Under review as a conference paper at ICLR 2026

BINARY DIFF SUMMARIZATION USING
LLARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Security of software supply chains is necessary to ensure that software updates
do not contain maliciously injected code or introduce vulnerabilities that may
compromise the integrity of critical infrastructure. Verifying the integrity of soft-
ware updates involves binary differential analysis (binary diffing) to highlight the
changes between two binary versions by incorporating binary analysis and reverse
engineering. Large language models (LLMs) have been applied to binary analysis
to augment traditional tools by producing natural language summaries that cy-
bersecurity experts can grasp for further analysis. Combining LLM-based binary
code summarization with binary diffing can improve the LLM’s focus on criti-
cal changes and enable complex tasks such as automated malware detection. To
address this, we propose a novel framework for binary diff summarization using
LLMs. We introduce a novel functional sensitivity score (FSS) that helps with
automated triage of sensitive binary functions for downstream detection tasks. We
create a software supply chain security benchmark by injecting 3 different mal-
ware into 6 open-source projects which generates 104 binary versions, 392 binary
diffs, and 46,023 functions. On this, our framework achieves a precision of 0.98
and recall of 0.64 for malware detection, displaying high accuracy with low false
positives. Across malicious and benign functions, we achieve FSS separation of
3.0 points, confirming that FSS categorization can classify sensitive functions. We
conduct a case study on the real-world XZ utils supply chain attack; our frame-
work correctly detects the injected backdoor functions with high FSS.

1 INTRODUCTION

Binary analysis is fundamental to cybersecurity, enabling critical tasks like vulnerability discovery,
malware analysis, and software supply chain integrity. Reverse engineering low-level binaries to ex-
tract high-level functionalities is essential for understanding their behavior without access to source
code (Cifuentes|, (1994; |Schulte et al., 2018; Shoshitaishvili et al., [2016). Binary differential anal-
ysis (binary diffing) extends binary analysis by comparing two versions of a binary to understand
what has changed, allowing analysts to focus on the modifications to find newly introduced bugs
or security flaws. This approach is especially relevant for software supply chain security that in-
volves verifying the integrity of software updates (Reichert & Obelheiro, [2024). Binary diffing sup-
ports critical security tasks like identifying patched vulnerabilities (Brumley et al., 2006)), clustering
malware variants (Royal et al., 2006), detecting vulnerabilities in binary distributions (Zhao et al.,
2022). Malicious actors may inject hidden code into a program binary or into the source code of
dependent open-source libraries, leading to devastating downstream impact as exemplified by recent
incidents such as 3CX (FortiGuard Labs, [2023)), SolarWinds, log4j, and XZ utils (Williams et al.,
2025). These concerns are magnified in the context of the embedded systems supply chain. Unlike
enterprise software, embedded devices are deployed in remote or inaccessible locations. Software
updates require significant effort. Due to this, corrupted or compromised updates may persist for ex-
tended periods. Embedded firmware is distributed as monolithic binaries which incorporate several
projects into one blob, making verification difficult (Shirani et al., 2017). This necessitates initial
verification of software integrity before deployment via binary analysis and reverse engineering.

Reverse engineering is an inexact process, hence binary analysis tools often recover source code in
an obscure format, requiring significant effort and domain expertise to understand (Cao et al.,[2024).
Machine learning (ML) and large language models (LLMs) have been used to improve the reverse

Under review as a conference paper at ICLR 2026

engineering output quality, such as by predicting variable names and types (Lacomis et al., 2019
Nitin et al., 2021), decompiling with translation ML models (Armengol-Estapé et al., 2024; \Udeshi
et al.,[20235)), and binary code summarization with LLMs (Jin et al., 2023} [Tan et al., 2024).

Binary diffing tools are built on top of binary analysis methods and hence face similar issues of ob-
scurity, hard-to-understand outputs. Current tools reliably identify modified binary components by
employing binary code similarity metrics; however, cybersecurity experts require significant effort
to understand the code changes to identify vulnerabilities or detect malicious injected code. We pro-
pose binary diff summarization to augment binary diffs with natural language summaries produced
by an LLM. Additionally, we introduce the functional sensitivity score (FSS), a novel categoriza-
tion method to triage binary functions such that sensitive behaviors that reveal vulnerabilities or
malware are marked with a high score. We evaluate the binary diff summarization and functional
sensitivity score for the software supply chain security task of detecting malware injected into open-
source programs. For this, we construct a benchmark by injecting malware into multiple versions of
open-source programs to construct compromised software updates across clean/injected versions.

The contributions of this paper are threefold: (i) A novel framework for binary diff summarization
that augments outputs from binary diffing tools with LLM-generated natural language summaries for
improved code understanding; (ii) The functional sensitivity score, a novel method to triage sensitive
function behaviors that highlight vulnerabilities and malicious code; (iii) A software supply chain
security benchmark of Linux open-source programs injected with 3 different malware, comprising
of 6 projects, 104 versions, 392 binary diffs, and 46,023 functions.

2 BACKGROUND AND RELATED WORK

Binary differential analysis: Binary differential analysis (binary diffing) is the process of identify-
ing changes between compiled binaries at different granularities, such as instructions, basic blocks,
or complete binary formats (Haq & Caballero| 2021). Unlike source-level diffing, which benefits
from static code analysis, binary diffing is considerably more challenging due to compiler optimiza-
tions, instruction set variations, and obfuscation techniques (Linn & Debray, 2003). Early efforts
such as BinDiff (Flakel [2004), DarunGrim (Oh} 2008), and BMAT (Wang et al., |2000) relied on
syntactic and graph-based similarity across control-flow graphs (CFGs), with later improvements
addressing register allocation and instruction reordering (Dullien & Rolles| 2005). Subsequent
works have expanded these ideas. Diaphora leverages SQL-based heuristics for CFG matching (Ko-
ret, 2015-2025)), while Asm2Vec (Ding et al., [2019) introduced function embeddings resilient to
compiler optimizations. More recently, deep learning methods such as jTrans (Wang et al.| [2022)
incorporated transformers with jump and control flow awareness. QBinDiff (Cohen et al.||2024) re-
framed diffing as a graph-alignment problem, achieving robustness against obfuscation as shown in
the evaluation of Cohen et al. (Cohen et al.|[2025). Other approaches, including Binhunt (Gao et al.,
2008), and BinSlayer (Bourquin et al., |2013) employed symbolic execution, graph isomorphism and
unsupervised learning to capture semantic differences more precisely.

LLMs for Binary Analysis: Jin et al.|(2023) introduced BinSum, a benchmark of over 557K binary
functions across multiple architectures and optimization levels, along with novel prompt optimiza-
tion strategies and semantic evaluation metrics for binary summarization. Dil et al.| (2025) applied
LLM-guided prompting to filter noisy vulnerability patch data in the BigVul dataset (Fan et al.,
2020), improving the accuracy of downstream vulnerability prediction models, while |Yu| (2025)
proposed DeepDiff, which embeds decompiled functions for similarity search and combines con-
trol and data flow analysis to detect logic-altering changes in binaries. [Shang et al.| (2024) con-
structed a benchmark for reverse engineering tasks such as function name recovery and summa-
rization, systematically evaluating LLM capabilities. [Hussain et al.| (2025) developed Vul-BinLLM,
which augments decompilation with contextual vulnerability annotations and employs in-context
learning, chain-of-thought prompting, and memory management to improve detection accuracy. [Lin
& Mohaisen| (2025) systematically evaluated LLMs for vulnerability detection in Java and C/C++
programs, highlighting cross-language performance, prompting strategies, and configuration best
practices. \Wong et al.[(2023) explored “recompilable decompilation,” proposing a hybrid two-stage
approach where LLMs correct syntax errors in decompiled outputs and resolve runtime memory
errors, enabling regenerated executables that preserve original functionality. |Chen et al.| (2025)
introduced ReCopilot, an expert LLM for binary analysis that integrates variable data-flow and call-

Under review as a conference paper at ICLR 2026

Functions Diff Call h
I allgra . .
I grap LLM Summarization
old bin Deleted
@ decompiled src Odecomp.|—>® [summary [Fss | Prediction
—
01 - decomp.
E Modified CCam _,@ sy | 7SS | &
T] . malicious
) = i ops. .
new bin 5 + . . AN Q
. . oo
—> decomp.—»@
summary | FSS
o1 N Added | Gops. | (.7 summary [£S5 |
decompiled src j - —
bin description

Figure 1: Overview of the binary diff summarization framework. Ghidriff provides added, modified,
and deleted functions that are merged into a diff callgraph. Each function undergoes LLM summa-
rization and FSS classification. Finally, prediction happens to label the diff as malicious or benign.

graph information with test-time scaling, and through continued pretraining, supervised fine-tuning,
and direct preference optimization, achieved up to a 13% improvement over state-of-the-art models

in function name recovery and variable type inference.

3 METHOD

Figure [I] is an overview of the binary diff summarization
pipeline. In the context of software supply chain security, the
pipeline concludes by producing a malicious/benign predic-
tion, however the summaries and FSS scores can be used for
tasks such as vulnerability detection or patch identification.

Ghidriff: The pipeline begins by taking two binaries namely
old and new. We use Ghidriff (Mclntosh| 2023)) as the binary
diff tool. Ghidriff uses the Ghidra decompilation engine to
perform the initial analysis of both binaries, then computes
correlations across functions from old and new. The corre-
lation reveals whether a pair of functions match exactly, match
approximately, or do not match. Ghidriff outputs three lists
of functions: deleted contains functions present in old that do
not match with any function in new, added contains functions
present in new that do not match with any function in old, and
modified contains functions that match approximately. In this
manner, functions that match exactly are removed from the
diff, so only the binary changes remain. As the symbols in
both binaries are stripped, the modified functions will show
up with different names in the decompiled code depending on
their hexadecimal address. We rename the modified functions
to a consistent name incorporating both the old and new ad-
dress, and update all referenced locations, so that this name
difference does not show up unnecessarily.

Diff Callgraph: For the functions in the three lists, we ex-
tract the decompiled source code from Ghidra analysis. For

Initial System

FSS Prompt ~ Summary

FSS

sensitive code changes and sensitive behaviors ...
.

You are a skilled cybersecurity professional. You are
an expert at binary analysis, binary diffing, and patch
diffing. Your goal is to process a binary diff ... flag any

~
The binaries you are analyzing are two consecutive
versions from the microhttpd library.... a lightweight C
HTTP server library. The function you are analyzing
currently is FUN 104ac0 in the old binary and
FUN_00104b. he new binary. It was modified...
Here is the decompiled code...
MODF_00104ac0_00104ba0 (

void
Here is the diff ...

- pthread attr_destroy(param_1);

+ socket (param_1,param 2,param 3);

return;

}
Describe the code functionality and ...changes...

J

func_summary: The original function ... effectively
cleaning up a thread attribute object. ...
diff_summary: The behavior transitions from
destroying ... to attempting to create a socket
...Semantic shift implies the function is no longer
performing resource cleanup... @

Based on the functionality summary ...rate the
function based on ...: sensitive behaviors, sensitive
resources accessed, confidentiality impact, integrity
impact, availibility impact.

Each should be classified as none, low, medium, or

behavior: medium

high. Below are a few examples ...
resource: low
confidentiality: none

integrity: none

availability: low G}

Figure 2: Example of LLM sum-
marization and FSS for a modified
function from microhttpd.

modified functions, we additionally compute a textual diff of
the decompiled code using the Python diffl ib|I| module to
provide a succinct representation of the changes. The LLM
summarization happens function by function and some infor-
mation about the function dependencies (in terms of other functions it calls) need to be provided for
the LLM to understand the functionality correctly. This dependency information is captured in the
diff callgraph. The diff callgraph is essentially the merged callgraph of the old and new binaries,

'https://docs.python.org/3/library/difflib.html

https://docs.python.org/3/library/difflib.html

Under review as a conference paper at ICLR 2026

where only the added, deleted, and modified functions are preserved. Instead of merging and trim-
ming down the full callgraphs of the binaries, we construct the diff callgraph by directly analyzing
referenced dependencies in the three diff function lists.

LLM Summarization: The functions are processed in a reverse breadth-first traversal starting from
leaf nodes of the diff callgraph to ensure that a function’s dependencies are processed before it. For
each function, the decompiled source code along with summaries of the dependencies are passed to
the LLM. For modified functions, the textual diff of decompiled code between old and new is also
passed. The summary and FSS are generated via two separate prompts. The first prompt asks for a
functionality summary and an optional diff summary. The second prompt continues the conversation
(the LLM sees its previous output) and asks for the FSS. Figure 2] shows an example conversation
for a modified function from microhttpd, where the LLM first correctly identifies the changed
functionality and then proceeds to mark the FSS categories appropriately.

Functional Sensitivity Score: The FSS is designed similar to the common vulnerability scoring
system (CVSS) (Howland, [2022) such that functions of interest can be marked during binary analysis
using consistent categories. CVSS helps score the severity of vulnerabilities after they are identified
with distinct categories and classification options, for example attack complexity (low, high) and
privileges required (none, user, administrator). This allows for better vulnerability classification by
cybersecurity professionals than picking abstract numerical values. CVSS aggregates the category
classifications into a severity score from 0 to 10. CVSS does not directly apply for vulnerability or
malware detection. Thus we design FSS with similar goals to provide meaningful categories and
classifications for scoring functional sensitivity. We pick five categories with examples:

* Sensitive behaviors (B): reading system info, opening sockets, forking processes

* Sensitive resources (R): network, system files, hardware devices

* Confidentiality impact (C): sending files over network, reading passwords or keys

* Integrity impact (/): modifying system configuration, overwriting files, encrypting data
* Availability impact (A): disabling system services, consuming unnecessary resources

Each category is classified as none, low, medium, or high. We provide examples to the LLM of each
category and each classification to ground its outputs. These examples can be adapted to different
scenarios and environments to better guide the LLM.

10.0
7.5 FSS
° Behavior| none low |medium| high
§ 5.0 Resource| none ‘ low |medium| high
2.5 1 Confidentiality| none low |medium| high
0.0 Integrity| none low |medium| high
Classifications Availability| none | low |medium| high |

Figure 3: CVSS 3.1 and FSS scores across all Figure 4: Example of an FSS classification with
classifications in increasing order. the aggregate score.

Similar to CVSS 3.1, the final score is aggregated using the formula:

S=1-(1-B)(1-R)
M=1-(1-C)1-1I)(1-A)

roundup(5.3S +6.1M) M >0
0 otherwise

FSS:{

where B, R,C, I, A are as defined above, S is sensitivity aggregate, M is impact aggregate, and
roundup rounds up values to one decimal place. Weights for B and R are {none = 0,low =
0.1, medium = 0.35,high = 0.6}, while weights for C, I, and A are {none = 0,low =
0.22, medium = 0.39, high = 0.56}. Equations for S and M are structured to produce a high
score when any one of the components are marked higher, similar to CVSS 3.1. The weights and
coefficients were tuned such that FSS captures the scores from 0 to 10. Figure [3| shows the scores

Under review as a conference paper at ICLR 2026

of all classifications in increasing order for CVSS 3.1 and FSS, demonstrating that FSS behaves
similarly to the industry-standard CVSS 3.1. Figure[dshows an example classification and its score.

Prediction: The last step of the pipeline is the prediction that outputs whether the summarized
diff contents resemble malicious injection or a benign software update. We implement this step by
passing the top k functions with highest FSS to the LLM and prompt it to output either MALICIOUS
or BENIGN by reasoning about whether the changes match the project description.

4 EVALUATION

4.1 SupPLY CHAIN SECURITY BENCHMARK

We construct a benchmark for software supply chain security by picking six popular open-
source projects spanning command line utilities and libraries gzip, openssl, tar, sqlite,
microhttpd, and paho-mgtt. Additional details are provided in Appendix [A.2] Table [T]shows
the project description, number of versions selected, number of diffs from taking consecutive ver-
sion pairs, and total number of added, deleted, and modified functions across all diffs. Each project
is compiled in a Ubuntu 20.04 docker container with the default compiler GCC 9.4.0. Pairs of bina-
ries of consecutive versions are treated as software updates and we use them for binary diffing. We
collected 104 versions across the 6 projects, generating 98 software update pairs.

Project Description Versions Diffs Functions
gzip File compression utility 5 16 1209
openssl Cryptography library and utility 29 112 9722
tar File and directory archival utility 10 36 8936
sglite Single-file SQL database library 28 108 16682
microhttpd Lightweight HTTP server library 23 88 6648
paho-mgtt MQTT lightweight messaging library 9 32 2826
Total 104 392 46023

Table 1: Details of software supply chain security benchmark.

Additionally, we implement three malwares to inject into the source code of each project. Details of
each malware are provided in Appendix

* rware: aransomware (Li,[2021) that encrypts user files using AES and ECDH encryption
* rat: aremote access trojan (Kara & Aydos||2019) that initiates a reverse shell with remote server
e botnet: a bot network (Antonakakis et al., 2017} for denial-of-service attacks on servers

Each malware is implemented as C code contained in one source file that is copied into the project
source directory and added to the build system. The entry point of each malware is a C function that
takes no arguments and returns no values. For each project, we determine a trigger point that is not
reachable in normal operation of the project but can be triggered by the attacker with specific mal-
formed configurations, for example, passing an attacker-defined command line option. We obtain
4 binary diffs per version pair by considering a software update from a clean binary of the former
version to the clean and injected binaries of the latter version. In total, this makes 392 diffs.

4.2 METRICS

Malware Detection: Prediction output is evaluated against ground truth labels for each diff. Diffs
with binaries containing the injected malware are labeled MALICIOUS and diffs with clean bina-
ries are labeled BENIGN. Treating the MALICIOUS label as positive, we compute precision and
recall to evaluate accuracy of malware detection. False positives would be clean diffs labeled as
MALICIOUS. False negatives would be diffs with injected malware labeled as BENIGN.

FSS Separation: It is difficult to evaluate the quality of FSS scores assigned by an LLM without
human-labeled scores for functions in the diff. Even in clean diffs, functions may show different
behaviors and thus different FSS. In our benchmark, we mark functions from the original code as
benign and injected functions as malicious. FSS scores are averaged as F'S'Spe, and F'S'Syy,a1 across

Under review as a conference paper at ICLR 2026

Model / k=5 k=10 k = 5w/ change k = 10 w/ change
Program P R P R P R P R

GPT5 mini 096 058 096 054 098 0.64 0.98 0.60
gzip 1.00 0.75 1.00 0.50 1.00 0.75 1.00 0.67
openssl 0.83 033 0.83 033 0.90 0.60 0.82 0.30
tar 0.83 037 080 030 0.79 0.41 0.77 0.37
sqlite 1.00 0.70 0.98 0.81 1.00 0.66 0.98 0.78

microhttpd 098 0.62 097 0.58 1.00 0.64 1.00 0.65
paho-mgtt 1.00 0.71 1.00 0.71 1.00 0.62 1.00 0.79

GPTS5 nano 0.83 035 087 036 0.85 0.29 0.87 0.34
gzip 0.86 0.50 0.80 0.33 0.67 0.17 0.60 0.25
openssl 0.81 040 0.78 0.30 0.81 0.31 0.88 0.33
tar 0.78 0.67 0.76 0.59 0.72 0.48 0.74 0.52
sglite 0.82 031 095 053 092 0.31 0.92 0.46

microhttpd 093 020 094 024 0.93 0.21 0.94 0.24
paho-mgtt 1.00 025 1.00 0.17 1.00 0.17 1.00 0.17

GPT OSS 20B 0.89 041 093 042 0.89 0.40 0.92 0.41

gzip 0.80 033 086 050 0.83 0.42 0.83 0.42
openssl 0.85 033 088 033 0.83 0.29 0.88 0.35
tar 0.86 0.29 0.80 0.19 0.80 0.19 0.75 0.14
sglite 092 0.72 095 0.72 0.95 0.75 0.97 0.72

microhttpd 095 032 1.00 0.26 0.81 0.26 0.90 0.27
paho-mgtt 0.67 0.08 1.00 0.29 1.00 0.12 1.00 0.17

Table 2: Malware detection precision (P) and recall (R) for each model and each program. £ refers
to how many functions with highest score are provided for prediction step. “w/ change” refers to
program changelog being provided for the prediction step.

a binary. Their distributions are checked to see if malicious functions score higher than benign ones.
Higher separation of the distributions of F'SSpe, and F'S'Sy,, will indicate better FSS quality.

5 RESULTS

Experimental Setup: We evaluate with two commercial LLMs, GPT5 mini and GPT5 nano (Ope-
nAlL[2025a)), and three open-source LLMs, GPT OSS 20B (OpenAlL2025b), Qwen3 30B, and Qwen3
8B (Qwenl [2025). All four LLMs are run in thinking/reasoning mode. Reasoning effort is set to
“low” for GPT5 mini, nano, and GPT OSS 20B models. Qwen3 30B, 8B, and GPT OSS 20B models
are run via Ollama on a server with two NVidia L40 GPUs. The models are run with default hy-
perparameter settings as follows: temperature of 1.0 and top-p of 1.0 for GPT5 mini, GPT5 nano,
and GPT OSS 20B; temperature of 0.6 and top-p of 0.95 for Qwen3 8B and Qwen3 30B. We do not
evaluate the highest capability GPT5 on the full benchmark due to high API costs and because the
smaller models suffice as seen in the results.

Table [2] shows the accuracy of malware detection as measured by precision (P) and recall (R) de-
scribed in Section The same model is used for final prediction as for summarization. We run
the prediction step with four configurations by modifying &, the number of functions with highest
FSS provided to the LLM, and whether or not the program changelog was provided. The changelog
is extracted from the program source code or online repository for each version and appended to the
initial prompt when needed. The gray highlighted rows show the overall P and R for each model,
while the rows beneath them show per-program results. We do not display the results of Qwen3
30B and Qwen3 8B as both models stumble in the final prediction step; in many cases they do not
produce either MALICIOUS or BENIGN as instructed and a prediction is not obtained from their
response. To overcome this, we perform the final prediction step with GPT5 mini for these and other
models, with results described later in Table

Precision: Across all models, P ranges from 0.83 to 0.98, indicating that the framework obtains
low false positives. GPT5 mini achieves highest P of 0.98 for both £ with changelog, with only
a slight improvement over without changelog. GPT OSS 20B achieves lower P from 0.89 to 0.93.

Under review as a conference paper at ICLR 2026

Its performance improves with k¥ = 10 over k = 5, and degrades with changelog for both k. This
indicates that giving a larger context of function summaries is better than providing changelog.
GPT5 nano ranks third with P from 0.83 to 0.87, showing similar configuration trends as GPT5
mini. Performance improves slightly with higher &, but is not affected by changelog. Overall scores
show that providing a changelog does not significantly impact P, but larger & helps in some cases.

Recall: R sees interesting trends across all models, ranging from 0.35 to 0.64, indicating wide vari-
ation in the false negatives and accuracy of detecting malware. This is expected as it is harder to
classify newly introduced code as malicious or benign than analyzing legitimate changes. Nonethe-
less, this performance indicates that the framework detects malicious injected code in upto 64%
cases. For GPT5 mini, maximum R is achieved for £ = 5 with changelog. R improves by 0.06
with changelog than without, indicating that the changelog grounds the model in terms of what
differences to expect thus improving malware detection accuracy. R degrades by 0.04 for k = 10
than £ = 5, indicating that providing more functions in the context may confuse the model. For
GPT OSS 20B, R ranges from 0.40 to 0.42, showing consistent results across configurations. For
this model, providing changelog degrades R slightly by 0.01, while larger £ improves it by 0.01.
GPT5 nano obtains R from 0.29 to 0.36, ranking lower than GPT OSS 20B. R drops significantly
with changelog, but increases with larger k. GPT5 nano reiterates the behavior of GPT OSS 20B,
suggesting that lower capability models perform better with a larger function context instead of
providing changelogs, whereas higher capability models utilize the changelog better.

Programs: The per program results of P and IR show wide variation. GPT5 mini obtains near
perfect P for all programs across configurations, except openssl and tar where false positives
are high likely because of crypto operations and directory access in them. k£ = 5 with changelog
improves P for openss1, but other configurations degrade. For GPT5 nano and GPT OSS 20B, P
is in the range 0.60 to 1.00, with microhttpd and paho-mgtt achieving high P. Variations are
consistent with P of the model overall. On R, GPT5 mini consistently outperforms GPT5 nano and
GPT OSS 20B for configuration k¥ = 5 with changelog, except for tar where GPT5 nano is higher.
The impact trends of the configuration are not consistent across programs, highlighting variable
dependence on the amount of functions and whether changelog is relevant to malware detection.

Model k=5 k=10 k =5 w/change k = 10 w/ change
P R P R P R P R

GPTS5 nano 092 047 088 039 0.92 0.45 0.92 0.45
GPTOSS20B 096 045 097 047 0.95 0.45 0.95 0.47
Qwen3 30B 097 051 097 057 097 0.58 0.97 0.52
Qwen3 8B 097 042 093 038 0.97 0.47 0.97 0.46

Table 3: Malware detection precision (P) and recall (R) when using GPT5 mini as the predictor on
summaries generated by each model.

Combination of LLMs: As described above, the Qwen3 30B and Qwen3 8B models face difficulty
in the final prediction step. To overcome that, we explore how the framework performs when using a
lower capability model for the summarization and using a higher capability model for the prediction.
Table3|shows P and R with GPT5 mini as the predictor model combined with the other models for
summarization. Comparatively, P and R are consistently higher with GPT5 mini as the predictor
than GPT5 nano and GPT OSS 20B. P ranges from 0.88 to 0.92 for GPT5 nano, lower than for
other models where it ranges from 0.93 to 0.97. This reiterates the trend of Table 2] indicating that
GPT5 nano summaries lead to higher false positive malware detection. Qwen3 30B performs best in
terms of R from 0.51 to 0.58 which implies higher quality summaries. For GPT OSS 20B, R stays
consistent for both k£ and with or without changelog. Qwen3 30B gets a boost in R with either higher
k or with changelog, whereas Qwen3 8B improves only with changelog.

FSS Separation: Figure [5 presents the distribution of FSS scores for benign (F'SSpe,) and mali-
cious (F'SSya1) functions as described in Section@ Figure Eka) shows distribution by model. All
models demonstrate a clear separation between F'SSye, and F'S Sy Except for GPTS mini, other
models have a wider spread in the F'SSy,, distribution that overlaps with F'SSpe,, yet the boxes
and medians remain clearly separated. GPT5 mini shows a tighter distribution of F'S.S,,) than the
rest, demonstrating greater scoring consistency. Overall, the median scores show a difference of 1.5

Under review as a conference paper at ICLR 2026

4 i - Jbenign
10 = malicious

| i
@%%% H

0 4 4 _

FSS
o

EN
1

N
L

GPT5 GPT5 GPT Qwen3Qwen3 gzip open tar sqlite micro paho clean rware rat botnet
mini nano 0SS 30B 8B ssl httpd mqgtt
(a) by model (b) by program (c) by malware

Figure 5: Distribution of F'S.Sye, and F'S Sy a1 (a) by LLM, (b) by program for GPT5 mini, and (c)
by malware for GPT5 mini. The boxes show first to third quartile, the middle line shows median,
and the whiskers show 1.5x inter-quartile range.

to 5.0 points, with GPT5 mini having a separation of 3.0. The summarization framework reliably
marks malicious injected functions with higher FSS than benign functions. The benign functions
are consistently scored with median FSS of 4.0 or lower; LLM understands function sensitivity
correctly, illustrating efficacy of FSS categorization.

To further investigate the performance of the best-performing model GPT5 mini, Figures [5(b) and
Blc) provide a granular breakdown of GPT5 mini’s scores. The analysis by program demonstrates
that GPT5 mini’s discriminative power is robust across the set of programs. Interestingly, the
F'SSyen distributions across programs are narrow, showing that GPT5 mini consistently marks the
functions similarly. Additionally, openssl, microhttpd, and paho-mgtt get higher F'SShen
as expected because the benign functions have cryptographic and network functionalities. Similarly,
Figure Ekc) illustrates the model’s effectiveness against different malwares. Distribution of F'S.S
for rware is largest, while for rat and botnet is very narrow, indicating that it is easier to
identify sensitive behaviors with the network access in the later two. Nonetheless, there is a clear
separation across all malwares which makes it easy to configure thresholds for detection.

6 CASE STUDY: XZ BACKDOOR

We analyze the XZ Utils supply Predictor Top-5 functions
chain attack detected in 2024 (Przy- Suymm. GPT5 GPT5 mini

mus & Durieux) [2025), where the
open-source XZ repository was com- FUN_00104794(6.5)
promised to inject a backdoor into FUN-00104720(6.5)
the 1iblzma.so library. This li- GPTS ~ AkEM &K _getcpuid(5.3)
brary is ubiquitous on Linux sys- 1zmaZ2_decode(4.3)
tems ranging from servers to embed- FUN.0011e4a0(4.2)
ded controllers, so the attack would %x86_code(4.2)

have devastating consequences, how- FUN.00104794(4.2)

ever it was caught before the back- GPTS crc64_set_fun(3.4)
door was distributed as part of uyp- MM malicious benign _get_cpuid(3.4)
dates. We compile the XZ utils FUN_00104720(3.4)

source code for the compromised ver-

sion v5. 6.0 and a previous version Typle 4: XZ backdoor detection by GPT5 and GPT5 mini

v5.4.7. We evaluate our binary ,1ong with sensitive functions identified by both.
diff summarization framework on the

generated 1iblzma. so libraries. We run GPTS5 mini and GPTS5 for both the summarization and
prediction step with £ = 5 and no changelog.

Table @] shows the output of malware detection by GPT5 and GPT5 mini when run
on each other’s summarizations. GPTS5 correctly marks the diff summaries as mali-

Under review as a conference paper at ICLR 2026

cious for both the summaries generated by itself and by GPT5 mini.

On the other

hand, GPT5 mini marks its own summaries as benign, however it correctly marks GPTS5

summaries as malicious.

This indicates that both models highlight the injected mali-

cious behavior sufficiently, while it takes the more capable GPTS5 for a correct prediction.

The top-5 highest scored functions are shown along
with their scores for both models. The red high-
lighted functions were those injected with malicious
behavior. Out of 79 functions in the diff, both mod-
els score the relevant malicious functions higher so
they appear among the top 5. GPT5 scores the ma-
licious functions highest, whereas GPT5 mini scores
them generally lower. This demonstrates that the
LLMs correctly identify sensitive behaviors using
the FSS categorization.

Figure [6] shows the diff summaries generated by
GPTS5 for the two highlighted functions. Highlighted
in red, we see the model describe how the function-
alities are “atypical for liblzma” and differ from “li-
blzma’s expected functionality”. This case study il-

FUN_00104720 diff summary (}3

Newly added function. It introduces a call-count—gated side effect
(only when the global counter equals 1 on entry) that invokes
NEWF_00104794 with a crafted local buffer containing param_2.
That callee performs an unchecked transient memory write to an
address derived from pointer arithmetic and issues a CPUID call
before restoring memory. This is atypical for liblzma and poses
potential integrity/availability risks (fault or probe) and increases
hardware fingerprinting/anti-analysis behaviors...

FUN_00104794 diff summary @

New function added...introduces opaque initialization and a
transient write to an address computed from (vtable_pointer - this
+ 0x2e8), followed by a CPUID call and restoration... Unchecked
computed-pointer dereference/write (may crash ...
integrity/availability risk)... Stores pointer/offset deltas into object
fields, suggesting obfuscation or anti-reverse-engineering
behavior rather than typical liblzma state setup. Given
liblzma’s expected functionality, this routine is anomalous and
warrants deeper review for malicious or vulnerable behavior..

lustrates that LLMs utilize the binary diff summa-
rization framework and FSS categorization to pro-
duce meaningful summaries that highlight malicious
behavior when analyzing software updates.

Figure 6: GPT5 summaries for the XZ back-
door functions.

7 CONCLUSION

In this work, we presented a novel framework for binary diff summarization using LLMs, with a
specific focus on enhancing software supply chain security. We introduce the functional sensitivity
score (FSS), a metric designed for automated triage of sensitive functions within binary diffs. To
evaluate our approach, we created a new benchmark for software supply chain security, comprising
104 versions of 6 open-source projects, into which we injected 3 different types of malware. Our
framework achieved a high precision of 0.98 and a recall of 0.64 for malware detection. Furthermore,
the FSS demonstrated a clear separation of 3.0 points between malicious and benign functions,
highlighting its effectiveness. On the real-world XZ backdoor case study, our framework correctly
captured the injected malicious functions with high FSS and correctly marked the software update
as malicious, exemplifying the applications to real-world scenarios. These findings illustrate the
significant potential of leveraging LLMs for automation of software supply chain security. Future
work could explore the application of this framework to other security-critical domains, such as
vulnerability detection and patch analysis. The FSS could be adapted and refined for other security
applications, and the framework could be extended to support a wider range of architectures.

Ethics: This work explores the use of large language models (LLMs) for binary diff summarization,
which identifies changes between binary versions to help analysts detect bugs, vulnerabilities, and
supply chain threats. Although the technique strengthens patch management and software integrity
verification, it also has dual-use implications. Malicious actors could potentially exploit the same
methods for reverse engineering, intellectual property theft, or scalable attacks on software supply
chains. Our study is conducted purely for defensive and research purposes, aiming to advance the
ability of the security community to manage patches and identify vulnerabilities. We acknowledge
the risks of misuse and emphasize the importance of safeguards, rigorous evaluation, and gover-
nance mechanisms in guiding responsible adoption of LLM-based tools. By contextualizing and
transparently reporting our findings, we seek to raise awareness of emerging attack vectors while
supporting the development of effective countermeasures.

Reproducibility: We provide the evaluation artifacts containing the ghidriff outputs, LLM-
generated summaries, and predictions as part of the supplementary materials. For safety reasons,
the malware source code and compiled binaries have been omitted. We will release source code and
build scripts at the time of publication.

Under review as a conference paper at ICLR 2026

REFERENCES

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran,
Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. Understanding the
mirai botnet. In 26th USENIX security symposium (USENIX Security 17), pp. 1093-1110, 2017.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and Michael F. P. O’Boyle. Slade: A
portable small language model decompiler for optimized assembly. CGO ’24, pp. 67-80. IEEE
Press, 2024. ISBN 9798350395099. doi: 10.1109/CG057630.2024.10444788. URL https:
//doi.org/10.1109/CG057630.2024.10444788.

Martial Bourquin, Andy King, and Edward Robbins. BinSlayer: Accurate Comparison of Binary
Executables. In Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engi-
neering Workshop (PPREW), pp. 4:1-4:10, 2013. doi: 10.1145/2430553.2430557.

David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards Automatic
Generation of Vulnerability-Based Signatures. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, pp. 2-16, 2006. doi: 10.1109/SP.2006.41.

Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating the effectiveness of decom-
pilers. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 491-502, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN 9798400706127. doi: 10.1145/3650212.3652144. URL https://doi.org/10.
1145/3650212.3652144.

Guogiang Chen, Huiqi Sun, Daguang Liu, Zhiqi Wang, Qiang Wang, Bin Yin, Lu Liu, and
Lingyun Ying. Recopilot: Reverse engineering copilot in binary analysis. arXiv preprint
arXiv:2505.16366, 2025.

Cristina Cifuentes. Reverse compilation techniques. PhD thesis, Queensland University of Technol-
ogy, 1994.

Roxane Cohen, Robin David, Riccardo Mori, Florian Yger, and Fabrice Rossi. Improving Binary
Diffing Through Similarity and Matching Intricacies. In SSTIC Proceedings (SSTIC 2024), pp.
1-8, 2024. URL https://www.sstic.org/media/SSTIC2024/SSTIC—actes/
gbindiff_a_modular_differ/SSTIC2024-Article-gbindiff_a_modular_
differ-rossi_yger_mori_david_cohen.pdf.

Roxane Cohen, Robin David, Riccardo Mori, Florian Yger, and Fabrice Rossi. Experimental Study
of Binary Diffing Resilience on Obfuscated Programs. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 223-243. Springer, 2025.

Charlie Dil, Hui Chen, and Kostadin Damevski. Towards higher quality software vulnerability data
using llm-based patch filtering. Journal of Systems and Software, pp. 112581, 2025.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. Asm2Vec: Boosting Static
Representation Robustness for Binary Clone Search Against Code Obfuscation and Compiler
Optimization. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), pp. 472—
489, 2019. doi: 10.1109/SP.2019.00003. URL https://dmas.lab.mcgill.ca/fung/
pub/DFC19sp.pdfl

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. DeepBinDiff: Learning Program-Wide
Code Representations for Binary Diffing. In Network and Distributed System Security Symposium
(NDSS), 2020. doi: 10.14722/ndss.2020.24311.

Thomas Dullien and Rolf Rolles. Graph-Based Comparison of Executable Objects. In Sym:-
posium sur la Sécurité des Technologies de I’Information et des Communications (SSTIC),
2005. URL https://actes.sstic.org/SSTICO05/Analyse_differentielle_
de_binaires/SSTICO5-article-Flake—-Graph_based_comparison_of__
Executable_Objects.pdf. English version (PDF). See also BinDiff historical references
and implementations.

10

https://doi.org/10.1109/CGO57630.2024.10444788
https://doi.org/10.1109/CGO57630.2024.10444788
https://doi.org/10.1145/3650212.3652144
https://doi.org/10.1145/3650212.3652144
https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://dmas.lab.mcgill.ca/fung/pub/DFC19sp.pdf
https://dmas.lab.mcgill.ca/fung/pub/DFC19sp.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf

Under review as a conference paper at ICLR 2026

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
code changes and cve summaries. In Proceedings of the 17th international conference on mining
software repositories, pp. 508-512, 2020.

Halvar Flake. Structural Comparison of Executable Objects. In Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), pp. 161-173, 2004.

FortiGuard Labs. 3CX Desktop App Compromised (CVE-2023-29059),
2023. URL https://www.fortinet.com/blog/threat-research/
3cx—desktop—app-compromised.

Debin Gao, Michael K. Reiter, and Dawn Song. BinHunt: Automatically Finding Semantic Differ-
ences in Binary Programs. In Proceedings of the International Conference on Information and
Communications Security (ICICS), pp. 238-255, 2008. doi: 10.1007/978-3-540-88625-9_16.

Irfan Ul Haq and Juan Caballero. A Survey of Binary Code Similarity. ACM Comput. Surv., 54(3),
April 2021. ISSN 0360-0300. doi: 10.1145/3446371. URL https://doi.org/10.1145/
3446371.

Henry Howland. Cvss: Ubiquitous and broken. Digital Threats, 4(1), February 2022. doi: 10.1145/
3491263. URL https://doi.orqg/10.1145/3491263.

Nasir Hussain, Haohan Chen, Chanh Tran, Philip Huang, Zhuohao Li, Pravir Chugh, William Chen,
Ashish Kundu, and Yuan Tian. Vulbinllm: Llm-powered vulnerability detection for stripped
binaries. arXiv preprint arXiv:2505.22010, 2025.

Xin Jin, Jonathan Larson, Weiwei Yang, and Zhigiang Lin. Binary code summarization: Bench-
marking chatgpt/gpt-4 and other large language models. arXiv preprint arXiv:2312.09601, 2023.

Ilker Kara and Murat Aydos. The ghost in the system: technical analysis of remote access trojan.
International Journal on Information Technologies & Security, 11(1):73-84, 2019.

Joxean Koret. Diaphora — Program Diffing Plugin for IDA Pro (GitHub). https://
github.com/joxeankoret/diaphora, 2015-2025. URL https://github.com/
joxeankoret/diaphoral

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltos Allamanis, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. DIRE: A neural approach to decompiled identifier naming. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
628-639. IEEE, 2019.

Adrian Shuai Li. An analysis of the recent ransomware families. Project Report. Purdue University,
2021.

Jie Lin and David Mohaisen. From large to mammoth: A comparative evaluation of large language
models in vulnerability detection. In Proceedings of the 2025 Network and Distributed System
Security Symposium (NDSS), 2025.

Cullen Linn and Saumya Debray. Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. In Proceedings of the 10th ACM Conference on Computer and Communications
Security, pp. 290-299, 2003.

John MclIntosh. Ghidriff: Python Command-Line Ghidra Binary Diffing Engine, 2023. URL
https://github.com/clearbluejar/ghidriffl

Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. Direct: a transformer-based model
for decompiled identifier renaming. In Proceedings of the 1st Workshop on Natural Language
Processing for Programming (NLP4Prog 2021), pp. 48-57, 2021.

Jeong Wook Oh. DarunGrim: A Patch Analysis and Binary Diff-
ing Tool. https://sgros—students.blogspot.com/2014/06/
binary-diffing-using-darungrim.html, 2008.

11

https://www.fortinet.com/blog/threat-research/3cx-desktop-app-compromised
https://www.fortinet.com/blog/threat-research/3cx-desktop-app-compromised
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3491263
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/clearbluejar/ghidriff
https://sgros-students.blogspot.com/2014/06/binary-diffing-using-darungrim.html
https://sgros-students.blogspot.com/2014/06/binary-diffing-using-darungrim.html

Under review as a conference paper at ICLR 2026

OpenAl GPT-5 System Card, 2025a. URL https://openai.com/index/
gpt-5-system—-card/.

OpenAl GPT-OSS System Card, 2025b. URL |https://openai.com/index/
gpt—-oss—-model-card/.

Piotr Przymus and Thomas Durieux. Wolves in the repository: A software engineering analysis of
the xz utils supply chain attack. In 2025 IEEE/ACM 22nd International Conference on Mining
Software Repositories (MSR), pp. 91-102. IEEE, 2025.

Qwen. Qwen3 System Card, 2025. URL https://huggingface.co/Qwen/Qwen3—-8B.

Beatriz M. Reichert and Rafael R. Obelheiro. Software supply chain security: a systematic literature
review. International Journal of Computers and Applications, 46(10):853-867, 2024. doi: 10.
1080/1206212X.2024.2390978. URL https://doi.org/10.1080/1206212X.2024.
2390978.

Paul Royal, Matthew Halpin, David Dagon, Robert Edmonds, and Wenke Lee. PolyUnpack: Au-
tomating the Hidden-Code Extraction of Unpack-Executing Malware. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC), pp. 289-300, 2006. doi:
10.1109/ACSAC.2006.20.

Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov. Evolving exact
decompilation. In Workshop On Binary Analysis Research (BAR), 2018. doi: 10.14722/ndss.
2018.23002.

Xiuwei Shang, Shaoyin Cheng, Guoqgiang Chen, Yanming Zhang, Li Hu, Xiao Yu, Gangyang Li,
Weiming Zhang, and Nenghai Yu. How far have we gone in binary code understanding using
large language models. In 2024 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 1-12. IEEE, 2024.

Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable and Robust Binary Library
Function Identification Using Function Shape. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pp. 301-324. Springer, 2017.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
SOK: (state of) the art of war: Offensive techniques in binary analysis. In IEEE Symposium on
Security and Privacy (SP), pp. 138-157, USA, 2016. IEEE.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile: Decompiling binary code with
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 3473-3487. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.emnlp-main.203. URL http://dx.doi.org/10.18653/v1/2024.
emnlp-main.203.

Meet Udeshi, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Remend: Neural
decompilation for reverse engineering math equations from binary executables. ACM Trans.
Intell. Syst. Technol., July 2025. ISSN 2157-6904. doi: 10.1145/3749988. URL https:
//doi.org/10.1145/3749988. Just Accepted.

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao
Zhang. jTrans: Jump-Aware Transformer for Binary Code Similarity. arXiv Preprint, 2022. URL
https://arxiv.org/abs/2205.12713l

Zheng Wang, Ken Pierce, and Scott McFarling. BMAT — A Binary Matching Tool for Stale Profile
Propagation. The Journal of Instruction-Level Parallelism, 2:1-20, 2000.

Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imranur Rahman, Mahz-
abin Tamanna, Greg Tystahl, Nusrat Zahan, Patrick Morrison, Yasemin Acar, Michel Cukier,
Christian Kistner, Alexandros Kapravelos, Dominik Wermke, and William Enck. Research di-
rections in software supply chain security. ACM Trans. Softw. Eng. Methodol., 34(5), May 2025.
ISSN 1049-331X. doi: 10.1145/3714464. URL https://doi.org/10.1145/3714464.

12

https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-oss-model-card/
https://openai.com/index/gpt-oss-model-card/
https://huggingface.co/Qwen/Qwen3-8B
https://doi.org/10.1080/1206212X.2024.2390978
https://doi.org/10.1080/1206212X.2024.2390978
http://dx.doi.org/10.18653/v1/2024.emnlp-main.203
http://dx.doi.org/10.18653/v1/2024.emnlp-main.203
https://doi.org/10.1145/3749988
https://doi.org/10.1145/3749988
https://arxiv.org/abs/2205.12713
https://doi.org/10.1145/3714464

Under review as a conference paper at ICLR 2026

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen Nie, and Shi
Wu. Refining decompiled ¢ code with large language models. arXiv preprint arXiv:2310.06530,
2023.

Sheng Yu. DeepDiff: Next-Generation Binary Diffing for Precise Vulnerability and Patch Detection,
2025. URL https://www.deepbits.com/blog/DeepDiffl

Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang, Chenyang Lyu,
Xuhong Zhang, Changting Lin, Jingzheng Wu, et al. A Large-Scale Empirical Analysis of the
Vulnerabilities Introduced by Third-Party Components in IoT Firmware. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 442-454,
2022.

A APPENDIX

A.1 RELATED WORK COMPARISON

Tool / Paper Category / Approach
BMAT (Wang et al., 2000) Symbol / Name-based / Fuzzy
BinDiff (Flake, [2004) Graph-based
BinDiff extended (Dullien & Rolles, [2005) Graph-based
BinHunt (Gao et al., [2008) Graph-based + Symbolic Execution
DarunGrim (Oh, |[2008) Graph-based
BinSlayer (Bourquin et al.,[2013) Graph-based + Bipartite matching
Diaphora (Koret, [2015-2025) Graph-based
Asm2Vec (Ding et al., 2019) ML-based embedding
DeepBinDift (Duan et al., 2020) ML-based embedding
jTrans (Wang et al.,[2022) Deep Learning
QBinDiff (Cohen et al.,[2024) Network alignment/Belief Propagation

A.2 BENCHMARK DETAILS

Program URL

gzip https://ftp.gnu.org/gnu/gzip

openssl https://github.com/openssl/openssl/releases/download
tar http://mirror.rit.edu/gnu/tar

sglite https://sglite.org

microhttpd https://ftp.gnu.org/gnu/libmicrohttpd
paho-mgtt https://github.com/eclipse-paho/paho.mgtt.c/archive/
refs/tags

Table 5: URLs for each project in the benchmark.

A.3 MALWARE IMPLEMENTATIONS DETAILS

Ransomware: The ransomware is implemented as a C program that utilizes self-contained versions
of tiny-Aqu_-] and tiny-ECDHE] for its cryptographic operations. The malware recursively scans for
files and encrypts each one with a unique, randomly generated AES-128 key in Counter (CTR)
mode, appending a .CRYPT extension to the filename. To protect these individual file keys, it
employs an Elliptic Curve Diffie-Hellman (ECDH) key exchange using the NIST B-163 curve; it
generates a shared secret by combining a new local private key with a hardcoded attacker’s public

Zhttps://github.com/kokke/tiny—-AES-c
Shttps://github.com/kokke/tiny-ECDH-c

13

https://www.deepbits.com/blog/DeepDiff
https://ftp.gnu.org/gnu/gzip
https://github.com/openssl/openssl/releases/download
http://mirror.rit.edu/gnu/tar
https://sqlite.org
https://ftp.gnu.org/gnu/libmicrohttpd
https://github.com/eclipse-paho/paho.mqtt.c/archive/refs/tags
https://github.com/eclipse-paho/paho.mqtt.c/archive/refs/tags
https://github.com/kokke/tiny-AES-c
https://github.com/kokke/tiny-ECDH-c

Under review as a conference paper at ICLR 2026

key. This shared secret is then used as a master key to encrypt all the individual file keys and their
paths into an info.bin file, after which the ransomware drops a note containing the victim’s public
key needed for decryption.

Remote access trojan: The RAT implements a stealthy reverse shell that connects a target machine
back to an attacker. It begins by reading the attacker’s IP address and port from an environment
variable, a technique used to avoid hardcoding sensitive information. The program then uses fork()
to create a child process, allowing the parent to exit immediately while the malicious code continues
to run in the background, detached from the original application. This child process establishes a
network connection to the attacker’s machine. The core of its functionality lies in using the dup2()
system call to redirect the standard input, output, and error streams to the network socket. Finally,
it calls execve() to replace its own process with /bin/sh, which is cleverly obfuscated in the code
as a series of integer multiplications. Because the I/O streams are already redirected, this new shell
process is fully interactive for the remote attacker, granting them command-line control over the
compromised system.

Botnet: The botnet client is implemented based on the leaked source code of the Mirai botnet
(Antonakakis et al.l 2017). The program is designed to connect to a Command and Control (C2)
server, which is hardcoded as “localhost” on port 5034. Once connected, the bot enters a loop where
it sends a periodic keep-alive message to the C2 server and listens for attack commands. When a
command is received, it is parsed to extract a target IP address, port, payload size, and the number
of packets to send. Unlike the original Mirai, which featured multiple attack vectors, this simplified
version only implements a basic UDP flood attack. This attack function bombards the specified
target with a high volume of UDP packets containing randomized data, generated by a Xorshift
pseudo-random number generator identical to the one used in Mirai, with the goal of overwhelming
the target’s network resources.

A.4 TOKEN CONSUMPTION

[Input
500M -
3 Output
400M D
[0) V
$ 300M -
v
o
200M -
100M A ,>2<
(X

GPT5 GPT5 GPT Qwen3Qwen3
mini nano 0SS 30B 8B

Figure 7: Token consumption.

Figure [7] shows the total input and output token consumption per model on the entire benchmark.
The tokens range from 100M for Qwen3 models to 500M for GPT5 mini. The wide difference
in token consumption may be due to different tokenizers for each model and because GPT5 nano
and GPTS5 mini may produce larger and more detailed function summaries that are sent back in the
followup prompt. Output tokens are around 5% to 25% of input tokens. Considering 46K functions
in the benchmark, the average per-function token consumption is around 2K to 12K.

A.5 LLM USAGE

Apart from the LLMs that we evaluate as part of our research, we have used the LLM tools ChatGPT
and Gemini for refining and polishing content written by us.

14

	Introduction
	Background and Related Work
	Method
	Evaluation
	Supply Chain Security Benchmark
	Metrics

	Results
	Case Study: XZ Backdoor
	Conclusion
	Appendix
	Related Work Comparison
	Benchmark Details
	Malware Implementations Details
	Token Consumption
	LLM Usage

