conservation formula:

Theorem 3.2 (Mass Conservation of High-Order Flow). Lety, = (z\”, ..., 2" ")T € RKd Let

velocity field £, (y;) = (u (2, 1), ..., uk(@{”, )T € RE4 where u* (z{”), ) is locally Lipschitz
and integrable for all k € [K]. Let p; : RE4 — R be a time-varying probability density over the
extended state Y; € R¥? follows Definition 3.1. Then the following statements are equivalent:

1. The pair (f¢, p;) satisfies the Liouville’s equation on the extended space:

%pt(y) + Vy - (pe(y) fe(y)) =0, forallt €[0,1).

2. Following Definition 3.1, the probability law of Y; evolves under the flow:
d
dt

For some arbitrary probability path p;, we define f; generates p, if (3.4) holds.

Y; = fi(Yy), with Yy ~po, Y~ py. (3.4)

Proof. Please see Appendix C.2 for a detailed proof. O

3.2 High-Order Flow Matching
To model the K-order velocity field f;, we introduce following high-order flow matching loss:

Definition 3.2 (High-Order Flow Matching Loss). Let f; denote the ground truth K -order velocity
field and f{ be its estimator parameterized by a neural network. Let p; be the probability density
function of Y;. Then, the K -order Flow Matching objective minimizes the following regression loss:

LE®) = E [D(f(¥0), ST,

t™~ Pt

where D is a dissimilarity measure between vectors, such as the squared /5-norm.

Similar to standard flow matching, the ground truth velocity f; is intractable. To address this, we
adopt the conditional flow matching loss to train our model, leveraging the equivalence between
the flow matching loss and its conditional counterpart. As a preliminary step, we introduce the
marginalization trick for high-order flow matching.

Theorem 3.3 (Marginalization). Recall that for some arbitrary probability path p;, f; generates p;
ifY; ~ p;forallt € [0,1). Let Z be a random variable, if f;(x|z) is conditionally integrable and gen-
erates the conditional probability path p;(-|z), then the marginal velocity f := [ fi(y|2)p:(z|y)dz
generates the marginal probability path p,.>



Proof. Please see Appendix C.3 for a detailed proof. O

Now we are ready to prove the higher version of the equivalence between the flow matching loss and
conditional flow matching loss. We first define the tractable K -order conditional flow matching loss:

LEM(0) = E D(f:(Y:]Z), £ (Y2))]. 35

cem(0) t,Z,pr”z(-\Z)[ (i(Ye] 2), 17 (V)] (3.5
Following Lipman et al. [2024], we specify the dissimilarity metric D(-, -) as a Bregman divergence,
which measures the distance between vectors u,v € REX? as D(u,v) := ®(u) — [®(v) + (u —
v) T V®(v)] where ® : RE4 — R is a strictly convex function defined on a convex domain Q C R¥4,

Bregman divergences possess a key property allowing interchanging gradients and expectations
[Holderrieth et al., 2025, Lipman et al., 2024]:

V,D(E[Y],v) = E[V,D(Y,v)] for any random vector Y € R¥¢9, (3.6)

This property implies that the gradients of the flow matching loss and the conditional flow matching
loss are identical, making the two objectives equivalent for training.

Theorem 3.4 (Gradient Equivalence of Losses). Let the Flow Matching loss £, be defined as in
Definition 3.2, and the Conditional Flow Matching loss Eé(FM be defined as in (3.5). Then, when
D(-,-) is a Bregman divergence, the gradients of the two losses coincide:

VEII’(M(G) = V‘C(I:(FM(G)'

Proof. Please see Appendix C.4 for a detailed proof. O

We now consider training the model using the pre-constructed conditional flow ¢, (x | 1) as described
in Section 2. By the equivalence between flows and high-order velocity fields (Theorem 3.1), there
exists a unique smooth conditional K -order velocity field f; such that the conditional trajectory
satisfies the ODE: %yt = f(y4), in accordance with (3.1). Following Definition 3.1, we specify

Yy(x | 1) = w1 + oy, which induces a family of k-th order velocity fields u*. By Definition 3.1,
for all k € [K], we have

dk dk
uk(xgo),t) = @x,go) = @1/%@) (By Definition 3.1)

Because ), is an invertible diffeomorphism, we define 2/ = v; ' () and obtain

k
W (), 1) = k1) = S ().

Extending this to the conditional setting, the conditional k-th order velocity field becomes
dk _
uMet1X17) = Zrun (0 @)1 x17). (3.7)

Combining the results above, we now revisit the tractable training loss by setting Z = X 50) ~ q:

0
La® = E o CDEEGX) ) (By 3.5)
t,X; NQvanotlxio)('le )

For further simplifications, we adopt the squared /5 norm as the Bregman divergence. Let «* denote
the k-th order velocity field, and 1*? be its estimator parameterized by a neural network. Denoting

the distribution of the k-th order state as X t(k) ~ pk, the training objective becomes
0
L (0) = E (171X = £ )1 (By 3.5)

0 0
£.X1"~a Yo, o C1X7)
B |

K
- E [ZHuk(Yt,ﬂXl(o))—u’“%YLt)H%} (By Definition 3.1)
t,X§°>~q,Yt~ptlxio>(‘|X§°>> P

’The marginal velocity f; implies a consistency constraint: uf (y) = / uf (y|2) - pe(z]y)dz for all k € [K].



K

d* 0)|x(0) (0)
- E | E i1 0) b (x(0, 0)[3] By (3.7)
£XOng ;Xé“%p(mm) dek e T Lo ( )
0 0 . 0
= e (X6 X)) = b0 (X B3] (3:8)

o1 X g XE (X (7)
The intermediate states Xt(l)7 ce Xt(kfl) are determined by Xéo) via the relation Xt(k) =
%wt (x) \xf (- Therefore, the inside expectation only needs to be taken over X (()0).
-0
Now, we consider the affine conditional flow ¢, (x|z1) = psx1 + o2 follows Section 2. Applying
(3.8), the high-order conditional flow matching loss takes the form

K

Eé(FM(e) = Z

k 0 k 0 0
©) ©) © [H E )Xi )+U§ )Xé )) _“k’g(Xt( )7t)||3]
=1 t:X1  ~a. Xy ~p(c| X))

In practice, we train the general high-order velocity estimator u'?, ... u®?

{x;}_, by optimizing the empirical high-order conditional flow matching loss:

with i.i.d samples

n K T
~ 1 1 k) (k) v-(0) k.0 v (0) 2
Lhu=-2" / E [ )y o ® x Oy kb x© 4 }dt. (3.9)
CFM =~ 2 24T g Sy xomp( X 1 Cpat i Xo ) (X0l

A significant theoretical consequence of learning the complete K -order velocity field f; is the ability
to employ high-order numerical integration schemes for sampling. For instance, to solve the ODE
(3.1), we use K-th order Taylor expansion with step size h for the numerical integration:

h? hE
xi?r)h =2+ hul’e(xgo), )+ —u“(mg"), )+ + —uK’e(:ﬂtO), t). (3.10)

2! K!

3.3 Unified Perspective on High-Order Flow Dynamics

We show that our K'-order flow matching framework offers a significant unification perspective and a
theoretical foundation on existing flow-based generative modeling. Firstly, our framework subsumes
standard first-order Flow Matching [Lipman et al., 2022] as a direct special case.

Proposition 3.1 (Reduction to Standard First-Order Flow Matching). When K = 1, the entire
K-order flow matching framework, including the governing ODE, the probability path definition via
the continuity equation, and the K -order flow matching objective, becomes precisely equivalent to
the standard first-order Flow Matching framework as detailed in [Lipman et al., 2022, 2024].

Proof. Please see Appendix C.5 for a detailed proof. [

Proposition 3.1 establishes our K -order framework as a strict generalization of standard first-order
Flow Matching. Beyond encompassing established methods, our K-order framework provides a
robust theoretical structure for understanding models that leverage high-order trajectory dynamics.

For instance, HOMO framework [Chen et al., 2025] defines its training objective ([Chen et al., 2025,
Definition 4.3]) by matching network predictions against the true velocity & and acceleration & of tra-
jectories. Removing the regularization term (aligns with our total derivative constraints Remark 3.1),
their loss is also a direct instantiation of our K -order framework’s objective (Definition 3.2) for
K = 2. Furthermore, while the Force Matching (ForM) model [Cao et al., 2025] introduces specific
relativistic constraints, its fundamental generative mechanism involves matching a target “force” field
([Cao et al., 2025, Definition 4.1]). Given that force is proportional to acceleration, if separated from
its relativistic regularization, aligns with matching the second-order information captured within our
K = 2 framework.

In summary, the K-order flow matching framework serves as a unifying theoretical structure. It
not only subsumes standard flow matching but also provides formal grounding for models that
have intuitive or empirical benefits of incorporating richer, high-order dynamical information. The
subsequent statistical analysis in Section 4 builds upon this unified perspective.



4 Statistical Rates of High-Order Flow Matching Transformers

This section characterizes sharp statistical rates for K-order flow matching transformers. Building
on Section 2 and Section 3, we consider the case of affine conditional flow with independent data
coupling. We focus on transformer architectures as Flow matching (FM) with transformers powers
today’s best generative models, including MovieGen [Polyak et al., 2024] and Voicebox [Le et al.,
2023] by Meta, and Rectified Flow [Esser et al., 2024] by Stability Al. Section 4.1 and Section 4.2
establish bounds for the approximation and estimation of the K -order velocity. Based on the K -order
velocity estimation rates, Section 4.3 analyzes the distribution estimation rate under the 2-Wasserstein
metric. Finally, Section 4.4 presents the nearly minimax optimality of the K -order velocity estimators.

Transformers. We defer standard definition of transformer to Appendix B due to the page limit.

4.1 High-Order Velocity Approximation

To establish a statistical theory for K -order flow matching transformers, we first investigate an
approximation theory for the K-order velocity under sub-Gaussian assumption. In particular, we
characterize the regularity of the target density function ¢(x) with Hélder smoothness, defined by:

Definition 4.1 (Holder Space). Let o € Z%, and let 5 = k; + v denote the smoothness parameter,
where k; = | 3] and 7y € [0,1). Given a function f : R? — R, the Holder space H” (R?) is defined
as the set of a-differentiable functions satisfying: H?(R?) :== {f: R >R |||f ll36 ey < o0},
where the Holder norm || f| ;s (r4) satisfies:
o 0% f(z) — 0% f(«')|
£l (ay = Z sup |0%f(z)| + max sup M .

x HO&Hl k:l ! )
llalls <k e I

Also, we define the Holder ball of radius B by H?(R?, B) := {f : R — R | || f|lgsra) < B} .

With Definition 4.1, we state our assumption on the target density function ¢(x1):

Assumption 4.1 (Sub-Gaussian Property and Holder Smoothness of Target Distribution). The target
distribution q(z1) € H?(R% , B). Further, there exist two positive constants C; and Cs such that

q(x1) < Cy exp(—Callz1]|3/2).

Assumption 4.1 provides a tail bound for the approximation error, and we leverage it to address the
error outside the bounded domain where our transformer approximation applies. We now present the
approximation theory for high-order flow matching transformers.

Theorem 4.1 (K-order Velocity Approximation with Transformers). Assume Assumption 4.1.
Suppose the k-th order velocity field u”(z, t) is Ly-Lipschitz forall k € 0, ..., K — 1 in /y-distance.
Let € € (0, 1) be the precision parameter satisfying ¢ < O(N~?) for some N € N and smoothness
parameter 3 > 0. Then, there exists transformers u'?(z,t),...,u" % (z,t) € ’Tlg **" such that for
any x € R% and t € [0, 1], it holds:

Z/ /]Rdz HU (z,t) —u (x )12 - pe(z )dxdt:O(NfQﬁ.(logN)dTIil).

Further, for all k£ € [K], the parameter bounds in transformer network class satisfy
Ckq,Cry = O(NIN?#CH (Iog N)?4H): - Coy, CHy = O(NP);
Cr,C3® =O(NP\/logNLg_1); Cp=0(1); Cr=0(Lk-1),
where A™! = O(N? log N)*4+3 is the inverse-temperature scaling in the softmax function and O(-)

hides all polynomial factors depending on d;, d, L, 3, C1, Cs.

Proof. Please see Appendix D for a detailed proof. O

4.2 High-Order Velocity Estimation

In this section, we apply the approximation results in Section 4.1 to derive K -order velocity esti-
mation rates (Theorem 4.2). Given a set of i.i.d samples {x;}?_;, we train transformer networks



ub?, ..., u? by minimizing the high-order empirical conditional flow matching loss (3.9):

n K T
[ 1 1 k (k) 5~ (0) k,0 /3 (0)
LE == E [ k) s XY — B0 x© 1)12] at.
CFM n P kle_tO ZO Xo~N(0,1) ||(:ut T; + oy 0 ) u ( t o )”2

We evaluate the performance of estimators u?, ... u’"? through the K -order flow matching risk:

Definition 4.2 (High-Order Flow Matching Risk). Let u*? be the estimator of the k-th order
velocity field u”. Let © be the collection of parameters of u? ... u® ¢ We define the flow
matching risk R x (©) as the sum of the expected mean-squared difference between u*:? and u*:

E [llu*(z,t) —u*(2,0)]3] dt,

K 1 T
R (©) ::ZT_tO/t .
k=1

o TPt

where the density function p? represents the probability density function of X t(o) (Definition 3.1).

Further, we assume the path coefficients of the affine conditional flow preserve regularity.

Assumption 4.2 (Path Regularity). Consider the affine conditional flow ¢ (x| X 1(0)) = 1 X 1(0) 4F
oz, the k-th derivative of path coefficients o, and p; are continuous on [tg, T|, where to, T € [0, 1].

Assuming k-th order velocity Lipschitz continuity and affine path regularity (Assumption 4.2), the
following theorem presents the upper bounds on estimation error R ;- (©) with sample size n.

Theorem 4.2 (High-Order Velocity Estimation with Transformer). Assume Assumption 4.1 and
Assumption 4.2. Let u*? ¢ 7']? > be the estimator of the k-th order velocity field u” trained by

minimizing the high-order empirical conditional flow matching loss (3.9). Let © be the collection of
parameters of u*¥ for k € [K]. Suppose the k-th order velocity field u*(z,t) is Ly Lipschitz for all
k=0,...,K — 1. Suppose we choose the transformers as in Theorem 4.1, then

{xi%'zl [RK(@)} = O(n_ﬁ . (10gn)10dm>7

where d is the feature dimension.

Proof. Please see Appendix E for a detailed proof. O
4.3 High-Order Distribution Estimation

Based on the K -order velocity estimation result in Theorem 4.2, we further analyze the distribution
estimation rate for K -order flow matching transformer. The next theorem presents the upper bounds
on the expectation of 2-Wasserstein distance between the target and estimated distribution induced by
estimators ©**? trained by optimizing the empirical conditional loss (3.9).

Theorem 4.3 (High-Order Distribution Estimation under 2-Wasserstein Distance). Assume As-
sumption 4.1 and Assumption 4.2. Let PX be the estimated distribution at time 7'. Then, it holds

( IE‘L, [Wz(ﬁ%(,Pff)] = O(n—ﬁ . (logn)Gd,c)7

where d is the feature dimension.

Proof. Please see Appendix F for a detailed proof. O
4.4 High-Order Minimax Optimal Estimation

We show that the K-order flow matching transformers achieves nearly minimax optimal rate:

Theorem 4.4 (Minimax Optimality of High-Order Flow Matching Transformers). Assume that
the target density function satisfies g(z1) € H?([—1,1]%, B) and g(z1) > C for some positive
constant C'. Then, under the setting of 18d(/5 + 1) = d, + 20, the distribution estimation rate of
flow matching transformers presented in Theorem 4.3 matches the minimax lower bound of Holder
distribution class in 2-Wasserstein distance up to a log n and Lipchitz constants factors.

9



Proof. Please see Appendix G for a detailed proof. O

Remark 4.1 (Comparison with Existing Works). Flow matching with ReL.U networks is nearly
minimax-optimal on Besov densities in W5 [Fukumizu et al., 2024], and kernel methods achieve
comparable rates in W; [Kunkel and Trabs, 2025]. We extend these results to all orders K and to the
major powerhouse in practice: transformer architectures. Our analysis proves that flow-matching
transformers attain near-minimax rates on Holder densities in W5 with assuming Lipschitz velocities,
subsuming the first-order case at K = 1. Please see Appendix I for details.

S Discussion, Limitation, and Open Question

Section 3 and Section 4 establish a unified theoretical framework for High-Order Flow Matching
and offer a sharp statistical analysis of High-Order Flow Matching transformers. As discussed in
Section 3.3, this framework subsumes the not only original first-order [Lipman et al., 2024, 2022] but
also many high-order flow matching models [Chen et al., 2025, Cao et al., 2025]. Furthermore, the
established sharp statistical rates provide rigorous support for all models under this unified framework.
This broad theoretical guarantee, covering both first-order and high-order approaches, helps explain
the empirical success of the high-order flow models.

While our analysis provides foundational statistical guarantees, the compelling empirical evidence
and our current theoretical framework present an intriguing open question: it does not elucidate a
significant improvement in statistical rates with increasing order K. In addition, while our framework
offers a unified perspective for numerous empirical studies, these often assume the validity of the
consistency constraint within the marginalization process (Theorem 3.3). Our research indicates
that the general validity of this constraint, or indeed the derivation of similar conclusions under
broader conditions, remains an open question. We identify three primary directions for future work
stemming from these considerations: (i) Sampling Efficiency: The High-Order Flow Matching
framework enables the use of a K -th order Taylor expansion sampler. This sampler achieves a local
truncation error of O(h®*1) per step, with all K velocity components u**/ evaluable in parallel.
Future empirical work should investigate whether this high-order accuracy per step translates into
practical benefits, such as requiring fewer function evaluations for a target sample quality or faster
convergence to high-fidelity samples. (ii) Stable Approximation Error Propagation: In standard
flow matching using Runge-Kutta Methods, the sequential nature means approximation errors in ug
evaluations may propagate and amplify within a single step as they influence subsequent intermediate
calculations. However, our K -order flow matching approach solves the ODE without this feedback
loop, which might leads to more stable error propagation. (iii) Relaxing the Consistency Constraint:
A significant direction for future research involves exploring methods to either remove or relax the
consistency constraint highlighted in Theorem 3.3.

6 Concluding Remarks

In this work, we introduce High-Order Flow Matching, a generalized theoretical framework for
flow-based generative modeling. Specifically, we characterize the relationship between flow 1,
K-order velocity field f;, probability path p; through governing ODE and mass conservation formula
(Definition 3.1 and Theorem 3.2). Then we purpose the K -order flow matching loss and establish a
tractable equivalent conditional K -order flow matching loss (Theorem 3.4) via high-order marginal-
ization trick (Theorem 3.3). Further, we prove that High-Order Flow Matching subsumes standard
first-order Flow Matching for K = 1 (Proposition 3.1) and providing a unified theoretical foundation
for understanding emerging high-order flow model approaches such as HOMO [Chen et al., 2025].
Our second primary contribution is the first rigorous statistical analysis of this High-Order Flow
Matching framework when implemented with transformers. We establish sharp approximation,
estimation, and distribution learning rates (Theorems 4.1 to 4.3), and demonstrate their near-minimax
optimality up to logarithmic factors (Theorem 4.4).

Related Work. We defer an extended discussion on related work to Appendix A due to page limits.
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Impact Statement

This theoretical work advances the fundamental understanding of flow matching generative models
and presents no foreseeable negative social impacts.

A Related Work

In the following, we discuss the recent success of the techniques used in our work. We begin with the
universal approximation theory of transformers. Then, we discuss the recent theoretical progress in
flow matching framework, including approximation, estimation and minimax optimality theories.

Universality of Transformers. The universality of transformers refers to their capability to approx-
imate arbitrary sequence-to-sequence functions with any desired precision. It is a key to connect
flow matching Transformer architectures with meaningful statistical estimations in this work. Yun
et al. [2019] first prove this capability with deep stacks of self-attention and feed-forward layers
through the idea of contextual mapping by assuming a minimal separation among all hidden represen-
tations. Subsequent work by [Alberti et al., 2023] extend the guarantee to variants that employ sparse
attention mechanisms. Building upon these works, Hu et al. [2025b], Kajitsuka and Sato [2023]
show that a transformer block with a single self-attention layer is sufficient to achieve universal
approximation with refined contextual mapping techniques. Beyond contextual mapping, Jiang and
Li [2024] derive explicit Jackson-type approximation rates for single-layer, one-head Transformers,
with errors governed by the low-rank structure of the target attention kernel and by head/FFN budgets.
Hu et al. [2025a], Liu et al. [2025] show sequence-to-sequence universality of minimal Transformers
(attention-only) via interpolation and max-affine partition constructions. In particular, Liu et al.
[2025] prove that a single-head self- or cross-attention module achieves universal approximation
under L, for continuous targets and extends to L.

Remark A.1 (Approximation with High- vs Low-Temperature Softmax Transformers). We remark
that, the current statistical rates rely on high-temperature region of softmax attention (i.e., Softmax  (-)
with small A, as in Lemma H.2, Theorem H.1 and (H.25)) to cancel the double-exponential factor
reported in [Hu et al., 2024, Remark 3.4]. Is it possible to circumvent with above mentioned different
approximation results. For example, Hu et al. [2025a] establish universal approximation in the
low-temperature regime (large \). It suggests that analogous statistical guarantees may also hold
without resorting to high-temperature softmax scaling. We leave this for future explorations.

Flow Matching and High-Order Flow Matching. Flow Matching generative modeling [Lipman
et al., 2024, Gat et al., 2024, Chen and Lipman, 2023, Lipman et al., 2022, Liu et al., 2022] has
advanced the state-of-the-art in various fields and applications, including images [Esser et al., 2024] ,
speeches [Le et al., 2023], audios [Polyak et al., 2024] and biomedical data [Huguet et al., 2024].
These standard flow matching frameworks learn first-order trajectory dynamics (velocity field) to
smoothly transport a simple source distribution to the target data distribution. However, there is a
growing interest for the role of high-order dynamics in generative modeling with improved accuracy
and efficiency, which has been applied in various empirical explorations. For instance, Cao et al.
[2025] integrate special relativistic mechanics to enhance the stability of generative modeling by
supervising on second-order dynamics (acceleration) to ensure sample velocities remain bounded
within a safe limit. Similarly, Liang et al. [2025] also augment flow auto-regressive transformers with
second-order supervision by capturing complex dependencies through high-order dynamics.

Statistical Rates and Minimax Optimality of Flow Models. Benton et al. [2023], Albergo and
Vanden-Eijnden [2022] measure the convergence of flow models by the Lo-risk of the velocity field
but omit explicit convergence rates. Jiao et al. [2024] work in the latent space of an autoencoder and
derive explicit convergence rates for flow models; however, they do not consider the smoothness of the
target density class. Su et al. [2025] establish statistical rates for discrete flow matching by deriving
a model-agnostic, intrinsic error bound. Fukumizu et al. [2024] demonstrate that flow matching
achieves nearly minimax-optimal distribution estimation rates in Besov density function spaces under
the 2-Wasserstein distance using ReLLU network architectures. Kunkel and Trabs [2025] establish
similar results under the 1-Wasserstein distance by employing the kernel density estimators. In this
work, we provide the first theoretical evidence of the minimax optimality of any order flow matching
using transformer architectures, and our results recover the first order case as a special instance.
Notably, we show that flow matching transformers (FMTs) achieve nearly minimax optimal rates
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in Holder density function spaces under the 2-Wasserstein distance without imposing the Lipschitz
continuity assumption on the velocity field. Please see Appendix I for a detailed analysis.

B Supplementary Background: Transformer Block

In this section, we introduce the transformer architecture and its Lipschitzness property. Appendix B.1
provides a formal definition of the transformer network class that we use throughout the paper. Further,
Appendix B.2 shows that a transformer block is Lipschitz continuous over a compact domain.

B.1 Transformers

Our notation follows [Hu et al., 2025¢, 2024]. To begin with, given a matrix Z € R4*L we denote
the i-th column and the j-th row by Z.; and Z;. respectively.

Transformer Block. Let 7(54) : R4 — RIXL denote the self-attention layer. We use / and s to
denote the number of heads and hidden dimension in the self-attention layer, and then we have

h
FEN(Z) = Z+ Y W - (Wi, Z) Softmax (Wi Z) T (WH Z)), (B.1)

i=1

where Softmax(-) is the column-wise softmax function, Wy,, Wi, Wé € R*4 and W¢, € R¥*s
are the weight matrices. Let r be the MLP dimension. Then, we define the feed-forward layer:

FENZ) .= Z + WyReLU(W1 Z + by) + by, (B.2)

where W, € R™*% and W, € R%*" are weight matrices, and b; € R”, and b, € R? are bias.

Definition B.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimension,
r-MLP dimension, and with positional encoding £ € R%* L as

Fher(Z) = F (FON (2 4 B)) : R s RIXE,
Now, we define the transformer networks as compositions of transformer blocks.

Definition B.2 (Transformer Network Function Class). Let 7" denote the transformer network
function class where each function f € Thsriga composition of transformer blocks F' hsr e,

Th,s,r — {fT . Rde s Rde | fT _ ]_-h,s,r © ooo O]_-h,s,r}.

Flow Matching Transformer. Following architecture of diffusion transformers (DiTs) in [Hu et al.,
2025c, 2024, Peebles and Xie, 2023], we adopt the reshape layer R that converts a vector input
x € R into the sequential matrix input format Z € R%*~ for transformer with d,, = d - L.

Definition B.3 (Reshape Layer). The reshape layer R(-) : R% — R%*L transforms d,-dimensional
input into a d x L matrix. For any d, = 4 x ¢ image input, R(-) converts it into a sequence

representation with feature dimension d := p? (p > 2) and sequence length L = (i/ p)z. Further, We
define the reverse reshape layer R~1(-) : R4*L — R9 as the inverse of R(-).

Finally, we define the following transformer network function class with the reshape layer. To
simplify, we define Wgq = (WK)TWQ and Woy = WoWy,.

Definition B.4 (Transformer Network Function Class with Reshape Layer Tlg '®T),  The transformer
network class with reshape layer TF’;’S’T (Cr, Cf(’OQO, Ckq, Cé’@o, Cov,Cg, C%’OO, Cr, L7) satisfies:

« TH*" = {R 1o froR:R% — R% | frr € Th*r};
¢ Transformer network output bound: sup || f7(Z)|2 < Cr;
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e Parameter bound in F&: max{||W1||2,c0, [[W2||2,00 } < C%’Oo, max{||[Wi||z, [Wa|l2} < C%;
e Parameter bound in F(54): Wkollz2 £ Ckag, [Wovlz < Cov, [Wkgll2,00 < Cf(’go,
[Wovl2,00 < Co,

e Lipschitz of fr € T"*": || fr(Z1) — fr(Za2)|lp < L7||Z1 — Zs|| o, for any Zy, Zo € ROXE,

ETHQM < Cp, where 2, co-norm follows || - ||2,c0 = max;e(z] | Z.; |2

We remark that these norm bounds are critical to quantify the complexity of the network class.
B.2 Lipschitzness of Transformer Network

In this section, we show the Lipschitzness for our transformer network class Definition B.2. We begin
with a helper lemma and the Lipschitzness of softmax function under inverse-temperature scaling:

Lemma B.1 (Lipschitzness from Bounded Jacobian, Lemma A.6 of [Edelman et al., 2022]). Let
A?l:={z eR? |z >0,|z||; = 1} and ¢; > 0 be some constant. Suppose that f : R? — Ad~1
is a differentiable function satisfying ||J f(z) 1,1 < ¢y for all z. Then, for any x1, 22 € RY, it holds

[1f(z1) = f(@2)ll1 < csllzr — 22|l
We then give the Lipschitz property of the softmax function:

Lemma B.2 (Lipschitzness of Softmax with Inverse Temperature, Modified from Corollary A.7 of
[Edelman et al., 2022]). Let y,z € R% Denote the softmax function with inverse temperature
A > 0 by Softmaxy (z)[i] == exp(\z[i])/ >, exp(Az[k]) for z € R k € [d]. Then, it holds

I SoftFax(y) - Soft/\max(z)”l <2Mly — 2||oo-

Proof. Our proof follows [Edelman et al., 2022] and incorporates inverse temperature scaling 8 > 0.
Define Softmaxy (z)[i] = p; for i € [d]. Jacobian has J; ; = Ap;(1 — p;) and J; ; = —Ap;p; for
i # j. Then, this yields J = A(diga(p) — pp") and ||.J||1,1 < 2. Then we apply Lemma B.1.

This completes the proof. O

Therefore, Lemma B.2 implies the Lipschitzness of a self-attention layer given bounded weight
matrices Wxg and Woy. Furthermore, with bounded Wi, W5 in the feed-forward layer and
|ReLU(z) — ReLU(y)| < |z — y| for any x,y € R, we have Lipschitzness of a transformer block.
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C Proofs in Section 3

In this section, we formalize the high-order flow matching. Appendix C.1 establishes the flow—velocity
equivalence through an ordinary differential equation argument (Theorem 3.1). Appendix C.2 ensures
the mass conservation in high-order flows (Theorem 3.2). Appendix C.3 derives the marginalization
property (Theorem 3.3). Appendix C.4 shows the gradient equivalence between the flow matching
and conditional flow matching objectives (Theorem 3.4). Finally, Appendix C.5 unifies the framework
by proving that K -order flow matching collapses to the standard first-order case (Proposition 3.1).

C.1 Proof of Theorem 3.1

In this section, we present the main proof of Theorem 3.1.

Theorem C.1 (Theorem 3.1 Restated: Flow—Velocity Equivalence via ODE). Define the class of
structured k-order velocity fields as those of the form:

fily) = col(ul(xgo), t),... ,uK(xEO),t)) e REd g, = col(:cgo), e xEK_l)) e RK4,

where u* : R4 x [0, 1] — is locally lipschitz in y; and continues in ¢ for any k € [K]. Suppose
the velocity fields u! (mEO), t),...,uf (mio), t) satisfy total derivative constraints (3.3). Then, for any
initial condition yo € R*?, the ODE Ly, = fi(y:) exists a unique local solution y;, which defines a
K-times differentiable flow )¢ (x) := xﬁo) and satisfy %wt(ax) = xik) forall k € [K].
Conversely, any K -times differentiable flow 1, : R* — R? defines a velocity field f; via (3.1).

Proof. We prove both directions:

O glE-D)

From velocity field f; to flow 1;: Let yo = (2, . .. T € R4 be any initial condition.

Then, the system (3.1)

Y= fi(yt), with initial condition 1y,

is a standard autonomous first-order ODE on RX? with a Lipschitz right-hand side. By the Pi-
card-Lindel6f theorem, there exists a unique local solution y;. Let us define the flow ¢ (z) := :E,EO)

and since y; is differentiable, v, is differentiable. By repeatedly applying the total derivative con-
straint (3.3), we can establish that d—kz/}t(x) = xgk) for all k € [K]. Specifically, for any k € [K],

dtk
we have:
xgk) =uF (mgo), t) (By definition of the ()DE)
d
- &ukfl(xﬁo),t) (By 3.3))
d (k-
= &mgk D (By definition of the ODE)
dk
= @1% (z). (B_v induction)

This confirms that the k-th order velocity field corresponds exactly to the k-th time derivative of the
flow wt .

From flow 1/, to velocity field f;: Suppose there is a K -times differentiable flow 1);. Define

d dK-1 T
yr = [P (), El/’t(l“% R th(x)] )

K
ilu) = ol puala), o, St
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Then, by direct differentiation:

d
&yt = fi(ys)-
This completes the proof of the bidirectional equivalence. O

C.2 Proof of Theorem 3.2

In this section, we provide the proof of Theorem 3.2.

Theorem C.2 (Theorem 3.2 Restated: Mass Conservation of High-Order Flow). Let y; =
@0, 2T e RE4 Let velocity field f,(y;) = (u!(2\”,8), ..., uE (@, ¢)T € REY,
where u” (a:,EO), t) is locally Lipschitz and integrable for all k& € [K]. Let p; : R4 — R be a

time-varying probability density over the extended state Y; € R%? follows Definition 3.1. Then the
following statements are equivalent:

1. The pair (f;, p;) satisfies the Liouville’s equation on the extended space:

& i) + Yy () ) = 0, forallt € [0,1)

2. Following Definition 3.1, the probability law of Y; evolves under the flow:

d .
EY; = fi(Y), with Yy~ po, Y~ p;. (C.1D)

For some arbitrary probability path p;, we define f; generates p, if (C.1) holds.

Proof. We prove both directions:

From ODE (C.1) to Liouville’s Equation: Let ¢ : R“? — R be any smooth function with compact
support (i.e., a test function). We first compute the time derivative of following quantity

Bo()] = [ 6weu)dy. 2
Since the Y; satisfy the ODE (C.1), the derivative of the expectation becomes:
d d . 4 o
! E[o(Yz)] = E[a¢(Yt)] (By swiching the expectation and derlvalu)n)
d
= E[Vy(b(y;:) : aYt] (By the chain rulc)
= E[Vyo(Y2) - fr(Y2)] (By the ODE (C.1))

= / Vyo(y) - fe(y)pe(y)dy

— /gb(y)v - (fe(y)pe(y))dy. (By the integration by parts)

Therefore, for any test function ¢, it holds

S60n) +0W)V - (i) (y))dy =0,

which leads to Liouville’s equation

%pt(y) +Vy - (pe(y) fe(y)) = 0.
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From Liouville’s Equation to ODE (C.1): According to the equivalence between the flow ¢/, and
its associated velocity field f; (Theorem 3.1), the ODE (C.1) admits a unique local solution g, which
defines a unique flow {/zvt. By the pushforward formula and the definition in Definition 3.1, this flow
induces the distribution Y; ~ pt- Moreover, p; satisfies the Liouville equation associated with the
velocity field f;.

Since the Liouville equation admits a unique solution in the space of probability densities starting
from the same initial distribution pg, and both p; and p; solve the same continuity equation with
initial condition pg, we conclude that p; = p;. This completes the proof. O

C.3 Proof of Theorem 3.3

This section presents the proof of Theorem 3.3.

Theorem C.3 (Theorem 3.3 Restated: Marginalization). Recall that for some arbitrary probability
path p;, fi generates p; if Yy ~ p; for all ¢ € [0,1). Let Z be a random variable, if f;(z|z) is
conditionally integrable and generates the conditional probability path p;(:|z), then the marginal
velocity f; := [ fi(y|z)pt(z|y)d= generates the marginal probability path p;.

Proof. Applying the mass conservation follows Theorem 3.2, we only need to verify that the f; and
p¢ satisfy high-order continuity equation, i.e. Liouville’s Equation:

%pt (y) = / %pﬂz(y\z)pz(z)dz (By the law of total pr()hubility)
= /—V . [ft(y|z)pt(y|z)]pz(z)dz (By Liouville’s equuli()n)
=-V. /ft(y|z)pt(y|z)pz(z)dz (By switching differentiation and integration )
= = V- [z )] - il
= =V - [fi(m)p:(y)] (By the definition of f(y) and the Bayes’ 1'ule)

This completes the proof. O

C.4 Proof of Theorem 3.4

In this section, we prove Theorem 3.4.

Theorem C.4 (Theorem 3.4 Restated: Gradient Equivalence of Losses). Let the Flow Matching
loss [,gvl be defined as in Definition 3.2, and the Conditional Flow Matching loss E{fFM be defined as
in (3.5). Then, when D(-, -) is a Bregman divergence, the gradients of the two losses coincide:

VEII’(M(G) = V‘C(I:(FM(G)'

Proof. Similar to the Theorem 4 of [Lipman et al., 2024], the result follows from the Marginalization
Trick (Theorem 3.3) and the expectation-swapping property of Bregman divergences (3.6). A direct
computation then shows that:

Veﬁgv[ (0) =V . YEvp D(ft (K), fte (K)) (By the definition of Flow Matching Loss)
= LB VDY), 1Y)
(By swaping the expectation and the gradient compulali(’)n)
= . YE VUD(ft (Yt), fte (Yt))Vthg (Yi) (By the chain rule)
s Tt~ Pt
= E V,D(_ E_ [f(¥i|Z)], f{(Y)Vef{ (V)
t,Y~pe Zropae(ly)

(By the marginalization trick follows Theorem 3.3)
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Vo D([f: (V2| 2)], £ (YD) Va f? (Y2)]

L,Yivpe Zoopz e (ly)
(By the property of Bregman divergence follows (3.6))

= t,Y£E~pt Z~p£(~|y)[veD([ft(Yt|Z)]7 ff(Yt))} (By the chain rule)
=V E D(f, (Y| 2), (Y, By the Bayes’ rul
g B IDUAIZ), F0) (By the Bayes' rule)
= VoLEpu(0).
This completes the proof. O

C.5 Proof of Proposition 3.1

This section gives the main proof of Proposition 3.1.

Proposition C.1 (Proposition 3.1 Restated: Reduction to Standard First-Order Flow Matching).
When K = 1, the entire K-order flow matching framework, including the governing ODE, the
probability path definition via the continuity equation, and the K-order flow matching objective,
becomes precisely equivalent to the standard first-order Flow Matching framework as detailed in
[Lipman et al., 2022, 2024].

Proof. The equivalence follows by setting & = 1 in the definitions of our K -order framework.

1.

State Variable and ODE: From Definition 3.1, when K = 1, Y; = X{” = X,. The ODE
system %Yt = fi(Y;) simplifies to %Xt = u!(X}), which is the governing ODE for standard
flow models ([Lipman et al., 2022, 2024]). The K-order velocity field f; becomes u'.

Probability Path and Continuity Equation: The K -order mass conservation formula (Theo-
rem 3.2) for K = 1 reduces to the standard Mass Conservation Formula (Theorem 2 in [Lipman
etal., 2024]).

Loss Objective: The K -order flow matching loss (Definition 3.2), which targets matching f¢ to
f+ simplifies to matching only the u' component: By x,~p, [D(ul(X;),u;? (X;))]. This is the
standard Flow Matching objective (Eq. (5) in [Lipman et al., 2022]). The conditional formulation
via Theorem 3.3 similarly simplifies to the conditional Flow Matching loss used for standard FM.

Thus, all core components of the K -order framework align with standard Flow Matching. O
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D Proof of Theorem 4.1

In this section, we prove Theorem 4.1 following steps similar to the velocity approximation in
Appendix J: (i) applying the universal approximation of transformers (ii) leveraging the sub-Gaussian
property of the target distribution to bound the approximation error of the K order velocity field.

Organizations. Appendix D.I introduces helper lemmas. Appendix D.2 presents the main proof.
D.1 Auxiliary Lemmas

In this section, we introduce four auxiliary lemmas. In Lemma D.1, we give the lower-bound and
upper-bounds on p;(z). In Lemma D.2, we state the classical Gaussian tail bounds. In Lemma D.3, we
approximate the k-th order velocity field over a bounded domain. To control the error in unbounded
regions, we exploit the sub-gaussian assumption of the target distribution ¢(z) in Lemma D.4.

We begin with the bounds on p;(x).

Lemma D.1 (Bounds on the Density Function, Lemma A.9 of [Fu et al., 2024]). Recall that
pe(z) = [ga, pe(x|z1)g(21)dey and py(z|z,) = W exp(—|lz — 1 3/207). Assume
Assumption 4.1. Then, there exist a positive constant Cy such that

Cy < Hx||§ + 1) o ( Cz||x||§ >
—exp| ———F— | <pi(0) L — 7 -exXp| ———5—— | .
o P\ T ) Sl S CarE A P\ 0y Cyod)

Then, we apply standard results for Gaussian tail bounds. We remark that the main purpose of stating
Lemma D.2 is to streamline the main proof of Theorem 4.1 in Appendix D.2.

Lemma D.2 (Gaussian Tail Bounds). Consider a random vector X = (Xj,... ,de)T ~
N(0,021). Let wg, = = or'F JT(%). Then, the following two inequalities hold:
X2 D?
IX||>D 207 207}

X 2 D2
/ 113 exp(—W)dX < wa, - (02D% + dyot D% %) exp (——2>.
IX)|>D 20} 20?

Proof. We first express the integral in spherical coordinates for X

e} 2
/ exp(—||X||%/2Jt2)dX:wdz/ rd“_lexp(—TQ)dr.
I X||>D D 203

Let Jp = f;o rde— exp( )dr Setting u := 7% ~2 and dv := r exp(—%)dr, we have

2
du = (d, — 2)r®~3dr, and v=—o?exp (_7“2)
20}

Then,

00 2
J(D) = {—rd 257 exp( >} (dy —2)0’t/ pde—3 exp(—TQ)dr (D.1)
D 207}
+

=02D%2Zexp D? (dy — 2)0; /00 rde=3 exp —i dr
¢ 202 207

(By integration by lel"tS)

D2
< U? D=2 exp (— >3 | (By dropping the second term)
g
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‘We obtain the final bound

X3 D?
/ exp (—!2>dX < wq, 02D% 2 exp (—2).
| X||>D 20t 20

t

This completes the proof of the first inequality. For the second inequality, we have

X 2
[ ixiges(-121E)ax
I X|>D 0%
[eS) J T2
2,.d,—1
— x B — d
wdw/D rer exp( 203) r
o reola)
= wq, ré T exp| — dr.
D 207

Let K(D) = [, rd=*1 exp(—%)dr, u = r?and dv = rexp(—%)dr. Then,

2
du=dyr®~'dr, and v= —Uf exp (_7“2>
20}

Therefore, the integration by parts gives

K(D)

dy 2 r = < r’ dy—1
= [ roton(gg)| 4 [ cte( g Jaur e
D2 o] B 7"2
= atQDd” exp (—2%2) +de?/D rde=Lexp (—202>dr.

Recalling (D.1)

% da—1 r’ 2 rydy—2 D?
Jp = i r exp —@ dr, and Jp <o;D exp 5,7 )

t

we have
K(D)
D2
2 rd 2
=o0; D% eXp<—2Jt2> +dyo;Jp
D? D?
< U?Ddz exp <— 203) +dyo? - (atdegﬁQ exp <— 507 )) (By the bound on Jp)
D2
= (UtQDdz + defDd”fz) exp <2)
207

Then we obtain the final bound

X 2 B D2
/ |X||36Xp<_ H !2>)dX <wa, - (07 D% + dyoy D* 2)exp(—2>.
I x(>D 20} 20

t

This completes the proof of the second inequality. O

Applying the universal approximation of transformers (Theorem H.2), we first approximate the k-th
order velocity field u* over a bounded domain with transformers %%,

24



Lemma D.3 (Approximate k-th Order Flow with Transformers). Assume Assumption 4.1. Let D
be an absolute positive constant. Then, for any = € [—1I, I]%, ¢ € [0,1] and € € (0, 1), there exist a

transformer u*? (x, ) € T3*" such that

1
/ / () - ||uk"9(:1c,t) - uk(m,t)H%dxdt < e,
0 J[—I,1)

for all k € [K]. Furthermore, the parameter bounds in the transformer network class satisfy

Ckq,Cgy = ONT*H2e4472) Oy, C25° = O(e);
Cr, 03> = O(Ie  Ly_1);Cy = O(I); O = O(Li_1)

where A1 = O(I/€)*¥+3 is the inverse-temperature scaling in the softmax function and and O(-)
hides all polynomial factors depending on d,., d, L, 5, C1, Cs.

Proof. By specifying the target function as f = u* and the transformer-based estimator as g = u*+¢
in Theorem H.2, and applying the bound p;(z) < 1, the proof follows Theorem H.2 since the reshape
layer (Definition B.3) does not harm the uniform continuity. Further, by the Lipschitzness of the k-th
order flow, we have ||u¥(z,t)||2 < Li_;. Then, the parameter bounds in transformer network follow
Lemma H.5, where we set the model output bound C'7 = O(Lj_1). This completes the proof. [J

To control the approximation error over an unbounded domain, we introduce tail bounds for the
probability flow p;(z) and the weighted squared norms of the u*, given by |[u*(z,)||3 - p(z).

Lemma D.4 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume Assump-
tion 4.1. Suppose the k-th order velocity field u* (z, t) is Lipschitz continuous forall k = 0, ..., K —1.
Let L;, denote the Lipschitz constant of u*, and then the velocity fields are uniformly bounded as
|u*(z, t)‘ < Ly_, forany k € [K]. Then, for any R;,t > 0 and k € [K], the following hold

_ CyR2
pe(z)de < R=—2 exp (— ,
/|a:||oo>Rl ' 2(p? + Ca07)

C-R2 )
k 2 2 Ao —2 240y
u¥(z,t)||5 - pe(x)de S Ly R “exp| —————7+F—+ |
/|Z||oo>R1 H ( )”2 pt( ) o p( 2(#% 020t2)

Proof. For the first inequality, it follows

/ pe(z)de
llzlloo>R1

Cal=I3
< ex ——=" 2 __\|dz By L .
< /|r|oc>R1 p ( 2(pu2 + Cyo?) (By Lemma )
Ca|lz]3 > ,
< / exp <— dz By [[zl2 > [llo
lzllz> R 2(uf + Cao?) ( )
- CoR? |
< Rdz 2 exp (—1) ) by Lemma D2
~ 2(p7 + C207) ( )

For the second inequality, it follows

R R e
lzllco > Ra

Ca|lz|13
< uFz, )| exp | ———2 | dx By Lemma D.1
- /|x||oo>m le e DIz P\~ o) (B> )
—Ca|z|3
< / L%7 exp (2 dx By the Lipchitzness of the k-th order flow
lalo2rr 2(ui + Ca0?) ( )
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<L} RI—2 ___GR By L D2
i R “exp 207+ Cao?) ) (By LemmaD.2)

This completes the proof. O

D.2 Main Proof of Theorem 4.1

We now present the formal proof of Theorem 4.1.

Theorem D.1 (Theorem 4.1 Restated: K-order Velocity Approximation with Transformers).
Assume Assumption 4.1. Suppose the k-th order velocity field u*(x,t) is Lj-Lipschitz for
all £k € 0,...,K — 1 in fy-distance. Let ¢ € (0,1) be the precision parameter satisfying
e < O(N _5) for some NV € IN and smoothness parameter 8 > 0. Then, there exists transformers

ull(z,t),. .., uf0(x,t) € T2*" such that for any z € R% and ¢ € [0, 1], it holds:

Z/ /Rdm HU (x,t) —u (x )12 - pe(z )dxdt:O(NfQB.(logN)dTmil).

Further, for all k € [K], the parameter bounds in transformer network class satisfy

Ckq,Cxy = ONIN?PCEH D (log NP*H1) - Cov, CGy = O(NTP);
Crp, 0% = O(N?\/log NLy_1); Cg=0(); Cr=O0(Lix_1),

where A\=! = O(N” log N)*?*+3 is the inverse-temperature scaling in the softmax function and O(-)
hides all polynomial factors depending on d,, d, L, 5, Cy, Cs.

Proof of Theorem 4.1. For u*?(z,t),... ,uf%(x t) € TI;L’S’T, we set the transformer output bound
C7 = O(Lg—1) for the k-th network and let R3 and €}y, be two positive numbers to be chosen.

First, we decompose the target into three components and bound each of them

K T
Z/ / [uf (,8) = u(z, )13 - pe(a)dadt
k=17t /R

K T
= Z/ / ™ (2, 8) — u* (2, 8)]3 - pe()dadt
k=1 to |l”oc>Rg

(T1)

K T
> / / [u* (e, t) = u* (2, )3 - pr(w)ddt
k=1"7t0 Jlzllc<Rs

(T2)

* Bound on (T;). It holds

(T1)

K T
= uFl(z,t) — uF(x,t 2. pi(x)dxdt
Z/t /xlx%n (2,) — (@, 1) |3 pil2)

/ / o1 o)zt + 23 / / ¥ (2, 113 - pe()dardt
to J||zlleo>R3 to Jzlleo>Rs

(B) expanding {2-nor m)
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K

T T
L? 1/ x)dzdt + Z/ / u® (2, )13 - pe(x)dadt
\z\|w>R3 k=17t Jlzllec>Rs

(By Cr = ()(L;\‘,l))

A
Mw

£
Il

1

K T
< Z L 1/ dxdt (By the Lipschitzness of the k-th order ﬂ()w)
k=1 to Hﬂf\loe>R3
K T
CyR3
<SRy e 2 L} / dt. By Lemma D.4
~o Xp( 2(ui + Cy0?) ; et to (By Lemma D)
K
CoR3 )
< R¥=2ex S e B L?_,. By to,T € (0,1
’ p( 2(u7 + Cao?) ; ot ( o >)

* Bound on (T5). For any € € (0, 1), it holds

K T
(T2) = Z/ / [ub? (2, t) — uF(2,1)|3 - pe(z)dadt < Ke®.  (ByLemmaD.3)
P jolloe <R

By the upper-bound on (T;) and (T3), we have
Z [ 10 = o o
Riz
= (Tl) +(T2)

Cy R3 -
<Rd172 _ 21413 L2_ K 2
~ '3 GXP( 2(#% + 020'152) I; k=1 + €

_ CyR?
< o { o () )

Finally, for some N € IN and S > 0, we set

4 2 2)log N
R3 = \/ Blui + gQUt) o8 and e:= N7,
2

This gives
/ / ||u7€9 (z,t) —u (:r t)H2 pe(z)dodt = O(N—zﬂ - (log N) dg _1)
Rz

The transformer parameter bounds follow Lemma D.3 with I = O(y/log N) and e = N =% > 0:
Ckq,Ciey = ONINPCH D 1og N)*¥H): Cov, CFY = O(NF);
Cr,C3® = O(N?\/flog NLj,_1); Cx = O(I); C1 = O(Ly_1), (D.2)

where A~! = O(N” log N)*4+3 is the inverse-temperature scaling in the softmax function.

This completes the proof. O
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E Proof of Theorem 4.2

In this section, we derive the estimation rate of the K order flow matching using transformers. We
decompose the proof of Theorem 4.2 into the following three parts due to its complexity.

* Step 0: Preliminaries. We introduce several essential definitions, including the K order condi-
tional flow matching loss, K order empirical risk and their domain truncation. These definitions
are the extensions from the velocity estimation analysis (see Appendix [.3 and Appendix L).

* Step 1: Controlling Error from Loss Function outside of the Truncated Domain. By leveraging
the sub-Gaussian tail bound and the Lipschitz continuity of the k-th order velocity field, we derive
an upper bound on the loss function outside of the truncated domain in Lemma E. 1.

e Step 2: Upper Bound on the Covering Number. We present a unified upper bound on the
covering number that holds across K transformer networks u"?, ... u% in Lemma E.2.

* Step 3: Generalization Error. We apply the covering number technique to bound the deviation
between the K order empirical risk and the K order true risk in Lemma E.3.

Organizations. Appendix E.1 includes preliminaries on the framework of estimators’ quality
evaluation. Appendix E.2 introduces auxiliary lemmas. Appendix E.3 presents the main proof.

E.1 Preliminaries

In this section, we consider affine conditional v (x| X {0)) = X 50) + o following Section 2.

Given k-th order velocity estimator u*+?, we aim to bound the flow matching risk R x (©):

K T
1
Ric0)= Y gy [ B Il t) e

k=1

where the density function p, and the k-th order flow are induced by the flow 1, (Definition 3.1).

In practice, we use the K order conditional flow matching loss to train u'?, ... u®f € TI’{ o
Definition E.1 (High-Order Conditional Flow Matching Loss). Let g be the ground truth distribution
and the normal distribution N (0, I') be the source distribution p. Considering affine conditional flows
Ye(x|X1) = e X1 + orx, we define the K order conditional flow matching loss:

k 0 k 0 0
Jo / E  [IPx® +o®xO) - ubox®,6)2at
to X(O)Nq,XSO)w?

k=

Further, we define the K order loss function

1,0 K0
Urc(xu™?, . u

1 ’ k k) (0 0
[ B 162+ 0P x0) -, o)
k=1 to Jto x§O~p

1,0
s

Given a set of i.i.d sample {z; }"_;, we obtain transformers u u*-? by optimizing the empirical

conditional flow matching loss:

CFM

k 0 . 0
L [ B o X)
to

zlkl

Then, we define the K -order empirical risk:
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Definition E.2 (High-Order Empirical Risk). Let u*? be the estimator of the k-th order velocity
field u*. Further, consider i.i.d training samples {x; }I_, and empirical conditional flow matching

loss EgFM = L3k (x;;-). Then, we define the K order empirical risk:
N I 1<
Rk(O©) = - ZZK(mi; ub?, . ) — - ZEK(QL‘Z»; ut, .. u®).
i=1 i=1

Remark E.1. Let R (f;) be the ground truth inputs of the high-order risk; that is, u*¢ = u* for
any k € [K]. Then, by the definition of high-order velocity field in Definition 3.1, R (f;) = 0 since
fi(ye) = (ut, ..., u) is the collection of K order ground truth velocity fields. Further, the gradient
equivalence Theorem 3.4 implies that R (0) = Rk (0) — R (fi) = LE(©) — Lorm(f2)-

Remark E.2. We use EgF/M and ﬁ’K to denote the conditional flow matching loss and empirical
risk with training samples {x}}?_;. Then, by the i.i.d assumption on the training sample, we have

Eqnyr [EA(I;M(@)} = Lcrm(0), and therefore Eq,ryn [ﬁ’K(@)] =Rk (0).
To obtain finite covering number, we introduce the K truncated loss and truncated risk.

Definition E.3 (Domain Truncation of High-Order Loss and Risk). Let D > 0 be constant. Given

the K order conditional flow matching loss £ (z;u'?, ... u®?) defined in Definition E.1, we
define its truncated counterparts on a bounded domain D := [~ D, D]% by
ome (gt ) = e (L W) 1|2 < D}

Given the K order conditional flow matching risk and the K order empirical risk, we define

RE"(©) = Rx(©){[z] < D}, RE"™(O) = R(©)1{|z]l, < D}.

E.2 Auxiliary Lemmas

We follow the proof of velocity estimation in Appendix L.2 and Appendix L.3 to bound the K order
flow matching estimation error. Since direct computation of risk is infeasible, we first decompose
the K order flow matching risk R g into four terms. Then, we leverage the sub-Gaussian property
(Assumption I.1) and the Lipschitzness of transformer network class (Definition B.2) to bound each
term. Specifically, we introduce three lemmas to bound

1. the error from the domain truncation of loss function class (Lemma E.1),
2. the log covering number of loss function class (Lemma E.2), and

3. the generalization error bound (Lemma E.3).

Risk Decomposition. For simplicity, we shorthand R (u'?, ..., uf?) with Rg. Let {2/}, be a
different set of i.i.d samples independent of the training sample {x;}?_,. Then we decompose:

R _ E E 51 7%/ trunc
{Ii}?zl[ K] {11}2‘:1[{93; ?:1[ K K ]]
M
+ E [ E [ﬁligrunc _ rfé%unc]]

{wadis, i,

Im)
+ E [R&™ —Rgl+ E [Rkl

(I11) (Iv)
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where we use the fact that Eg; y» | [Ri(©)] = Ri(©) (Remark E.1). This decomposition follows
standard statistical learning theory technique, formulated in [Hu et al., 2025c, Fu et al., 2024].

High-Order Truncation Loss. We begin with the bounds on term (I) and term (I11).

Lemma E.1 (Upper Bound on the High-Order Truncation Error). Let u!?, ... u'¢ € T/*" be
transformers in Theorem 4.1. Then, for any ¢ € [tg, 7] it holds

1
E[|€K(m;u1’9, o ufly — gt (g 1O ,uK’g)H < KD exp<—§C’2D2> mlzjx{Li}.

Proof. By Theorem 4.1, we have transformers output bounds C1 = O(Lj_1) for all k.
For all k € [K], we define

1 T
O (e k0 / B B0 O 1y (1P g 4 o™ xOyi21qs
o) = e [ B I8 = (o X))
1 T
runc/,,.. R AN ,0 (0) (k) (k) 4 (0)
st = gt [ B 0,0 - i o X (el < D)
Then, it holds
E[ |05 (25 u™7) — 6 (z;u™7) ] (B.1)
x
= EHK/C(:C;uk’Q)]l[Hl‘H > D]H (By Definition E?)
x

1 T/ k.0 (0) (k) (k) +(0)y )12
- [ u™ (X 7t - r+o, ' X qlx dxdt
T —to /to l2l|>D X0~N(0,1)[H (X7 t) = (g i Xo)ll2la(x)

(By Definition E.1 )

: / ' / k6 x O 1y)12 (k) (k) x-(0) 12
S E un (X )l + 4o X q(x)dxdt
710y Sy s O a4 017X ()

(By expanding the (;g—n()l‘m)

1 /T/ k.85 (0) 4y)2 (k) (k) 3-(0)) 2 ( 1 2)
< E (X 0|5+ x+o, X exp| —=Csl|z||5 | dadt
T—t0 )iy Jjuj=p XONN(OJ)[H (X7 012 + g i Xo [z exp B 2|2

(By Assumption 1.1 )

1 T/ k k) (0 1
< E max{L2} + [Pz + o X2 exp [ —=Co |22 ) dadt
7 B R I+ o X B e~ ol

k
(By C7 = O(maxy{ Ly }))

1 T 1
Soer [ xR+ 02, + 2l exp( 5 Callel ) aoar
T —to )iy Jyzi>D 2

k
(zo ~ N(0,1))

D2 exp(—3CeD?) [* D exp(—LCoD?) [T
. p_( - )/ (max{Z2} + (o")2d, )t + p(_2 2 )/ (g™t
T tO to k T t() '

(By Lemma D.2)

1
< D exp (_2C2D2> m]?X{Li}. (By Assumption I.Z)

Therefore,

IEH@K(w;ul’e, ... ,uK79) — f5me (g u179, .. 7uK’G)H
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K
Z E[ |£k O uk’e) |] (By triangle inequality)
< KD% exp (2021)2) m]?x{Li}. (By (E.1))
This completes the proof. O

Covering Number of High-Order Loss Function Class with Transformers. The next lemma
extends Lemma L.5 to its higher-order counterpart. Please see Definition L.4 for a precise definition.

Lemma E.2 (Covering Number Bounds for S(D), Lemma K.2 of [Hu et al., 2025c], Theorem
A.17 of [Edelman et al., 2022]). Let e. > 0. We define the loss function class by S(D) :=

{Cr(;u?, . w0 D s R | ub? ... uf? e T }. Further, we define the norm of loss
functions by [k || cop = max e[ p, pjee [€x|. Then, under transformer parameter configuration in
Theorem 4.1 the e.-covering number of S(D) with respect to ||-|| ., satisfies:

log (nL /€.
log A (60, S(D), -] p) < O( "L p2yatasasr o yysies)

(6]

Proof. We first derive the log covering number of transformers u?, ..., ¢ in Theorem 4.1. Then,
we extend the results to K order loss function class.

* Log-Covering Number of Transformers Network Class. From (D.2), for all k € [K], we have
Crq,Ciay = ON'TH2e7472): Coy, CH° = O(e);
Cr, O™ = O(Ie ' Ly,_1);Cr = O(I); O = O(Lg—1),

where A\™! = O(NPlog N)%¥*3 is the inverse-temperature scaling in the softmax function,
I =0(y/logN)ande = N~ > 0some N € Nand 8 > 0.

By Lemma L.5, the bounds on log-covering number follow

log N (e, ™" |I[l5)

a?log (nL/e.) i s s
= 672((0% )3 + (MCr)*CovCiy)® + ((Cr)*CEHY )3)
< %([4/3(4/3_&_[4/3674/3 ¢2/3  [(8d+4)/3.—8d/3—4/3 | 14/3.-4/3 2/3 )3
- — =
K (@3 (ORI (CovP/®  (\CEF)e ©rE  (CFF)E
o?log (nL/e) s
hS — (I(84+8)/3.—8d/3-2)3

a’log (nL/e.) . [8d+8, ~8d—6

2
€

By Lemma L.5, we have

« S (CF)QCovCKQ(D + CE)

S IPe?. e JMT242 (D4 Op) (B)’ the definition of o)
—~—— N —,—, —
(Cr)? (Cov) (Ckq)

— DI4d+4€_4d_3
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Altogether, for all u*¢ ¢ T,;L 57 we have

1 L/e, o
log N e, T ;) 5 128 /) pe oo mroa-tz,

c

Further, by || - ||oo < || - ||2, we have
1 L/e.
IOgN(GC, Th ,S,T H . ||oo) 5 og (n2 /66) D2[16d+16€—16d—12. (EZ)
EC
for all u*? € Tp*".
* Log-Covering Number of Loss Function Class. Let § > 0. Let u :== {u'? ... v/} and
a = {a"?, ..., a™%} be two sets of transformers network satisfying ||u*? — 7|, < § on

domain x € [—D, D]% for all u*? € u and u*? € @. Further, let Y7y, denote the ground truth
k-th order conditional velocity field (Definition E.1):

Uiy = )x + U(k)X(O)
Then, the distance between two K order conditional loss functions £ 1 (x;u'?, ... u%?) and
Crco(z;at? ... af?) follows:
|£K1 zubf Bl ) — Uk a(z; o, 7K’9)| (E.3)

k.6 s,0
T—t Jdt — dt
‘Z/t o B e = il EZ / o E ol =il

0 to

(B} Definition E. l)

(By triangle incquu]ity)

T
E kO 4 k0 _opr \T (k0 — 550 de
/to Xo~N(0,1)[(u T Vi) (u u™?))

K T
g k,0 k.0 N
< -2 By [|[u? — 0" < 6
D7 Bl 20t G )
K S T
< kZ:l Tt /tO \/2 XON%(O,I)[HUkﬁ +a*3 + 2||¢zk||§]dt (By Jensen’s inequality)
K T
g 2 * |2 )
< Z \/maX{Lk} + 2||¢t k||2dt (By Cr = O(max{L }))
=1 T — to to k ,

K
5 Z 5maxk{Lk} Tdt

By the Lipschitzness of k-th order flow
=y < )

Finally, we extend the log covering number to the loss function class S(D) by setting

e, = Qe m]?x{Lk}) .

This gives

log (¢l S(D), ||l sop) < log N (e, T, || - lloo)- (By (E3))
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Therefore,
log N (e, S(D), ||l sop)
log N (ec, T " || - [loo)

< log (nf/GC)DQIIGdJrlGeflGdle (By (E.2))

IN

c

1 L
-0 (MD2]16d+166—16d_12 m}?X{Li}) (By the definition of ef)

(€)?

Finally, we substitute I = O(y/Iog N) and ¢ = N ~# > 0. This completes the proof. [

Generalization Bound. Based on covering number bounds results in Lemma E.2, we now analyze
the upper bound of generalization error [Ef; n [R%‘mc(@) - 7%3?‘“‘:(@)] ‘

Lemma E.3 (Generalization Bound on K Order Flow Matching Risk). For e, > 0, let N :=
N(ee,S(D), || - lcop) be the covering number of function class of loss S(D) following Lemma E.2.

Let © be the collection of parameters of transformers trained by optimizing Lcrn (©) following
Definition E.1 with i.i.d training samples {z; }? ;. Then we bound the generalization error:

P ~ ~ N 1
E [Rm(©) - RE™e(8)] < RI™<(8) + O(= log N + o).

€23

Proof. Letu*? € 7}2 "> be the approximator of the k-th velocity field u* obtained from minimizing
the high-order empirical conditional flow matching loss:

~ 1 1 T
K. F) .. ()OO ko v (0) 2
L -—*_E E T 1 /t XON%(OJ)HI(M i +oy Xy ) —utt (X t)5)de.

Further, we define

_ L7
REwe(@ ) = 7= [ B [ (et) — e )31 o] < DYt
T —t%o Jy, =~p

and

ﬁ%runc (ak,e)

1 « 1 T k k) (0 0
=iyt / E (1M + o™ XO) — ub0(xO Hl2dt - 1{jzi] < D}
i Tt Jiy xOnp

1 & 1 T k k) (0 0
-=3 / E [ (uf" 2 + oV X§7) — o (X0, 1)]|2)dt - 1{]|zi]l o < D}
n T—to Jiy xOnp

Since every network configurations and log covering number are identical across all K order velocity
fields from Theorem 4.1 and Lemma E.2, for any k € [K], Lemma L.8 extends to

{zIE:n [R?unc (ak,@) o R‘;ﬁruHC(akﬂ)]
ifi=1

<

1
B [REUS@)] + O log N + o)

Therefore,

E [RZrunC(é) . ﬁ}crunC(@)]’

1623
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K
< E [Ryne ak’e - ﬁtrunc ﬂk’e By the triangle inequality
< Z:j GE RIS @) = Ry @) ( g )
K 4 )
< ; 5 {xi]:%;l[']zzrunc(ak,@)] +0( log ' + <) (By LemmaL.8)
_l g [Rine(©)] 4 O(l log NV + €.).
2 fayr, n

This implies

~ ~ ~ 1
QERE(O)) < 2 REU(6) + O(logN + co)

Finally, we conclude that

~ ~ ~ ~ ~ 1
LE| [RE(6) - RI™(8)) < RE™S(6) + O( log A + <o)

This completes the proof. O

E.3 Main Proof of Theorem 4.2

We now present the main proof of Theorem 4.2.

Theorem E.1 (Theorem 4.2 Restated: High-Order Velocity Estimation with Transformer). Assume
Assumption 4.1 and Assumption 4.2. Let u*f € TIQ "*" be the estimator of the k-th order velocity
field u* trained by minimizing the high-order empirical conditional flow matching loss (3.9). Let ©

be the collection of parameters of u*-? for k € [K]. Suppose the k-th order velocity field u* (x, t) is
Ly, Lipschitz forall k = 0, ..., K — 1. Suppose we choose the transformers as in Theorem 4.1, then

E [RK(@)] = O(nflé_d . (logn)wdw),

{wi}i,

where d is the feature dimension.

Proof of Theorem 4.2. Let {z}}™_, be a different set of i.i.d samples independent of the training

i=1
sample {z;}?_;. Further, we use R’ to denote the empirical risk with samples {z}}" ;.

~

Then, we decompose E;,3»  [Rk (©)] as:

E [Re@®)]= E [ E [Rk(®)-R"(O)]]

{zi}p, {zdp, Ui,

@

57 trunc Strunc Q)
+{xi1§?:1[{%@?:1 R (©)] - R (8)]

(1n
+LE [Rize(8) - Ric(8)] + GE [Rk(©)],

(I11) (V)

Then, we bound each term and incorporate them to obtain the bound on the estimation error.
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* Bound on (I) and II1. By Lemma E.1, (I) and (III) are upper bounded by

(I), (I1T) < K D% exp<—;C2D2> m]?x{Li 1.

* Bound on (II). By the generalization error bound (Lemma E.3), we have

(1)
_ E E [ﬁl}t{runc (@)] _ riét%unc (@)}

{eidio, {=i,

= E [Rizwme (@) — RiEwme(0)) (By Remark E.2)
- N 1
< . E [RE™(0)] + O(ﬁlog./\/—i— €c) (By LemmaE.3)
1 1
< (IV) + D% exp (—2021)2) m]?x{Lﬁ} + O(E log N + €.) (By LemmaE.1)

« Bound on (IV). Recall Remark E.1, Remark E.2. We have R (©) = Lcpm(©) — Lerm(fe),
where the collection of parameters of K transformers O is trained by optimizing Lcpm(©).

Therefore, it holds

Rk (0) < Lem(©) — Lerm(fi) = R (O).

Then, for any velocity estimator O, it holds

WE Rc@®)< B [Ri(0)] =Ri(®). (E4)
This implies
(IV) <Rk(©) 5 N7 (log N)%Iil- (By Theorem 4.1)

Altogether, the estimation error is upper bounded by

~

LE [Ri(®) (ES5)

= (I) + (II) + (III) + (IV)

1 1 .
< D exp<—2CgD2) +0O(=logN +e.)+N~2. (logN)dT_l,
n

—_———
(Tl) (Tg) (Ts)
where
1 L/e.
logN' =0 (%Q/E)sz\fﬁ(lﬁd"'m) (log N)8d+8> . (By Lemma E2)

C

Let v := 16d + 12. Then, we set N := n™/0#) ¢, .= n="2 and D = /(2n3logn)/C,, where
11,M2,n3 > 0 are constants satisfying 0 < n; + 21, < 1. This gives

d

1 -
(T1) = D% exp (—26’2D2> <n ™(logn)? .

3The constraint 0 < 77, + 212 < 1 is imposed in order to ensure (T2) converges as n — co.
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Further, we have

log N = O(n™ 272 (Jog n)8d= 11,
implying
1
(Ty) = O(ﬁ log N + €.) = O(nm 21271 (log p)8dat1l =2,

Further,

dg

(Ts) =n~ > (logn) % .

Then, (E.5) becomes
E [Rx(©
{mi}?ﬂ[ k(©)]
S (T1) + (T2) + (Ts)

= O(’I’L_ min {1—(771-&-27]2)7 M2, 2%} . (log n)Sdm—&-ll).

For any 7; and 7, satisfying
0<m+2n <1,

we consider solving
. 2
min {1 — (m +2n2), n2, %}

The linear programming problem has simple solution

2
1— (m +202) = = 2.
v
This gives
nm = T , and 7 = ——,
7+6 7+6

and 1, + 212 € (0, 1)is satisfied for any 1,72 > 0.

Finally, by v = 16d + 12, these free parameters achieves balance and gives

E [Rx(©)] 5 O(n_ﬁ : (logn)gd”“) - O(n’ﬁ ) (logn)sderll)

{eitis,

This completes the proof.
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F Proof of Theorem 4.3

We now present the main proof of Theorem 4.3.

Theorem F.1 (Theorem 4.3 Restated: High-Order Distribution Estimation under 2-Wasserstein

Distance). Assume Assumption 4.1 and Assumption 4.2. Let 13%( be the estimated distribution at
time 7". Then, it holds

E[Wa(PF,Pf)] = 0(n" T - (logn)®*),
{zi}?:1

where d is the feature dimension.

Proof of Theorem 4.3. We first consider two general ODE functions that describe the ground truth
velocity field and estimated velocity field respectively:

ul (19, 1) w9 (29 1)
(0) (0)
d ( T, t) . d u ( t) . 0
uf (i, 1) a0 (. 1)

RKd

where the first d rows of y; € construct ;vg ) e RY

According to the existence uniqueness theorem of ODEs, these two functions can induce another
following two corresponding flows ¢(-) € R¥? and ¢?(-) € RE9 defined for t > s that satisfy:

d
&(b(yvsvt) = f(d)(ya Sat)vt)7 ¢(y’$’3) =Y,
s t) = (s 1), 8), S los,s) =y,

We define the first d rows of ¢(-) construct the flow function 1;(x) and the first d rows of ¢%(-)
construct the flow function ¢ (). By applying Lemma M.2, it holds that

T
¢9(y7 Lo, T) - (rb(yv Lo, T) = [ D¢6(¢(ya Lo, 8)7 S, T)(f6(¢(y7 Lo, 5)7 S) - f((b(ya to, 8)3 8))d3

We extract the first d rows of left-hand-side and it holds:

T

¢9($»t0»T) - w(x’tovT) = D¢9(¢(yvt07 5)7 S,t))[: d}(fe(qS(y,to, 8)7 5) - f(¢(y7t07 S)v S))dsv

to

where D¢’ (6(y, to, 5), s,t))[: d] denotes the first d rows of the Jacobian matrix.

We then bound ¢ (x, to, T') — 9 (z,ty, T) by using similar techniques in proof of Theorem I.4. It
shows that

21D (6, t0,5), 5, 1)1:

7]
< ||*D¢ (o(y, to, ) ))[ dH|2 (By triangle incquz\lity)
||Du1 O (1, o, 5), 5, ) DS (8(y, to, 5), 5, D) ) (By chain rule)
< LTHD(ba( (y, to, S), S, t))[: ])||2 (By Lipschitz constant of tmnsf()l‘mel‘)

37



Therefore,

t 1
D% (6(y, to, 8), 5, ) d])||2 < exp{/ Lydu} < exp{/ Lydu} =: M. (ByLemmaM.1)
s 0
Now we have

1% (2, t0, T) — ¥(x, to, T)|I3

T
< M2/ (f0(¢(ya to, S)a 5) - f(¢(ya to, 5)7 5))2d5 (By Lemma M‘l)
to
T K
2(/ (Z ||uk’9(1/1(56‘,t0,8),8) - uk(w(m‘,to,s),s)ng)ds)Q (By definition of _/'(')
to p=1

T K
< M? / (Z u®? ((x, to, 5), s) — uF (W(z, to, 5), 5)||2)ds. (By Cauchy Schwarz inequality)

Then, we take expectation with z ~ p?o on both sides

E [I[v°(z,to,T) — ¥(a,to, T)|3]

CEprO
K

T
<Y B ([ @latars).s) ot (6t 0), 9]

k=1 x’\‘pto to
= M? (T —t))RK(©). (By definition of higher order risk in Definition 4.2)

Finally, we bound the 2-Wasserstein distance between the estimated and true distributions following
Appendix M. By using the definition of the 2-Wasserstein metric, it follows that

WalPFLPE) < B [19°(@t0,T) = 0ot DIE] £ VRETO)

Then,

GE Wa(PFL P S\ Ric(O)

We apply the high-order velocity estimation results in Theorem 4.2

E [Ri(©) = O(n_ﬁ . (logn)Sd“Hl).

{3’57‘,}?:1
This implies
GE (P PR S B [VRi(€)] = O(n 5 - (logm) - +°).
Ti}i, Ti}iy
This completes the proof. O
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G Proof of Theorem 4.4

Recall the Holder density function class and its minimax optimal rate under 2-Wasserstein distance:

Lemma G.1 (Lemma N.2 Restated: Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]).
Consider the task of estimating a probability distribution P(x;) with density function belonging to
the space

P = {q(x1) | o) € HP([-1,1)%, B),q(z1) > C},

Then, for any » > 1, 8 > 0 and d, > 2, we have
B+1

inf sup E [Wr(ﬁ, P)] 2 n~ %2,
P q(z)er{zitis,

where {z;} , is a set of i.i.d samples drawn from distribution P, and P runs over all possible
estimators constructed from the data.

We now give the formal proof of Theorem 4.4.

Theorem G.1 (Theorem 4.4 Restated: Minimax Optimality of High-Order Flow Matching Transform-
ers). Assume that the target density function satisfies ¢(z;) € H?([~1,1]%, B) and ¢(z;) > C
for some constant C'. Then, under the setting of 18d(8 + 1) = d, + 20, the distribution estimation
rate of flow matching transformers presented in Theorem 4.3 matches the minimax lower bound of
Holder distribution class in 2-Wasserstein distance up to a log n and Lipchitz constants factors.

Proof of Theorem 4.4. Since the bounded support [—1, 1]% guarantees the sub-Gaussian property in
Assumption 1.1, the distribution estimation Theorem 4.3 holds under ¢(z;) € H?([-1,1]%, B):

{ H;: [WQ(ﬁT,PT)} S O(n_léd . (logn)ﬁdm)_
Titiia

ife

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a logn and
Lipschitz constant factors under the setting

18d(B + 1) = d, + 28.

This completes the proof. O
Remark G.1. Since d, = d - L, the condition 18d(3 + 1) = d,, 4+ 23 implies
d(183+18 — L) =28 and pJ(18d—2)=d(L — 18),

the transformesr achieve minimax optimal rate with reshape layer such that 18 < L < 183 + 18.
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H Preliminaries: Universal Approximation of Transformers

Prior works [Hu et al., 2025b, 2024, Kajitsuka and Sato, 2023, Yun et al., 2019] develop the universal
approximation of transformers for continuous functions. Here we revisit these methods to establish
a foundation for our analysis of k-th order flow matching transformers. Specifically, we revisit (i)
the ability of the transformer function class (defined in Appendix B) to approximate any continuous
function on a compact domain with arbitrary error, (ii) the parameter norm bounds required to achieve
the universal approximation. Notably, controlling the magnitude of these norm bounds is essential
for subsequent analysis on the velocity estimation error and distribution error.

Background: Contextual Mapping. Recall the reshape layer Definition B.3. Let Z € R4*L
represent input embeddings. where Z. . € R? denotes the k-th token (column) of each Z sequence.

Further, given M embeddings Z(V), ..., Z(M) ¢ R4*L | we say Z(%) is the i-th sequence for i € [M].
Then, we define the vocabulary corresponding to the i-th sequence at the k-th index in Definition H.1.

Definition H.1 (Vocabulary). We define the i-th vocabulary set for i € [M] by V) =
Uke(z] Z:(fk) C RY, and the whole vocabulary set V is defined by V = Userm V@ c R,

In line with prior works [Hu et al., 2025b, 2024, Kajitsuka and Sato, 2023, Kim et al., 2022, Yun
et al., 2019], we assume the embeddings separateness to be (Viin, Ymax, 0 )-separated,

Definition H.2 (Tokenwise Separateness). Let Z(V_ ..., Z(M) ¢ R4*L pe embeddings. Then, we
say ZW . ZM) are tokenwise (Vinin, Ymax, 0)-separated if the following three conditions hold.

1. For any i € [M] and k € [n], ||Z(2H > Ymin holds.

2. Forany i € [M] and k € [n], ||Z:(fk) || < Ymax holds.

3. Foranyi,j € [M]and k,1 € [n] if 1) # 2, then | 2} — Z9)|| > 6 holds.

Further, we say Z W, ..., Z2W0) s (v, 9)-separated when only conditions (ii) and (iii) hold. Also, if
only condition (iii) holds, we denote it as (d)-separateness.

Building on the token separateness, we introduce the contextual mapping, that characterizes the ability
of transformers’ self-attention to capture the relationships among tokens across different sequences.
This allows transformers to utilize self-attention for full context representation.

Definition H.3 (Contextual Mapping). Let Z() ... Z(M) ¢ R4*L be embeddings. Then, we say
amap T : R — R4*L js a (v, §)-contextual mapping if the following two conditions hold:

1. Forany i € [M]and k € [L], it holds
IT(ZD). k]l < -
2. Forany i,j € [M] and k,1 € [L] such that V) # V0 or 20) # 219, it holds

IT(Z®)ss = T(ZD)all > .

We introduce results from [Hu et al., 2025b] in Theorem H. 1, which shows that a one-layer single-head
attention mechanism is a contextual mapping.

Helper Lemmas. Before presenting Theorem H.1, we restate several helper lemmas from [Hu
et al., 2025b, Kajitsuka and Sato, 2023] to simplify the proof.

Lemma H.1 (Boltz Preserves Distance, Lemma 1 of [Kajitsuka and Sato, 2023]). Given (v, d)-
tokenwise separated vectors z(1), ..., (™) € R™ with no duplicate entries in each vector:

A # 27,
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where ¢ € [N] and s,t € [L], s # t. Also, let
6 >4Inn.

Then, the outputs of the Boltzmann operator has the following properties:
‘Boltz (z(i)) ‘ <7,
‘Boltz (z(i)> — Boltz (z(j)) ‘ > ¢ =1n®(n) - e~

forall,j € [N],i # j.

We remark that Lemma H.1 gives the key step for constructing a contextual mapping via the self-
attention layer Lemma H.4. We extend the results to the case with inverse-temperature scaling.

Lemma H.2 (Boltz Preserves Distance with Finite Inverse-Temperature Scaling in Softmax). Let
2 2(M) € R” be (v, §)-tokenwise separated vectors with no duplicate entries in each vector:
zgi) = zgi),

where n > 2,0 > 41nn/\ for some A > 0,4 € [M] and s,t € [L], s # t. Further, we define

Boltzy (V) :== 20T Softmax () forall ie [M],

where Softmax (2(")[k] = exp(Az[k])/ 3=, exp(Az(9[j]) is the softmax function with inverse-
temperature scaling A > 0. Then, the outputs of the Boltzmann operator has the following properties:

‘Boltz,\ (z(i))’ < v, (H.1)

In? (n) - e~ 2\

‘Boltz)\ (z(i)) — Boltzy, (Z(j)>’ S 5 = -

(H.2)

foralli,j € [M],i # j.

Proof. We first scale the input vectors by y(V[j] := 2(9[j] - X for all i € [M] and all j € [n]. This
gives a (R, A)-tokenwise separated vectors 1), ..., y() € R™, where R = Ay and A = \J.

Next, notice that softmaxy (-) = softmax(A-) and Boltzy(-) = Boltz(\:)/A. Therefore, since the
condition 6 > 4Inn/X ensures A > 41nn, Lemma H.1 implies both (H.1) and (H.2).

This completes the proof. O

Lemma H.3 (Lemma 13 of [Park et al., 2021]). For any finite subset X C RY, there exists at least
one unit vector u € R? such that

1 8
W\/@HI*I'II <|u’ (@ =2")| < Jle =2,

Lemma H.3 shows the existence of a unit vector v € R? that bounds the inner product of the
difference between points in a finite subset X' C R?. Next, we restate the construction of rank-p
weight matrices in a self-attention layer following [Hu et al., 2025b] in Lemma H.4.

for any z, 2’ € X.

Lemma H.4 (Construction of Weight Matrices, Lemma D.2 of [Hu et al., 2025b]). Given
(Yamin, Ymax, €)-separated input embeddings Z(), ..., Z(M) ¢ R4*L with finite vocabulary set
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V C RY. There exists rank-p weight matrices Wy, Wg € R**? such that

|(Wieva)" (Waue) = (Wicwn) " (Wove)

> 0,

for any 6 > 0, any min (d, s) > p > 1 and any v,, vy, v. € V with v, # vp. In addition, the matrices
are constructed as

i=1

p p
Wi => pig] €R™, Wo =) plgjT e R,
j=1

where ¢;, g, € R? are unit vectors that satisfy Lemma H.3 for at least one 4, and p;, p; € R® satisfies

Ipi pi] =5(V|+1)'d

Ymin

Any-Rank Attention is Contextual Mapping. The next lemma shows that the any rank self-
attention mechanisms of transformers serve as contextual mappings (Definition H.3).

Theorem H.1 (Any-Rank Attention is (v, §)-Contextual Mapping, Lemma 2.2 of [Hu et al., 2025b]).
Consider (Vmin, Ymax, €)-tokenwise separated embeddings Z(1), ..., Z(M) ¢ R¥*L and vocabulary
setV =U;cn VW C R Let 2, ..., ZN) € R*E be embedding sequences with no duplicate

word token in each sequence; that is, Z:(ik) == Z:(?, for any ¢ € [M] and k,l € [L]. Then, there exists
a 1-layer single head attention with weight matrices Wo € R4 and Wy, Wi, W € R**4, that is
a (v, §)-contextual mapping for embeddings Z(V), ... Z(M) with

Y= Ymax +€/4, §= exp(—5)\efl\V|4d/wmax log L) /A,
where £ = Ymax/Ymin and A is the inverse-temperature scaling in the column-wise Softmax function.
We restate the proof of Theorem H.1 since it is crucial for subsequent analysis.

Proof. For completeness, we restate the proof from Lemma 2.2 of [Hu et al., 2025c¢].

The proof consists of two steps:

* Construct the Softmax Attention. We ensure that different input tokens are mapped to unique
contextual embeddings by configuring the weight matrices in Lemma H.4.

* Handle Identical Tokens in Different Contexts. We show that the construction from Lemma H.4
are able to handle identical tokens in different contexts by applying Lemma H.2.

We proceed the proof with these two steps.

Step 1: Attention Construction. We show the construction of matrices: Wx, W, W and Wy,

* Weight Matrices W, and W,. First, we construct W, and W, by:
i=1

P P
Wi =Y pig] €R>% Wy =Y plig" e R,
=1

where p;,p; € R® and ¢;,q;; € R<. In addition, let § = 4Inn and p;, p} € R* be an arbitrary
vector pair that satisfies

0
[pTp] = (VI +1)"d-

min

(H.3)
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+ Weight Matrices 1y and Wy. Next, we construct Wo € R4** and Wy, € R%* by:
p
WV — Zp/i/qgl—r c ]RSXd7 (H4)
i=1

where ¢ € R?, ¢/ = q; and p!/ € R*® is some nonzero vector that satisfies

€

) (H.5)
4pVmax

Wop(|| =

/1

-
for any vector p;

11,11

This can be accomplished, e.g., Wo = >_0_, p}'p!
¢/ (49> Ymax|1pY||*) for any i € [p)].

which satisfies ||p}’|| =

For simplicity, we define s¥, := Softmax [(WKZ(”)T <WQZ(2)} e

)

Then, we combine the above weights construction and obtain

. N\ T .
Wo (WVZ(’)) Softmax [(WKZ(”) (WQZ:{Q)] I (H.6)
L
= H Z 8£,WO (WVZ(Z)) || (By the definition of .sﬁi))
k'=1
L
< Z ||S]]§/Wo (WVZ(Z)> I (By triangle incquality)
k'=1
< max [Wo (Wy20) | (By b sh = 1)
< 476 . km%}f] ’qTZ.(ik)/‘ (By (H.4) and (H.5))
max e v )
< 476 - kr/nea[uL{] ‘Z:(’ik), (By Lemma H.3)
€
< 1 (By the (Ymin, Ymax; €) scparatcncss)

fori € [M]and k € [L].

Step 2: The Case of Identical Tokens in Different Contexts. For the second part, we show that
with the constructed weight matrices Wo, Wy, Wi, W, the attention layer distinguishes duplicate

input tokens with different context, Z:(,ik) =7 (g ) with different vocabulary sets V(V) #£ Y0,

©

We define a9, a) as
) — (WKZu))T (Wozl)) e, o = (WKZ@))T (Woz?)) e,

where (¥ and a(9) are tokenwise (v, §)-separated. Specifically, the following inequality holds

i 1)
a2 < (VI + 1) d——A2 s

Since V() = V) and there is no duplicate token in Z(9 and Z()), we use Lemma H.1 and obtain
‘Boltz (a(i)) — Boltz (a(j))‘

(a(i))T Softmax {a(i)} - (a(j))T Softmax [a(j)} ’ H.7)
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> ¢

= (Inn)%e 27,

Additionally, using Lemma H.4 and (H.3), and assuming Z(Zk) = Z:(’jl'), we have

(a(i))T Softmax [a(i)} — (a(j)>T Softmax [am} ‘ (H.8)

d o
Yo - (V] + 142

<
1 8 €Ymin

-

: ‘(qurZ(i)) Softmax [a(i)} - (q;Z(j)) Softmax {a(j)} ‘

2

By combining (H.7) and (H.8), we have

izp;‘(q? Z(i)) Softmax {au)] — (qiT Z(a‘)) Softmax [amH > (Vli m d?vij:x' (H.9)

Using (H.5) and (H.9). we derive the lower bound of the difference between the self-attention outputs
of Z(W) | 7 as follows:

170 (29)

0

. 6/ €Ymi
_ ]:(SA) (Z(J)> > € min_
o 5l || 47max (|V‘ + 1)4 dd'ymax

where § = 41n L and &' = In?(L)e~2" withy = (|V| + 1)* 042,/ (€Ymin). Finally, we extend the
bound to softmax function with inverse-temperature scaling A > 0 using Lemma H.2.

This completes the proof. O

Notably, Theorem H.1 shows that, for identical embeddings Z :(ik) = Z:({ ) with distinct vocabularies
V() £ VYU)  any-rank self-attention is able to distinguish two identical tokens in distinct contexts.

Universal Approximation of Transformer. We introduce the universal approximation result for
transformers with a single self-attention layer from [Hu et al., 2025b, Kajitsuka and Sato, 2023].

Theorem H.2 (Transformer Universal Approximation, Theorem B.1 of [Hu et al., 2025b] and
Proposition 1 of [Kajitsuka and Sato, 2023]). Lete € (0,1) and p € [1,00). Let ]-'l(FF), }'Q(FF) be
two feed-forward layers and F(54) be a single-head self-attention layer with softmax function defined

in (B.1) and (B.2). Then, for any permutation equivariant continuous function f on a compact domain
and any e, there exists a g(Z) = }'Q(FF) o F(8A) o fl(FF)(Z) € T such that d,,(f(Z), 9(Z)) < e,

where d, .= ([ ||f(Z) — g(Z)||§dZ)1/p and || - ||, is the element-wise £,-norm.

Proof. Since the universal approximation of transformer over any bounded domain differs only by

scaling and shifting the transformer’s parameters in fl(FF) and ]-'2(FF), Hu et al. [2025b], Kajitsuka
and Sato [2023] prove Theorem H.2 assuming that the target function f is normalized on domain
[0, 1]4*L for simplicity. To support subsequent derivations of transformer parameter bounds required
for e-precision (Lemma H.5), we provide the proof on a more general bounded domains.

The proof consists of three steps: (i) Quantization by the First Feed-Forward Layer (ii) Contextual
Mapping by the Self-Attention Layer (iii) Memorization by the Second Feed-Forward Layer.

Let Q := [—1, I]**" be the domain of f. Without loss of generality, we consider I € N.
First Step Quantization. First, we define a grid Gp:
Gp = {c €Q|Cop=—1+ %’“, sep=1,...,2ID forall t € [d],k € [L]}, (H.10)

where D € N is the granularity of Gp.
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Then, for Z € €2, we construct a piece-wise constant function approximator:

a(2)= > f(C){Z e C+[-1/D,0)""} (H.11)

CeGp

By the uniform continuity of f, for any € > 0, there exist a D such that
dp(f(2),91(Z)) < €/3. (H.12)

We use a transformer to approximate g (Z) using two feed forward layers and a self-attention layer.
First, we introduce the quantization function that discretizes the input into G p:

Quantization Function. We define the quantization function quant, : R — R:

—I z< =1
I+1/D —I<z<-I+1/D
quantp(z) = q . .

I I-1/D <z

Within Q, quant’>*”(2) outputs regions identical to C' + [~1/D,0)4*" defined by the indicator
function in (H.11). We extend the quantization to quant%* % (Z) : R¥*F — R¥*E where quant ()
is applied coordinate-wise. Then, we approximate quant ,,(z) with the following network*:

ID—-1

) =-I+ >

t=—ID

ReLU [z/6 —t/6D] — ReLU [2/§ — 1 — t/§ D]
D

~ quantp(z), (H.13)

where § > 0 determines the steepness of the change from one quantized level to the next. For
z € R\ [—1, ], we add and subtract the first and last step functions scaled by I to obtain zero output:

P () = f1(2) — 1 - (ReLU [2/6 — /6] — ReLU [2/6 — 1 — I/4] )
41 (ReLU [~2/6 — 1/8] — ReLU|[—2/6 — 1 — /6] ) (H.14)
where f{'¥(z) approximately quanitzes [—I, I] into {—I + 1/D, ..., I} and project R \ [~1,I] to 0

by taking sufficiently small §. Since every element shares identical weights, we realize (H.14) using
W4ReLU[W1{Z + b} | + b}, by constructing W{ € RE-(4D+4)xd and p € RE-(AID+4) ag;

I

1)

I

L
Wé; bg; IE 1
W b . —Ii L

wi=| " |, vy=|" |, where b\ = ,é‘ilf% forall i € [L], (H.15)

. I

L L )
wit) o 1%y
1

o

I
-L

*This is by the shifting and stacking step functions from [Yun et al., 2019].
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and W W) e RAID+xd ake the form:

1/6 0 0 0 0 1/§ 0 0 000

1/6 0 0 0 0 1/§ 0 0 000

) 1/6 0 0 0 ) 0 1/5§ 0 0 . 000
wit = /56 0 0 o W =10 1/5 0 oW =100 0
1/6 0 0 0 0 1/§ 0 0 000

1/6 0 0 0 0 1/5§ 0 0 00 0

~1/5 0 0 0 0 -1/5 0 0 000

~1/5 0 0 0 0 —1/5 0 0 000

The first 41D rows of W/ and b} implement the ReLU terms in (H.13), and the last four rows
implement the ReLU terms in (H.14). Then, we construct W5 € R¥*L-(4I1D+4) and by, € R by

/D -1/p --- 1/D -1/D —I I I ~—I I
/D -1/D --- 1/D —-1/D —I I I —I , —1

2= | : : : : . s b= (HI6)
/D -1/D --- 1/D —-1/D -1 I I —I —1

Besides the quantization, we include an additional penalty function to signify the case where the
inputs are not on the target domain [—1, []4*L.

Penalty Function. We define the penalty function penalty : R — R

-2 z<-I
penalty(z) =< 0 z e [—1,1] (H.17)
-2 z>1

Again, we extend the penalty function to penalty?**(z) : R¥*L — R4*L where penalty(z) is
applied coordinate-wise. By taking sufficiently small J, we approximate penalty(z) by

2" (2) = penalty(2),

where

P —QI(ReLU [(z — 1)/8] + ReLU [(2 — 1)/ — 1] ) (H.18)

Approximate step from O to —2J at z = I

—QI(ReLU [(—z — I)/8] + ReLU [(—z — 1) /6 — 1] ) .

Approximate step from 0 to —27 at z = —1

Let Z € R4*L be a matrix with all entries equal to I. Altogether, we define go(Z) : R*L — RIxL

92(Z) = quant 5 E(Z) + T+ dL - penalty™*(Z) . (H.19)
(A) (B)

Term (A) first quantizes input [—1, I]9*% into Gp and scales the grid to [0, 27]9%F, denoted by G$,.

Term (B) ensures non-positive outputs for any Z € R¥>E\ [—1 []4¥L,

Together, we approximate (H.19) using the first feed-forward block W5ReLLU [W1Z + b1] + by with

Wy € RE-UIDEE)xd ) ¢ RE-(UIDHE) 'y, ¢ RAXL-(ID+8) and by € RY, where we stack 4L rows
to W1, b} to implement the penalty function, scale weights in W3, and set bs as a zero vector.
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Second Step Contextual Mapping. Let G p C G% denote the sub-grid on [0, 2 JaxL:

Gp = {G €GS | Gop # G,y forall k,le [L]}. (H.20)

By the construction of G%,, the sub-grid Gp is a collection of grids with pairwise distinct tokens, and
every G € Gp is a token-wise (1/D, 21+/d, 1/D)-separated sequences.

From the construction of F(54) in (H.6), it holds:

1
FEA(Z). ) = Z4ll < ——=— max || Z.x],
| (2): = Z.kl SIvVaD 22% 1Z.e |l

Recall that the magnitude of every entry in FF¥(Z) is at most 2IdL by the construction of the
penalty function. Therefore, for all ¥’ € [L], it holds:

max || FIF(Z). || < 21dL x Vd.
ZeRdXL

This implies

dL
IFEN(2). 00 FIF(2)k = FF (24l < 15

Taking sufficiently large D, every element of output of Z € R¥*E\ [T, I]%*L is upper-bounded by:

1
FOX o FF¥ (7)1 < D forall ¢el[d],ke[L]

Also, for input on Z € [0, 1]%*L, we have lower bound:

3
FOY o FFE(Z), 5 > 1p forall teld.kel[L].

Then, it remains to map sequences on (3/4D, c0)?*~ to their corresponding target value, and map
sequences on on (—oo, 1/4D)¥*¥ to zero.

Third Step Memorization. For a fixed C € G and a network input Z, we define v := F(54) ()
and S := F(54) o FF¥(Z). The goal is to use F5 © to implement g3 : R4*F — R¥*L, where

_93(5)15,}C = f(é—l-)t’k . ]l[ut’k = St,k:] forall t € [de S [L],
and f is the target function. We use the bump function with three-piece ReLLU to achieve this:

bump g (S)¢,k (H2D)
= ReLLU [RFF(Sth — ut)k) — 1] — 2ReLU [RFF(St,k — ut7k)] + ReLU [RFF<St7k — utk) + 1] R

where inputs with a deviation from the correct grid point w, j, greater than 1/ Ry are mapped to zero.
Therefore, by taking sufficiently large Rrp, (H.21) implements 1 [Ut,k = St,k] exactly.

Suppose that there exist a feed-forward block F5 ¥ such that (H.21) holds for all ¢ € [d], k € [L]. By
choosing the granularity D sufficiently large such that ‘G o\ G D‘ is negligible, it holds

ay (FE¥ 0 FSN 0 FIF g1) < 2¢/3 (H.22)
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Combining (H.12), we have

d, (ﬁfF o F(84) o FFF, f) <e

It remains to show that there exists a 7 © that implements (H.21) forall ¢ € [d], k € [L]. This is possi-
ble since Theorem H. 1 ensures that (Ymin, Ymax, €)-tokenwise separated sequences are at least §’ apart
from one another after the self-attention mapping, where §’ = exp(—5)\e*1 V|*dy2 . log L/ 'ymin) ,
A > 0 is the inverse-temperature constant and |V| is the size of the vocabulary set.

Specifically, for a fixed C and u = FSA(C), we construct a W) € R34L*L and a b{”) € R34L:

Rer
Rpr
Rep

SO OO O

o OO

Wi =

Rer
Ryp
Rer

O OO OO

0
0
0

0

0

0
Ry
Ryp
Ryp

0

0

0

0
0
0

OO -

[l en el e oo Nen o Nan]

, b=

—Rppui,
—Rpruig —1
—Rprui g +1

—Rprug
—Rpruz; — 1
_RFFUQJ +1

—Rprus
—Rppuz ;1 —1
—Rprus; +1

—Rprug 1
—Rprugq — 1
—Rprug +1

—Rpruy,r
—Rppuyr — 1
—Rppuy +1

—Rprug 1,
—Rprug g, — 1
—Rppug g, +1

—Rprus,r
—Rprus,, — 1
—Rprus,r +1

—Rrrug,r
—Rprug,r, — 1
—Rprug,, +1

(H.23)

where the first 3L rows of Wl(i) are repeated d times and S = F(SA) o FFF(Z) is mapped to R34E* L

WS + by
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Rpr(S1,1 —ui1)
Rpp(S1,1 — u1,1)
Rpp(S11—u11)

Rpp(Sq1 — uan)
Rpp(Sq1 —uagq) —1
Rpp(Sg1 —ug1) +1

Rpp(S1,1 —u1,L)
Rpp(S11—uip) —1
Rpp(S11—wuip)+1

Rpp(S21 —ugr)
Rpp(S21 —uzp) —1
Rpp(S21 —us ) +1

Rpp(Sa1 — ua,L)
Rpp(Sq1 —ua,r) — 1
Rpp(Sq1 — ua,r) +1

Rpp(Si2 —u1,1)
Rpp(S12 —ui) —1
Rpp(S12 —u11) +1

Rpp(Sq2 — uga)
Rpp(Saq2 —ug1) —1
Rpp(Sg2 —ug1) +1

Rpp(S1,2 —u1L)
Rpp(S12—ui ) —1
Rpp(S12 —ui,n)+1

Rpp(S2,2 —u2 1)
Rpp(S22 —ugp) — 1
Rpp(S22 —ug ) +1

Rpp(Sa2 — ua,L)
Rpp(Sq2 —uqr) — 1
Rypr(Sq2 —ua,r) +1

Rpp(Sa,L — ud,1)
Rpp(Sqr —ug1) —1
Rpp(Sar —ug1) +1

Rpp(S1,L —u1.L)
Rpp(S1,p —u1,n) — 1
Rpr(S1,L —u1,n) +1

Rpp(S2,1, —u2,1)
Rpr(Se,, —u2,) — 1
Rpp(Sa,p —ug,r) +1

Rpp(Sa,r — ud,L)
Rpp(Sar —uqr)—1
Ryp(Sa,r —uq,n) +1

Then, we construct the second matrix by Wi" = W, O, € RI<3L with W, ¢ RaLx3dL
and W, ) € R4 For W, we set

—2f(C—1)11
WZ’(z‘) _

0

f(C=1T)1,

f(C=T)1a

0

_2f(é'_z)d,L f(é—i)d,L f(é_.I)d,L

which maps the output of the first layer after ReL.U operation to R£>L:

W,V ReLU[W S + b{]

I

—T)gobump(S21 —uz2)  f(

= | f(C =1T)g2bump(Sa1 — ua2)

)o,Lbump(Sa 1 —wu2,r)  f(

f(C —TI)4bump(Sy1 — ua,z)
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—TI)22bump(Sa 2 —u22) -+ f(

f(C —TI)g2bump(Sq2 — ua2)

f(C = I)q,rbump(Sa2 — ua,r)

f(é_z)l,lbump(sl,l —Ul,l) f(é—I)leump(SLg —u171) f(é—I)l,lbump(SLL —u171)
f(C — I)g’lbump(Sg)l — U2’1) f(C — I)g,lbump(SQ’g — Ug,l) s f(C
f(C =T)gabump(Sas —ug1)  f(C—TIT)aibump(Syz —uaq) --- f(C
f(C =TI)12bump(S11 —u12)  f(C —I)12bump(S12 —u12) -+ f(C —I)12bump(S1,L — u1,2)
f(C c c

S(C =I)y cbump(S1,1 —ur,r) f(C—1T)bump(S1 o —urn) -+ f(C—1I)bump(Syp —ur)
C_1T C —TI)ybump(See —usy) --- f(C—-T

(H.24)

— 1) bump(Sa,, — uz,1)

—TI)a,1bump(Sa,, — ua,1)

— TI)2,2bump(Sa, 1, — u22)

f(C —TI)g2bump(Sq 1, — ug2)

)2,Lbump(Sz 1, — uz 1)

f(C = I)q bump(Sa,r, — ua,r)



Recall that we have tokenwise (1/D, 21+/d, 1/ D)-separated sequence after the quantization of the
target domain €2, and |V| < (21 D)9. Therefore, it suffices to set the scale of the bump function as

Rpr = 0(1/8") = O(exp(640A(ID)***?d?log L)).

(H.24) is a partition of L vertical blocks, each of dimension d x L. Then, if S is a permutation of u,
a single column within each block is comprised of correct target output since their bump function all
evaluates to one, and all other columns containing zeros. Also, The position of this all-ones column is
distinct for every block. Conversely, if .S is not a permutation of u, (H.24) becomes the zero matrix.

Lastly, we construct W, @) by (g, 14, --- ,1q)tosum over every column in each block matrix,
where the d x d identity matrix is concatenated L times.

Up to permutation equivariance, there are total go = (21 D)dL /L! possible u, so we stack W(i), bgi)
and WQ(”) with weights corresponding to each distinct « using the identical construction.

In sum, there exist a feed-forward block Fi'F with W, € R3dLa2xd 3 p; ¢ R34L492 and a W, €
R9*3dLaz that implements the bump function (H.21) for all ¢ € [d] and k € [L].

This completes the proof. O

Remark H.1. Note that Theorem H.2 uses 2 FFN layers and g € T}%’l’r, where hidden dimension
r = O(dL(ID)% /L!). By Definition B.2, Tp""" belongs to our transformer network class.

To eliminate the permutation equivariance required for the target function, we incorporate the
positional encoding to Theorem H.2 to break the symmetry following [Yun et al., 2019].

Corollary H.2.1 (Universal Approximation of Transformers with Positional Encoding, [Kajitsuka
and Sato, 2023]). Lete € (0,1) and p € [1,00). Let .Fl(FF), J:Q(FF) be two feed-forward layers and

FBA) pea single-head self-attention layer with softmax function defined in (B.1) and (B.2). Then,
for any continuous function f on a compact domain and any e, there exists a positional encoding

EcR¥>Landah(Z) = ]—"Z(FF) o FA) o fl(FF)(Z +E) e Tg’s’r such that d,,(f, h) < €, where
dp = ([If(Z) - g(Z)||§dZ)1/p and || - ||,, is the element-wise £,-norm.

Proof. 1t suffices to show that the universal approximation remains valid with the inclusion of a
positional encoding £ € R4*L to the weight matrices constructed in Theorem H.2.

Recall the (H.14) and (H.20). We have token-wise (1/D, 21 Vd, 1 /D)-separated sequences on
[0, 21]9*L after quantization. Then, we add the positional encoding to the quantized sequences:

2I 41 --- 2IL
E= 0 o
2I 41 --- 2IL
giving token-wise (21v/d, 2(L + 1)IV/d,1/D)-separated sequences, where the first column is in
[0,41]%, the second is in [0,67]% and so on. For each row, entries are monotonically increasing.

The second step contextual mapping remains valid by scaling the penalty function (H.18) to 27 (L+1).
By Theorem H.1, columns after the self-attention mapping are at least " apart (in £2-distance) from
each other, where §' = exp(—bAe ! [V|*dr2, log L/ymin) and [V| = O((ID)%).

Recall the bump function (H.21) and (H.24). The construction of Wl(i), bgi) and WQ(i) follows by
setting the scale parameter Rpr = O(1/0) . Because of the lack of permutation equivariance here, it
necessitates to stack these matrices and biases for all go = (21 D)?* possible values .

This completes the proof. O

Parameter Norm Bounds for Transformer Approximation. Next lemma provides matrices norm
bounds required to achieve the universal approximation of transformer with any error e.
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Lemma H.5 (Transformer Matrices Bounds, Modified from Lemma F.4 and Lemma F.5 of [Hu
etal, 2025c]). Lete € (0,1). Let Z € [—1I, 1]~ be an input sequence, where I is an absolute
positive constant and L > 2. Let f(Z) : [—I, I[]**F — R%*L be any Lipchitz continuous function

with respect to some norm dy. Then, for g € m’h’s that approximates f within e precision, i.e.,
dy (f,g) < €, the parameter bounds in the transformer network class follow:

Ckq,Cily = O H2e74472). Coy, CHY° = O(e);

Cp,C3™ =0(Ie! -max ||f(2)||r); Cr=0(),

where A1 = O(I/€)*?*3 is the inverse-temperature scaling in the softmax function and O(-) hides
polynomial and logarithmic factors depending on d and L. Further, for all feed-forward layers,

maX{Hb1||OO7 ||b2||oo} = O<I€_1).

Proof. Hu et al. [2025c] provide parameter bounds for the universal approximation of transformers
on domain [0, 1]*%. We specify these bounds for approximation on domain [—1, I]¢*

Recall the construction of weight matrices in the proof of Theorem H.2. We achieve the universal
approximation by choosing “sufficiently large” granularity D and “sufficiently small” § (H.13).

To prove Lemma H.5, we first identify the order of §, D and Rpp in terms €. Then, we derive norm
bounds on matrices in two feed-forward layers 717, 75, and the self attention layer F54.

Bound on §. Recall the approximation of quantization function in (H.13). In each step function, we
have extra partition (1/D, 1/D + ¢). Therefore, it suffices to take 6 = o(1/D).

Bound on the Granularity D. Recall the contextual mapping step in the proof of Theorem H.2. The
total omitted duplicated points in the grid G¢, are ‘GC’D \G D‘ = |D~?. (2ID)*|, where Gp CGS
is the sub-grid consisting of sequences with non-duplicated tokens. Further, by the extreme value

theorem, || f[|P < By for a constant By > 0. Then, the difference between the target function f and
the piece-wise constant approximator g; with granularity D is bounded by

= ([152) - w2 lpaz)’
=o((p-@ID)* BT(l/D)dL)i)
=O0(D~P. k),

For p € [1,00), we have that e = O(D~%/?. [4L), This implies D = O(e~P/¢.[~L/P), Without loss
of generality, we drop I~ /P ¢ (0,1) and drop the constant p. Then, we have that D = O(e_l/ ),

Next, recall the piece-wise constant approximation (H.10), (H.11) and (H.12).
For Lipchitz continuous target function f, there exist a grid G p on domain [—1I, I]4* such that

dp(f(2),91(2)) < L¢l|Z = Z'||2 < Ly||Z = Z'||r < VdLLy/D,

where Z' € Gp and Ly is the Lipchitz constant with respect to the matrix 2-norm. Therefore, it
suffices to take € = v/dLL/D. Altogether, we take D = O(e~!) such that Theorem H.2 holds.

Next, we derive the norm bounds on transformer weight matrices.

* Bounds on W and W in F5. For the self-attention layer, we denote the separatedness of the
input tokens by (Vmin, Ymax, €s) and the separatedness of the output tokens by (v, ds).
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Recall Theorem H.1. We construct rank p matrix W¢ and Wi in the self-attention layer by
p P
WK:ZP'LC]: ERSXd, WQ :Zp;q;—l' ]Rsxd7

with the identity p, pi = (|V| + 1)*ds/(€5Ymin)- Then, the bounds on Wx ¢ follows

W),

€sYmin

Wikellz < [Wralr = (Wk) Wallr = 0(

6|V|)

€5Ymin

IWiklzo0 = [Wi) T Wallze = O

We identify the order of each terms. Recall the first step quantization (H.13). We have total (D)4~
input that are token-wise (1/D, 2I\/d, 1/D)-separated.

Further, since there are at most DI possible values that each entry can take, we have vocabulary
[V| = O((DI)%) and Yuin, €s = (2DI)~!. Further, from the proof of the second step contextual
mapping in Theorem H.1, we construct the self-attention such that J5 - A = 4 log L, where we
specify the choice of A in (H.25). Finally, by D = O(e™!) the bounds on Wk, follows

Wiqlls < Cro = O 72 I*H2) [Wigl2,00 < Oy = O\ 1e #072 . [442),

* Bounds on Wy and Wy in 54, From the proof of contextual mapping Theorem H.1, we have,
P
Wy = Zp//q//T Rsxd, Zp/// nT RdXS
with the identity ||p}’|| < €s/(4pYmax|[P}||) from (H.5), and p// € R® is any nonzero vector.
With the (Ymin = 1/D, Ymax = Vd, €5 = 1/D) separateness and D = O(e~ 1), we have
Wyl = suwp Wyl < Cv =0 (/p) =0 (Vi)

z||2=

= max [|(Wv)(ll2 < Op> = 0(p) = O(d),

[Woll:= sup [Worle < Co = O (V5 b ) = O (a™)

llz|l2=1

IWollzee = max [(Wo)iillz < €3 =0 (p-p™ - vhe - €) = 0 (477%).

Therefore,

IWovll2 = IWoWvllz < Cov = O(e);  [Wovllz,eo = [WoWvllz,e0 < o3 = O(e).

* Bounds on W; and W5 in FI'¥ Recall(H.15). By § = 0(1/D) and D = O(¢~ 1), we have

max{[|Willz, [Wall2} < C% = O(e™! - IDL);
max{[[Wi 2,00, [Wall2,00} < C3> = O(e™" - IDL).

* Bounds on W and W5 in FX¥. Recall the construction of bump function (H.24). We take

Rpp = O(exp(640A(ID)**?d?log L)),
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where (Yunin; Ymax, €) = (2Iv/d, 2(L +1)IV/d, 1/ D). Recall that D = O(¢~'). Then, we take

(ID)=%4=2 . Jog et

A= TG0 Tog L (H.25)
This gives
max{[|[Willz, [W2ll2} < CF = O(Ie™" - max || f(Z)| r),
max{[|[Willz,o0, [Well2,00} < CF* = O(Ie™" - max || f(Z)||r),
where Q = [—1, I]**L is the domain of the target function f.

* Bounds on Positional Encoding Matrix . By Corollary H.2.1, we have:

21 41 --- 2IL
E=1: 0 0
2 41 --- 2IL

Therefore, we have Cp = O(I).

Finally, recall that (i) u = FS4)(C) from (H.23) (ii) Coy = O(e) and (iii) Rpp = €~ by (H.25).
Then, the bound on the bias holds by the construction in (H.15), (H.16) and (H.23).

This completes the proof. O
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I Statistical Rates of Flow Matching Transformers (FMTs)

In this section, we present statistical rates for the first order flow, i.e., the velocity field, u;(x).

Specifically, we consider the target density function ¢; (x) in the Holder space (Definition I.1) with
sub-Gaussian property. Then, we bound the approximation and estimation error for u;(z). Further,
we extend these results to derive distribution estimation rates under the 2-Wasserstein distance.
Compared to high-order flow matching statistical rates Section 4, we remove the requirement of
Lipschitz continuousness of the velocity field u;(x).

Organizations. Appendix I.1 presents velocity approximation under a generic Holder smoothness
assumption. Appendix 1.2 adopts a stronger Holder smoothness assumption; this yields tighter
approximation error bounds toward minimax optimality in velocity estimation. Appendix 1.3 utilizes
these approximation results to develop velocity estimation bounds and distribution estimation rates.
Finally, Appendix 1.4 establishes the nearly minimax optimality of flow matching transformers.

I.1 Velocity Approximation: Generic Holder Smooth Data Distributions

Establishing our statistical theory begins with approximating the velocity using transformers. We
present the corresponding velocity approximation theory under the Holder smoothness assumption
on the initial data [Fu et al., 2024]. This theory ensures our approximation rate adaptive to the initial
data’s smoothness. First, we restate the definition of Holder space and Holder ball.

Definition I.1 (Definition 4.1 Restated: Holder Space). Let « € Zi, and let 8 = k; + v denote
the smoothness parameter, where k; = |3] and v € [0,1). For a function f : RY — R, the
Holder space H?(R?) is defined as the set of a-differentiable functions satisfying: H®(R%) =
{f:R* = R ||| fllags®ay < 0o}, where the Holder norm || f||3,s (ray satisfies:

0% f(x) — 0% f ()|
fllysmey = max sup|0¥f(x)|+ max sup .
£ 1136 e) el 0% f ()] o, S T I

Also, we define the Holder ball of radius B by H?(R?, B) := {f : R = R | || f|lsra) < B} .

Before presenting the main result of velocity approximation, we state our two assumptions: (i) the
Generic Holder Smooth assumption on the target distribution ¢(z1). (ii) the regularity assumption on
the first derivative of path coefficients. In particular, (i) and (ii) are the counterparts of Assumption 4.1
and Assumption 4.2 in the K order flow matching framework (Section 4) respectively. Notably, we
remove the Lipschitzness assumption via a more fine-grained analysis on the velocity field u;(x).

Assumption I.1 (Generic Holder Smooth Data). The density function ¢(z) belongs to Holder ball
of radius B > 0 with Holder index 3 > 0 (Definition 4.1), denoted by ¢(z1) € H?(R%, B). Also,
there exist constant C;, Co > 0 such that ¢(z1) < Cy exp(—C'2||:E1 ||§/2)

Assumption 1.2 (Path Regularity). Consider the affine conditional flow ) (z|z1) = px1 + 0.
The first-derivative of path coefficients ¢, and ¢ are continuous on [to, T|, where to, T € (0,1).

Remark I.1. We remark that such path assumption is general and applies to a number of common
scenarios. For instance, Lipman et al. [2024] present: (i) the conditional optimal transport schedule:
Yi(x|z1) = txg + (1 —1t)z, (i) the polynomial schedule: ¢ (z|z1) = t"x1 4 (1 —t")a, (iii) the linear
variance preserving schedule: ¢, (x|z1) = tx1 + v/ 1 — t?x. These cases satisfy Assumption 1.2.

We now present the velocity approximation for flow matching transformers.

Theorem 1.1 (Velocity Approximation with Transformers under Generic Holder Smoothness). As-
sume Assumption I.1 and Assumption [.2. For any precision parameter 0 < € < 1 and smoothness
parameter 3 > 0, let e < O(N~7) for some N € N. Then, for all t € [t, T] with o, T € (0, 1),
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there exists a transformer ug(z,t) € Tlg *#" such that

T
// lue(@) = uoa, DI - pe(@) dadt = O (BAN~7 - (log N)™+5+1).
to Rdz

Let d be the feature dimension and L be the sequence length defined by the flow matching reshape
layer in Definition B.3. Then, the parameter bounds in transformer network T}g 57 satisfy

Ckq,Cgg = O(ATIN*42B(1og N)*=12): Coy, Coy° = O(NP);
Cr, O3> = O(N?(log N)“25+1); Cp = 0(1); 7 = O(y/log N).

where A™! = O(N” -log N)*+3 is the inverse-temperature scaling in the softmax function and O(")
hides all polynomial factors depending on d, d, L, 3, Cy, Cs.

Proof Sketch. We adopt the following strategy:

e Step 1: Approximation on a Compact Domain via Transformer Universality. To reflect
the Holder smoothness of the target density ¢(x1), we begin by applying a multivariate Taylor
expansion to construct a compactly supported approximation of velocity field u(x). We then
approximate this function on a compact domain using the universal approximation of transformers.

* Step 2: Extension to the Full Domain via Sub-Gaussian Tails. We exploit the sub-Gaussian tail
behavior of the target distribution to control the approximation error outside the compact region.
Combining the errors from both regions yields the final approximation rate for the velocity field.

Please see Appendix J for a detailed proof. O

L2 Velocity Approximation: Stronger Holder Smooth Data Distributions

We obtain tighter velocity approximation rates than Appendix 1.1 by imposing stronger Holder
smoothness assumption on the target distribution g(x1).

Assumption 1.3 (Stronger Holder Smooth Data). Let C', C and C be positive constants. The
density function satisfies g(z1) = exp(—CQHleg/Q) - f(z1), where f belongs to Holder space
f(x1) € HP (R4, B) (Definition 4.1) and satisfies C; > f(z1) > C for all z;.

The density lower bound prevents f(x) from taking small values, ensuring well-conditioned ap-
proximation. Without this bound, small values of f(x) require a chosen threshold to maintain

uniform approximation. A positive lower bound eliminates the need for such adjustments, keeping
the approximation error controlled across the domain and enabling efficient convergence.

Assuming Assumption 1.3, we derive the velocity approximation for flow matching transformers.

Theorem 1.2 (Velocity Approximation with Transformers under Stronger Holder Smoothness).
Assume Assumption [.3 and Assumption [.2. For any precision parameter 0 < € < 1 and smoothness
parameter 3 > 0, let e < O(N ) for some N € N. Then, for all ¢t € [to, T] with t5, T € (0,1),

there exists a transformer ug(z,t) € T,Q **" such that
T
/ / lue(®) — uo (e, £)|2 - pe(z)dadt = O (BAN-28 (log N)%+8)
to Rdz
Further, the parameter bounds in the transformer network class follows Theorem I.1.
Proof Sketch. The proof strategy closely follows Theorem I.1:
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 Step 0: Velocity Decomposition. We invoke Assumption 1.3 to decompose the velocity field into
a target function that is lower bounded. This step mitigates the influence of low-density regions
and enables a more refined approximation analysis, in contrast to the setting under Assumption I.1.

* Step 1: Approximation with Transformer Universality on Compact Domain. To capture the
Holder regularity of the target density g(x1), we construct a compactly supported function as an
intermediary to approximate the velocity field u,(x) using multivariate Taylor expansion. We then
apply the universal approximation of transformers to approximate the constructed function.

e Step 2: Full Domain Approximation. We extend the approximation to the full space by lever-
aging the sub-Gaussian tail behavior, ensuring that the error outside the compact region remains
controlled. Then, we incorporate all errors terms to achieve the final approximation rates for u; ().

Please see Appendix K for a detailed proof. O

LI.3 Velocity Estimation and Distribution Estimation

In this section, we study the statistical estimation problems and develop sample complexity results
based on the established approximation results in Appendix 1.1 and Appendix I.2. Specifically, we
present the estimation error bound of flow matching transformers in Theorem 1.3. Applying the
velocity estimation rates, we further study the distribution estimation in Theorem 1.4.

Velocity Estimation Building on the transformer-based velocity approximation, we evaluate the
performance of the velocity estimator ug trained with i.i.d. data points {z;} ; by optimizing the
empirical loss (2.12). To quantify this, we define flow matching risk:

Definition 1.2 (Flow Matching Risk). Let g be the target distribution and X; ~ ¢. Given a
velocity estimator ug, we define the flow matching risk R (ug) as the expectation of the mean-squared
difference between the uy and the ground truth wu;:

1 T
Rlus) i= 7= [, B [luafar,) — wa(o)|3) dt,
0 Jty, Tt~Pt

where marginal probability path p, and marginal velocity field u; are induced by affine conditional
flow ¢ (z|z1) = pex1 + o follows (2.2), (2.3), (2.5) and (2.6).

Let @y be the trained velocity estimator with i.i.d samples {z;}? ;. Then the following theorem
presents upper bounds on the expectation of R (ug) w.r.t training samples {z;}?_,, where x; ~ gq.

Theorem L.3 (Velocity Estimation with Transformer). Let d be the feature dimension. Suppose we
choose the transformers as in Theorem I.1 and Theorem 1.2 correspondingly, then we have

e Assume Assumption I.1 and Assumption [.2. Then,

( I]? [R(ug)] = O(n‘ﬁ(logn)mdﬁ-wﬂg)-
Ziti g

e Assume Assumption 1.2 and Assumption [.3. Then,
{ H;: [R(tg)] = O(n_ﬁ(log n)20d$+4,3+20).
Ti}i g

Proof Sketch. Recall (2.12) from Section 2. We obtain the velocity estimator wg(x,t) € Tlg " by
minimizing the empirical conditional flow matching loss:

R 1 n T 1
== E i + 01 Xo,t) — (Hew; + 6+ Xo)|3]dt.
Lo = 3 [ gt B (et oo, = G+ 61X 13
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To derive the estimation error, we adopt a standard strategy in empirical process theory. This involves
bounding the generalization gap between empirical and true risk using covering number techniques:

 Step 1: Domain Truncation for Risk Control. We truncate the domain of the flow matching risk
and the flow matching loss to ensure the transformer network has a finite covering number. We
then control the error outside of the truncated domain by using the sub-Gaussian tail bound.

¢ Step 2: Analysis on the Complexity of the Transformer Network Class via Covering Number.
Using the norm bounds on transformer parameters from Appendix [.2, we derive an upper bound on
the covering number of the transformer networkfunction class. This captures the model complexity
required to achieve a desired approximation rate on the compact domain.

 Step 3: Final True Risk Upper Bound. We apply the covering number bound to control the
deviation between the empirical risk and the true risk. Lastly, we incorporate all sources of error

from previous steps to derive the final estimation rate for the learned velocity field @y (z, t) € T,!; o
via the minimization of the empirical conditional flow matching loss Lcpm(ug) in (2.12).

Please see Appendix L for a detailed proof. O

Distribution Estimation. Next, we analyze the distribution estimation rate for the velocity estimator
Uy through the 2-Wasserstein distance between estimated and true distributions. Based on the velocity
estimation results in Appendix [.3, the next theorem presents upper bounds on the 2-Wasserstein
distance between the target distribution and the estimated distribution induced by the velocity
estimator Uy trained from optimizing the empirical conditional loss (2.12).

Theorem 1.4 (Distribution Estimation under 2-Wasserstein Distance). Let 13T denote the estimated
distribution at time 7". Let d be the feature dimension.

* Assume Assumption I.1 and Assumption I.2. It holds

E [Wy(Pr, Pr)] = O(n~ 5270 (log n) 0d=+26+10),

* Assume Assumption [.2 and Assumption I.3. It holds

I [Wa(Pr, Pr)] = O(n~ 1715 (log n)10d=+26+10),
Titi

Proof Sketch. We derive the distribution estimation rate under the 2-Wasserstein distance by relating
it to the velocity estimation error through the flow dynamics. Our proof follows three steps:

 Step 1: Flow Deviation via Alekseev—Grobner Lemma. We apply the Alekseev—Grobner lemma
(Lemma M.2) to bound the deviation between the learned flow 1)y and the true flow % in terms of
the difference between the estimated velocity g (x,t) and true velocity fields u;(z).

e Step 2: Bounding the Jacobian via Gronwall’s Inequality. The flow deviation bound given
by the Alekseev—Grobner lemma involves the Jacobian matrix Dyg. To ensure the deviation
remains controlled over time, we use Gronwall’s inequality (Lemma M.1) along with the Lipschitz
continuity of the network to upper bound the Jacobian norm by an exponential function.

 Step 3: From Velocity Error to Wasserstein Distance. We integrate the velocity error over time

and apply the definition of the 2-Wasserstein metric to relate the flow deviation to W2(13T, Pr).
Substituting the velocity estimation error from Theorem 1.3 then gives the final convergence rate.

Please see Appendix M for a detailed proof. O
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I.4 Minimax Optimal Estimation

In Theorem 1.4, we present a fine-grained analysis of distribution estimation. In this section, we
further show that the derived estimation rates match the minimax lower bounds in Holder space under
the 2-Wasserstein metric in specific setting. We begin by recalling the minimax optimal rate for
distribution estimation over Holder smooth function classes.

Lemma I.1 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task of
estimating a probability distribution P(x;) with density belonging to the space
P = {q(z1)la(@1) € H*([-1,1]%, B),q(z1) > C},

Then, for any » > 1, 8 > 0 and d, > 2, we have
B+1

inf sup E [Wr(f’, P)| 2 n” %2,
P q(z1)€EP {=i}i,

where {z;}" , is a set of i.i.d samples drawn from distribution P, and P runs over all possible
estimators constructed from the data.

Proof. Please see Appendix N for a detailed proof. O

We show flow matching transformers match the minimax optimal rate under specific conditions.

Theorem L.5 (Minimax Optimality of Flow Matching Transformers). Under the setting of (16d +
18)(8 + 1) = dy + 20, the distribution estimation rate of flow matching transformers (Theorem 1.4)
matches the minimax lower bound of Holder distribution class in 2-Wasserstein distance up to a logn
and Lipschitz constants factors.

Proof. Please see Appendix N for a detailed proof. O
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J Proof of Theorem I.1

In this section, we use transformers to approximate velocity and give an upper bound of the velocity
approximation error. We prove Theorem I.1 following the three steps shown in the proof sketch.

Organizations. Appendix J.1 introduces auxiliary lemmas. Appendix J.2 establishes a bound
on the velocity approximation error over a bounded domain by applying the universal approxima-
tion of transformers. Appendix J.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

J.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for velocity approximation. Specifically, we decompose
the velocity field u;(x) into three components in Lemma J.1 based on the setting of affine conditional
flows (Section 2). To approximate each component, we clip the integral domain of z; in the integrals
defining @ (z,t), ®o(x,t), and P3(x,t) to a closed and bounded region in Lemma J.2. This step
allows us to perform the approximation on a bounded domain while controlling the error introduced
by restricting the integral. Furthermore, we revisit the bounds on the density function p;(z) in
{-distance, and extend these bounds to the velocity field u(z) in Lemma J.3 and Lemma J .4.

Decomposition of Velocity Field. We present the next lemma to decompose the velocity field u; ().
Constructing an approximator for u;(x) is difficult due to its complex structure. This decompo-
sition splits the velocity into three functions, each satisfying properties that make approximation
feasible. These components allow the use of sub-Gaussian assumptions on the target distribution
(Assumption I.1) and provide better control over the approximation error (Lemma J.9).

Lemma J.1 (Decomposition of Velocity Field). Under the flow matching setting (Section 2), the
velocity field follows a decomposition:

w(@) = B ) (H 0a(et) + (0 = By,

where
(I)l(.'l} t) — / 1 exp| — Hx — Mt - $1||2 . q(331)d$1
’ Rz Uf” (27)d=/2 207 ’

1 |z = pe - 21
P t) = o= e =W, d
tw=e [ e~ ) aein

2

i 1 Iz = g 2
CI) t) = . N e Y ) d .
(0 /R< o > o= (2m)da/? eXp( 207 a(z2) doy

Proof. By (2.5), the density function p;(z) has the form

pi() = / pe(zle) - q(er) day

1 ey — ||
—_— LA St S LI dzq.
Uglm(zﬂ)dwm /exp< 202 q(z1) da

Therefore, we have p;(x) = @1 (x, t).

Then, we rewrite the velocity field at time ¢ by

ug(x)

1
= () ~/Rdz ug(x|x1)pe(x|z1)g(xr) doy
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1 ; — - ,
= . / (Ut(mw + fug - xl) -pe(x|xr)g(xr)day (B} (2.6) and (2.8))
pe(z)  Jrao Ot
1 oz — - x J )
e (P B+ ) el
pt(I) Rdz Ot Ht Lt
:@@@”'Gr%mw—“ﬂ-%um+“-%@w>
Lt 1223
(By the definition of ®;, ®> and <l5,g)
=@y, 0) 7 (B (1) + (00— BTy (0,1)).
ot Mt
This completes the proof. O

Based on decomposition, we construct separate approximators for ®;(x, t), ®o(x,t), and P3(z, ).
Then, we approximate u;(x) by combining these approximations in Appendix J.2.

Clipping Integral Domain. Next lemma handles unbounded integral domain of ®;(z,t), ®2(z, 1),
and ®3(x,t). Lemma J.2 ensures that for any small error ¢ > 0 and any fixed z € R%, a bounded
domain B, dependent on € and x exists, where the integral outside B, remains bounded by e.

Lemma J.2 (Clipping the Multi-Index Gaussian Integral, Lemma A.8 of [Fu et al., 2024] and Lemma
F.9 of [Oko et al., 2023]). Assume Assumption I.1. Let d, be the dimension of the target data

1 and n € IN. Then, for any k € Zi”” with ||[l1 < n, 21 € R% and 0 < € < 1/e, there exists a
constant C'(n, d,;) > 1 such that

. 2
/ (Mt T x> ‘ - Q(m)d ~-exp _M dz; <,
Riz\ B, Ot O'tw(27T) o/ 20}

where (“-71=5)" = ((%@)”[1], A (%jﬂu[dm])“[dﬂ) is a multi-index vector and

x —01C(n,dy)+/log (1/e) =+ 0¢:C(n,d;)+/log (1/6)]
ot ’ Mt

N {C(n,dz)\/log(1/6)7C(n,dw)\/log(1/6)]%. a.1)

Remark J.1. The rationale behind this error choice follows from the need to control the clipping
error, when we construct a polynomial-like approximator for the components of the decomposed
velocity @1, ®,, and ®3 on the bounded domain B, . Specifically, these approximations capture
the smoothness of the density function in Holder space and leads to an error of order N~? up to a
logarithmic factor. Therefore, the clipping error is set to match this order.

B, = |

Bounds on Density Function and Velocity. We introduce two lemmas that provide bounds on the
density function p;(x) and the velocity field u;(z). These bounds are crucial because the maximum
output of the transformer network class plays a key role in analyzing the capacity of the loss function
class in estimation error analysis (Appendix 1.3). We start with the bounds on p;(z) and V log p;(z).

Lemma J.3 (Bounds on the Density Function, Lemma A.9 and Lemma A.10 of [Fu et al., 2024]).
Recall that py(z) = [pa, pe(z|z1)g(z1)dz1 and py(z|z1) = W exp(—|lz — mx1l3/207).
Assume Assumption I.1. There exist a C7 > 0 such that

c: <<M+v 01 ( Calle|2 )
—exp|——5— <) L 7 exp| 5| .
prE o2 !2) < (T Coonyer? 202 + C2o?)

Moreover, there exist a positive constant C, such that

C/
IV1og pi()]| o < 7; “(llzfl2 +1).
t
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By Lemma J.1, the velocity field u;(z) follows the decomposition

w() = y(a,8) 1 (5— Do) + (6 - "‘;j%s(x,t)).

With this expression, we apply Lemma J.3 to obtain bound on the velocity u;(x) in £, -distance.

Lemma J.4 ({,.-Bounds on the Velocity Field). Assume Assumption I.1. Then, there exists a
positive constant C5 such that

|14
lut(z) ||l o < E'Hfﬁ||oo+05 “(llzll2 +1).

Pt Oy
8

Proof. Recalling from Lemma J.1, we have the velocity decomposition

iy (z) = By (2, 6) (% By (x,t) + (60 — ”;‘:t)<1>3(x,t)),

where

1 = e - 21
Dy (x,t z/ exp| — -q(z1)dzy,
1( ) Réa O_gx (27T)dz/2 p( 20? Q( 1) 1

= e

1
2(,1) w/ﬂw o (2m)d=/2 eXp( 202 ) a(@y) da,

2

T — [t T 1 |z — gt - 1|
P t) = . _ |- dzq.
3(x,t) /Rdm ( ot ) ng(%r)dw/g eXp( 20_? q(x1) day

First, we rewrite the expression of ®s(x,t) and ®3(x,t). Then, we derive the bound on wu;(x).

* Step 1. Rewrite ®(x,t) and P3(x,t). By the definition of ®o(x,t) and ®5(z, ¢), it holds

|z — 1o - |

1
@ t = _— _—_ . d = . @ t .
2((E, ) x/ﬂgdm ng (27‘[‘)dz/2 eXp( 20_t2 > q(xl) T €z 1(1’7 )

Therefore, for all i € [d,], it holds

'at- xz,t)|e
E (1)2( vt)[]

_ ’mm

m ~<I>1(x,t)’. J.2)

Next, since the gradient of p,(x) has the expression

2

T — Uy - Ty 1 llo — e - z1]|
Vpe(z) = — : _E A Tl day,
pi(@) /( o? ) oglx(Qﬂ)dz/Q eXp( 207 ala) dry

we have ®3(z,t) = —Vpi(z) - 0y

Therefore, for all i € [d,], it holds

‘(dt - ’ltat) - ®y(x, t)][i]

H

(1.3)

_ ‘(a _ f““t) o Vpu(@)lil].

Ht

61



* Step 2. Bound Velocity Field. Based on Step 1, the following holds for all i € [d,]
s 1]

= a7 (B @l 0l + (60 = 2 0a(a, 1)

< |®y(z,0)L - (ﬂ - <I>2(a:,t)[i])‘ + ‘@1(1:,15)1 c= ”;“t) -y (e, 1))

t

(By triangle incquality)

210,07 ((4%F — 620) - (o)1)

— @y (z,0) " (“ff” -<I>1(x,t))‘ +

(By (J.2) and (].3))

fu . o t2 . .
=|=-z[i]| + — &y - |V log pe(x)[i]] (By Vlogp: = Vpi/pi)
Ht Ht
y ; ' . 1
< He -z[i]| + Cs Kty 0ot - ‘2 (|2 + 1)‘ (By Lemma J.3)
e t (o
Therefore, by symmetry,
. . 5
fue@oe < ol 052~ Ny 1),
Ht Mt
This completes the proof. O

J.2  Velocity Approximation on Bounded Domain

In this section, we approximate the velocity field u;(z) on a bounded domain through a two-step
approach. Specifically, the first step constructs three compactly supported continuous functions
Uy (z,t), Ua(z,t) and U3(z, t) as approximators for O (z,t), Po(x,t), and P3(z, t) in Lemma J.5,
Lemma J.6, and Lemma J.7 respectively. Then, the second step applies the universal approximation
to approximate Uy (z,t), Ua(z, t) and U5(z, t) with transformers in Lemma J.8. Bu incorporating
these steps, we derive the velocity approximation on a bounded domain in Lemma J.9.

Before proceeding, we reiterate on the velocity expression. By Lemma J.1, us(x) has the form

wy(z) = &y (1)L (%%(x,t) + (6 — ”;‘t’t s (2.1)).

where

1 2 — g - 1|
O (zt) = | ————exp| —ZTH T ) day,
1(x, t) /Rdz o0 (2 ) 2 exp( 207 q(z1) dzq
<I>(:ct)::r/ ;exp _w -q(a1) dw
e Rz 007 (27r)de/2 207 .

2

T — [t - X1 1 |z — pe - 21|
D t) = . L el e | N N das.
3(x,t) /Rdw < o ) O.tdm(2,ﬂ-)d1»/2 exp( 20? g(z1) day

Approximation of ®;(x,t). This step builds on [Hu et al., 2025¢, Fu et al., 2024].
By the expression of @4 (x, t):

_ 1 ||Ht561 —$||2
#wn - | @wp<‘2 o)
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_ ey 2|
202

we approximate g(x1) and exp( ) with k;-order Taylor polynomial and k5-order Taylor

polynomial on a bounded domain B, y, introduced in the integral clipping (Lemma J.2). Altogether,
we approximate ®; with the local polynomial ¥, (x,t) on B, n with the expression:

Inzlly gn,
= Y Yy 0

ng! Oz
vE[N]% [Ingll; <k

gl(xvnxavat)7 (J4)

r=Rp(%-4)

where n, € Z% is a multi-index, R > 0 is a constant depending on the Holder ball radius B,

* q1(z,ng,v,t) = H‘Zil Zk2<p 92(x[i], ny[7], v[i], k2), and

A I ! O A I A0 B A
o g2(xli], g [i], v]i], ko) = oo (R713 + 35— T) Tl (*T> dz;.

Hu et al. [2025c], Fu et al. [2024] consider the setting of conditional diffusion transformer with
classifier-free guidance. In contrast, we apply (J.4) by removing the condition y € R% .

Since ¥y (x, t) is an approximator of ®;(x,t), we need to ensure that it is lower bounded away from
zero so that the denominator of velocity u;(x) in Lemma J.1 does not blow up.

Therefore, we introduce an additional definition.

Definition J.1 (Truncated Density Approximator). Let €),y be a positive real number, and let
U, (z,t) be a scalar-valued function defined in (J.4). Then, we define

U (z,t) = max{¥;(z,t), €low |-
We specify the choice of €0y in Lemma J.9. For now, we approximate @4 (z, t) with Uy (x, t).

Lemma J.5 (Local Polynomial Approximation of ®;, Lemma A.4 of [Fu et al., 2024]). Assume
Assumption I.1. Let ¥y (, t) be the approximator of ®; (x,t). Then, for any ¢ € [0, 1] and = € R%,
it holds

datky
| (2,t) — ®1(z,t)] SBN P (logN)™ = .
Next, we approximate ®(z,t).

Approximation of ®;(z,¢). By Lemma J.1, the following identity holds

1 ( |z — e - 1))
of Mz =pe-zl”

(0] t) = _ . dei=2-® t). J.5
2(2,%) x/Rdx afI(Zw)dxm ex 20?2 > g(z1) doy =z~ 1(w,1) J-5

Building upon the local polynomial W1 (z,t), we use x - U1 (x, t) as the approximator of ®o(z,t).
Next lemma gives the approximation error rate of ®o(x,t) using ¥o(z,t) = x - Uy (x,1)
Lemma J.6 (Local Polynomial Approximation of ®5). Assume Assumption I.1. Let Uy (x, t) be

the local polynomial and W5 (2, t) :== ¥ (z,t). Let Cy(d,, B, C1, C2) be a positive constant. Then,
forany t € [0,1] and z € [~C,+/Tog N, C,.v/Iog N|% it holds for all i € [d,]

do+ky+1

s (@, 8)[i] = @a2(z,)li]|o S BN~7 (log N) ™~

Proof. Since Uy(x,t) = 2P (x,t) and Po(z,t) = 2P (z,t), for all ¢ € [d,], it holds

|Wa[i] = Pafi]| = 2Py [i] — 2z [i]]
< fafi]] - [y — @4 (By 0.5))

dg+ky

<z[i] - BN~? (logN)™ 2 (By LemmaJ.5)

63



dpt+kyi+1

SBN P (logN)™ = . (By « € [~Cy\/Tog N, Cav/Tog N]%)

This completes the proof. O
Approximation of ®5(z,t). Similarly, we have approximation results for ®3(z, t).

Lemma J.7 (Local Polynomial Approximation of ®3, Lemma A.6 of [Fu et al., 2024]). Assume
Assumption I.1. Let C,(dy, 8, C1, C2) be a positive constant. There exists local polynomial W3 (x,t)
such that for all t > 0, i € [d,] and x € [-C,+/log N, C,/Iog N|% it holds

dz+k1+1

W3z, 8)[i] — o Vpe(2)|[i]] S BN~ (log N)

Remark J.2. We clarify that Lemma J.7 gives the approximation of ®3(x,t) using ¥s(z,t).
First, the density at time ¢ has the form:

1 ||$—Mt'$1||2
= “d e g o S dzq.
pt(a?) /RdT U (27T)d N exp ( 203 q(:cl) 1

Then, the gradient of p;(x) with respect to z has the form:

2

oo pem) 1 Iz~ o]
v = - = T el ) () da.
pe() /Rdz < o? >af$(27r)dz/2 exp< 207 q(z1) dzy

By Lemma J.1, we have ®3(x,t) = |0t Vpe(2)|.
Therefore,

T+k1+1

Us(x, £)]i] — ®3(z, t)[i]| < BN~P(log N) . (By Lemma 1.7)

Velocity Approximation with Transformers on Bounded Domain. We first approximate the veloc-
ity approximator constructed with Uy (x,t), Uo(x,t) and U3 (x,t). We reiterate that transformers take
input d X L matrices, where d X L = d,. Then, the next lemma specifies the network configuration
for the approximating the velocity approximator with arbitrarily small error.

Lemma J.8 (Approximate Velocity Approximator with Transformers). Assume Assumption [.1.
Let C,(d,, 3, C1,Cs) be a positive constant. Further, let ¥(z,t) : [~Cy+/Iog N, C,/log N|% x
[0,1] — R4 be the target function:

L Wo(x,t)/ e + (0 — fre0¢/pe) Vs (, t)
WS (x,t) ’

U(x,t) =

Then, for any ¢ € [0,1] and any € € (0, 1), there exist a transformer g(z, t) € TI!;’S”“ such that

1
/ / lg(z,t) — U(z,t)||3dzdt < €.
0 J||z]leo<Cyy/log N

h,s,r

Furthermore, the parameter bounds in the transformer network class 7" satisfy

Oy O = OO (log N2 9-2); Gy, OB = O(e);
Cr, 0% = O(\/log N - e - max ||¥||5); Cr = O(1),

where A\~! = O(log N/€)*?+3 is the inverse-temperature scaling in the softmax function and O(-)
hides all polynomial factors depending on d;, d, L, 3, C1, Cs.

Proof. Since the path coefficients are smooth and the first-step approximators ¥y (x,t), Ua(x,t),
and W3 (z, t) integrate polynomials, the target function is Lipschitz continuous on a compact domain.
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Further, the reshape layer Definition B.4 does not harm the continuity of the element-wise {-
norm. This continuity ensures that the function satisfies the conditions for applying the universal
approximation of transformers. Also, we concatenate ¢ as a additional sequence. Then, we apply
Theorem H.2 withp = 2 and Z € [-C,+/Tog N, C,+/Tog N|**(L+1) 5 For any € € (0, 1), it holds

1/2
//Hg (z,t) (x t)||2d:vdt> <e. (By Theorem H.2)

The parameter bounds in the transformer network class follow Lemma H.5.

This completes the proof. O

Remark J.3. Lemma J.8 modifies Lemma 1.6 of [Hu et al., 2025c] by adapting the transformer
approximation to decomposed velocity components (Lemma J.1), whereas their work focuses on
approximating V log p;(x). Our flow matching framework eliminates the label y and reduces the
number of hidden dimensions to one.

Then, by analyzing the error accumulation from both the transformer approximation (Lemma J.8)
and the local polynomial approximations (Lemma J.5, Lemma J.6, and Lemma J.7), we establish a
bound on the velocity approximation error over a bounded domain.

Lemma J.9 (Velocity Approximation with Transformers on Bounded Domain). Assume Assump-

tion I.1 and Assumption L.3. Let tg, T € (0, 1). Let C (8, C2) and C5 be two positive constants. Let

€low = C3N 8 (log N )(d =Tk1)/2 Then, there exist a transformer 1y (z,t) € Th **" such that for all
€ [~Cu\/Tog N, Cyp\/Tog N|%, t € [to, T] and p;() > €1ow, it holds

/()T/Huy:(x) —ug(z,t)|15(pe(2))?dzdt < (|Nt| +‘

t Lt

) B2N 28 (log N) 5= +h+1

[t Ot

Furthermore, the transformer parameter bounds satisfy
Ckq,Cily = O(ATIN*+28(log N)*&=12): Coy, CHy = O(N™F);
Cr,C%% = O(N?(log N) ™ *1);  Cp=0(I); Cr=O0(/logN).

where A1 = O(N? -log N)*@+3 is the inverse-temperature scaling in the softmax function and O(-)
hides all polynomial factors depending on d;, d, L, 3, C1, Cs.

Proof. We use the notation “<” in our derivation when an inequality holds up to a constant factor.

We prove Lemma J.9 with following two steps.

* Step A: Approximate velocity with constructed function. We approximate the components
Dy (z,t), Pa(x,t), and P5(x, t) using local polynomials ¥4 (z, t), Us(x,t), and ¥3(z,t), respec-
tively. Based on the velocity decomposition given in Lemma J.1, we construct an approximation
¥(x,t) by combining these polynomial components to approximate the full velocity field u;(z).

* Step B: Approximate with Transformers. We leverage the universal approximation of transform-
ers (Appendix H) to approximate the constructed function V. Based on this approximation, we
derive the final velocity approximation rates with the required bounds on model parameters.

By Lemma J.1, the velocity field u;(x) takes the form

[1:0¢

wn () = By, £) (Z— Da(a, )+ (6 = HI) @ (a1)),

SPlease see Appendix H for a detailed proof.
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where

1 lz — pre - a1 |
Dy (x,t) = _— e e LI I dzy,
1(z,1) /Rdz UfI(QW)dz/2 eXP( 272 q(z1) dzy
Ba(c t>:x/ S SN L VS5 o DR
24y Rio O'tdm (27_‘_)(11/2 20_3 1 1

2

X — Ut T 1 Hx—,ut'le
Py (1) = . M —peeml®Y
3(:[:7 ) /]Rdm ( ot ) O'tdx(Q’]T)dJ_/Q eXP( 20't2 q(.’l’,‘l) X1

Moreover, by Lemma J.4, the bound on the velocity field in /,-distance follows

ue(2) | o 1.6)
< M N2lloo + ‘Mt _ gty (Jlz]]2 + 1) (By LemmaJ.4)
t Mt Ot

< M -y/log N + "ut -2t (v/1og N +1). (By z € [-Cxy/log N, C, \/l()gA\f{">
Mt Ht Ot

Set the transformer network output bound C'y- equal to the right-hand side of the expression. Then
we are now ready to present the proof of Lemma J.9.

e Step A: Approximation via Local Polynomial.

We construct the approximator for u:(z) based on Lemma J.5, Lemma J.6, and Lemma J.7.
Specifically, we define ¥(x,t) € R% with each element given by

where U is the upper-bound of the ground truth velocity u;(z) under the sub-Gaussian assumption
(Assumption I.1) and

U= M -4/log N + Cj5

Mt

G - (y/log N +1).

Ht Ot
(By Lemma J.4 and z € [~C./log N, C;+/log N|% )

Notice that, for all i € [d], the difference between ¥ (z, t)[i] and u.(x)[:] follows

e (2)[i] — (2, t)[d]|
fre®o[i]/pe + (60 — freor/pe) Psli] e Wolil/pe + (61 — fuoe/pe) Vsli]
o, ve

(B_v the definition of u; and ¥(zx, 1‘,))

fre®o[i]/pe + (00 — freoe/pe) Psli] e Walil/pe + (64 — fuoe/pe) V3li]

<
- ‘ vy N4
(T1)
n e ®a(i]/pe + (60 — freoe/pe) Pali]  fuPold]/pe + (64 — freoe/pe) P3li]
o, e '
(T2)

(By triangle incquality)
Next, we bound (T7) and (T5).
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— Step A.1: Bound term (T ). Recall Definition J.1. By the definition of )0y, We set

dT+k1
U (z,t) = max{\Ill(x t),C3- NP (logN)™ 2 }

By Lemma J.5, we have

1+k1

(W1 (w,t) = pe(2)| S BN~ P(log N) ™=

and (J.8) implies

dgt+ky

pi(z) — KBN P (logN)™ 2z < Uy(z,t),

for some positive constant K. Next, recall that we consider
dz+ky
C3N~P(logN)™ = < pi(x).
By setting Cs = 2K B, it holds

dx+k C
. 23N B (log N)~ 2

dz+k1

KBN~? (log N) < pi()/2,

leading to
k1

pe() = pi(2)/2 < pu(x) — KBN™P (log N) 5 < Wy (a,1).

As aresult, ps(x)/2 < ¥y < U$ holds.

J.8)

This allows us to replace the approximator ¥§ with p;(x) by dropping constant 1/2. Then,

(T1) J.9)
_ | ®a[i]/ g + (60 — fuoe/p) Pali]  fuWalil/p + (60 — fuor/ ) Vsli]
Wy Wy
2| ) ) ) 140 ) . : ‘
< 2| (@l wali) + (ot - ) (sl - ws[zl)’ (By 5 > pi(x)/2)
Pt | Mt M
2 [ 2 |
< iM | @o[i] — Woli)| + —|0r — Bt | |D5[i] — 3[i]| (By triangle incqu‘d]ity)
Pt e bt ot
1 y ) -
<. <|/lt| + ’dt _ Tt ) BN~ ’8(10g N)d e (By Lemma J.6 and Lemma J.7)
bt He Mt
1 y ) €T
S — (|NJt| + ﬁ — ) BN B(logN)d +k1+1 (By gt & [() l})
bt He Ot
1 a 1
< — BN "(log N) g (By Assumption 1.2)

Next, we bound (T3).

— Step A.2: Bound term (T53). By Lemma J.4 and ||z||2 < v/log N, it holds

|t () [d]|
W log NV 4 |0t _ Fe (v/log N +1)
e
:(mt'_i_ %_M) logN—|— ﬁ_&7
1223 Ot Lt et
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for all ¢ € [d,]. Next, by the decomposition of velocity in Lemma J.1, it holds

&¢2[Y/] + (Ut — ,U/to—t> @3[2] g (I)l (|Mt| > vV logN+ (I>1
Mt H Ht

t t

Ut Ot Mt
Therefore,
(Ta) @11
fbt . . Lot . 1 1
< | =Pat) + (0 — P3lt]| - | — — —
Mol + (50 M)gw\% -
|| o Lot 1 1
<® (—+— ) log N4 |0t — - By (J.10)
! ( Mt Ot Mt Ot ,ut (I)l vy ( )
12 1o}
(Mt t_Mt)m+ t ><I>1 |
et Ot Wt
(By factoring out 1/®; and l/\Ill)
1 . .
— ((m 2—&) log N + O't_,ut) S|Py — Wy (By\lf‘]'>pf(;(:)/2)
p Ht Ot Mt oy
]. 3‘
<. (("‘ +1ot ) log N + | 2 — ) BN~#(log N) =3
Pt Mt Oy Mt or Mt
(By Lemma J,S)
Combining (J.9) and (J.11), we have
pe - Jueli] — [d]| (J.12)
<(T1) - pe+ (T2) - py
< (M + ’“t -2 )BN_B(log Ny (By (1.9) and (J.11))
Mt Ht O
forall i € [d,].
Therefore,
pi - ue(z) — Uz, t)|3 (J.13)
<P} - dollue(@) = ¥ (z, 1)]% (By |- ll2 < dal - [l )
< (M + B o ) B2N 28 (log N)dethitl (By (1.12))
Mt Ht Ot

* Step B: Approximation with Transformer.

By Lemma J.8, there exists a transformer ug(z,t) € T}; " such that

// |lug (2, t) (z,t)]|3dzdt < € J.14)

By setting € :== N 7, it holds

[ [ luute) = wate. v s
< [ [t ) — 9 1Bast+ [ [ 100st) = ol ) Bt

(By triangle inequalily)
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g//pf.||ut(gc)—\Il(x,t)H%dxdt—f—//||\Il(gc,t)—ue(x,t)Hgdxdt (By0 < pe(x) < 1)

S
< (M+ Moy BZN’Qﬂ(logN)d”’““//dde—//H\I!(m,t)—ue(x,t)||§dxdt

Ht Mt Ot
(By (1.13))
. ) e .
< (M + e _ It ) BQN—Qﬁ(IOgN)%-HfH-l _"_// ||‘I’(l‘,f,) . U@(l‘,t)”%dxdt
Mot 1243 Ot
(By [|#]|oc < Cav/Tog N andt € [0,1])
J ’ 3 2 P
S (M o ) B2N %8 (log N) " +hi+1, (By (.14) and ¢ = N )
M 1223 Ot

By (J.6) and = € [~C,+/log N, C,+/log N]%, we have

U = 0O(y/1log N),
and by (J.12) we have

do+k1+1
2

[ueli] — i)l = O(N~7(log N) )-

This implies
de+ki+1
1V (z,t)]2 = O(\/@Jr NﬁB(logN)%)_
We take a looser bound on ¥(z, ¢) such that it holds for all d,:
dp+hky+1

W (2, t)ll2 < do|[¥(2,t)]|oc = O((log N)™—=").

Then, the parameter bounds follow Lemma J.8 with e = N %,

This completes the proof. O
J.3 Main Proof of Theorem I.1

We establish the velocity approximation with transformers in Lemma J.9. However, it is valid
under two settings: (i) the bounded domain = € [~C,+/log N, C,v/log N]% with some constant
C.(B8,Cs) (ii) the mild and high density region p;(x) > €jow. To obtain general approximation
results, we introduce two additional lemmas to tackle the uncontrolled region.

Lemma J.10 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume Assump-
tion I.1. Then, for any R4 > 1, t > 0, the following hold

_ CoR?
pe(z)de < R 2exp(—— ,
/|z||oo>R4 ! 2(u? + Ca0?)

Cs R2 )
2 d 2 Iy

we(2)||5 - pr(x)de < R exp| —————7—- .
/Ia;” SR || t( )”2 pt( ) ~ 4 p< 2(/1% 020'?)

Proof. For the first inequality, it follows

/ pe(z)dx
lz]loo > Ra

Collz|3 )
< exp| ———5——-—5< | dz By LemmaJ.3
/|x|oo>R4 Y ( 2(uf + Cao?) ( )
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Collz|3 )
s/ exp ( da By [|zl2 > ||zl
lalla> R 2(p7 + Co0?) ( )
_ CoR3
< Rd=—2 exp (—4> . By Lemma D.2 and dropping constant terms
~ 2(ui + Ca0?) (Bs i )

For the second inequality, it follows

/ e (@) - po(e)da
|zl oo > Ra

S / ||ut(x)||§ " eXp <_§2||x||%2) dz (By LemmaJ.S)
]l oo > R 2(pui + Ca07)
|fut] ’ﬂt oy )2 Collz[l3
S — 2l +|— = =] - (lzll2+1) ) exp| —5—F"—5 | dz
/|z|oczR4 ( it Il Mt Oy (lz ) 2(u? + Ca0?)

(By Lemma J.4)

S / ||x||2 €Xp (_Cﬂx”%) dz (B)‘ Assumption I 2)
~ 2 y ASS .
lzll oo > Ra 2(uf + Co0f)
Collz|l3
< / ]2 exp (— d By lell2 > [l
fals>Ra 2(ui + Ca07) ( )

2
< R exp (— 5 ol ) .

—_—— By Lemma D.2
(2 + Coo?) (B )

This completes the proof. O

Lemma J.11 (Bound on Low-Density Region, Modified from Lemma A.2 of [Fu et al., 2024]).
Assume Assumption I.1. Then, for any Rs, €1ow > 0, the following two inequalities hold

/ 1{[p2(2)] < ctow} - Pr(2)dz < BE - ctow,
[[z|lco < R5

/ L{|pe(2)] < etow} - lue(@)3 - pe(w)dz S B2 - erou.
llzlloo <Rs

Proof. The proof for the first inequality is identical to [Fu et al., 2024].

For the second inequality, it follows,

/ L{p()] < etow} - Jue(@)]3 - pe(x)dz
lzlle <Rs

| o
S [ Ul < and (L o+ |- 2
lzlloo <Rs5 Ht Ut O

. . . 2
g.
< | ('“' - \“ =~ el + 1)) da
12l oo <Rs Mt Mt Ot

S Rgm+2 * €low- (By Assumption 1‘2)

(el + 1)) p(a)da

(By Lemma J,4)

This completes the proof. O

Next, we present the formal proof of Theorem I.1.

Theorem J.1 (Theorem I.1 Restated: Velocity Approximation with Transformers under Generic
Holder Smoothness). Assume Assumption I.1 and Assumption [.2. For any precision parameter
0 < € < 1 and smoothness parameter 3 > 0, let ¢ < O(N~?) for some N € N. Then, for all
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t € [to, T] with to, T € (0,1), there exists a transformer ug(z, t) € T5>" such that
r 8
/ / Jlue(@) = uo(a, I3 - pi(2)dadt = O (BANF - (log N)™+5+1).
to Rdm

Furthermore, the parameter bounds in transformer network 7'12 7 satisfy

Ckq,Cry = O(ATIN*4H26(log N)*=42);  Coy,Coy = O(NP);
Cp, O3 = O(N(log N)“F° 1), Cp = O(I); Cr = O(+/logN).

where A\=! = O(N# - log N)*4*+3 is the inverse-temperature scaling in the softmax function and O(-)
hides all polynomial factors depending on d, d, L, 3, Cy, Cs.

Proof of Theorem I1. Let Rg := C,\/Tog N and C,, := /483(u? + Ca0})/Cs. Further, we have

Cr =0(/1ogN); €y =C3N7 (logN)(de'_kl)/z. (By Lemma J.9)

First, we decompose the target into three components and bound each of them

T
/ / g — well2 - po(e)dardt
to

T T
_ / / o — e |2pe(z)dz dt + / / 1{pe(2) < etow}[tto — e 2pe(@)da dt
to Jz|le>Rs to Jz|lec<Rs

(Tl) (T2)
T
+/ / ]]'{pt(x) Z EIOW}HUG - utH%pt(m)d{Edt .
to /||zllec <R

(Ts)

* Bound on (T;). It holds
[ e wl s
”xHoo>R6
< 2/ ||UQ||3 -pe(x) do + 2/ HutHg -p(x)da (By expanding Zg—norm)
lzlloo > Re llz]loo > Re
<od [ uelkopedde 2 [ Juldplede (81 < )l
llz]loo > Re lzlloo > Re

< / log N - py()da + / laell2 - pe()de.
[|z|loo > Re ||| co > R6

(T1.1) (T1.2)
(By C7 = O(y/log N) from Lemma J.9)

We bound (T 1) by

(T11)

= log N - pe(z)dz
llz]loo>Re

N

2
log N - Rgl””2 exp (—2 a5 )
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dp—
<logN-(logN) =
(By the choice of Rg = C+/log N and C,, = \/23(/1‘,2 + ('7-2(7}2)/(/'2)

We bound (T 2) by

(T1.2)
— [l pe)as
llz]loc > Re

< ('M 4+ |fe 0t )2 Rd= ( Calig > (ByL 1.10)
< | = — - = . expl ————7"—~ y Lemma J.

e He Ot 6 2(/i% + C2Ut2)

. . . 2
< <|”t|+ Kt Ot ) - (log N) ¥ N5,

Ht Mt Ot

(By the choice of Rg = C.+/log N and C,, = \/23(;[;) + (/'gcr'f)/(b)
Therefore,

(T1) S(T11)+ (Ti2) S ('“t' + ‘“t _ 0t

2
) -(log N)F - N=F.
H Mt O

* Bound on (T5). It holds

/ 1{pe(z) < etow]} - up — w3 - pe(z)da
|z|lcc <Re

< 2/ I{pt(z) < €1ow} - (||ue||§ + ||Ut||§) - pe(x)dx (By expanding (g—norm)
|zl oo <Rs
< 2/| H Hpi(z) < erow} - (da - [JugllZe + [Juel|3) - pe(a)da (By |- 13 < dall - %)
x oo<R6
< / Hpe < etow - usll% -pt(;zc)d,r—i—/ 1{p: < €low} - [Juel3 - pi () d.
llloe <Fo oo <R

(T2.1) (T2.2)
We bound (T2 1) by
(T2.1)
— [ 1n@) < and - @) - pulo)ds
lzllc <Rs

< log N - / ]l{pt(x) < ﬁlow} -pt(ﬂ;‘)dﬂ;‘ (By Cr = O(y/log N) from Lemma J. 9)
Z|| oo <Rg
< log N - elowRd” (By Lemma J. 11)
< log N - (log N)Tz €low (By the choice of Rg = Cz+/log N and C; = \/Zﬁ (1?2 + Ca02)/Cy )
da d,+k
< log N(log N)= - N=? (log N) . (By the choice of €1ow = CsN 7 (log N) et )

We bound (T.2) by
(T2.2)
=/ T{pu(z) < etow} - [1ue]2 - pr(a)dz
lz|loo <Rg
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S EIOWRg'”_2 (By Lemma J.1 l)
dp+2 - - - -
< €low(log N) ™2 (By the choice of Rg = Cyv/Tog N and C = \/2B(piZ + C207)/Cs)

dz+k1 d1+2

- (log N) ™=

dg 4k

(By the choice of €10w = CsN ™" (log N) ™ )

< N7 (logN)
Therefore,
(TQ) S (T2.1) + (T2_2) < Nﬁﬁ(log N)dz+k71+1_

* Bound on (T3). We bound term (T3) by

(Ts)
T
/ / 1{p:(x) > €low} - luo — uel|2 - pe(x)dadt
to J||z|lco <Rs
T
/ / *ﬂ{pt( ) > elow} : dz”Uo - Ut”% : (pt(m))zdxdt (By multiplying pf/pf)
to J|z]lce<Re Pt

T
/ n{pt( ) > €low} - dullug — uell3 - (pe(@))?dadt — (By 1/pi < 1/ei)
to |z]|co <Rg €low

d, 2
< ) (M + At ot ) - BEZN~?8(log N)%"‘kl‘*‘l (By LemmaJ.9)
€low Mt H o
—(dy+h1) y ' ; 3do
SR e e (L L I
Mt He Ot
(By the choice of Huw)
. . =9
= (M + Bt _ % ) -B2N—F. (logN)der%lH.
Mt Kt Ot

By the upper-bound on (T;), (T2) and (Ts), we have

T
/ / lue(z) — uo(ar, )3 - pe drdt
to

S(Ty) + (T ) (T3) (By to, T € (0,1))
|ﬂt G \? 2 n1—f dat 41
( o - ) 0 (B N=F . (log N)d=+% )
I 27— B dot+5§+1 .
( et ,Ut O¢ (B N ' (log N) ’ ) (By k< J)
<0 (BQN B (log N)d=+2 +1) (By Assumption I,Z)

Furthermore, the transformer parameter bounds follow Lemma J.9.

This completes the proof. O
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K Proof of Theorem 1.2

In this section, we derives a tighter error bound for velocity approximation using transformers.

Organizations. Appendix K.1 introduces auxiliary lemmas. Appendix K.2 establishes a bound on
the velocity approximation error over a bounded domain by applying the universal approximation
of transformers. Appendix K.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

K.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for velocity field approximation. Specifically,
Lemma K.1 applies a stronger Holder assumption to decompose the density function p:(z).
Lemma K.2 further decomposes the velocity into two components, differing from the decomposition
under a generic Holder assumption. Then, Lemma K.3 and Lemma K.4 establish upper and lower
bounds for the decomposed components and the velocity in /. -distance, respectively.

‘We begin with the density function decomposition.

Lemma K.1 (Density Function Decomposition, Lemma B.1 of [Fu et al., 2024]). Assume Assump-
tion 3. Then, the density function p;(«) and V log p;(z) follow the decomposition:

p (q;) — 1 exp _02”1"”% h(l‘ t)
! (4 + Cy - 07)d=/2 2(uf + Cao7) )

—CQ‘T vh(xvt)
1 =
V log p¢(x) 12 + Cyo2 h(zx,t)

~ 2
[ f@) = —pee] -~ _ . S
where h(m,t) = f W exp ( 7}72 d.’I;l, ¢ .— W and M = m.
Then, we give the velocity field decomposition.

Lemma K.2 (Velocity Decomposition under Stronger Holder Smoothness Assumption). Assume
Assumption L.3. Then, the velocity field u;(x) follows the decomposition:

,atcrf) < —Chx Vh(:c,t))
u? + Ceo? ~ h(z,t)

Remark K.1. The key aspect of Lemma K.2 is the velocity field u;(z) having a denominator
bounded away from zero. Specifically, we apply f(z1) > C to derive the lower bound on h(z,t)
(Lemma K.3). This removes the need to impose an additional lower threshold on the density function
approximator. In contrast, under Assumption I.1, the approximator is constrained to stay above the
threshold €., to prevent explosion, and therefore leads to slower approximation rate.

Proof. Our proof builds on [Fu et al., 2024].
By Lemma J.1, the velocity field u;(z) has the form

w(x) = & (2, 1) (% By (2, 1) + (G0 — ”;‘:t )<I>3(:r,t)),

where

1 |z _Mt'$1||2
Py (z,t :/ ——exp| ————————— | - q(z1) dx1,
(@) Ris Of (27)da/2 p( 207 ¢(x1) day

1 o = g
By(z,1) = o exp MR T ) d
et = [ exp( e RCALEY
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2

T — [t - X1 1 |l — pe - 21|
d t) = . L el o | N N das.
3(% ) /Rdw ( oy ) O.tdm(2,ﬂ-)d:,;/2 exp( 20_? (I(CB1) X1

Furthermore, we have

ot Vpe(x)

— 2
X Wt - T1 1 Hl‘ Mt 501”
— . Nl = p - @ ||
Ot / < Ut2 ) a.tdx (27‘r)d$/2 I ( 20? q(1'1) d:l:l

[ () e (e e 0
¢ o'tdz (27r)dz/2 2O't2

= — (1)3(.’)3, t).
Therefore,
u(z)
. o
=7t (ﬁ By + (64 — M)@g)
Mt H
=By (6¢ — @)atv log p¢ (By ®y = 201 and B3 = —0, Vp;)
Ht Ht
' 1,07 —C: Vh(x,t
= &x — (610¢ — HeTy ) < 5 24 5 (=, )> . (By Lemma K.l)
Ht Ht pi + Caoj h(x,t)
This completes the proof. O

The next lemma bounds h(x,t).

Lemma K.3 (Lemma B.8 of [Fu et al., 2024]). Assume Assumption I.3. Then, it holds

5 )
th(x,t)H < \/jB.
Kt - ™

Lemma K.3 ensures that h(z, t) remains bounded above and below by a constant. As a result, u; ()
stays finite for all z. This eliminates the need for an additional threshold €4y, (Definition J.1) in the
constructed approximator to prevent divergence, leading to a faster approximation rate.

Cl S h(l’,t) S B,

Bound on Velocity Field. We give the ¢,,-bound on w;(x) under stronger Holder assumption.

Lemma K.4 (Bounds on Velocity Field). Assume Assumption [.3. Then, there exist a positive
constant Cg such that

MOt

a ) .0_2 C
s () <%+wm—“fx 2

5)

as + Cg
G a7

ot — .

oo —

Proof. Recalling from Lemma K.2 and Lemma K.3, the velocity field has the expression

fbt L /Wf) ( —Coz n Vh(x,t))

U\ ) = — T — |00
(@) ot (610 2 pi + Cro? h(z,t)

where 7, = 0/ uf + 020,52, fy = Mt/(ﬂ% + C2Ut2) and

B 1 |21 — fie - 2|3
h(]},t) - /f(xl) (27‘(‘)dm/2 ] a_\gz - €Xp <_ 2at dz,
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By Lemma K.3 and Assumption 1.2, it holds

Vh(z,t) Tt \F 1
o < == -4/ =BC; = 0O(—). By L aK.3
| h(z,t) loo < Ot Tt (O't) (By Lemma K.3)
Therefore,
l[ue ()l o
1102 C 1,02 Vh(z,t)
<% 4 (50, — H171 = ~:Eoo+c'ra'utt'H -
= O G gy | el b e B t) ||
(By triangle inequality)
< ‘/Jt + (610 ﬂto? )( & ) - lz]|oo + Csl|o fuo (B\ ((B\' Lemma K 3)))
>~ | tot — : o] 6|10t — ) y ({ bY a k.
e pe pi + Coof
for some positive constant Clg.
This completes the proof. O

K.2 Velocity Approximation on Bounded Domain

In this section, we approximate the velocity field u,;(x) using transformers in two steps. The first step
constructs two compactly supported continuous functions, Q1 (z,t) and Q2 (z, t), as approximations
of h(x,t) and Vh(z,t) (Lemma K.5 and Lemma K.6). The second step applies the universal
approximation of transformers to approximate Q1 (z, t) and Q2(z, t) (Lemma K.7). Combining these
steps, we present the velocity approximation on a bounded domain in Lemma K.8.

Before proceeding, we reiterate the expression of decomposed velocity under Assumption I.3.

,ataf) < —Chx Vh(x,t))
ui+ Coo?  h(w,t)

1 .
ut(x) = ;zx — (O'tO't — e

Then, we construct two local polynomials as the approximators for h(x,t), and Vh(z,t).

Approximation of h(x,t) and Vh(z,t). The differences between

1 |z — fie x||§
h(xz,t) = - . _ d
(1) /f (1) @myiez e O ( 25, o

and

1 lle1r — e x||§
- - - . B S i | P I
Pe(a) /q(xl) (27m)d=/2 . o op ( 204 o

lie in (i) the target function f(z1) and ¢(x1) (ii) the path coefficients 6y, fi; and oy, pu;.

We define local polynomial Wy (x,t) as the approximator for p;(z) in (J.4). Given the differences
between h and p;, the construction of an approximator for h(z, t) follows the formulation of ¥;.

Formally, we approximate h(z, t) around = with:

Q=Y Y M0

ng! Oxn=
vE[N]dz ||ngl, <k

gl(xvn:mvvt)a (Kl)

r=Rp(%~4)

where n,, € Z% is a multi-index, Rg > 0 is a constant depending on the Holder ball radius B,
* g1(@,n0,0,) = [Ty Yo, < 92 (il mai], v, k2), and
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) 2\ M [d] Lo~ g2\ K2
. 21 [4] vli] |517M pex [i] ‘
ool ol ol ba) = b (04 4 = )" oy () s,

2(Tt

Remark K.2. Given the differences between h(x,t) and p;(z), we replace (i) "= @, /0x"= with
9" f/0x™ (ii) oy and p; with o, and [i; respectively. Then, the formulation of Q1 (x,t) follows
constructions identical to the density function approximator ¥y (x, t).

Remark K.3. When the context is clear, we refer to Q1 (z, t) as a local polynomial and distinguish
it from Wy (z,t). The generic Holder assumption (Assumption I.1) applies to Wy (x,t), while the
stronger Holder assumption (Assumption 1.3) applies to Q1 (z, t).

Then, we approximate h(z,t) using Q1 (x, ).

Lemma K.5 (Approximate of h(z,t), Lemma B.4 of [Fu et al., 2024]). Assume Assumption I.3.
Let Q1 (z, t) be the approximator of h(z,t), and Cy(d,, B, C1,C2) be a positive constant. Then, for
any t € [0,1] and 2 € [~C,+/Tog N, C,/Iog N|%, it holds

Q1 (2, ) — h(z,t)| S BN~# (log N) % .

Based on the approximation of h(x,t) using local polynomial Q1 (x, t), we construct a approximator
of Vh(z,t) following similar formulation

Definition K.1 (Approximator of VA(x,t)). We define Q2(z,t) as the approximator of Vh(z,t),
with each component Qs [¢] following the form of local polynomial presented in (K.1).

Then, we approximate h'(z,t) and Vh(z,t) with Q2(x,t).

Lemma K.6 (Approximate Vh(z,t), Lemma B.6 of [Fu et al., 2024]).  Assume Assumption I.3. Let
Cy(dy, B,C1,Cs) be a positive constant. Then, for all z € [~C,+/Iog N, Cyp/log N|%, i € [d,]
and ¢ > 0, it holds

A

Q2(z, t)[i] — T ~ - Vh(a,t)[i]| S BN’ (log N) 2

k1+1

Approximate Velocity Approximator with Transformers Before deriving the velocity approx-
imation with transformers on a bounded domain, we first approximate the velocity approximator
constructed with Q1 (x,t) and Q2 (x, t) using transformers.

Lemma K.7 (Approximate Velocity Approximators with Transformers Network). Assume As-
sumption [.3. Let C, be a positive constant dependent on d,,3,C; and C5. Then, for any

€ [~Cy\/Tog N, Cy+/log N|% and t € [0, 1], there exist a transformer T~ € Tg’” such that,

2 o~ .
0% —Cox NthQ['L] 2 2
- — — dxdt < e”.
/ /HT 33—}—(00 Kt >(M%+C2Ut2 * 1Q1 >||2 =

Further, the parameter bounds in the transformer network class follows Lemma J.8.

Proof. The proof closely follows Lemma J.8. O

Approximate Velocity with Transformers on Bounded Domain. We incorporate the approxima-
tions with @1, Q2 and T (x, t) to derive the velocity approximation on a bounded domain.

Lemma K.8 (Velocity Approximation with Transformers on Bounded Domain). Assume Assump-
tion 1.3. Then, for any z € [~C,+/log N, C,+/log N|% and t € [to,T] with a positive constant

Cy(dy, B,C1,Co) and to, T € (0,1), there exist a ug(z,t) € Tp>" such that

T
/ / |ue(z) — ug(z, t)||gpt(x)dmdt < B2N*2ﬁ(log N)kﬁdw.
to z|| 0o <C, log N
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Further, the parameter bounds in the transformer network class follows Lemma J.9.

Proof. Building upon [Hu et al., 2025¢, Fu et al., 2024], we prove Lemma K.8 with two steps.

e Step 1: Approximate velocity with constructed function. We approximate the decomposed
velocity field (Lemma K.2) and its components with approximator Q1 (x, t) and Q2(z, t).

* Step 2: Approximate with transformers. We apply the universal approximation of transformers
presented in Appendix H to approximate the constructed function in Step 1.

Before proceeding, we recall some previous lemmas to prepare our proof.

By Lemma K.2, the velocity follows the decomposition under Assumption I.3:

where G, = o1 /(17 + Co0})'/?, iy = e/ (47 + C207) and

1 |21 — i - 3
) (2n)de/2 50 “exp | — %, dzy
t

hat) = [ o

—T — (é’tJt —

HiOy ) (
Kt pi + G207

Vh(z,t)
h(z,t) > ’

Furthermore, by Lemma K.4, the bound on u;(z) in ¢.-distance follows

UM@WSV“+@W—
Mt

oy Ca

lzlloo + Cs|0

pe o pg A Coof

MOt

Ot —

First, we apply ||z|2 S vIog N to Lemma K.4. Next, we apply Lemma K.4 and Lemma K.6 to
construct the first-step approximator Q(x, ) € R%, with each element defined by:

ermm{ixwmt

The first element consists of approximators for h(x,t) and Vh(z,
that ¥(z, t) does not output value larger than the maximum of u,

—Caz 1V Qa2[i]

* Step A: Approximation via Local Polynomial.

HtOy ) (
Ht pi + Coof

(K.2)

T2 i}

t). The second element ensures
(x) in £

By symmetry, for all i € [d,], the difference between Q(z, t)[i] and u,(z)[i] follows

|ueli] — Q]|
— (6400 — o} ) (Vh[ Q2 )‘
1243 h Q1
-2
. Mt Ty Vh Mth >’
< |oiop —
= e ‘( h Uth
-2
= |6t0t — =idd ‘Vh[ +‘
et h
(T1

Next, we bound (T7) and (T3).
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Q1 0rQ1
(T2)
(By triangle inequality)




Step A.1: Bound (T;). By Lemma K.3, we have C; < h < B and

G >
TVh(x,t)H <\/ZB.
Kt 0o T

Moreover, by Lemma K.5, it holds

Q1 (2, ) — h(z,8)| S BN~ (log N) #

It implies that
kL
h(z,t) — K'BN P (log N)>

for some positive constant K. This gives

Q1 (,)] S BN (log N) 7.

Therefore,
Vhli Vhli
i - [228_
h—
< il

< \/E’itB h=Q
TV oy h@Q1

B
< ZN-Blog N)?.
(oF

~
t

Step 1.2: Bound (T53). It holds

VL) @l
Q1 otQ1

fie Q2] — = Vhli]

@1

(T2) =

IN
D

8]

Z N~Blog N) ™=
o

N

Combining bounds on (T;) and (T2), it holds

|ueli] — Q[d]|
.2
. o
< |dror — HOL] - (T1) + (T2)
V2
< |00 — P2L BN (log N) =,
Mt

for all i € [d].
Therefore, by symmetry, it holds

||’U¢(CC) - Q(.’E,t)H%
< dy|Jug(x) — Q(a, )| %
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(K.3)

(By Lemma K.S)

(By factoring out /71,/3,)

(By (K.3) and Lemma K.6)

(K.4)

(K.5)
(By Il ll2 < dzll - ll)



2
G1op — —L| BEN"*(log N)™. (By (K4))

* Step B: Approximation with Transformers.

By Lemma K.7, there exists a transformer ug(x,t) € T,fg "™ such that

[0} —Chzx /.ttVQg[i] 9 9
t) — = — dzdt < €.
// ||u9 x, Z‘ + (UtUt m )(,ut T CQO’t O'th )”2 xdt < €

By setting € := N 7, the velocity approximation using transformers follows

//PtHUt(x) — ug(z,t)||3dxdt

< [ [ mlhuo) - @) ot + [ [ pul@te,t) ~ o, ) doc

(By triangle inequality)

S//Hut (z t)||2dxdt+//||Q (2,8) — upla, B)|2deds  (By0 < pi(e) < 1)

2
<510, — P92 | g2 28 10 N //da:dt+/||Q 2,1) — ug(z, t)|3dedt (By (K.5)
Mt
.92
< |6voy — PHIL] g2 N=28(10g N1 +s / 10, £) — ug(x, 1) |2dadt
[t
(Byf € (0,1) and ||z||cc < Crv/log A\Y)
. 212
N i’ Bszw(log N)k1+d””, (By Lemma K,7)
Ht
< BEN 2 (log N)k1Fd= (By Assumption 12)

By Lemma K 4, it holds

e ()] o
. . 2 .
ot . MOy Cs . MOt
<|— 4+ (6104 — Nlz||loe + Color — . By Lemma K.4
” (G104 m )(M%JFCQU?) ||l 6|0 ( )
< O(y/log N). (By Assumption 1.2)

Therefore, we set transformer output bound C'r := O(||u¢(x)|| .. ). Then, the parameter bounds in
the transformer network follow Lemma J.9.

This completes the proof. O

K.3 Main Proof of Theorem 1.2

In Lemma J.9, we give the velocity field approximation using transformer on a bounded domain = €
[~Cxv/Tog N, C,+/Iog N|% under stronger Holder assumption. To obtain general approximation
result, we introduce the next lemma that bounds the uncontrolled region.

Lemma K.9 (Truncation of x, Modified from Lemma B.2 of [Fu et al., 2024]). Assume Assump-
tion [.3. Then, for any R; > 1 and ¢ > 0, the following hold

_ CoR?
pe(z)dz < R%=~Zexp (——
/IzllooZR7 ' ! 2(p2 + Coo?)
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CoR2
u(2)||? - pe(z)dz < R% ex <—#>
Ly @B pude 5 R exp 50 G

Proof. The first part of the proof is identical to Lemma J.10
Recall Lemma J.3. The density function at time ¢ is upper bounded by

&) ( Calz|13 >
P s Xp| —————5~ By dropping constant term
'S W G P\ 3G + o) ( )
C 2
< o (50l ).
2(u7 + Caof)
Furthermore, by Lemma K.4 we have
[Jue ()] o (K.6)
<B4 (o~ B P+ il — B4
T T D pE 4 Cao? i
< ||.13||Oo (By Assumption I.2)
< [lzl2- Byl lleo <1~ ll2)
Therefore, the second inequality follows
[ @l
llzlloo > Rz
<d [ ulo)pla)ds (By -1l < .l )
llz]loo > R7
S / ][5 - pe(2)da (By (K.6))
lzlloo > 17
Ca|lz3
S / l|2||3 - exp (—2 dz By Lemma J.3
lelo2Rr 2(ui + C207) ( )
Calz13
< ol exp - da By llell > ]~
/|z|2>R7 ? 2(pf + C207) ( )
CyR2
< R ex (—7). By Lemma D.2
TP\ 507+ Cood) (B )
This completes the proof. O

Next, we present the main proof of Theorem 1.2

Theorem K.1 (Theorem 1.2 Restated: Velocity Approximation with Transformers under Stronger
Holder Smoothness). Assume Assumption I.3 and Assumption I.2. For any precision parameter
0 < € < 1 and smoothness parameter 3 > 0, let ¢ < O(N~?) for some N € N. Then, for all

t € [to, T with to, T € (0,1), there exists a transformer ug(z, t) € Tp>" such that

T
/ / lue(2) — o (@, D3 - pr(@)dedt = O (B2N~28(log N)=+5)
to JRdz

Further, the parameter bounds in the transformer network class follows Theorem I.1.
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Proof of Theorem 1.2. Recall Lemma K.8, Lemma K.9. We have C7 = O(y/log N) and we set

2 2
Ry \/ 18(4? + Cao}) log N “n

Co

Then, it holds

/toT /Rd lug(x) — ue(@)|[3pe(z)dadt

T T
_ uxfutxgtxac ux*Utﬂfgtxx
Lo ) —wlndzes [ ) -l

) ug(2)]|3 + [lue(2)[|3) pe(z)d ' up(z) — up(2)||2pe(x)dz
<2f [ (ol @B s [ o) o)

(By expanding || - Hf)

T T
S o @) pledadt [ [ fuale) - (o)l odnde
to J|zlleo>Rs to J|zllec<Rs
(By Cr = O(vIog N))

CyR?
< (log N - R%>=2 Rl < 2 ) / / - dadt
< (log 3+ R37)exp 5007 + Coo?) . l[ug(x) — ug(2)||3pe(x)da

(By Lemma K. 9)

T
SUogM) N2 [ [ ug(e) - wnla) (oo (By K7)
to Z||oo <R3
< (log N)%wa + B2N~28(log N)k1td= (By Lemma K.8)
=0 (B*N P (log N)kHd=) | (By k1 < B)

Furthermore, the parameter bounds in transformer network follow Lemma K.8.

This completes the proof. O
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L Proof of Theorem 1.3

In this section, we prove Theorem [.3 following the three steps presented in the proof sketch.

Organizations. Appendix L.1 provides fundamental definitions of flow matching and discusses key
properties of the flow matching loss. Appendix L.2 introduces several auxiliary lemmas that support
our proof. Finally, Appendix L.3 presents the main proof of Theorem I.3.

L.1 Preliminaries

In this section, we consider affine conditional flows 91 (x|z1) = ptx1 + orx follows Section 2. Given
a velocity approximator ug, we aim to bound the following flow matching risk R (ug):

T
1
Rew) = [ s B ol )~ w(Xo 1] dr, @)

where marginal probability path p, and marginal velocity field u; are induced by affine conditional
flow ¢ (2] X1) = ue X1 + o follows (2.2), (2.3), (2.5) and (2.6).

In practice, we use conditional flow matching loss to train velocity estimator uyg:

Definition L.1 (Conditional Flow Matching). Let ¢ be the ground truth distribution and the normal

distribution N (0, I') be the source distribution p. Considering affine conditional flows )¢ (x|z1) =
w: X1 + ozx, we define the loss function and the conditional flow matching loss:

1 (" : .
foug) = 7 /t o B ol + 00Xo,6) = i + 0 Xo) 3,
1 r 5
c = E Xo, 1) — (s X1 + 64 Xo) 2]t
crm(ug) T—to/t X1~q7X0~N(0,1)H|UO(Mt:E+Ut 0,t) — (e X1 + 6¢Xo)||2]

Remark L.1. Holderrieth et al. [2025] prove that the gradients of the flow matching loss (risk) and
the conditional flow matching loss coincide. Therefore, minimizing the flow matching loss (risk)
R(ug) is equivalent to minimizing the conditional flow matching loss Lcpm (ug).

To better evaluate the estimator ug, now we introduce the empirical flow matching risk ﬁ(ug).

Definition L.2 (Empirical Risk). Consider a velocity estimator ug € T];L *" and i.i.d training

samples {z;}7 ,, the empirical conditional flow matching loss Lerm(ug) = LS (w5 ug). Let
u* := uy be the ground truth velocity field, we define empirical flow matching risk:

N N R 1 |
R(ug) := Lcerm(ug) — Lopm(u™) = - Zé(wi;ua) - Zﬂ(xi;u*).

=1 =1

Remark L.2. Notice that R(u*) = 0 since u* is the ground truth velocity field. Furthermore, the
fact that the gradients of the flow matching loss (risk) and the conditional flow matching loss coincide
implies that R(U@) = R(UQ) — R(u*) = £CFM(U0) — [,CFM(U*).

Remark L.3 (Unbiased Property). We use E&FM and R’ to denote the conditional flow matching
loss and empirical risk with training samples {z}"_;. Then for any velocity estimator ug, the i.i.d.

~ ~

assumption implies that E,/y»  [Lopy(ug)] = Lorm(ue), leading to E¢yryn [R'(ug)] = R(up).

Next, we introduce the truncated version of (i) loss function £(z; ug), (ii) conditional flow matching
loss Lerm(ug), (iii) the conditional flow matching risk, R (ug) (iv) the empirical risk R (ug).
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Definition L.3 (Domain Truncation of Loss and Risk). Given £(x;ug), Lcorm(ug), R(ug) and
R(ug), we define their truncated counterparts on a bounded domain D := [—D, D]% by

07 (5 up) = Lz ug) L{||z]|oo < D},  LEP (ug) = L(ug)1{||z|s < D},
R (up) = R(x;ug) 1{|l|o < D}, R (ug) = R(ug) 1|zl < D},

where D > 0 is a constant.

With Definition L.3, we refer to /779 (z; ug), LEBIE (1), R (14) and RITIC(u4) as truncated
loss, truncated CFM loss, truncated risk and truncated empirical risk respectively.

L.2 Auxiliary lemmas

Since the target distribution ¢(z1 ) is unknown, direct computation of the risk is infeasible. Therefore,
we first decompose the estimation error into four components and present supporting lemmas to
bound each of them. Then, we incorporate these results in the main proof in Appendix L.3.

Estimation Error Decomposition. Let uy be the optimizer of the empirical conditional flow

matching loss ZCFM(U(;) using i.i.d samples {z;}" ;. Next, we introduce a different set of i.i.d
samples {z;}"_; independent of the training sample {x; };._;. Then, we decompose E(,.}» [R(up)]:

B R@)I= B | B[R0 -R )|

{=i}7, {=:}7o, =i,

()

E {7’5/ brune g,y Rtrunc (ae)H

8|
{ea}i, =i,

(In

FLE [RU () — R(an) | + WE [R@)] - (L2)

(111) av)

We refer to terms (I) and (I11) as truncation error, and we control these errors by leveraging the
sub-Gaussian assumption in Lemma L.1. Then, we derive the generalization bound to control term
(IT) using covering number in Lemma L.5 and Lemma L.6. Finally, we apply the approximation error
using transformers to bound term (IV) in Lemma L.8.

Truncation Error. We apply the sub-Gaussian assumption to bound the truncation error.

Lemma L.1 (Upper Bound on the Truncation Error). Assume Assumption L.1. Let tg, T € (0, 1)
and ug(x, t) be the velocity approximators in Theorem I.1 and Theorem 1.2. Then, it holds

1
E[|¢(x; ug) — 07" (w;u0)|] S Dé= eXp<—202D2> log N forany ¢t € [to,T].
T

Proof. Our proof builds on Section D.2 of [Fu et al., 2024]. By Theorem 1.1 and Theorem 1.2, the
transformers output bound C'7 = O(+y/log N). Then, for all approximator uy € T,Q ST it holds

E[|0(x;ug) — 0" (z;ug) ]

= Ef[é(z; ug)1[[|z]| > D]] (By Definition L.3)
1 T )

= E ug — (figx + gy q(x)dxdt By Definition L.1

T — to /to /z|>D a:o~N(0J>H| (te wo)ll2lal) ( )

< 2 /T/ E  (llugll? + e + drzol2lg(x)dzdt  (By expanding the f2-norm)

< UuUg T+ orx q(xr)dx y expanding the />-norm
T'—to Jiy Jjz|>D zo~N(0.D) ? e ol
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2 ! 2 1
N E ugl|2 + || fisz + O ex (—C’ T 2)dxdt
T — 1o /to /z|>Dzo~N(o,1)H| ollz + [l 12oll5] exp 5 o1[Edb

(By Assumption 1.1 )

2 T 5 1
< E  [log N + ||titx + drxol|5) ex <C x 2>d1’dt
T o BN+ e+ il exp( 5l
(By Cr = O(VIog N))

1
< / / (log N + 62d + ji?||2]|3) exp (—Cg||x|§>dxdt (By zo ~ N(0,1))
T—t0Ji, Jyzi=D

D= i D% -1 T
o DU en(—5 D) / (log N + 62d)dt + xp(—5C2 D7) / f2dt
to

~ T —to to T —to
(By Lemma D.Z)
1
< D= exp <_202D2> log N. (By Assumption I.Z)
This completes the proof. O

Covering Number of Loss Function Class with Transformer Estimator. Recall (I) in (L.2):

1) = E E thrunc Rtrunc :| .
) {za}is, in o [ (t) = @ )}

To derive an upper bound on (II), we introduce (i) the covering number technique in Lemma L.5 and
Lemma L.6 (ii) the generalization error bound to bound in Lemma L.8.

We begin with the definition of covering number.
Definition L.4 (Covering Number). Let {2 be a compact domain and {z;}!_, be data drawn from
distribution P. Denote the joint distribution {z;}? ; ~ P" .= P ® --- ® P. Given a function class

F,at € Q,anorm || -|| and a €, > 0, the e.-covering number N(e Fo{zi oy x Q] - ||) is the
smallest size of a collection { f;}1¥.; C F such that for any f € F, there exists a j € [N | satisfying

S g | f(xi,t) — fi(zs, t)]| <e (L.3)

Also, we define the covering number with respect to the data distribution P and size n as

N(e, F, PP x Q|- |) == sup  N(e,F,{z:}ie, x Q| - 1))

{Zi}?lePn
Further, for Q = (), we denote the covering number by N (e, F, {z;}?, | - |) and N (e, F, P™, || - ||)-

Remark L.4 (Covering Number of Transformer Network Class). We define the covering number
over domain {x;}7 ; x € to align with the flow matching loss formulation in Definition L.1, where
temporal dependence in transformers introduces no additional statistical error. Specifically, the loss
averages over the time component, unlike the n i.i.d. data points sampled from target distribution ¢™.

Next, we derive an upper bound on the covering number of transformer networks. Our proof builds
on [Edelman et al., 2022] and studies the class in Definition B.4, with a self-attention layer that
applies softmax under inverse-temperature scaling and a feed-forward layer with ReLU activation.

Covering Number of Linear Function Class. Our norm-based upper bound on the covering number
of the transformer network class extends the classical norm-based bound for the linear function class:

Lemma L.2 (Covering Number of Linear Function Class, Lemma 4.6 of [Edelman et al., 2022] and
[Zhang, 2002]). Let z1,..., 2, € R? be sample points satisfying ||z;|| < Bx for alli € [n]. Then,
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for linear function class F := {f : 2 — Wz | W € R % ||W |21 < Bw, Bw > 0}, it holds:

B% B2
log N'(e, F, {zi}izs; [l - [loo) S — 57 log (d'n) forany €>0.

Remark L.5 (Covering Number Equivalence). We remark that Lemma L.2 applies to our feed-
forward layer for two reasons. First, the bias terms b; and by admit an augmented form. By
appending a bottom row of ones to Z and set Wy = (W73, by), it holds that W1 Z + b = W1 Z,
where W, € R4 b, € R, and W, € R™*(@+D) 7 ¢ RE+D*L Thjg two forms define the same
function class. Second, the norm bound in Lemma H.5 keeps the biases on the same order as the
matrices operator. Since our < and O(-) notation hides polynomial and logarithmic factors in d and
L, Lemma L.2 gives the covering number for the linear class in our feed-forward layer with biases.

Following [Edelman et al., 2022], we extend Lemma L.2 to a transformer block. We view the block as
a composition of linear function classes. We construct covers for each linear function class, balance
the errors across components, and minimize the size of the concatenated cover using the next lemmas:

Lemma L.3 (Lemma A.8 of [Edelman et al., 2022]). Consider the following optimization problem:

min Z % subject to Zwixi =C (L.4)
=1 1

LlyeeyTm 7 X
o =l

for some «;, w; and a constant C. Then, (L.4) has solution

1 o203
radw? ¢ )
M when xz‘:ifz'(az)ei'
C Yl afws

Wi

Equipped with Lemma L.3, we have the upper bound for the covering number of transformer block:

Lemma L.4 (Covering Number of Transformer Block, Modified from Corollary 4.5 of [Edelman et al.,
2022]). Let {z;}? ; be sample points satisfying max; ||z;||cc < D for some constant D > 0 and
R(+) : R%= — R4*L be the reshape layer (Definition B.3). Let {Z;}™; = {R(z;)}~,, F € R¥*E
be the positional encoding and TI%’S’T(Z ) denote a two-layer transformer class (Definition B.1) with
single-head self-attention and s-hidden dimension and 7-MLP dimension. Then, it holds:

log N (e, T AZi}iz1s | o)
< log(nl) o?((C3™)E + (ACr)*CovCR3)

R 2
€

2
3

+ (©res)?)’

where o := O(C%CovCkq(D + Cg)).

Proof. Our proof builds on [Edelman et al., 2022] by incorporating the scaling A > 0 for the
column-wise softmax function. For Z € [—D, D]**L and Wy, W € R**9, we define

Frq ={f:2— Wk2)"(WoZ) | Wkq = WgWq,|[Wkqll2 < Ckq}
for some constant D > 0. Similarly, for Wy, € R**% and Wy € R4**, we define

Fov={f:Z—=Wo -WyZ|Wov =WoWy,|[Wov|2 < Cov}.

Recall Remark L.5. For feed-forward layer, we define:

FEO = {f:Z — WoReLUW1 Z] | [[Wi]2, [Wa|l2 < Cr}.
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(k)

For simplicity, we denote the k-th column of Z; by z;"’ for all i € [n]. First observe that

~ -~

max [|f(Z:) — F(Zi)|ooo = max__[If(z) = F)|lo (L.5)
i€[n] 1€[n],kE€[L]

for any distinct f, ]?in Frqg,Fov or FFF)_ With this, we consider {Z;}?_, as nL samples in
[~ D, D]* and apply Lemma L.2 to construct covers Crcq, Coy and Cpr for Fr g, Foy and FFF),

Covering Number for Fx and Foy. Since Z; € [—D, D]?*L, for any i, j € [n] and k € [L], we
have that || f(={")) — £(={"))|13 < dD? - || (Wi Wq)Z|3. Thus, by Lemma L.2 and (L.5), it holds

D3C%.
log N (e, Fra, {Zi}i—i; || o) S 2 QQ log (nL), (L.6)
e

where < hides polynomial factors dependent on d and L. Similarly, for Foy, it holds

D2CZ
log N (€ov Fov, {Zi}iai || - llee) $ =52 log (nL), (L.7)
ov

That is, we have cover Cx g, Cov for Fxq, Fov whose sizes are upper-bounded by (L.6) and (L.7).

By triangle inequality and by Lemma B.2, for any Wi, Wg € Fgq and any Wo, Wy € Fov, there

exist some Wi, Wo € Cxq and Wo, Wy € Cov such that for all ¢ € [n] and all k& € [L], it holds
[Wo Wy 2{") Softmax[(Wic2{") T (Wo2{")] = Wo (W 2{") Softmax[(Wic2{") T (Wo2{)]|

(L.8)
< |[Wo(Wy 2™) Softmax[ (Wi 2F) T (Woz ™)) — Wo (W 2™ Softmax | (Wi 2) T (We 2|
M)
+ [ Wo Wy 2™ Softmax [ (Wi 2™ T (W 2™ — Wo (W 2™ Softmax[(Wi 2F) T (W 2|

(In

(By triangle incqualil)r)
S [WoWy = WoWy)=" ||+ [[WoWy 2 ||| Softmax| (Wi ()T (Wq2{")] — Softmax[(Wi2{) T (We2{")]|

K2 K2

@™ (ID)

By || Softmax[]||r < (]L)

<
< (WoWy — WoWy)2t" || + Cov D| Softmax| (Wi 2{ ) T (Wqz")] — Softmax[(Wi2{") T (Wqz{)]]|

I (I1) \
(By [Wov|| < Cov and | :jl’Hx < D)

< cov + Cov D Softmax| (Wi ") T (Woz*)] — Softmax[(WizF) T (Wo M|
(1)

(By (L.6))

Seov + 2)\C’ovD||(W\Kzi(k))T(ﬁV\in(k)) - (WKzi(k))T(Wszk))H (By Lemma B.2)
(1)

<eov +2XCov Degg. (By (L.7))

Then, we have a cover for the self-attention layer

Csa = {f 2 — Wo(sz) Softmax[(/WKZ)T(/WQZ)] | W0WV € Cov,W[—EWQ € CKQ}.
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Covering Number for %), Similarly, we apply Lemma L.2 twice for the inner and outer linear
function function class operated by W, and W5. Specifically, we construct cover C; and Cs for

FE e {f:Z s WiZ [ W2 < Cp} and FFY = {f:Z 5 WoZ | |[Wals < Cp)}

respectively. Then, by Lemma L.2, we have cover C; and Cy for

(FF) ¢ n DC
log NV (ep1, Fy  AZiY i lloo) S = log (nL). (L.9)
71
and
(FF) (o 1n D>C},
log NV (epa, Fy  AZiY il lloo) S = log (nL). (L.10)
F2

That is, we have cover C;, Cy for F; whose sizes are upper-bounded by (L.9) and (L.10).

Let F(54) (Z) denote the self-attention layer with weights chosen from cover Csa. For any W7,
Wi, Wo, Wo, Wy, there exist some W, € C; and FSA) such that for all i € [n], k € [L], it holds

Wy 0 FEN (M) — Wy 0 FED ()| (L.11)
< Wy 0 FEN (M) Wy 0 FEN M| 4 W) 0 FEN F) — W 0 FEN (M)

3
(By traingle incquality)

< Cp||FEN MY — FON N 4 W 0 FEN (M) — Wy 0 FEN (M)

(By norm bound on U})

S CplFEN ) = FEN )| + Cov |(Wh - W) ()]
(By the norm bound on Wo - H'\v)

< CF(GOV + QACOVD€KQ) + CoveFJ, (By (L.8) and (L.9)>

Building on (L.11), we have the cover for F(F'F) o F(SA).

IW2ReLU[(W1 Y (2()] — WoReLUW, FON (7)) (L.12)
S W ZEV D) - Wl FEN D) |+ [Wa W FEN ) - Wl POV ED)|
) an

(By triangle inequality and Lipschitzness of R,HLL')
< CrCovl|(Wa = Wa)z(™)|| + [WaWh FEN (oY) — Wan FEN (Y))|
¢9) (ID)

(By norm bound on W3 and Ub\')
< CrCovl|(Wa — Wa)2t® || +Cp [WiFEN ) — wi FEN EN)| (By norm bund on 1172)

(M (11)
< CrCoversa + C4(eov + 2XCovDekqg) + CrCover. (By (L.10) and (L.1 1)

The overall size of the e-cover of a transformer block F1:5" = FEFF) o F(SA) ig
Ctrans = {]:(FF) o F&A) | WOWV S COV7WEWQ € CKQ»M//?IJ/I//E S CFF}-
This gives

108; |Ctrans| = lOg |CKQ‘ + 1Og |COV| + log ‘CFF|7
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satisfying CFCov(EFJ + EF’Q) + 012:(60‘/ + 2>\COVD€KQ) <e. Let
a1 = D3C’%(Q lognL; ag = D?*C3y log(nL); a3:= D*C%log(nL);
wy = 2/\C’%COVD; Wy = C’%C’OVD; ws = A\CrCoy .

Finally, we apply Lemma L.3 and obtain the optimal size of the the cover Ciyans:

D?log (nL) (CHoNBCHPCHID V3 + ey * D3 + N3 loy®)
. .

€
We extend the argument to two blocks by invoking the composition step in [Edelman et al., 2022].
For inputs with positional encoding E, we replace the bound D with D 4+ Cg, where ||E|| < Cg.
This completes the proof. O

Remark L.6 (Looseness of the Covering Number Bound). The bound in Lemma L.4 is loose yet
sufficient for our two layer transformer class with inverse-temperature scaling and one attention head
(recall Appendix H). The extension from one block to two follows from the composition step in
Theorem A.17 of [Edelman et al., 2022], where it provides the complete induction argument.

Lemma L.5 (Covering Number Bounds for Transformer Network Class, Modified from Theorem
A.17 of [Edelman et al., 2022]). Let T*"(Cr, Cy ,Ckq, Cov, Cov, Cr, C3™, Cr, L) be
the class of functions of one transformer block satisfying the norm bound for matrix and the Lipschitz
property for feed-forward layers. Then, for all data points satisfying ||2;||2 . < D, it holds

log N (ee, T, P x [0,1], ]| - ||2) (L.13)

+(crrazp)t),

2
3

< BL 2 ((c2)t + (ACr)PCovOE)

where « := O(C%CovCKQ(D 4= CE))

Proof. Lemma L.4 shows Lemma L.5 with the absence of domain [0, 1]. That is,
1OgN(€C’T£787T‘7Pna H ’ HQ) (L.14)

+(errez)ty’

2
3

< log(nl) ((C?OO)% + (MCr)*CovCiy)

~ 2
€

holds with data points drawn from P". To extend it to P™ x [0, 1], we discretize [0, 1] into a §-grid
G={th=k-0|k=0,1,...,[1/6],6 € (0,1)}. For simplicity, we denote |G| := m = O(1/6).

Let TI}{’;’T be the transformer network class on domain [—D, D]% x G. We first suppose that
N(ee, T ™" PP x (0,1, ]| - l2) < N (ee/2,To&" P" x G, || - ||2) (L.15)

holds when ¢ = ¢./(4L7), where L is the Lipschitz constant of the transformer block.

Then, since domain P™ x G is a set of sample points with size at most nm, (L.14) gives
N(ee/2, Trg" P" % G, | -Il2) (L.16)

< o) + (et

2
3

o2 ((CF)E + (NCr)*Cov CRT)

Therefore, (L.15) and (L.16) implies (L.13):

N (ee, T ™", P* < [0,1], ]| - [|2)
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<N (ee/2,TEE P %G| - 2) (By (L.15))

4 2 2\3
< OB 2 () + (CrPCoveiE) + (Crre)T) )
log(nL/e. oo\ 4 0\ 3 5o\ 2)?
< g(eg/E)az((C? )3 + (MCr)*CovCgy)™ + ((Cr)*CEY) ) '

(By 0 = €./ L7 and dropping lower order tcrlm)

Lastly, it suffices to prove that (L.15) holds when ¢ = €./(4L7). We show this by utilizing the
Lipchitz property of the transformer networks (Definition B.4.) Specifically, let { f; }é\il beae./2

cover of T£7’§’T. Then, for any f € 75°*" and t € [0, 1], it holds:

I1f(zist) = fi(@it)|l2
< (s, t) = fla, te)ll2 + 1f (@is te) — fi (s, te)ll2 + 11 fi (@, tr) — fi(2is t) |2
(A) (B) (©)

(By triangle incquality)

We then show that the RHS is bounded by €. and this implies (L.15). For (A) and (C), it holds:
(A),(C) < Ly-|t—ty| <Ly-6< %

where the first inequality is by the Lipchitzness of the transformer network, the second inequality is
by the definition of the -grid G, and the last inequality is by taking J := €./(4L 7).
Further, (B) is bounded by ¢./2 by the definition of { f; }j\/:l Altogether, we have that

€ €
Il f(zs,t) = fi(zi,t)]]2 < f+§+z‘ = €. (L.17)

Since (L.17) holds for all ¢, (L.3) in Definition L.4 holds after taking the supremum over ¢.
This completes the proof. O

Equipped with Lemma L.5, we now derive the the covering number bounds of loss function class
under transformer weights configuration in Theorem 1.1 and Theorem 1.2.

Lemma L.6 (Covering Number Bounds for S(D)). Lete, > 0. We define the loss function class by
S(D) := {l(z;ug) : D — Rlug € T5>"}, where D := [~ D, D]% for some D > 0. Given a fixed
set of i.i.d. sample {z;}?_; drawn from the target distribution g, we define the norm of loss functions
by [[€(z;ug)||qn = sup,, |[£""°(x; ug(x;))|. Then, under parameter configuration in Theorem I.1
and Theorem 1.2, the €.-covering number of S(D) with respect to ||-|| ., satisfies:

n log (nL/e.)
log N (ec, S(D), {zi iy, || - ) < O(FEmg 202 DAN 10944126 (1og 200 +45417),
c

Forall f(z,t) € Tp™", t € [0,1] and {x;}7, ~ ¢", we equip the transformers with the norm:
1 (@, O)llgn,p = || f(zi, ) 1{]|ill2,00 < D},

Then, the €.-covering number of the transformer network class satisfies:

P o log (nL/e
log (e T, x [0,1], Il ) < O(FBLELEE) p2 1084125 10 yyoose a5 16)

(63

Proof. First, we apply transformers parameter bounds in Theorem I.1 and Theorem I.2. Then, we
extend the covering number bound to loss function calss S(D).
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¢ Log-Covering Number of Transformers Network Class. From Theorem 1.1, we have
Ckq. Cpy = O(NTIN¥2B(1og NY412): Coy, CH° = O(NTP);
Crp,C3* = O(N?(og N)“2°%1); Cp = O(I); C7 = O(v/log N).

By Lemma L.5, the bounds on log-covering number follow
IOgN(GC’TI}{L’S’Ta qn X [Oa 1]7 ” ' HQ)

2 4
< BRI ((CE)E + (NCr P Cov i)

2
3

+(Crrez)?t)

€
2] L
< % (/\(CF)QCOVC’I%OQO) 2, (By dropping lower order tcrms)
where
(Cr)*CovCiy
— O(Nw(log N)Qdm+2ﬁ+4 N—28 Nsﬁd""w(log N)8dz+4)
(Cr)* (Cov)? ()\Cf(,(o;)z
_ O(NSBdJrGB (log N)10d2+2ﬁ+8)_
Therefore,
sr a?log(nL
1OgN(€cang7 777(] X [Oa 1]7 || : ||2) /S #(NS,B(H_GB(IO'% N)lodm+2ﬂ+8)'

€c

By Lemma L.5, we have

a < (CF)2CO\/CKQ(D + CE)
< N2 (log N)d“”+ﬁ+2 N8B N4Bd+26 (log N)4d””+2 (D+Cg) (By the definition of (\)
(Cr)? (Cov) (ACkq)
= O(DN*P#30 (log N)d=t0+1),

Altogether, we have

s.r lo nLT
loB N (ee, T4 g x 0,11 ) 5 "BLRET) p2 16120 oy yaose-ase,
(&

Further, by || - ||oo < || - ||2, we have that

s m log(nL
log e, T, 7 ¢ [0,1] 1 [lo) 5 BT 2 10584125 1o N 045416, (L 15

~
c

* Log-Covering Number of Loss Function Class. Recall the of loss function Definition L.1 and

its truncated counterpart Definition L.3. Let 6 > 0 and wu; (x,t), uz(x,t) € 7'];1 "% be any two
transformers satisfying max; ||u(x;,t) — u2(x;,t)||co < d forall i € [n].

First, we derive the upper bound on the expectation of |lu:(x|z1)]:

E L.19

XONN(O,I)[HUt(xlxl)Hz] ( )
= E 1+ e X By Definition L.1
XONN(OJ)[Hutx a:Xoll] (By Definition )

91



< \/XON%(OJ)[”ﬂtx + 61 X013] (By Jensen’s incquality)
< \/XO~%(O,I)['[L%IH% + dt2||X0||§] (By expanding the /3 norm)
= E 17| x)|3) + 67 By Xo ~ N(0,1
\/XONN(OJ)M lallg) + 7 (By Xo ~ N(0,1))
<\/f2D2% + &2 (By z € [-D,D]*)

Then, the distance between loss function ¢; (x; u1) and ¢2(x; ug) follows:

11 (5 u1) — Lo(@5 u2)| (L.20)
1 r ) )
=i Bl ) — ) I — a6 ol
(By Definition L.l)
1 T .
= E t t)—2 t) — t))]dt
- /to XONN(O’I)[(M(% )+ ua(z,t) — 2w (z|zr)) ' (ua (2, t) — ua(z,t))]
§ T
< E t t)—2 dt By ||u1 — uz| <4
S /to XONN(O)I)[Hm(z, )+ ug (@, t) — 2uy(z]x1)]|] (By [lur — us|| < 6)
§ T
< T —t /to \/XDN%(OJ)[”ul(m’t) +ug(w,t) — 2Ut($|x1)||§]dt (By Jensen’s inequality)
g ’ 2 2
< 2 E t t 2 dt
<o | 2 s Bl ) + a1 + 2ol )3
(By expanding the /5 norm)
1) T 5
< E log N + 2 dt By C'7 = O({/log N
S0 [ BN+ 2letelen (By Or = O(IoE )
< J /T \/logN+ 12D2 4 Ag2dt (By (L.19))
~ y .
T—to 4o /’Lt t

< dv/log N + D2, (By Assumption 1.2)

Finally, we extend the log covering number to the loss function class S(D) by setting

This gives

Therefore,

e, == Q(e.\/log N + D?).

log A"(e, S(D), [ o) < log A(ees T [ 1)- (By 1.20)
log (e, S(D), Il o)
< log N(ee, T, | [l o)
< 8] iossiza og yyaods a5t (B @13)
ec
1 L
=0 (0%57;2)D4N165d+125 (log N)QOd“E +45+17) . (By the definition of <f)
60
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This completes the proof. O

Generalization Bound. Based on covering number bounds results in Lemma L.6, we analyze the
upper bound of generalization error ‘E{M}?:l [Rirune(7y) — RIMe(7y)]|. Note that the following

distinction separates generalization bound for the flow-matching loss from classical learning theory.

The empirical risk (Definition L.2) takes the form £(x; ug) — £(z; u*), where u* denotes the ground
truth velocity. While most standard losses stay non-negative almost everywhere, the flow matching
loss may take negative values. We use the next lemma in (L.25), which bounds the second moment of
the flow matching loss in terms of its first moment. Without it, the sign issue breaks the derivation.

Lemma L.7 (Bounds on Second Moment of Flow Matching Loss, Modified from Lemma C.1 of
[Yakovlev and Puchkin, 2025] ). Assume Assumption I.1 and Assumption [.3. Then, it holds

E [‘gtrunC(x;UG) _ Ztrunc(x;u*)’2:| 5 k- [[trunc(x;ua) _ etrunC(x;u*) )

xre~q xre~q

where % := D? + \/Iog N.

Proof. Recall Definition L.1 and Definition L.2. We have

n n

~ 1 1
truncy ... o . _ . _ e *
14 (z;u9) = l(x;up) L{||z]|cc < D} and R(ug)= - E 0(x55up) - g (x5 u™),

i=1 i=1

where u*(x,t) = ﬁ + Jpaw we(z|z1)pe(x]21)q(21) 2y is the ground truth velocity and

1
Tt

T
(s up) = /t o B o+ X0,8) = i + 0 Xo) [l

For any x;, the flow matching loss takes the form ¢(z;; ug) — ¢(x;; u*). To simplify notation, we
omit the indicator 1{||z||o. < D} when expanding £*""°, with the understanding that we focus only
on the bounded domain where the flow matching loss is defined. Then, we compute

Vtrunc(x; U@) _ gtrunc(l,;u*”

T
1
E = (fisz + 3+ X0)|I5 — llu* — (sisz + 6+ Xo)||5] dt
/to T — to Xo~N(0,) (o = (e + G Xo)llz = [lu” = (v + 6o Xo) 2]

T
1
E —u)T *— 2. (i . X0))]dt
/to T —to Xo~N(0,I) [(uo =) o +u (fez + 6:X0))]

Nl

T 1 l T 1 . .
S(/to T_tOE[Hu@—u*Hg]dt)Q'(/ T_toE[HU@-i-u*—2~(,uta:—|—ath)H§]> ,

to

(A)
(L21)

where we apply the Cauchy-Schwarz inequality for the last inequality. Next, we bound (A) using
previous results for the bounds on the true velocity, conditional velocity and transformer network.

Recall Lemma J.4. It holds
|14

[ ]loe < I'llxlloo+05 (lzll2 +1),

Ot
t

Ot

and by Assumption 1.3 we have ||u*||%, < ||=||3 and here we consider bounded domain ||z~ < D.
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Further, under the transformer network configuration in either Theorem I.1 or Theorem 1.2, we have
the transformer output bounds C'y = O(+/log N). Lastly, for pi;z + 7 X, it holds:

E i F Xol2l < E ix||2 7 Xol12] < D?
Koo [|lfiex + o 0|\2}_X0~N(O)I) [iez]3 + ll6:Xoll3] < D,

where we invoke Assumption 1.3 and ||z||3 < d, D? in the last inequality.

Altogether, we have

T

1 * . .

(A)g/ 7z B [lheell3 + 113 112 Giew + e Xo) 5 S D* + VVlog N.
to

Therefore, (LL.21) becomes:

T
’Etrunc(m;UG) _ gtrunc(x;u*)‘Q 5 (/ 1 E |:||u0 _ U*H%]dt) . (D2 + logN)
to I'—to

Then, we conclude that

E “Ktrunc(ﬂ ug) — 0" (; u*)ﬂ

xr~q

T
1
< (D? + \/log N) - [ E
N( + og ) [0 T_to z~q L Xg~N(0,I)

T
=(D*+ 1ogN)~/ L g
to I — to me~pe

(g — 3]

[Hug — U*Hgdt} (By tower properly)

(B)
= (D2 + /log N) - E [ﬂtrunc (w5 ug) — £ (5 u*)} . ( By Remark L.2 )
zrvg

We remark that (B) is the conditional flow matching risk R (up) defined in (L.1).
This completes the proof. O

Lemma L.8 (Generalization Bound, Modified from the Theorem C.4 of [Oko et al., 2023]). Let @y
be the velocity estimator trained by optimizing Lcpm(ug) following Definition L.1 with i.i.d training
samples {z;}7 ;. For e, > 0, let N := N(e., S(D), ¢", ||-||.,) be the covering number of function
class of loss S(D) following Lemma L.6. Then we bound the generalization error:

~ ~ 1
trunc /> \ _ ptrunc > < trunc /> =
{wE;;l [R (W) — R (ue)} < {wi]%:l[n (Uo)] + o(n log N + ec>.

Proof. We use E&FM and R’ to denote the conditional flow matching loss and empirical risk with
ghost training samples {«}}? ;. Further, let «* denote the ground truth velocity field.

Then, following Remark L.3, we rewrite the generalization error:

trunc /> _ Strunc (>
WE [RU (@) - R (w)H (L22)

{ I}E [{ E [ﬁltr‘mc(ﬂe)] _ ﬁtrunc (ae)} ‘ (By Remark L.3 )
wi}ioy L=,

= E [ﬁ/tmnc(ﬂg) — Rtrunc (ﬂg)] ’ (By the independence between x; and ’Tt’(ﬁ@))

{izi}i,
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% ; E“}n [(Z[ﬁrun(:(x/i;ae) o Z(trunC(x;;u*)) _ (ZﬁtrunC(xi; ae) _ thrunt:(mi;u*))} ‘
i Si=1 i=1 i=1 i=1 i=1
(By Definition L.2>

For e, > 0 to be chosen later, let 7 := {{1,¢5,...,4x} be a e.~covering of the loss function
class S(D) with the minimum cardinality in the L., metric. Note that {1, ..., ¢, have domain
D = [~ D, D]% by Definition L..3 and Definition L.4. Further, let J be the random variable such that
[16(-;9) — €5(-,ur)| o < €c. Moreover, we introduce following definitions for simplicity:

w(m) = EtrunC(x;ﬂe) _ Etrunc(x;u*)7

wj () = b (s u;) — L7 (25 0%),
h; := max {A, \/E[Ej(z;uj) — ftrunc(z: u*)]},

0 i () — ()
= max
1558 | & h; ’
where z ~ ¢ is independent of {z;, 2} ;. Then we can further bound (L.22) as follows:
gtrunc .T (trunc Ztrunc .T u9 gtrunc xi; u* }
TR0 -3 - m e
(L.23)
< 1 [(i(au (x;) — WJ($Z)>] + 2e¢, (By the definitions of wy and covering number)
Nz zid,
< l E [ (i(w(;(x;) —wy(x;))|] + 2 (By the property of cxpcctation)
n {zi,x, P
1
< - ( ]E} [hsQ] + 2¢, (By the definitions of ~; and Q)
n Ii,ajl. :L 1
1
\/{ { E [QQ] + 2e¢, (By Cauchy-Schwarz incquality)
n\/{=ziz; T3,
<1 < B W2+ L g [Qz])+2 (By AM-GM Inequality)
(= — € y -GM Inequality
n 2 {zsx} 37, 2n {zs, 2}
L [h3] + ! E [92} +2
i — €c.
2 {zsal}r 212 {z;,2,}7 ¢
Now we bound E(;, ,/yn | [h%] and Efa, ey, [Q?] separately. For Ey,, oy [h ] we have
. E [h?] <A+ . E [E[4;(z;ur) — €7 (25 u*)]] (By the definition of h; )
< A%+ . E  [E[(""(z; ) — £7(2;u*)]] + 26, (By the definition of ¢.)
RS
<A2+ E O [R™U™C(TUg)] + 2. (By Remark L.3)

{mi}7,

Then we start to bound E;, ,/yn | [Q2]. By the definition of w;(z) and the independence between
{z;}_; and {z;}7_,, we have

g [l

T, h?
1
= 2 iE [wj (%)} o [wj(x;)] (B) the independence between h; and {x;, z; }j— 1)
g g
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(By the independence between w; and {x;, 2} }1— 1)

(L.24)

To use Bernstein’s Inequality, for any 7, we bound the following expectation as

Recall that for any j € [N], w;(z) = ¢;(z;u;) — £""(z;u*). Forany ¢ € S(D

/

(> ()]

(i}, L -
B LR ()] [

(52 )] e

I

), assume
/

[0747(;ug)| < ki, then for any ¢ € [n], j € [N], we have B, o [w;(7;)] = Eq, o [w;(2})], which
leads to
E [yl = E ()]
= E (€5 (2hsuy) — £ (2 u™)] (By the definition of w; (x))
= B[l () — 67 ()
< E / [hz] (By the definition of h‘/)
Then, it holds
(wj(xl) Wj(‘rg))Q]
{zi, @)}, Py hj
xl) wj(zh)
< ]E I\ \2
< ZW + (2
WJ xz wj (@)
< 2/{2 )+ ( 02 )] (By LemmaL.7 )
:v“w i
< dnr. (L.25)
Since M < GandEgy, pyn [%f”(w/)] = 0, by Bernstein’s Inequality, we have
forany j € [./\f] h>0
— wj () — wy(@}) — wj () — wy(})
P J I\ N2 hl =2P J I\ h

(By union b()und.)
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exo| M2
= p( (4n+f)>

Thus, for any iy > 0, we bound E(,, .- . (2] as

[2%)

{wi@i )iy

ho o0
:/ Pr[mzh]dh+/ Pr[Q* > h]dh
0 h

0

*° h/2
< hy+ / 2N exp % dh (By tail-sum ['ormula)
ho (4n + )

e h 3AVh
<ho+2N [ [exp <_16/m> + exp (— 4f>]dh

ho K

ho )+(8mﬁo+ 20 p(_%)k

< ho + 2N [16sn eXp(_ 1650 34 9A2 1r

Taking A =

= 16xnlog N/, we have

E [Q?] <nklogN.

{xivx;}?=1

Combining above, we bound the generalization error as

En [Rtrurm( ) Rtrunc( )]'
1
<

1
<3, E}n P2+ — E  [Q%]+ 2 (By (L.22))
TiyXyfi—1

2n2 {zi, 2},

1 1
< 2 trunc
< 2(A + LB [RErme (g, )]+260) 55 0(nrlog )
1
<= ST E [R“unc( 0)] +O( log N +€.).
This implies
LE [Rtrum(aa)] <2 E [R“un% )} +0( log N + €.).
Ti}ig Ti}ig
Therefore,

E [Rtrunc( 5) — Rtrunc( 9)}5 E [Rtrunc( )}—FO( log N + €).

{wiii, {zm,

This completes the proof. O

L.3 Main Proof of Theorem 1.3

We now give the formal proof of Theorem I.3.

Theorem L.1 (Theorem [.3 Restated: Velocity Estimation with Transformer). Let d be the feature
dimension. Suppose we choose the transformers as in Theorem I.1 and Theorem 1.2 correspondingly,
then we have
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e Assume Assumption I.1 and Assumption 1.2. Then,

( I]Ef: [R(ig)] = O(n~ 163775 (log n)20% +46+20),
Ti}ig
e Assume Assumption [.2 and Assumption [.3. Then,

{ I]fj:n [R(ug)] = O('nfsdlﬂ(log n)zOdz+4ﬁ+20).

Proof of Theorem 1.3. Let {x}}"_, be a different set of i.i.d samples independent of the training
sample {z;}?_;. Further, we use R’ to denote the empirical risk with samples {z/}" ;.

Then, following (L.2), we decompose E;yn [R(p)] as:

{eadin, =i,

LE [R@)= E [ E [ﬁ%ae)—ﬁ'“““(ae)}]

@
+ E |: E [ﬁ/trunc(ae)] _ ﬁtrunc(ag):l
{eadin, ik,
(In

+ E [ﬁtfllnC(ae)—ﬁ(ae)}Jr E [7%@9)}.

{wi}i, {wi}i,

(T11) (Iv)

Then, we bound each term and incorporate them to obtain the upper bound on the estimation error.

* Bound (I) and (III). By Lemma L.1, term (I) and term (III) are upper bounded by
1
(I), (TITT) < D% exp <— 2021)2) log N.

* Bound (II). By the generalization error bound (Lemma L.8), we have

(1) =

|: E {ﬁ/trunc(ae)} _ ﬁtrunc(ao)] (L.26)
{ {zihi,

E
Tty

]};‘n [Rtrunc(aa) _ ﬁtrunc (ae)]
Tif;—1

. (By Equryn [R/trone] = Rirunc)

1
hS . ]}}Z [R™¢(2g)] + O(=log N + €..) (By Lemma L.8)
i ?:1 n

1 1
< (IV) + D% exp (—2(}21)2) log N + O(g log N + €.). (By LemmaL.1)

where N (€., S(D), ||| .p) is the covering number (Definition L.4) of loss function class.

« Bound (IV). Recall that R(tg) := Lcrm(tg) — Lepm(u*) and Ty is trained by optimizing
Lcrm(ug) following Definition L.2. Therefore, for any velocity estimator wg, it holds

R(tg) < Lepm(ug) — Lop(u®) = R(ug).

98



Then, for any velocity estimator wyg, it holds

E [R(ig)] < E [R(ug)] = R(up). (L27)
1623 {wi}iy
Altogether, the estimation error is upper bounded by
E  [R(up)] (L.28)
{wi}iy
= (I) + (II) + (III) + (IV)

1
< D% exp(~C2D?) log N + O(~ log N + ¢c) +2(IV)

1
< O(N_Qﬁ(logN)dm/2+1) + O(=log N +€.) + 2(IV). (By setting D :=
n

20 log A\v/(,'g)

Furthermore, the log covering number is upper bounded by

log NV (e, S(D), || - [loop) (L.29)
< O(log(nf/&) D4N165d+12[3(10g N)20d1+43+17) (By Lemma Lb)
log(nL /e,
< O( g( e2/ )N16/3d+12[3<10g N)20d1+4/3+19)_ (By D— .

C
Next, we bound the velocity field estimation error.

» Estimation Rates under Generic Holder Smoothness. By Theorem I.1, it holds

(IV) < (w (By (L.27))

/ t / () = o e )3l
— L0 JRdz
= O(B*N~" . (log N)% =45 2t hy, (By Theorem L.1)

Then, (L.28) becomes

E [R(u
{m}z;l[ (ug)]

< O(N™*(log N)™/**1) + O(l log \ + ¢.) + O(B>N~#(log N)®=+2+1)
log (nl/ec)

C

< O(N_Qﬁ(log N)d“”/Q—H) + O( Nu(l gN)QOdm+4ﬁ+19 + ec) + O(BQN_ﬁ(logN)d“H_%"'l)’
(By (L.29))

where v := 165d + 120.

Let 71,72 € (0,1) be two arbitrary numbers. We take N = n7'/” and ¢, = n~"2. Then,

e (R (@)

<O(n~ (log n)z 5 +1) +O0(n —lmA2ye (log N)QOdeﬁ”O logn+n=72) + O(an*ﬁ% (log n)dw+§+1)

< O(n_ nun{ﬂ—;’l,l—’yl—Z’yz,'yQ} (log n)QOdm+4ﬂ+21).

For any 71,72 € (0,1) satisfying

7+ 27 <1,
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we consider
. Bn
mln{—z =71 — 292,72}

To simplify, we set

@:1—71—272272,

giving

v

’lem,

72:7V—|—3ﬂ.

Therefore,

E [R(ip)] = O(n~ 177 (log n)20% T45+21),

Estimation Rates under Stronger Holder Smoothness. By Theorem 1.2, it holds
(IV) < R(ug(x, 1)) (By (L.27))

- / / e ) — o, )12 - po(x)
= O(B N~ (log N)%=*F).

Then, (L..28) becomes

E [R(u
{xi}?:l[ (ug)]

< O(N"(log N) F+1) + 0(% log N + €.) + O(B2N 2% (log N)%+7)
logn

2
neg

< O(N"P(log N) F11) + O(=2L N” (log N)20%=+4419 1 ¢ ) 4 O(B2N~2%(log N)%+7),

(By (L.29))

where v := 165d + 125.
Let v3,74 € (0, 1) be two arbitrary numbers. We take N = n73/V and €, = n~74. Then,
B [R(up)]
{=i}i,
—2873 de 11 -1,2 20d,,+48+20 - 2 2833 do+8
<O~ "7 (logn)2 ) 4+ O(n™ " n“"n"(logn)"* +n ")+ O(B*n”" "7 (logn)*™")

< O(n_ min{ 25173 J=y3—2v4,74} (10g n)20d1+45+20).

For any 73,4 € (0,1) satisfying

73 + 2’74 < 17
we consider
.28
mm{%, 1 — 73 —274,7}
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To simplify, we set

2
/8’73 :1_,7/3_2,)/4:,7/47
v
giving
__v 28
FY37V+6B, 74—V+6ﬁ.
Therefore,

{ I}E [R(ﬂ@)] = O(nfﬁ(logn)20dz+4ﬁ+20).
T}y

This completes the proof.
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M Proof of Theorem 1.4

In this section, we apply the Gronwall’s inequality and the Alekseev—Grobner lemma to extend the
velocity estimation to distribution estimation under 2-Wasserstein distance.

Organizations. Appendix M.1 introduces auxiliary lemmas. Appendix M.2 presents the main
proof.

M.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas for extending the velocity estimation to distribution
estimation in 2-Wasserstein distance. Specifically, we state the Gronwall’s inequality in Lemma M.1.
Furthermore, we introduce the Alekseev—Grobner lemma that quantifies the deviation between
solutions of two distinct ODEs in terms of the discrepancy between their velocity in Lemma M.2.

We begin with the Gronwall’s inequality.

Lemma M.1 (Gronwall’s Inequality, [Gronwall, 1919]). Leta,b € R with a < b. Let ¢(¢) and y(t)
be two real-valued continuous functions defined on [a, b]. Then, if y(t) is differentiable on [a, b] and
satisfies:

d

S0 <y(Bg(®), ¢ labl,

y(t) < y(a)exp (/ g(S)d8>~

Next, we introduce the Alekseev-Grobner lemma.

it holds

Lemma M.2 (Alekseev-Grobner Lemma, Lemma 16 of [Fukumizu et al., 2024], Proposition 2 of
[Benton et al., 2023], Theorem 14.5 of [Hairer et al., 1993]). Let u(z,t) and ug(x,t) be smooth
vector fields and ¥ (z, s, t) and ¥y(z, s, t) be the respective flows defined for ¢ > s that satisfy

%w(x,&t) =u((z,s,t),t), P(x,s,8)=x
%w@(xasat) :U0(¢0(x73at)7t)a w@(‘rasas) = Z.

Then,

T
¢9($, tO) T) - ¢($7 t07 T) = /; D¢9(¢($7 tOv 5)7 S, T)(’U,g('(/)(l‘, tO? 8)7 S) - U’(w(xv t07 S)? S))dsy

where the partial derivatives in the Jacobian matrix Dy (1(z, to, $), s, T') is with respect to its first
argument.

M.2 Main Proof of Theorem 1.4

‘We now present the main proof of Theorem 1.4.

Theorem M.1 (Theorem 1.4 Restated: Distribution Estimation under Wasserstein Distance). Let
Pr denote the estimated distribution at time 7'. Further, we define a constant v := 16(L + 1) + 12/d.

e Assume Assumption I.1 and Assumption 1.2. It holds

E [Wy(Pr, Pr)] = O(n~ 50 (log n) 0% +26+10)

{wi}i,
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e Assume Assumption 1.2 and Assumption 1.3. It holds

‘ I}En [Wa(Pr, Pr)] = O(n*m(logn)lodﬁwﬂo).

Proof of Theorem 1.4. We bound the 2-Wasserstein distance between the estimated and true distri-
butions with the ¢, difference of the velocity field network and the true velocity field. Our proof
structure follows [Fukumizu et al., 2024, Theorem 3] and [Benton et al., 2023, Theorem 1].

The distributions Pr and Py are the pushforwards of P, by 9o(-, to, T) and ¢ (-, tg, T'). Thus, using
the definition of the 2-Wasserstein metric, it follows that

WalPr.Pr) < | B, [IWalo.to.T) = blato. T

We use Lemma M.2 to bound the ¢4 difference of the flows. To that end, let us first bound the Jacobian
matrix Dig(¢(z, to, 8), s,t). We have

%pr(w(ag,to, s), 5, )2

0
< ||&D¢0(¢($at0’ S)v Sat)H2

= ||DUQ('¢9(’¢(Z‘, to, S)at)’ S,t)D'(/)g(’L/)(a:‘,to, S)’ Sat)”?
< L7 Do(¥(x, t0, 5), 8,t) |2,

where the first inequality follows from triangle inequality of the || - ||2-norm, and the second equality
follows from the flow ODE in the assumption of Lemma M.2, and the third inequality follows from
the Lipschitzness of transformer network (Definition B.2). Therefore,

t 1
|Dvg ((x, to, ), s, t)|l2 S exp{/ LTdu} < exp{/ LTdu} =:M. (ByLemmaM.l)
s 0

Now we have
||7/)0(9U,t0aT) - ¢($7t07T)‘|§
T
<3 ([ a0t 9):5) = u( (st ). 5) fads)?

to

T
<M / luo((z, to, 5), ) — ulw(, o, 5), 5)|3ds,

to

where in the first line we apply Lemma M.2 and in the second line we apply the Holder’s inequality.
Then, we take expectation with respect to x ~ p;, on both sides of the above inequality

T
fglgto[\lwe(x,to,T) P(x,t0, T3] < M? E [/ g (¥ (, to, 8), 8) — u(P(, o, 5), s)||3ds]

T~Pto to
T
=32 [ (o)~ u(o.s) s

where the last equality follows since the samples v (z, to, s) with = ~ p;, are the same as the samples
T ~ ps by construction of the flow.

Therefore, we have

~ T 1
Wa(Pr, Pr) < M - (/ B [llue(,s) — u(z, s)|[3]ds) %,

to
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where
T
/ E [|lug(z,s) — u(z,s)||2]ds = (T — to)R(up). (By Definition 1.2)
to TPs

Then, by Assumption 1.2, we have
E [Wo(Pr,Pr)]<M-(T—t) E [VR@)) <M E [/R(ao).
{=i}], {=i}i, {wi}i,

Finally, we apply the flow estimation results in Theorem 1.3 and get

[R(ig)] = O(n~ 167775 (log n)20% +45+20),

E
{wi}i,

IE: [R(ig)] = O(n~ 5279 (log n)20d=+45+20)
Tikisg

{
under Assumption I.1 and Assumption 1.3 respectively. These imply

E [Wo(Pr,Pr)]SM E [/R(ug)] = O(n~ 727 (log n) 104 +25+10)

{wii, T}y
. 153 [Wa(Pr, Pr)] < M{ I}E [V/R(@g)] = O(n~ 167775 (log n) 104 +27+10),
Tipiy i}y

This completes the proof.

104



N Proof of Theorem 1.5

In this section, we prove the nearly minimax optimality results of flow matching transformers under
specified settings (Theorem L.5).

We begin with the definition of modulus of smoothness following [Oko et al., 2023].

Definition N.1 (Modulus of Smoothness). Let Q2 be a domain in R% and f € L?' () be a function
for some p’ € (0, co]. We define the r-th modulus of smoothness of f by:

wrp (f,) = sup [[AL(F)]lp
IAll<t

where A} (€) is the difference operator defined by

T

rr r—j 5 . . )
AL (f)(z) = ;(3>(1) Tf(x + gh), ifz+ jh e Qforall j,

0, otherwise.
Next, we define the Besov space.

Definition N.2 (Besov Space By, /). Let0 < p',q < o00,s>0andr = |s|+ 1. The Besov

P
norm of a function f € L? () is defined by | f| | fllpr + | flgs ,where
p’q’

Bs :
p’.a’

- rdiy &
|f|BS = /0 ((tiswnp,(f, t))q 7) ) q, < 00,

’

v 0, q = oo.

Given m, L > 0 we have the Besov space B,, (L, m) == {f € LY () | |Ifllps, , < L, f >m}.
r'q

The next lemma provides the minimax optimal rate for density in the Besov space B}, .

Lemma N.1 (Theorem 3 of [Niles-Weed and Berthet, 2022]). Let € := [—1, 1]% be the domain of
density g(z1) in Besov space B, ,/(L,m). Then, for any r, p',q¢ >1and s > 0,

inf sup E [W. (ﬁ, P) =Zn" dif?m
P qeB:, (Lm){zikin

where {x;}" ; is a set of i.i.d samples drawn from distribution P, and P runs over all possible
estimators constructed from the data.

Then, we revisit the definition of Wasserstein distance:

Definition N.3 (2-Wasserstein Distance). Let X and Y be two random variables with marginal
densities (1, and fi,, respectively. We define the 2-Wasserstein distance by:

1
P
Wa (g, = inf /33— Pdn(z, ) ,
i) = (__ it [ e = alPan(ay
where M (1, ) denotes the set of joint measures 7 with marginals ji,, and fi,,.
We then give the minimax optimal rate in the Holder density function spaces.

Lemma N.2 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task of
estimating a probability distribution P(x;) with density function belonging to the space

P = {q(a1)la(a1) € H*([-1,1]%, B),q(z1) = C},
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Then, for any » > 1, 8 > 0 and d, > 2, we have
~ __B+1
inf sup E [W.(P,P)]Zn %+2p,
P q(z1)€EP {zi}p,

where {z;}7 , is a set of i.i.d samples drawn from distribution P, and P runs over all possible
estimators constructed from the data.

Proof. Let Q be some domains. Since B3, . (Q2) = H*(Q) for any s € Ry \ Z,, Lemma N.1
directly implies Lemma N.2. This completes the proof. O

Next, we present the proof of Theorem L.5.

Theorem N.1 (Theorem 1.5 Restated: Minimax Optimality of Flow Matching Transformers). Under
the setting of (16d + 18)(5 + 1) = d, + 2/, the distribution estimation rate of flow matching
transformers (Theorem 1.4) matches the minimax lower bound of Holder distribution class in 2-
Wasserstein distance up to a logn and Lipschitz constants factors.

Proof of Theorem 1.5. By Theorem 1.4, we have the distribution estimation rate in 2-Wasserstein
distance under Assumption 1.2 and Assumption I.3:

{ I]E [WQ(ﬁTﬂDT)} = O(n_m(log n)lOdw+2ﬁ+1O).

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a logn and
Lipschitz constant factors under the setting

(16d + 18)(8+ 1) = d, + 2.
This completes the proof. O

O Experimental Validation

To provide empirical support for the proposed High-Order Flow Matching (HOFM) framework, we
conduct a series of synthetic experiments designed to evaluate the practical benefits of incorporating
higher-order dynamics. We compare the performance of standard first-order flow matching (equivalent
to our framework with K = 1) against second-order flow matching (K = 2).

0.1 Experimental Setup

Task and Datasets. We evaluate the models on 2D density matching tasks, transitioning a standard
multivariate Gaussian distribution, 7y, to three complex target distributions, 7;. Following the
experimental setting in [Chen et al., 2025], we use target distributions shaped as: (1) a square, (2) two
intertwined spirals, and (3) three intertwined spirals. These datasets are chosen to test the models’
ability to learn distributions with sharp corners and high-curvature manifolds.

Evaluation Metric. To quantify the quality of the generated samples, we measure the 2-Wasserstein
distance between the generated distribution and the target distribution. A lower Wasserstein distance
indicates a better match and, therefore, superior performance.

0.2 Results and Discussion
The results of our comparison are summarized in Appendix O.2. The findings demonstrate the

advantages of using second-order dynamics.

Across all three target distributions and for every sampling step count (10, 50, and 100), the second-
order model achieves a lower Wasserstein distance than the first-order model. This suggests that
incorporating higher-order information allows the model to learn more accurate and stable generation
paths, which aligns with the motivations discussed in Section 1.
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Distribution Sampling Steps  First Order (X = 1) Second Order (K = 2)

Square 10 8.51 7.09
50 6.45 6.08
100 5.48 2.82

Two Spirals 10 114.39 74.57
50 73.37 68.47
100 66.15 46.71

Three Spirals 10 192.19 109.93
50 123.53 87.70
100 93.26 68.81

Table 1: Comparison of first-order and second-order flow matching on synthetic 2D datasets.

Furthermore, these results highlight a notable improvement in sampling efficiency. For instance, in
the Three Spirals task, the second-order model with only 50 sampling steps (Wasserstein distance of
87.70) outperforms the first-order model with 100 steps (93.26). This empirical evidence supports
the theoretical premise that HOFM lead to more efficient sampling strategies (Section 5).
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Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Section 3 presents the K -order flow matching framework.

Section 4 presents the statistical rates of K -order flow matching using transformers. Appendix I
provides the statistical rates of the first order flow matching using transformers.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation and potential future works in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

108



Justification: Assumptions are stated before every results, and we either give the complete proof
directly or refer it to the corresponding section in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and

data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to

make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For

example, if the contribution is a novel architecture, describing the architecture fully might

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the

results, access to a hosted model (e.g., in the case of a large language model), releasing of a

model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions to

provide some reasonable avenue for reproducibility, which may depend on the nature of the

contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: This paper does not include experiments.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA|
Justification: This paper does not includes experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not include experiments.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,

train/test split, initialization, random drawing of some parameter, or overall run with given
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The method for calculating the error bars should be explained (closed form formula, call to a

library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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were calculated and reference the corresponding figures or tables in the text.
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resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]
Justification: This paper does not include experiments.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
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into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All aspects of this work comply with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This work is dedicated to advancing the fundamental understanding of flow-matching
generative models; we do not anticipate any significant positive or negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
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an improvement in the quality of generative models could be used to generate deepfakes for
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improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
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* The answer NA means that the paper poses no such risks.
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Licenses for existing assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Justification: This paper does not release assets.
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.
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ble), such as the institution conducting the review.

Declaration of LLM usage
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