

BINARY DIFF SUMMARIZATION USING LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Security of software supply chains is necessary to ensure that software updates do not contain maliciously injected code or introduce vulnerabilities that may compromise the integrity of critical infrastructure. Verifying the integrity of software updates involves binary differential analysis (binary diffing) to highlight the changes between two binary versions by incorporating binary analysis and reverse engineering. Large language models (LLMs) have been applied to binary analysis to augment traditional tools by producing natural language summaries that cybersecurity experts can grasp for further analysis. Combining LLM-based binary code summarization with binary diffing can improve the LLM’s focus on critical changes and enable complex tasks such as automated malware detection. To address this, we propose a novel framework for binary diff summarization using LLMs. We introduce a novel *functional sensitivity score* (FSS) that helps with automated triage of sensitive binary functions for downstream detection tasks. We create a *software supply chain security* benchmark by injecting 3 different malware into 6 open-source projects which generates 104 versions, 392 binary diffs, and 46,023 functions. On this, our framework achieves a precision of 0.95 and recall of 0.71 for malware detection, displaying high accuracy with low false positives. We outperform an existing industry-style rule-based baselines by $\approx 4\times$ higher recall on malware detection while maintaining high precision. Across malicious and benign functions, we achieve FSS separation of 3.0 points, confirming that FSS categorization can classify sensitive functions. We conduct a case study on the real-world XZ utils supply chain attack; our framework correctly detects the injected backdoor functions with high FSS.

1 INTRODUCTION

Binary analysis is fundamental to cybersecurity, enabling critical tasks like vulnerability discovery, malware analysis, and software supply chain integrity. Reverse engineering low-level binaries to extract high-level functionalities is essential for understanding their behavior without access to source code (Cifuentes, 1994; Schulte et al., 2018; Shoshtaishvili et al., 2016). Binary differential analysis (binary diffing) extends binary analysis by comparing two versions of a binary to understand what has changed, allowing analysts to focus on the modifications to find newly introduced bugs or security flaws. This approach is especially relevant for software supply chain security that involves verifying the integrity of software updates (Reichert & Obelheiro, 2024). Binary diffing supports critical security tasks like identifying patched vulnerabilities (Brumley et al., 2006), clustering malware variants (Royal et al., 2006), detecting vulnerabilities in binary distributions (Zhao et al., 2022). Malicious actors may inject hidden code into a program binary or into the source code of dependent open-source libraries, leading to devastating downstream impact as exemplified by recent incidents such as 3CX (FortiGuard Labs, 2023), SolarWinds, log4j, and XZ utils (Williams et al., 2025). These concerns are magnified in the context of the embedded systems supply chain. Unlike enterprise software, embedded devices are deployed in remote or inaccessible locations. Software updates require significant effort. Due to this, corrupted or compromised updates may persist for extended periods. Embedded firmware is distributed as monolithic binaries which incorporate several projects into one blob, making verification difficult (Shirani et al., 2017). This necessitates initial verification of software integrity before deployment via binary analysis and reverse engineering.

054 Reverse engineering is an inexact process, hence binary analysis tools often recover source code in
 055 an obscure format, requiring significant effort and domain expertise to understand (Cao et al., 2024).
 056 Machine learning (ML) and large language models (LLMs) have been used to improve the reverse
 057 engineering output quality, such as by predicting variable names and types (Lacomis et al., 2019;
 058 Nitin et al., 2021), decompiling with translation ML models (Armengol-Estabé et al., 2024; Udeshi
 059 et al., 2025), and binary code summarization with LLMs (Jin et al., 2023; Tan et al., 2024).

060 Binary diffing tools are built on top of binary analysis methods and hence face similar issues of ob-
 061 scurity, hard-to-understand outputs. Current tools reliably identify modified binary components by
 062 employing binary code similarity metrics; however, cybersecurity experts require significant effort
 063 to understand the code changes to identify vulnerabilities or detect malicious injected code. We pro-
 064 pose *binary diff summarization* to augment binary diffs with natural language summaries produced
 065 by an LLM. Additionally, we introduce the *functional sensitivity score* (FSS), a novel categoriza-
 066 tion method to triage binary functions such that sensitive behaviors that reveal vulnerabilities or
 067 malware are marked with a high score. We evaluate the binary diff summarization and functional
 068 sensitivity score for the software supply chain security task of detecting malware injected into open-
 069 source programs. For this, we construct a benchmark by injecting malware into multiple versions of
 070 open-source programs to construct compromised software updates across clean/injected versions.

071 The contributions of this paper are threefold: (i) A novel framework for *binary diff summarization*
 072 that augments outputs from binary diffing tools with LLM-generated natural language summaries for
 073 improved code understanding; (ii) The *functional sensitivity score*, a novel method to triage sensitive
 074 function behaviors that highlight vulnerabilities and malicious code; (iii) A *software supply chain*
 075 *benchmark* of open-source programs injected with 3 different malware, comprising of 6
 076 projects, 104 binary versions, 392 binary diffs, and 46,023 functions.

077

078

079 2 BACKGROUND AND RELATED WORK

080

081

082 Binary Differential Analysis: Binary differential analysis (binary diffing) is the process of identify-
 083 ing changes between compiled binaries at different granularities, such as instructions, basic blocks,
 084 or complete binary formats (Haq & Caballero, 2021). Unlike source-level diffing, which benefits
 085 from static code analysis, binary diffing is considerably more challenging due to compiler optimiza-
 086 tions, instruction set variations, and obfuscation techniques (Linn & Debray, 2003). Early efforts
 087 such as BinDiff (Flake, 2004), DarunGrim (Oh, 2008), and BMAT (Wang et al., 2000) relied on
 088 syntactic and graph-based similarity across control-flow graphs (CFGs), with later improvements
 089 addressing register allocation and instruction reordering (Dullien & Rolles, 2005). Subsequent
 090 works have expanded these ideas. Diaphora leverages SQL-based heuristics for CFG matching (Ko-
 091 ret, 2015–2025), while Asm2Vec (Ding et al., 2019) introduced function embeddings resilient to
 092 compiler optimizations. More recently, deep learning methods such as jTrans (Wang et al., 2022)
 093 incorporated transformers with jump and control flow awareness. QBinDiff (Cohen et al., 2024) re-
 094 framed diffing as a graph-alignment problem, achieving robustness against obfuscation as shown in
 095 the evaluation of Cohen et al. (Cohen et al., 2025). Other approaches, including Binhunt (Gao et al.,
 096 2008), and BinSlayer (Bourquin et al., 2013) employed symbolic execution, graph isomorphism and
 097 unsupervised learning to capture semantic differences more precisely. These approaches primarily
 098 tackle the challenge of binary code similarity matching which extends to binary diffing. To our
 099 knowledge, existing works do not directly target malware-injected software updates. A recent tool
 100 malcontent ChainGuard (2025) uses binary diffing to augment a rule-based malware scanner.
 101 However, rule-based scanners require frequent updates to their rules otherwise they are brittle to
 102 novel malware. We utilize malcontent as a baseline. Appendix A.1 provides more details of the
 103 related approaches.

104

105

106

107

108 LLMs for Binary Analysis: Jin et al. (2023) introduced BinSum, a benchmark of over
 109 557K binary functions across multiple architectures and optimization levels, along with novel
 110 prompt optimization strategies and semantic evaluation metrics for binary summarization. Dil
 111 et al. (2025) applied LLM-guided prompting to filter noisy vulnerability patch data in the
 112 BigVul dataset (Fan et al., 2020), improving the accuracy of downstream vulnerability pre-
 113 diction models, while Yu (2025) proposed DeepDiff, which embeds decompiled functions for
 114 similarity search and combines control and data flow analysis to detect logic-altering changes

Figure 1: Overview of the binary diff summarization framework. Ghidriff provides *added*, *modified*, and *deleted* functions that are merged into a diff callgraph. Each function undergoes LLM summarization and FSS classification. Finally, prediction happens to label the diff as malicious or benign.

in binaries. Shang et al. (2024) constructed a benchmark for reverse engineering tasks such as function name recovery and summarization, systematically evaluating LLM capabilities. Hussain et al. (2025) developed Vul-BinLLM, which augments decompilation with contextual vulnerability annotations and employs in-context learning, chain-of-thought prompting, and memory management to improve detection accuracy. Lin & Mohaisen (2025) systematically evaluated LLMs for vulnerability detection in Java and C/C++ programs, highlighting cross-language performance, prompting strategies, and configuration best practices. Wong et al. (2023) explored recompilable decompilation, proposing a hybrid two-stage approach where LLMs correct syntax errors in decompiled outputs and resolve runtime memory errors, enabling regenerated executables that preserve original functionality. Chen et al. (2025) introduced ReCopilot, an expert LLM for binary analysis that integrates variable data-flow and call-graph information with test-time scaling, and through continued pretraining, supervised fine-tuning, and direct preference optimization, achieved up to a 13% improvement over state-of-the-art models in function name recovery and variable type inference.

3 METHOD

Figure 1 is an overview of the binary diff summarization pipeline. In the context of software supply chain security, the pipeline concludes by producing a malicious/benign prediction. The summaries and FSS scores can be used for tasks such as vulnerability detection or patch identification.

Ghidriff: The pipeline begins by taking two binaries namely *old* and *new*. We use Ghidriff (McIntosh, 2023) as the binary diff tool. Ghidriff uses the Ghidra decompilation engine to perform the initial analysis of both binaries, then computes correlations across functions from *old* and *new*. The correlation reveals whether a pair of functions match exactly, match approximately, or do not match. Ghidriff outputs three lists of functions: *deleted* contains functions present in *old* that do not match with any function in *new*, *added* contains functions present in *new* that do not match with any function in *old*, and *modified* contains functions that match approximately. Thus, functions that match exactly are removed from the diff, so only the binary changes remain. As the symbols in both binaries are stripped, the *modified* functions will show up with different names in the decompiled code depending on their hexadecimal address. We rename the *modified* functions to a consistent name incorporating both the old and new address, and update all referenced locations, so that this name difference does not show up unnecessarily.

Figure 2: Example of LLM summarization and FSS for a modified function from microhttpd.

162 **Diff Callgraph:** For the functions in the three lists, we extract the decompiled source code from
 163 Ghidra analysis. For *modified* functions, we additionally compute a textual diff of the decompiled
 164 code using the Python `difflib`¹ module to provide a succinct representation of the changes. The
 165 LLM summarization happens function by function and some information about the function depen-
 166 dencies (in terms of other functions it calls) needs to be provided for the LLM to understand the
 167 functionality correctly. This dependency information is captured in the diff callgraph. The diff call-
 168 graph is essentially the merged callgraph of the *old* and *new* binaries, where only the *added*, *deleted*,
 169 and *modified* functions are preserved. Instead of merging and trimming down the full callgraphs of
 170 the binaries, we construct the diff callgraph by directly analyzing referenced dependencies in the
 171 three diff function lists.

172 **LLM Summarization:** The functions are processed in a reverse breadth-first traversal starting from
 173 leaf nodes of the diff callgraph to ensure that a function’s dependencies are processed before it. For
 174 each function, the decompiled source code along with summaries of the dependencies are passed to
 175 the LLM. For *modified* functions, the textual diff of decompiled code between *old* and *new* is also
 176 passed. The summary and FSS are generated via two separate prompts. The first prompt asks for a
 177 functionality summary and an optional diff summary. The second prompt continues the conversation
 178 (the LLM sees its previous output) and asks for the FSS. Figure 2 shows an example conversation
 179 for a modified function from `microhttpd`, where the LLM first correctly identifies the changed
 180 functionality and then proceeds to mark the FSS categories appropriately.

181 **Functional Sensitivity Score:** The FSS design is inspired by the common vulnerability scoring
 182 system (CVSS) (Howland, 2022) such that functions of interest can be marked during binary analysis
 183 using consistent categories. CVSS helps score the severity of vulnerabilities after they are identified
 184 with distinct categories and classification options, for example attack complexity (low, high) and
 185 privileges required (none, user, administrator). This allows for better vulnerability classification by
 186 cybersecurity professionals than picking abstract numerical values. CVSS aggregates the category
 187 classifications into a severity score from 0 to 10. CVSS does not directly apply for vulnerability or
 188 malware detection. Thus we design FSS with similar goals to provide meaningful categories and
 189 classifications for scoring functional sensitivity. We pick five categories with examples:

- **Sensitive behaviors (B):** reading system info, opening sockets, forking processes
- **Sensitive resources (R):** network, system files, hardware devices
- **Confidentiality impact (C):** sending files over network, reading passwords or keys
- **Integrity impact (I):** modifying system configuration, overwriting files, encrypting data
- **Availability impact (A):** disabling system services, consuming unnecessary resources

190 Each category is classified as none, low, medium, or high. We provide examples to the LLM of each
 191 category and each classification to ground its outputs. These examples can be adapted to different
 192 scenarios and environments to better guide the LLM.

210 Figure 3: CVSS 3.1 and FSS scores across all
 211 classifications in increasing order.

212

213

214

215

Score = 5.4

Behavior	none	low	medium	high
Resource	none	low	medium	high
Confidentiality	none	low	medium	high
Integrity	none	low	medium	high
Availability	none	low	medium	high

Figure 4: Example of an FSS classification with
 the aggregate score.

¹<https://docs.python.org/3/library/difflib.html>

216 Similar to CVSS 3.1, the final score is aggregated using the formula:
 217

$$S = 1 - (1 - B)(1 - R)$$

$$M = 1 - (1 - C)(1 - I)(1 - A)$$

$$FSS = \begin{cases} \text{roundup}(5.3S + 6.1M) & M > 0 \\ 0 & \text{otherwise} \end{cases}$$

220 where B, R, C, I, A are as defined above, S is sensitivity aggregate, M is impact aggregate, and
 221 roundup rounds up values to one decimal place. Weights for B and R are {none = 0, low =
 222 0.1, medium = 0.35, high = 0.6}, while weights for C, I , and A are {none = 0, low =
 223 0.22, medium = 0.39, high = 0.56}. Equations for S and M are structured to produce a high
 224 score when any one of the components are marked higher, similar to CVSS 3.1. The weights and
 225 coefficients were tuned such that FSS captures the scores from 0 to 10. Figure 3 shows the scores
 226 of all classifications in increasing order for CVSS 3.1 and FSS, demonstrating that FSS behaves
 227 similarly to the industry-standard CVSS 3.1. Figure 4 shows an example classification and its score.
 228

229 **Prediction:** The last step of the pipeline is the prediction that outputs whether the summarized
 230 diff contents resemble malicious injection or a benign software update. We implement this step by
 231 passing the top k functions with highest FSS to the LLM and prompt it to output either MALICIOUS
 232 or BENIGN by reasoning about whether the changes match the project description.
 233

235 4 EVALUATION

236 4.1 SUPPLY CHAIN SECURITY BENCHMARK

237 We construct a benchmark for software supply chain security by picking six popular open-
 238 source projects spanning command line utilities and libraries `gzip`, `openssl`, `tar`, `sqlite`,
 239 `microhttpd`, and `paho-mqtt`. Additional details are provided in Appendix A.2. Table 1 shows
 240 the project description, number of versions selected, number of diffs from taking consecutive
 241 version pairs, and total number of *added*, *deleted*, and *modified* functions across all diffs. Each project
 242 is compiled in a Ubuntu 20.04 docker container with the default compiler GCC 9.4.0. Pairs of bina-
 243 ries of consecutive versions are treated as software updates and we use them for binary diffing. We
 244 collected 104 versions across the 6 projects, generating 98 software update pairs.
 245

247 Project	248 Description	249 Versions	250 Diffs	251 Functions
252 <code>gzip</code>	253 File compression utility	254 5	255 16	256 1209
257 <code>openssl</code>	258 Cryptography library and utility	259 29	260 112	261 9722
262 <code>tar</code>	263 File and directory archival utility	264 10	265 36	266 8936
268 <code>sqlite</code>	269 Single-file SQL database library	270 28	271 108	272 16682
275 <code>microhttpd</code>	276 Lightweight HTTP server library	277 23	278 88	279 6648
282 <code>paho-mqtt</code>	283 MQTT lightweight messaging library	284 9	285 32	286 2826
Total		104	392	46023

257 Table 1: Details of software supply chain security benchmark.

258 Additionally, we implement three malwares to inject into the source code of each project. Details of
 259 each malware are provided in Appendix A.3.

- 261 • `rware`: a ransomware (Li, 2021) that encrypts user files using AES and ECDH encryption
- 262 • `rat`: a remote access trojan (Kara & Aydos, 2019) that initiates a reverse shell with remote server
- 263 • `botnet`: a bot network (Antonakakis et al., 2017) for denial-of-service attacks on servers

264 Each malware is implemented as C code contained in one source file that is copied into the project
 265 source directory and added to the build system. The entry point of each malware is a C function that
 266 takes no arguments and returns no values. For each project, we determine a trigger point that is not
 267 reachable in normal operation of the project but can be triggered by the attacker with specific mal-
 268 formed configurations, for example, passing an attacker-defined command line option. We obtain
 269 4 binary diffs per version pair by considering a software update from a clean binary of the former
 version to the clean and injected binaries of the latter version. In total, this makes 392 diffs.

Program	$k = 5$		$k = 10$		$k = 5$ w/ change		$k = 10$ w/ change	
	P	R	P	R	P	R	P	R
Overall	0.95	0.71	0.94	0.63	0.96	0.70	0.94	0.62
gzip	1.00	0.83	1.00	0.67	1.00	0.83	1.00	0.83
openssl	0.88	0.51	0.85	0.49	0.88	0.55	0.87	0.54
tar	0.88	0.56	0.84	0.59	0.88	0.56	0.88	0.56
sqlite	0.98	0.79	1.00	0.57	1.00	0.76	1.00	0.56
microhttpd	0.96	0.83	0.98	0.79	0.98	0.79	0.96	0.76
paho-mqtt	1.00	0.92	0.96	0.92	1.00	0.88	1.00	0.75

Table 2: *GPT5 mini* malware detection precision (P) and recall (R) across programs. k refers to how many functions with highest score are provided for prediction step. “w/ change” refers to program changelog being provided for the prediction step.

4.2 METRICS

Malware Detection: Prediction output is evaluated against ground truth labels for each diff. Diffs with binaries containing the injected malware are labeled MALICIOUS and diffs with clean binaries are labeled BENIGN. Treating the MALICIOUS label as positive, we compute precision and recall to evaluate accuracy of malware detection. False positives would be clean diffs labeled as MALICIOUS. False negatives would be diffs with injected malware labeled as BENIGN.

FSS Separation: It is difficult to evaluate the quality of FSS scores assigned by an LLM without human-labeled scores for functions in the diff. Even in clean diffs, functions may show different behaviors and thus different FSS. In our benchmark, we mark functions from the original code as benign and injected functions as malicious. FSS scores are averaged as FSS_{ben} and FSS_{mal} across a binary. Their distributions are checked to see if malicious functions score higher than benign ones. Higher separation of the distributions of FSS_{ben} and FSS_{mal} will indicate better FSS quality.

5 RESULTS

Experimental Setup: We evaluate with two commercial LLMs, *GPT5 mini* and *GPT5 nano* (OpenAI, 2025a), and three open-source LLMs, *GPT OSS 20B* (OpenAI, 2025b), *Qwen3 30B*, and *Qwen3 8B* (Qwen, 2025). All five LLMs are run in thinking/reasoning mode. Reasoning effort is set to “low” for *GPT5 mini*, *nano*, and *GPT OSS 20B* models. *Qwen3 30B*, *8B*, and *GPT OSS 20B* models are run via Ollama on a server with two NVidia L40 GPUs. The models are run with default hyperparameter settings as follows: temperature of 1.0 and top- p of 1.0 for *GPT5 mini*, *GPT5 nano*, and *GPT OSS 20B*; temperature of 0.6 and top- p of 0.95 for *Qwen3 8B* and *Qwen3 30B*. We do not evaluate the highest capability *GPT5* on the full benchmark due to high API costs and because the smaller models suffice as seen in the results. Appendix A.4 plots token and cost analysis.

Summ.	Pred.	P	R
<i>GPT5 mini</i>	<i>GPT5 mini</i>	0.95	0.71
<i>GPT5 nano</i>	<i>GPT5 nano</i>	0.85	0.35
<i>GPT OSS 20B</i>	<i>GPT OSS 20B</i>	0.93	0.42
<i>GPT5 mini</i>	<i>GPT5</i>	0.97	0.72
<i>GPT5 nano</i>	<i>GPT5 mini</i>	0.90	0.50
<i>GPT OSS 20B</i>	<i>GPT5 mini</i>	0.96	0.63
<i>Qwen3 30B</i>	<i>GPT5 mini</i>	0.99	0.60
<i>Qwen3 8B</i>	<i>GPT5 mini</i>	0.99	0.45

Table 3: Performance across different models for $k = 5$ without changelog.

with changelog for $k = 5$ but stays the same for $k = 10$. **Recall** (R) is highest at 0.71 for $k = 5$

324 without changelog. R drops to 0.62–0.63 with $k = 10$, indicating that a larger context of functions
 325 may confuse the LLM prediction. Including changelog leads to a slight drop in R for both k .
 326

327 Across **programs**, P and R show wide variation. P ranges from 0.88 to 1.00, with all other pro-
 328 grams getting near perfect P except `openssl` and `tar` where false positives are high, likely be-
 329 cause of cryptographic operations and directory access. A similar dip in R is seen for `openssl`
 330 and `tar`. R ranges from 0.51 for `openssl` to 0.92 for `paho-mqtt`, indicating that the framework
 331 identifies malware better for certain programs than others.

332 Table 3 presents the results for the rest of the LLMs, along with combinations of weaker and stronger
 333 LLMs. We evaluate only one configuration of $k = 5$ without changelog. In our experiments, the
 334 *Qwen3* models work well when generating summaries but stumble in the final prediction step; in
 335 many cases they do not produce either **MALICIOUS** or **BENIGN** as instructed and a prediction is
 336 not obtained from their response. To overcome this, we use the *Qwen3* summaries and perform the
 337 final prediction step with *GPT5 mini* for these and other models. We notice *GPT OSS 20B* performs
 338 better than *GPT5 nano*. All the models perform better with *GPT5 mini* as the predictor, and *GPT5*
 339 *mini* shows slight improvement in P and R when using *GPT5* as predictor. This indicates that
 340 summaries generated by all the models are of sufficient quality to allow for higher capability LLMs
 341 to perform accurate malware detection. With *GPT5 mini* as predictor, *GPT OSS 20B* outperforms
 342 *Qwen3* and *GPT5 nano*, fairing the best among lower capability models with R of 0.63. *Qwen3 30B*
 343 comes second with R of 0.60, followed by *Qwen3 8B* and *GPT5 nano*.

Ablation	P	R
Full system	0.95	0.71
w/ diff size	0.92	0.25
w/ syscall	0.97	0.57
w/o diff callgraph	0.97	0.48
w/ threshold	0.93	0.65
malcontent (baseline)	1.00	0.18

352 Table 4: Ablation study and baseline compari-
 353 son with the full system as *GPT5 mini* for
 354 $k = 5$ without changelog.

355
 356
 357 malicious changes. With system calls, R degrades to 0.57, indicating that even looking at certain
 358 behavior aspects via system calls is not sufficient as a high number of system calls is not truly in-
 359 dicative of sensitive behaviors. Additionally, this method will not scale as malwares may not invoke
 360 a large number of system calls for malicious behavior. P drops slightly with diff size to 0.92 but
 361 improves with syscalls to 0.97.

362 We examine the impact of the diff callgraph by removing it (row “w/o diff callgraph”) such that no
 363 dependency information is provided during summarization. R drops to 0.48 however P improves
 364 slightly to 0.97, indicating drop in false positives with increase in false negatives. This demonstrates
 365 that the diff callgraph and dependency information help produce higher quality summaries that helps
 366 downstream malware detection. Lastly, we remove the final LLM prediction step and use thresholds
 367 on FSS scores for malware detection (row “w/ threshold”). We use only the top FSS score and mark
 368 the binary as **MALICIOUS** if the FSS score is higher than a threshold. The threshold is calibrated
 369 using `gzip` to maintain $P \geq 0.95$, giving a threshold of 8.5. The rest of the dataset is evaluated to
 370 give P 0.93 and R 0.65. We see only a small drop in R , demonstrating that FSS scores produced in
 371 the summarization step are of high quality. However, even with a high threshold of 8.5, P shrinks as
 372 false positives increase, indicating that this method may not scale to varied data where even benign
 373 functions would be marked with high sensitive score.

374 **Baseline:** Table 4 also show a comparison with the `malcontent` rule-based binary diff malware
 375 scanner ChainGuard (2025) which we treat as a baseline. `malcontent` looks at binary changes
 376 and marks each change with **LOW**, **MEDIUM**, **HIGH**, or **CRITICAL** severity. According to the
 377 instructions, **CRITICAL** should be treated as malware, however we consider both **HIGH** and **CRIT-
 ical** as malware. `malcontent` faces a sharp decline in R to 0.18, as its rule based scanner

Figure 5: Distribution of FSS_{ben} and FSS_{mal} (a) by LLM, (b) by program for *GPT5 mini*, and (c) by malware for *GPT5 mini*. The boxes show first to third quartile, the middle line shows median, and the whiskers show $1.5 \times$ inter-quartile range.

cannot pick up previously unseen malwares. It achieves perfect P , indicating that it is conservative in marking changes as HIGH or CRITICAL. Our framework improves R by $\approx 4 \times$ with only a small decline in P . Traditional rule-based cybersecurity tools require constant updates to the set of rules to detect new malwares, motivating the need for an LLM-driven binary diff summarization framework. Comparison with this baseline demonstrates that malware detection, especially of unseen malware, is a hard problem which our binary diff summarization framework tackles effectively to achieve a recall of 0.71.

FSS Separation: Figure 5 presents the distribution of FSS scores for benign (FSS_{ben}) and malicious (FSS_{mal}) functions as described in Section 4.2. Figure 5(a) shows distribution by model. All models demonstrate a clear separation between FSS_{ben} and FSS_{mal} . Except for *GPT5 mini*, other models have a wider spread in the FSS_{mal} distribution that overlaps with FSS_{ben} , yet the boxes and medians remain clearly separated. *GPT5 mini* shows a tighter distribution of FSS_{mal} than the rest, demonstrating greater scoring consistency. Overall, the median scores show a difference of 1.5 to 5.0 points, with *GPT5 mini* having a separation of 3.0. The summarization framework reliably marks malicious injected functions with higher FSS than benign functions. The benign functions are consistently scored with median FSS of 4.0 or lower; LLM understands function sensitivity correctly, illustrating efficacy of FSS categorization.

To further investigate the performance of the best-performing model *GPT5 mini*, Figures 5(b) and 5(c) provide a granular breakdown of *GPT5 mini*'s scores. The analysis by program demonstrates that *GPT5 mini*'s discriminative power is robust across the set of programs. Interestingly, the FSS_{ben} distributions across programs are narrow, showing that *GPT5 mini* consistently marks the functions similarly. Additionally, *openssl*, *microhttpd*, and *paho-mqtt* get higher FSS_{ben} as expected because the benign functions have cryptographic and network functionalities. Similarly, Figure 5(c) illustrates the model's effectiveness against different malwares. Distribution of FSS_{mal} for *rware* is largest, while for *rat* and *botnet* is very narrow, indicating that it is easier to identify sensitive behaviors with the network access in the later two. Nonetheless, there is a clear separation across all malwares which makes it easy to configure thresholds for detection.

False Negative Analysis: We compute the recall R per malware (equivalent to true positive rate) for *GPT5 mini* with $k = 5$ without changelog to shine light onto the false negative cases. The overall R is 0.71. Per malware, the R is 0.76 for *rware*, 0.93 for *rat*, and 0.45 for *botnet*. *botnet* is significantly lower than the other two, displaying the framework's weakness in terms of detecting this type of malware. As the *botnet* only listens for a network connection and sends UDP packets, its malicious behavior might be harder to identify than the file encryption behavior of *rware* or reverse shell of *rat*.

6 CASE STUDY: XZ BACKDOOR

We analyze the XZ Utils supply chain attack detected in 2024 (Przymus & Durieux, 2025), where the open-source XZ repository was compromised to inject a backdoor into the `liblzma.so` library. This library is ubiquitous on Linux systems ranging from servers to embedded controllers, so the attack would have devastating consequences, however it was caught before the backdoor was distributed as part of updates. We compile the XZ utils source code for the compromised version v5.6.0 and a previous version v5.4.7. We evaluate our binary diff summarization framework on the generated `liblzma.so` libraries. We run *GPT5 mini* and *GPT5* for both the summarization and prediction step with $k = 5$ and no changelog.

Summarizer	Predictor		Top-5 functions
	GPT5	GPT5 mini	
GPT5	 malicious	 malicious	FUN_00104794(6.5) FUN_00104720(6.5) _get_cpid(5.3) lzma2_decode(4.3) FUN_0011e4a0(4.2)
GPT5 mini	 malicious	 benign	x86_code(4.2) FUN_00104794(4.2) crc64_set_fun(3.4) _get_cpid(3.4) FUN_00104720(3.4)

Table 5: XZ backdoor detection by *GPT5* and *GPT5 mini* along with sensitive functions.

Table 5 shows the output of malware detection by GPT5 and *GPT5 mini* when run on each other's summarizations. GPT5 correctly marks the diff summaries as malicious for both the summaries generated by itself and by *GPT5 mini*. On the other hand, *GPT5 mini* misclassifies its own summaries as benign, however it correctly marks GPT5 summaries as malicious. This indicates that both models highlight the injected malicious behavior sufficiently, while it takes the more capable GPT5 for a correct prediction. The top-5 highest scored functions are shown along with their scores for both models. The red highlighted functions were those injected with malicious behavior. Out of 79 functions in the diff, both models score the relevant malicious functions higher so they appear among the top 5. GPT5 scores the malicious functions highest, whereas *GPT5 mini* scores them generally lower. This demonstrates that the LLMs correctly identify sensitive behaviors using the FSS categorization.

Figure 6 shows the diff summaries generated by GPT5 for the two highlighted functions. Highlighted in red, we see the model describe how the functionalities are “atypical for liblzma” and differ from “liblzma’s expected functionality”. This case study illustrates that LLMs utilize the binary diff summarization framework and FSS categorization to produce meaningful summaries that highlight malicious behavior when analyzing software updates.

7 CONCLUSION

In this work, we presented a novel framework for binary diff summarization using LLMs, with a specific focus on enhancing software supply chain security. We introduce the functional sensitivity

Figure 6: GPT5 summaries for the XZ back-door functions.

486 score (FSS), a metric designed for automated triage of sensitive functions within binary diffs. To
 487 evaluate our approach, we created a new benchmark for software supply chain security, comprising
 488 104 versions of 6 open-source projects, into which we injected 3 different types of malware. Our
 489 framework achieved a high precision of 0.95 and a recall of 0.71 for malware detection. Furthermore,
 490 the FSS demonstrated a clear separation of 3.0 points between malicious and benign functions,
 491 highlighting its effectiveness. On the real-world XZ backdoor case study, our framework correctly
 492 captured the injected malicious functions with high FSS and correctly marked the software update
 493 as malicious, exemplifying the applications to real-world scenarios. These findings illustrate the
 494 significant potential of leveraging LLMs for automation of software supply chain security. Future
 495 work could explore the application of this framework to other security-critical domains, such as
 496 vulnerability detection and patch analysis. The FSS could be adapted and refined for other security
 497 applications, and the framework could be extended to support a wider range of architectures.
 498

499 **Ethics:** This work explores the use of large language models (LLMs) for binary diff summarization,
 500 which identifies changes between binary versions to help analysts detect bugs, vulnerabilities, and
 501 supply chain threats. Although the technique strengthens patch management and software integrity
 502 verification, it also has dual-use implications. Malicious actors could potentially exploit the same
 503 methods for reverse engineering, intellectual property theft, or scalable attacks on software supply
 504 chains. Our study is conducted purely for defensive and research purposes, aiming to advance the
 505 ability of the security community to manage patches and identify vulnerabilities. We acknowledge
 506 the risks of misuse and emphasize the importance of safeguards, rigorous evaluation, and gover-
 507 nance mechanisms in guiding responsible adoption of LLM-based tools. By contextualizing and
 508 transparently reporting our findings, we seek to raise awareness of emerging attack vectors while
 509 supporting the development of effective countermeasures.
 510

511 REFERENCES

512 Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran,
 513 Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. Understanding the
 514 mirai botnet. In *26th USENIX security symposium (USENIX Security 17)*, pp. 1093–1110, 2017.

515 Jordi Armengol-Estabé, Jackson Woodruff, Chris Cummins, and Michael F. P. O’Boyle. Slade: A
 516 portable small language model decompiler for optimized assembly. CGO ’24, pp. 67–80. IEEE
 517 Press, 2024. ISBN 9798350395099. doi: 10.1109/CGO57630.2024.10444788. URL <https://doi.org/10.1109/CGO57630.2024.10444788>.

518 Martial Bourquin, Andy King, and Edward Robbins. BinSlayer: Accurate Comparison of Binary
 519 Executables. In *Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engi-
 520 neering Workshop (PPREW)*, pp. 4:1–4:10, 2013. doi: 10.1145/2430553.2430557.

521 David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards Automatic
 522 Generation of Vulnerability-Based Signatures. In *Proceedings of the 2006 IEEE Symposium on
 523 Security and Privacy*, pp. 2–16, 2006. doi: 10.1109/SP.2006.41.

524 Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating the effectiveness of decom-
 525 pilers. In *Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing
 526 and Analysis*, pp. 491–502, New York, NY, USA, 2024. Association for Computing Machinery.
 527 ISBN 9798400706127. doi: 10.1145/3650212.3652144. URL <https://doi.org/10.1145/3650212.3652144>.

528 ChainGuard. Malcontent, 2025. URL <https://github.com/chainguard-dev/malcontent>.

529 Guoqiang Chen, Huiqi Sun, Daguang Liu, Zhiqi Wang, Qiang Wang, Bin Yin, Lu Liu, and
 530 Lingyun Ying. Recopilot: Reverse engineering copilot in binary analysis. *arXiv preprint
 531 arXiv:2505.16366*, 2025.

532 Cristina Cifuentes. *Reverse compilation techniques*. PhD thesis, Queensland University of Technol-
 533 ogy, 1994.

534 Roxane Cohen, Robin David, Riccardo Mori, Florian Yger, and Fabrice Rossi. Improving Binary
 535 Diffing Through Similarity and Matching Intricacies. In *SSTIC Proceedings (SSTIC 2024)*, pp.

540 1–8, 2024. URL https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf.

541

542

543

544 Roxane Cohen, Robin David, Riccardo Mori, Florian Yger, and Fabrice Rossi. Experimental Study of Binary Diffing Resilience on Obfuscated Programs. In *International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment*, pp. 223–243. Springer, 2025.

545

546

547 Charlie Dil, Hui Chen, and Kostadin Damevski. Towards higher quality software vulnerability data using llm-based patch filtering. *Journal of Systems and Software*, pp. 112581, 2025.

548

549

550 Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search Against Code Obfuscation and Compiler Optimization. In *Proceedings of the IEEE Symposium on Security and Privacy (S&P)*, pp. 472–489, 2019. doi: 10.1109/SP.2019.00003. URL <https://dmas.lab.mcgill.ca/fung/pub/DFC19sp.pdf>.

551

552

553

554

555 Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing. In *Network and Distributed System Security Symposium (NDSS)*, 2020. doi: 10.14722/ndss.2020.24311.

556

557

558 Thomas Dullien and Rolf Rolles. Graph-Based Comparison of Executable Objects. In *Symposium sur la Sécurité des Technologies de l'Information et des Communications (SSTIC)*, 2005. URL https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf. English version (PDF). See also BinDiff historical references and implementations.

559

560

561

562

563

564 Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with code changes and cve summaries. In *Proceedings of the 17th international conference on mining software repositories*, pp. 508–512, 2020.

565

566

567

568 Halvar Flake. Structural Comparison of Executable Objects. In *Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)*, pp. 161–173, 2004.

569

570

571 FortiGuard Labs. 3CX Desktop App Compromised (CVE-2023-29059), 2023. URL <https://www.fortinet.com/blog/threat-research/3cx-desktop-app-compromised>.

572

573

574 Debin Gao, Michael K. Reiter, and Dawn Song. BinHunt: Automatically Finding Semantic Differences in Binary Programs. In *Proceedings of the International Conference on Information and Communications Security (ICICS)*, pp. 238–255, 2008. doi: 10.1007/978-3-540-88625-9_16.

575

576

577 Irfan Ul Haq and Juan Caballero. A Survey of Binary Code Similarity. *ACM Comput. Surv.*, 54(3), April 2021. ISSN 0360-0300. doi: 10.1145/3446371. URL <https://doi.org/10.1145/3446371>.

578

579

580

581 Henry Howland. Cvss: Ubiquitous and broken. *Digital Threats*, 4(1), February 2022. doi: 10.1145/3491263. URL <https://doi.org/10.1145/3491263>.

582

583 Nasir Hussain, Haohan Chen, Chanh Tran, Philip Huang, Zhuohao Li, Pravir Chugh, William Chen, Ashish Kundu, and Yuan Tian. Vulbinllm: Llm-powered vulnerability detection for stripped binaries. *arXiv preprint arXiv:2505.22010*, 2025.

584

585

586

587 Xin Jin, Jonathan Larson, Weiwei Yang, and Zhiqiang Lin. Binary code summarization: Benchmarking chatgpt/gpt-4 and other large language models. *arXiv preprint arXiv:2312.09601*, 2023.

588

589

590 İlker Kara and Murat Aydos. The ghost in the system: technical analysis of remote access trojan. *International Journal on Information Technologies & Security*, 11(1):73–84, 2019.

591

592 Joxean Koret. Diaphora – Program Diffing Plugin for IDA Pro (GitHub). <https://github.com/joxeankoret/diaphora>, 2015–2025. URL <https://github.com/joxeankoret/diaphora>.

593

594 Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltos Allamanis, Claire Le Goues, Graham
 595 Neubig, and Bogdan Vasilescu. DIRE: A neural approach to decompiled identifier naming. In
 596 *2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)*, pp.
 597 628–639. IEEE, 2019.

598
 599 Adrian Shuai Li. An analysis of the recent ransomware families. *Project Report. Purdue University*,
 600 2021.

601
 602 Jie Lin and David Mohaisen. From large to mammoth: A comparative evaluation of large language
 603 models in vulnerability detection. In *Proceedings of the 2025 Network and Distributed System
 604 Security Symposium (NDSS)*, 2025.

605 Cullen Linn and Saumya Debray. Obfuscation of Executable Code to Improve Resistance to Static
 606 Disassembly. In *Proceedings of the 10th ACM Conference on Computer and Communications
 607 Security*, pp. 290–299, 2003.

608
 609 John McIntosh. Ghidriff: Python Command-Line Ghidra Binary Differing Engine, 2023. URL
 610 <https://github.com/clearbluejar/ghidriff>.

611
 612 Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. Direct: a transformer-based model
 613 for decompiled identifier renaming. In *Proceedings of the 1st Workshop on Natural Language
 614 Processing for Programming (NLP4Prog 2021)*, pp. 48–57, 2021.

615 Jeong Wook Oh. DarunGrim: A Patch Analysis and Binary Differ-
 616 ing Tool. [https://sgros-students.blogspot.com/2014/06/
 617 binary-differing-using-darungrim.html](https://sgros-students.blogspot.com/2014/06/binary-differing-using-darungrim.html), 2008.

618
 619 OpenAI. GPT-5 System Card, 2025a. URL [https://openai.com/index/
 620 gpt-5-system-card/](https://openai.com/index/gpt-5-system-card/).

621
 622 OpenAI. GPT-OSS System Card, 2025b. URL [https://openai.com/index/
 623 gpt-oss-model-card/](https://openai.com/index/gpt-oss-model-card/).

624 Piotr Przymus and Thomas Durieux. Wolves in the repository: A software engineering analysis of
 625 the xz utils supply chain attack. In *2025 IEEE/ACM 22nd International Conference on Mining
 626 Software Repositories (MSR)*, pp. 91–102. IEEE, 2025.

627
 628 Qwen. Qwen3 System Card, 2025. URL <https://huggingface.co/Qwen/Qwen3-8B>.

629
 630 Beatriz M. Reichert and Rafael R. Obelheiro. Software supply chain security: a systematic literature
 631 review. *International Journal of Computers and Applications*, 46(10):853–867, 2024. doi: 10.
 632 1080/1206212X.2024.2390978. URL [https://doi.org/10.1080/1206212X.2024.
 2390978](https://doi.org/10.1080/1206212X.2024.2390978).

633
 634 Paul Royal, Matthew Halpin, David Dagon, Robert Edmonds, and Wenke Lee. PolyUnpack: Au-
 635 tomating the Hidden-Code Extraction of Unpack-Executing Malware. In *Proceedings of the
 636 22nd Annual Computer Security Applications Conference (ACSAC)*, pp. 289–300, 2006. doi:
 637 10.1109/ACSAC.2006.20.

638
 639 Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov. Evolving exact
 640 decompilation. In *Workshop On Binary Analysis Research (BAR)*, 2018. doi: 10.14722/ndss.
 2018.23002.

641
 642 Xiuwei Shang, Shaoyin Cheng, Guoqiang Chen, Yanming Zhang, Li Hu, Xiao Yu, Gangyang Li,
 643 Weiming Zhang, and Nenghai Yu. How far have we gone in binary code understanding using
 644 large language models. In *2024 IEEE International Conference on Software Maintenance and
 645 Evolution (ICSME)*, pp. 1–12. IEEE, 2024.

646
 647 Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable and Robust Binary Library
 648 Function Identification Using Function Shape. In *International Conference on Detection of In-
 649 trusions and Malware, and Vulnerability Assessment*, pp. 301–324. Springer, 2017.

648 Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
 649 Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
 650 SOK: (state of) the art of war: Offensive techniques in binary analysis. In *IEEE Symposium on*
 651 *Security and Privacy (SP)*, pp. 138–157, USA, 2016. IEEE.

652 Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile: Decompiling binary code with
 653 large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural*
 654 *Language Processing*, pp. 3473–3487. Association for Computational Linguistics, 2024. doi:
 655 10.18653/v1/2024.emnlp-main.203. URL <http://dx.doi.org/10.18653/v1/2024.emnlp-main.203>.

656 Meet Udeshi, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Remend: Neural
 657 decompilation for reverse engineering math equations from binary executables. *ACM Trans.*
 658 *Intell. Syst. Technol.*, July 2025. ISSN 2157-6904. doi: 10.1145/3749988. URL <https://doi.org/10.1145/3749988>. Just Accepted.

659 Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao
 660 Zhang. jTrans: Jump-Aware Transformer for Binary Code Similarity. *arXiv Preprint*, 2022. URL
 661 <https://arxiv.org/abs/2205.12713>.

662 Zheng Wang, Ken Pierce, and Scott McFarling. BMAT – A Binary Matching Tool for Stale Profile
 663 Propagation. *The Journal of Instruction-Level Parallelism*, 2:1–20, 2000.

664 Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imranur Rahman, Mahz-
 665 abin Tamanna, Greg Tystahl, Nusrat Zahan, Patrick Morrison, Yasemin Acar, Michel Cukier,
 666 Christian Kästner, Alexandros Kapravelos, Dominik Wermke, and William Enck. Research di-
 667 rections in software supply chain security. *ACM Trans. Softw. Eng. Methodol.*, 34(5), May 2025.
 668 ISSN 1049-331X. doi: 10.1145/3714464. URL <https://doi.org/10.1145/3714464>.

669 Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang, Sen Nie, and Shi
 670 Wu. Refining decompiled c code with large language models. *arXiv preprint arXiv:2310.06530*,
 671 2023.

672 Sheng Yu. DeepDiff: Next-Generation Binary Differing for Precise Vulnerability and Patch Detection,
 673 2025. URL <https://www.deepbits.com/blog/DeepDiff>.

674 Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang, Chenyang Lyu,
 675 Xuhong Zhang, Changting Lin, Jingzheng Wu, et al. A Large-Scale Empirical Analysis of the
 676 Vulnerabilities Introduced by Third-Party Components in IoT Firmware. In *Proceedings of the*
 677 *31st ACM SIGSOFT International Symposium on Software Testing and Analysis*, pp. 442–454,
 678 2022.

686 A APPENDIX

688 A.1 RELATED WORK COMPARISON

690 A.2 BENCHMARK DETAILS

692 Table 7 lists the URLs for each open-source project in our software supply chain security benchmark.

694 A.3 MALWARE IMPLEMENTATIONS DETAILS

695 **Ransomware:** The ransomware is implemented as a C program that utilizes self-contained versions
 696 of tiny-AES² and tiny-ECDH³ for its cryptographic operations. The malware recursively scans for
 697 files and encrypts each one with a unique, randomly generated AES-128 key in Counter (CTR)
 698 mode, appending a .CRYPT extension to the filename. To protect these individual file keys, it
 699 employs an Elliptic Curve Diffie-Hellman (ECDH) key exchange using the NIST B-163 curve; it

701 ²<https://github.com/kokke/tiny-AES-c>

³<https://github.com/kokke/tiny-ECDH-c>

702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755
Tool / Paper	Category / Approach																																																				
BMAT (Wang et al., 2000)	Symbol / Name-based / Fuzzy																																																				
BinDiff (Flake, 2004)	Graph-based																																																				
BinDiff extended (Dullien & Rolles, 2005)	Graph-based																																																				
BinHunt (Gao et al., 2008)	Graph-based + Symbolic Execution																																																				
DarunGrim (Oh, 2008)	Graph-based																																																				
BinSlayer (Bourquin et al., 2013)	Graph-based + Bipartite matching																																																				
Diaphora (Koret, 2015–2025)	Graph-based																																																				
Asm2Vec (Ding et al., 2019)	ML-based embedding																																																				
DeepBinDiff (Duan et al., 2020)	ML-based embedding																																																				
jTrans (Wang et al., 2022)	Deep Learning																																																				
QBinDiff (Cohen et al., 2024)	Network alignment/Belief Propagation																																																				

Table 6: Implementation approach for related works

719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	Program	URL
gzip	https://ftp.gnu.org/gnu/gzip																																					
openssl	https://github.com/openssl/openssl/releases/download																																					
tar	http://mirror.rit.edu/gnu/tar																																					
sqlite	https://sqlite.org																																					
microhttpd	https://ftp.gnu.org/gnu/libmicrohttpd																																					
paho-mqtt	https://github.com/eclipse/paho/paho.mqtt.c/archive/refs/tags																																					

Table 7: URLs for each project in the benchmark.

generates a shared secret by combining a new local private key with a hardcoded attacker’s public key. This shared secret is then used as a master key to encrypt all the individual file keys and their paths into an info.bin file, after which the ransomware drops a note containing the victim’s public key needed for decryption.

Remote access trojan: The RAT implements a stealthy reverse shell that connects a target machine back to an attacker. It begins by reading the attacker’s IP address and port from an environment variable, a technique used to avoid hardcoding sensitive information. The program then uses fork() to create a child process, allowing the parent to exit immediately while the malicious code continues to run in the background, detached from the original application. This child process establishes a network connection to the attacker’s machine. The core of its functionality lies in using the dup2() system call to redirect the standard input, output, and error streams to the network socket. Finally, it calls execve() to replace its own process with /bin/sh, which is cleverly obfuscated in the code as a series of integer multiplications. Because the I/O streams are already redirected, this new shell process is fully interactive for the remote attacker, granting them command-line control over the compromised system.

Botnet: The botnet client is implemented based on the leaked source code of the Mirai botnet (Antonakakis et al., 2017). The program is designed to connect to a Command and Control (C2) server, which is hardcoded as “localhost” on port 5034. Once connected, the bot enters a loop where it sends a periodic keep-alive message to the C2 server and listens for attack commands. When a command is received, it is parsed to extract a target IP address, port, payload size, and the number of packets to send. Unlike the original Mirai, which featured multiple attack vectors, this simplified version only implements a basic UDP flood attack. This attack function bombards the specified target with a high volume of UDP packets containing randomized data, generated by a Xorshift pseudo-random number generator identical to the one used in Mirai, with the goal of overwhelming the target’s network resources.

Figure 7: Token consumption.

Figure 8: Cost vs Recall.

A.4 TOKEN CONSUMPTION AND COST ANALYSIS

776 Figure 7 shows the total input and output token consumption per model on the entire benchmark.
 777 The tokens range from 100M for Qwen3 models to 500M for *GPT5 mini*. The wide difference
 778 in token consumption may be due to different tokenizers for each model and because *GPT5 nano*
 779 and *GPT5 mini* may produce larger and more detailed function summaries that are sent back in the
 780 followup prompt. Output tokens are around 5% to 25% of input tokens. Considering 46K functions
 781 in the benchmark, the average per-function token consumption is around 2K to 12K.

782 Figure 8 shows the cost versus recall analysis for different GPT5 variants. Each point is labeled
 783 with two models indicating the summarizer + predictor. *GPT5 mini* and *GPT5* predictors see a
 784 sharp increase in recall due to higher capabilities, however the cost only changes slightly. The recall
 785 increases sharply with more capable predictors. However, it is expected that recall will saturate with
 786 increasing cost.

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809