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ABSTRACT

Security of software supply chains is necessary to ensure that software updates
do not contain maliciously injected code or introduce vulnerabilities that may
compromise the integrity of critical infrastructure. Verifying the integrity of soft-
ware updates involves binary differential analysis (binary diffing) to highlight the
changes between two binary versions by incorporating binary analysis and reverse
engineering. Large language models (LLMs) have been applied to binary analysis
to augment traditional tools by producing natural language summaries that cy-
bersecurity experts can grasp for further analysis. Combining LLM-based binary
code summarization with binary diffing can improve the LLM’s focus on criti-
cal changes and enable complex tasks such as automated malware detection. To
address this, we propose a novel framework for binary diff summarization using
LLMs. We introduce a novel functional sensitivity score (FSS) that helps with
automated triage of sensitive binary functions for downstream detection tasks. We
create a software supply chain security benchmark by injecting 3 different mal-
ware into 6 open-source projects which generates 104 versions, 392 binary diffs,
and 46,023 functions. On this, our framework achieves a precision of 0.95 and
recall of 0.71 for malware detection, displaying high accuracy with low false pos-
itives. We outperform an existing industry-style rule-based baselines by ≈ 4×
higher recall on malware detection while maintaining high precision. Across ma-
licious and benign functions, we achieve FSS separation of 3.0 points, confirming
that FSS categorization can classify sensitive functions. We conduct a case study
on the real-world XZ utils supply chain attack; our framework correctly detects
the injected backdoor functions with high FSS.

1 INTRODUCTION

Binary analysis is fundamental to cybersecurity, enabling critical tasks like vulnerability discovery,
malware analysis, and software supply chain integrity. Reverse engineering low-level binaries to ex-
tract high-level functionalities is essential for understanding their behavior without access to source
code (Cifuentes, 1994; Schulte et al., 2018; Shoshitaishvili et al., 2016). Binary differential anal-
ysis (binary diffing) extends binary analysis by comparing two versions of a binary to understand
what has changed, allowing analysts to focus on the modifications to find newly introduced bugs
or security flaws. This approach is especially relevant for software supply chain security that in-
volves verifying the integrity of software updates (Reichert & Obelheiro, 2024). Binary diffing sup-
ports critical security tasks like identifying patched vulnerabilities (Brumley et al., 2006), clustering
malware variants (Royal et al., 2006), detecting vulnerabilities in binary distributions (Zhao et al.,
2022). Malicious actors may inject hidden code into a program binary or into the source code of
dependent open-source libraries, leading to devastating downstream impact as exemplified by recent
incidents such as 3CX (FortiGuard Labs, 2023), SolarWinds, log4j, and XZ utils (Williams et al.,
2025). These concerns are magnified in the context of the embedded systems supply chain. Unlike
enterprise software, embedded devices are deployed in remote or inaccessible locations. Software
updates require significant effort. Due to this, corrupted or compromised updates may persist for ex-
tended periods. Embedded firmware is distributed as monolithic binaries which incorporate several
projects into one blob, making verification difficult (Shirani et al., 2017). This necessitates initial
verification of software integrity before deployment via binary analysis and reverse engineering.
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Reverse engineering is an inexact process, hence binary analysis tools often recover source code in
an obscure format, requiring significant effort and domain expertise to understand (Cao et al., 2024).
Machine learning (ML) and large language models (LLMs) have been used to improve the reverse
engineering output quality, such as by predicting variable names and types (Lacomis et al., 2019;
Nitin et al., 2021), decompiling with translation ML models (Armengol-Estapé et al., 2024; Udeshi
et al., 2025), and binary code summarization with LLMs (Jin et al., 2023; Tan et al., 2024).

Binary diffing tools are built on top of binary analysis methods and hence face similar issues of ob-
scurity, hard-to-understand outputs. Current tools reliably identify modified binary components by
employing binary code similarity metrics; however, cybersecurity experts require significant effort
to understand the code changes to identify vulnerabilities or detect malicious injected code. We pro-
pose binary diff summarization to augment binary diffs with natural language summaries produced
by an LLM. Additionally, we introduce the functional sensitivity score (FSS), a novel categoriza-
tion method to triage binary functions such that sensitive behaviors that reveal vulnerabilities or
malware are marked with a high score. We evaluate the binary diff summarization and functional
sensitivity score for the software supply chain security task of detecting malware injected into open-
source programs. For this, we construct a benchmark by injecting malware into multiple versions of
open-source programs to construct compromised software updates across clean/injected versions.

The contributions of this paper are threefold: (i) A novel framework for binary diff summarization
that augments outputs from binary diffing tools with LLM-generated natural language summaries for
improved code understanding; (ii) The functional sensitivity score, a novel method to triage sensitive
function behaviors that highlight vulnerabilities and malicious code; (iii) A software supply chain
security benchmark of open-source programs injected with 3 different malware, comprising of 6
projects, 104 binary versions, 392 binary diffs, and 46,023 functions.

2 BACKGROUND AND RELATED WORK

Binary Differential Analysis: Binary differential analysis (binary diffing) is the process of identify-
ing changes between compiled binaries at different granularities, such as instructions, basic blocks,
or complete binary formats (Haq & Caballero, 2021). Unlike source-level diffing, which benefits
from static code analysis, binary diffing is considerably more challenging due to compiler optimiza-
tions, instruction set variations, and obfuscation techniques (Linn & Debray, 2003). Early efforts
such as BinDiff (Flake, 2004), DarunGrim (Oh, 2008), and BMAT (Wang et al., 2000) relied on
syntactic and graph-based similarity across control-flow graphs (CFGs), with later improvements
addressing register allocation and instruction reordering (Dullien & Rolles, 2005). Subsequent
works have expanded these ideas. Diaphora leverages SQL-based heuristics for CFG matching (Ko-
ret, 2015–2025), while Asm2Vec (Ding et al., 2019) introduced function embeddings resilient to
compiler optimizations. More recently, deep learning methods such as jTrans (Wang et al., 2022)
incorporated transformers with jump and control flow awareness. QBinDiff (Cohen et al., 2024) re-
framed diffing as a graph-alignment problem, achieving robustness against obfuscation as shown in
the evaluation of Cohen et al. (Cohen et al., 2025). Other approaches, including Binhunt (Gao et al.,
2008), and BinSlayer (Bourquin et al., 2013) employed symbolic execution, graph isomorphism and
unsupervised learning to capture semantic differences more precisely. These approaches primarily
tackle the challenge of binary code similarity matching which extends to binary diffing. To our
knowledge, existing works do not directly target malware-injected software updates. A recent tool
malcontent ChainGuard (2025) uses binary diffing to augment a rule-based malware scanner.
However, rule-based scanners require frequent updates to their rules otherwise they are brittle to
novel malware. We utilize malcontent as a baseline. Appendix A.1 provides more details of the
related approaches.

LLMs for Binary Analysis: Jin et al. (2023) introduced BinSum, a benchmark of over
557K binary functions across multiple architectures and optimization levels, along with novel
prompt optimization strategies and semantic evaluation metrics for binary summarization. Dil
et al. (2025) applied LLM-guided prompting to filter noisy vulnerability patch data in the
BigVul dataset (Fan et al., 2020), improving the accuracy of downstream vulnerability pre-
diction models, while Yu (2025) proposed DeepDiff, which embeds decompiled functions for
similarity search and combines control and data flow analysis to detect logic-altering changes

2
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Figure 1: Overview of the binary diff summarization framework. Ghidriff provides added, modified,
and deleted functions that are merged into a diff callgraph. Each function undergoes LLM summa-
rization and FSS classification. Finally, prediction happens to label the diff as malicious or benign.

in binaries. Shang et al. (2024) constructed a benchmark for reverse engineering tasks such
as function name recovery and summarization, systematically evaluating LLM capabilities.

You are a skilled cybersecurity professional. You are
an expert at binary analysis, binary diffing, and patch
diffing. Your goal is to process a binary diff ... flag any
sensitive code changes and sensitive behaviors ...Sy

st
em

The binaries you are analyzing are two consecutive
versions from the microhttpd library.... a lightweight C
HTTP server library. The function you are analyzing
currently is FUN_00104ac0 in the old binary and
FUN_00104ba0 in the new binary. It was modified...
Here is the decompiled code...
void MODF_00104ac0_00104ba0(
...
Here is the diff ...
...
-  pthread_attr_destroy(param_1);
+  socket(param_1,param_2,param_3);
   return;
 }
Describe the code functionality and ...changes...

In
iti

al

func_summary:  The original function ... effectively
cleaning up a thread attribute object. ...
diff_summary: The behavior transitions from
destroying ... to attempting to create a socket
...Semantic shift implies the function is no longer
performing resource cleanup...Su

m
m

ar
y

Based on the functionality summary ...rate the
function based on ...: sensitive behaviors, sensitive
resources accessed, confidentiality impact, integrity
impact, availibility impact. 
Each should be classified as none, low, medium, or
high. Below are a few examples ...FS

S 
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om
pt

behavior: medium
resource: low
confidentiality: none
integrity: none
availability: low

FS
S

score = 3.5

Figure 2: Example of LLM sum-
marization and FSS for a modified
function from microhttpd.

Hussain et al. (2025) developed Vul-BinLLM, which augments
decompilation with contextual vulnerability annotations and
employs in-context learning, chain-of-thought prompting, and
memory management to improve detection accuracy. Lin &
Mohaisen (2025) systematically evaluated LLMs for vulner-
ability detection in Java and C/C++ programs, highlighting
cross-language performance, prompting strategies, and config-
uration best practices. Wong et al. (2023) explored recompi-
lable decompilation, proposing a hybrid two-stage approach
where LLMs correct syntax errors in decompiled outputs and
resolve runtime memory errors, enabling regenerated executa-
bles that preserve original functionality. Chen et al. (2025)
introduced ReCopilot, an expert LLM for binary analysis that
integrates variable data-flow and call-graph information with
test-time scaling, and through continued pretraining, super-
vised fine-tuning, and direct preference optimization, achieved
up to a 13% improvement over state-of-the-art models in func-
tion name recovery and variable type inference.

3 METHOD

Figure 1 is an overview of the binary diff summarization
pipeline. In the context of software supply chain security, the
pipeline concludes by producing a malicious/benign predic-
tion. The summaries and FSS scores can be used for tasks
such as vulnerability detection or patch identification.

Ghidriff: The pipeline begins by taking two binaries namely
old and new. We use Ghidriff (McIntosh, 2023) as the binary
diff tool. Ghidriff uses the Ghidra decompilation engine to per-
form the initial analysis of both binaries, then computes corre-
lations across functions from old and new. The correlation reveals whether a pair of functions match
exactly, match approximately, or do not match. Ghidriff outputs three lists of functions: deleted
contains functions present in old that do not match with any function in new, added contains func-
tions present in new that do not match with any function in old, and modified contains functions
that match approximately. Thus, functions that match exactly are removed from the diff, so only
the binary changes remain. As the symbols in both binaries are stripped, the modified functions will
show up with different names in the decompiled code depending on their hexadecimal address. We
rename the modified functions to a consistent name incorporating both the old and new address, and
update all referenced locations, so that this name difference does not show up unnecessarily.
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Diff Callgraph: For the functions in the three lists, we extract the decompiled source code from
Ghidra analysis. For modified functions, we additionally compute a textual diff of the decompiled
code using the Python difflib1 module to provide a succinct representation of the changes. The
LLM summarization happens function by function and some information about the function depen-
dencies (in terms of other functions it calls) needs to be provided for the LLM to understand the
functionality correctly. This dependency information is captured in the diff callgraph. The diff call-
graph is essentially the merged callgraph of the old and new binaries, where only the added, deleted,
and modified functions are preserved. Instead of merging and trimming down the full callgraphs of
the binaries, we construct the diff callgraph by directly analyzing referenced dependencies in the
three diff function lists.

LLM Summarization: The functions are processed in a reverse breadth-first traversal starting from
leaf nodes of the diff callgraph to ensure that a function’s dependencies are processed before it. For
each function, the decompiled source code along with summaries of the dependencies are passed to
the LLM. For modified functions, the textual diff of decompiled code between old and new is also
passed. The summary and FSS are generated via two separate prompts. The first prompt asks for a
functionality summary and an optional diff summary. The second prompt continues the conversation
(the LLM sees its previous output) and asks for the FSS. Figure 2 shows an example conversation
for a modified function from microhttpd, where the LLM first correctly identifies the changed
functionality and then proceeds to mark the FSS categories appropriately.

Functional Sensitivity Score: The FSS design is inspired by the common vulnerability scoring
system (CVSS) (Howland, 2022) such that functions of interest can be marked during binary analysis
using consistent categories. CVSS helps score the severity of vulnerabilities after they are identified
with distinct categories and classification options, for example attack complexity (low, high) and
privileges required (none, user, administrator). This allows for better vulnerability classification by
cybersecurity professionals than picking abstract numerical values. CVSS aggregates the category
classifications into a severity score from 0 to 10. CVSS does not directly apply for vulnerability or
malware detection. Thus we design FSS with similar goals to provide meaningful categories and
classifications for scoring functional sensitivity. We pick five categories with examples:

• Sensitive behaviors (B): reading system info, opening sockets, forking processes
• Sensitive resources (R): network, system files, hardware devices
• Confidentiality impact (C): sending files over network, reading passwords or keys
• Integrity impact (I): modifying system configuration, overwriting files, encrypting data
• Availability impact (A): disabling system services, consuming unnecessary resources

Each category is classified as none, low, medium, or high. We provide examples to the LLM of each
category and each classification to ground its outputs. These examples can be adapted to different
scenarios and environments to better guide the LLM.

Classifications
0.0

2.5

5.0

7.5

10.0

Sc
or

e

CVSS 3.1
FSS

Figure 3: CVSS 3.1 and FSS scores across all
classifications in increasing order.

Behavior none medium high
Resource low medium high

Confidentiality none low high
Integrity none low medium

Availability none medium high

low
none

medium
high

low

Score = 5.4

Figure 4: Example of an FSS classification with
the aggregate score.

1https://docs.python.org/3/library/difflib.html
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Similar to CVSS 3.1, the final score is aggregated using the formula:
S = 1− (1−B)(1−R)

M = 1− (1− C)(1− I)(1−A)

FSS =

{
roundup(5.3S + 6.1M) M > 0

0 otherwise

where B,R,C, I,A are as defined above, S is sensitivity aggregate, M is impact aggregate, and
roundup rounds up values to one decimal place. Weights for B and R are {none = 0, low =
0.1,medium = 0.35, high = 0.6}, while weights for C, I , and A are {none = 0, low =
0.22,medium = 0.39, high = 0.56}. Equations for S and M are structured to produce a high
score when any one of the components are marked higher, similar to CVSS 3.1. The weights and
coefficients were tuned such that FSS captures the scores from 0 to 10. Figure 3 shows the scores
of all classifications in increasing order for CVSS 3.1 and FSS, demonstrating that FSS behaves
similarly to the industry-standard CVSS 3.1. Figure 4 shows an example classification and its score.

Prediction: The last step of the pipeline is the prediction that outputs whether the summarized
diff contents resemble malicious injection or a benign software update. We implement this step by
passing the top k functions with highest FSS to the LLM and prompt it to output either MALICIOUS
or BENIGN by reasoning about whether the changes match the project description.

4 EVALUATION

4.1 SUPPLY CHAIN SECURITY BENCHMARK

We construct a benchmark for software supply chain security by picking six popular open-
source projects spanning command line utilities and libraries gzip, openssl, tar, sqlite,
microhttpd, and paho-mqtt. Additional details are provided in Appendix A.2. Table 1 shows
the project description, number of versions selected, number of diffs from taking consecutive ver-
sion pairs, and total number of added, deleted, and modified functions across all diffs. Each project
is compiled in a Ubuntu 20.04 docker container with the default compiler GCC 9.4.0. Pairs of bina-
ries of consecutive versions are treated as software updates and we use them for binary diffing. We
collected 104 versions across the 6 projects, generating 98 software update pairs.

Project Description Versions Diffs Functions
gzip File compression utility 5 16 1209
openssl Cryptography library and utility 29 112 9722
tar File and directory archival utility 10 36 8936
sqlite Single-file SQL database library 28 108 16682
microhttpd Lightweight HTTP server library 23 88 6648
paho-mqtt MQTT lightweight messaging library 9 32 2826

Total 104 392 46023

Table 1: Details of software supply chain security benchmark.

Additionally, we implement three malwares to inject into the source code of each project. Details of
each malware are provided in Appendix A.3.

• rware: a ransomware (Li, 2021) that encrypts user files using AES and ECDH encryption
• rat: a remote access trojan (Kara & Aydos, 2019) that initiates a reverse shell with remote server
• botnet: a bot network (Antonakakis et al., 2017) for denial-of-service attacks on servers

Each malware is implemented as C code contained in one source file that is copied into the project
source directory and added to the build system. The entry point of each malware is a C function that
takes no arguments and returns no values. For each project, we determine a trigger point that is not
reachable in normal operation of the project but can be triggered by the attacker with specific mal-
formed configurations, for example, passing an attacker-defined command line option. We obtain
4 binary diffs per version pair by considering a software update from a clean binary of the former
version to the clean and injected binaries of the latter version. In total, this makes 392 diffs.
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Program k = 5 k = 10 k = 5 w/ change k = 10 w/ change
P R P R P R P R

Overall 0.95 0.71 0.94 0.63 0.96 0.70 0.94 0.62
gzip 1.00 0.83 1.00 0.67 1.00 0.83 1.00 0.83
openssl 0.88 0.51 0.85 0.49 0.88 0.55 0.87 0.54
tar 0.88 0.56 0.84 0.59 0.88 0.56 0.88 0.56
sqlite 0.98 0.79 1.00 0.57 1.00 0.76 1.00 0.56
microhttpd 0.96 0.83 0.98 0.79 0.98 0.79 0.96 0.76
paho-mqtt 1.00 0.92 0.96 0.92 1.00 0.88 1.00 0.75

Table 2: GPT5 mini malware detection precision (P ) and recall (R) across programs. k refers to how
many functions with highest score are provided for prediction step. “w/ change” refers to program
changelog being provided for the prediction step.

4.2 METRICS

Malware Detection: Prediction output is evaluated against ground truth labels for each diff. Diffs
with binaries containing the injected malware are labeled MALICIOUS and diffs with clean bina-
ries are labeled BENIGN. Treating the MALICIOUS label as positive, we compute precision and
recall to evaluate accuracy of malware detection. False positives would be clean diffs labeled as
MALICIOUS. False negatives would be diffs with injected malware labeled as BENIGN.

FSS Separation: It is difficult to evaluate the quality of FSS scores assigned by an LLM without
human-labeled scores for functions in the diff. Even in clean diffs, functions may show different
behaviors and thus different FSS. In our benchmark, we mark functions from the original code as
benign and injected functions as malicious. FSS scores are averaged as FSSben and FSSmal across
a binary. Their distributions are checked to see if malicious functions score higher than benign ones.
Higher separation of the distributions of FSSben and FSSmal will indicate better FSS quality.

5 RESULTS

Experimental Setup: We evaluate with two commercial LLMs, GPT5 mini and GPT5 nano (Ope-
nAI, 2025a), and three open-source LLMs, GPT OSS 20B (OpenAI, 2025b), Qwen3 30B, and Qwen3
8B (Qwen, 2025). All five LLMs are run in thinking/reasoning mode. Reasoning effort is set to
“low” for GPT5 mini, nano, and GPT OSS 20B models. Qwen3 30B, 8B, and GPT OSS 20B models
are run via Ollama on a server with two NVidia L40 GPUs. The models are run with default hy-
perparameter settings as follows: temperature of 1.0 and top-p of 1.0 for GPT5 mini, GPT5 nano,
and GPT OSS 20B; temperature of 0.6 and top-p of 0.95 for Qwen3 8B and Qwen3 30B. We do not
evaluate the highest capability GPT5 on the full benchmark due to high API costs and because the
smaller models suffice as seen in the results. Appendix A.4 plots token and cost analysis.

Summ. Pred. P R

GPT5 mini GPT5 mini 0.95 0.71
GPT5 nano GPT5 nano 0.85 0.35
GPT OSS 20B GPT OSS 20B 0.93 0.42

GPT5 mini GPT5 0.97 0.72
GPT5 nano GPT5 mini 0.90 0.50
GPT OSS 20B GPT5 mini 0.96 0.63
Qwen3 30B GPT5 mini 0.99 0.60
Qwen3 8B GPT5 mini 0.99 0.45

Table 3: Performance across different models for
k = 5 without changelog.

Table 2 shows the accuracy of binary diff sum-
marization and malware detection with GPT5
mini as measured by precision (P ) and recall
(R) described in Section 4.2. We run the pre-
diction step with four configurations by mod-
ifying k, the number of functions with high-
est FSS provided to the LLM, and whether or
not the program changelog was provided. The
changelog is extracted from the program source
code or online repository for each version and
appended to the initial prompt when needed.
The gray highlighted rows show the overall P
and R, while the rows beneath them show per-
program results. Precision (P ) ranges from
0.94 to 0.96, indicating that the framework ob-
tains low false positives. P improves slightly

with changelog for k = 5 but stays the same for k = 10. Recall (R) is highest at 0.71 for k = 5
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without changelog. R drops to 0.62–0.63 with k = 10, indicating that a larger context of functions
may confuse the LLM prediction. Including changelog leads to a slight drop in R for both k.

Across programs, P and R show wide variation. P ranges from 0.88 to 1.00, with all other pro-
grams getting near perfect P except openssl and tar where false positives are high, likely be-
cause of cryptographic operations and directory access. A similar dip in R is seen for openssl
and tar. R ranges from 0.51 for openssl to 0.92 for paho-mqtt, indicating that the framework
identifies malware better for certain programs than others.

Table 3 presents the results for the rest of the LLMs, along with combinations of weaker and stronger
LLMs. We evaluate only one configuration of k = 5 without changelog. In our experiments, the
Qwen3 models work well when generating summaries but stumble in the final prediction step; in
many cases they do not produce either MALICIOUS or BENIGN as instructed and a prediction is
not obtained from their response. To overcome this, we use the Qwen3 summaries and perform the
final prediction step with GPT5 mini for these and other models. We notice GPT OSS 20B performs
better than GPT5 nano. All the models perform better with GPT5 mini as the predictor, and GPT5
mini shows slight improvement in P and R when using GPT5 as predictor. This indicates that
summaries generated by all the models are of sufficient quality to allow for higher capability LLMs
to perform accurate malware detection. With GPT5 mini as predictor, GPT OSS 20B outperforms
Qwen3 and GPT5 nano, fairing the best among lower capability models with R of 0.63. Qwen3 30B
comes second with R of 0.60, followed by Qwen3 8B and GPT5 nano.

Ablation P R

Full system 0.95 0.71
w/ diff size 0.92 0.25
w/ syscall 0.97 0.57
w/o diff callgraph 0.97 0.48
w/ threshold 0.93 0.65
malcontent (baseline) 1.00 0.18

Table 4: Ablation study and baseline compar-
ison with the full system as GPT5 mini for
k = 5 without changelog.

Ablation studies: Table 4 shows the results of abla-
tion studies to demonstrate the utility of each com-
ponent of our framework. Configuration of GPT5
mini with k = 5 and no changelog is used for the
ablations. To check the impact of FSS score on the
final prediction, we replace FSS score based top-
k selection with two metrics: diff size in terms of
number of lines (row “w/ diff size”), and number
of system calls referenced by the function (row “w/
syscall”). These metrics are crude in contrast with
FSS as they do not truly capture the sensitivity of
code changes. With diff size, R drops significantly
to 0.25, as expected because larger diffs only high-
light parts of the binary where most changes hap-
pened but these need not coincide with small ma-

licious changes. With system calls, R degrades to 0.57, indicating that even looking at certain
behavior aspects via system calls is not sufficient as a high number of system calls is not truly in-
dicative of sensitive behaviors. Additionally, this method will not scale as malwares may not invoke
a large number of system calls for malicious behavior. P drops slightly with diff size to 0.92 but
improves with syscalls to 0.97.

We examine the impact of the diff callgraph by removing it (row “w/o diff callgraph”) such that no
dependency information is provided during summarization. R drops to 0.48 however P improves
slightly to 0.97, indicating drop in false positives with increase in false negatives. This demonstrates
that the diff callgraph and dependency information help produce higher quality summaries that helps
downstream malware detection. Lastly, we remove the final LLM prediction step and use thresholds
on FSS scores for malware detection (row “w/ threshold”). We use only the top FSS score and mark
the binary as MALICIOUS if the FSS score is higher than a threshold. The threshold is calibrated
using gzip to maintain P ≥ 0.95, giving a threshold of 8.5. The rest of the dataset is evaluated to
give P 0.93 and R 0.65. We see only a small drop in R, demonstrating that FSS scores produced in
the summarization step are of high quality. However, even with a high threshold of 8.5, P shrinks as
false positives increase, indicating that this method may not scale to varied data where even benign
functions would be marked with high sensitive score.

Baseline: Table 4 also show a comparison with the malcontent rule-based binary diff malware
scanner ChainGuard (2025) which we treat as a baseline. malcontent looks at binary changes
and marks each change with LOW, MEDIUM, HIGH, or CRITICAL severity. According to the
instructions, CRITICAL should be treated as malware, however we consider both HIGH and CRIT-
ICAL as malware. malcontent faces a sharp decline in R to 0.18, as its rule based scanner
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Figure 5: Distribution of FSSben and FSSmal (a) by LLM, (b) by program for GPT5 mini, and (c)
by malware for GPT5 mini. The boxes show first to third quartile, the middle line shows median,
and the whiskers show 1.5× inter-quartile range.

cannot pick up previously unseen malwares. It achieves perfect P , indicating that it is conservative
in marking changes as HIGH or CRITICAL. Our framework improves R by ≈ 4× with only a small
decline in P . Traditional rule-based cybersecurity tools require constant updates to the set of rules to
detect new malwares, motivating the need for an LLM-driven binary diff summarization framework.
Comparison with this baseline demonstrates that malware detection, especially of unseen malware,
is a hard problem which our binary diff summarization framework tackles effectively to achieve a
recall of 0.71.

FSS Separation: Figure 5 presents the distribution of FSS scores for benign (FSSben) and mali-
cious (FSSmal) functions as described in Section 4.2. Figure 5(a) shows distribution by model. All
models demonstrate a clear separation between FSSben and FSSmal. Except for GPT5 mini, other
models have a wider spread in the FSSmal distribution that overlaps with FSSben, yet the boxes
and medians remain clearly separated. GPT5 mini shows a tighter distribution of FSSmal than the
rest, demonstrating greater scoring consistency. Overall, the median scores show a difference of 1.5
to 5.0 points, with GPT5 mini having a separation of 3.0. The summarization framework reliably
marks malicious injected functions with higher FSS than benign functions. The benign functions
are consistently scored with median FSS of 4.0 or lower; LLM understands function sensitivity
correctly, illustrating efficacy of FSS categorization.

To further investigate the performance of the best-performing model GPT5 mini, Figures 5(b) and
5(c) provide a granular breakdown of GPT5 mini’s scores. The analysis by program demonstrates
that GPT5 mini’s discriminative power is robust across the set of programs. Interestingly, the
FSSben distributions across programs are narrow, showing that GPT5 mini consistently marks the
functions similarly. Additionally, openssl, microhttpd, and paho-mqtt get higher FSSben

as expected because the benign functions have cryptographic and network functionalities. Similarly,
Figure 5(c) illustrates the model’s effectiveness against different malwares. Distribution of FSSmal

for rware is largest, while for rat and botnet is very narrow, indicating that it is easier to
identify sensitive behaviors with the network access in the later two. Nonetheless, there is a clear
separation across all malwares which makes it easy to configure thresholds for detection.

False Negative Analysis: We compute the recall R per malware (equivalent to true positive rate) for
GPT5 mini with k = 5 without changelog to shine light onto the false negative cases. The overall
R is 0.71. Per malware, the R is 0.76 for rware, 0.93 for rat, and 0.45 for botnet. botnet
is significantly lower than the other two, displaying the framework’s weakness in terms of detecting
this type of malware. As the botnet only listens for a network connection and sends UDP packets,
its malicious behavior might be harder to identify than the file encryption behavior of rware or
reverse shell of rat.

8
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6 CASE STUDY: XZ BACKDOOR

We analyze the XZ Utils supply chain attack detected in 2024 (Przymus & Durieux, 2025), where
the open-source XZ repository was compromised to inject a backdoor into the liblzma.so li-
brary. This library is ubiquitous on Linux systems ranging from servers to embedded controllers,
so the attack would have devastating consequences, however it was caught before the backdoor was
distributed as part of updates. We compile the XZ utils source code for the compromised version
v5.6.0 and a previous version v5.4.7. We evaluate our binary diff summarization framework
on the generated liblzma.so libraries. We run GPT5 mini and GPT5 for both the summarization
and prediction step with k = 5 and no changelog.

Predictor Top-5 functions
Summarizer GPT5 GPT5 mini

GPT5

FUN 00104794(6.5)
FUN 00104720(6.5)
get cpuid(5.3)
lzma2 decode(4.3)
FUN 0011e4a0(4.2)

GPT5
mini

x86 code(4.2)
FUN 00104794(4.2)
crc64 set fun(3.4)
get cpuid(3.4)
FUN 00104720(3.4)

Table 5: XZ backdoor detection by GPT5 and GPT5 mini along with sensitive functions.

Table 5 shows the output of malware detection by GPT5 and GPT5 mini when run
on each other’s summarizations. GPT5 correctly marks the diff summaries as malicious
for both the summaries generated by itself and by GPT5 mini. On the other hand,
GPT5 mini misclassifies its own summaries as benign, however it correctly marks GPT5
summaries as malicious. This indicates that both models highlight the injected mali-
cious behavior sufficiently, while it takes the more capable GPT5 for a correct prediction.

Newly added function. It introduces a call-count–gated side effect
(only when the global counter equals 1 on entry) that invokes
NEWF_00104794 with a crafted local buffer containing param_2.
That callee performs an unchecked transient memory write to an
address derived from pointer arithmetic and issues a CPUID call
before restoring memory. This is atypical for liblzma and poses
potential integrity/availability risks (fault or probe) and increases
hardware fingerprinting/anti-analysis behaviors...

FUN_00104720 diff summary

New function added...introduces opaque initialization and a
transient write to an address computed from (vtable_pointer − this
+ 0x2e8), followed by a CPUID call and restoration... Unchecked
computed-pointer dereference/write (may crash ...
integrity/availability risk)... Stores pointer/offset deltas into object
fields, suggesting obfuscation or anti-reverse-engineering
behavior rather than typical liblzma state setup. Given
liblzma’s expected functionality, this routine is anomalous and
warrants deeper review for malicious or vulnerable behavior...

FUN_00104794 diff summary

Figure 6: GPT5 summaries for the XZ back-
door functions.

The top-5 highest scored functions are shown along
with their scores for both models. The red high-
lighted functions were those injected with malicious
behavior. Out of 79 functions in the diff, both mod-
els score the relevant malicious functions higher so
they appear among the top 5. GPT5 scores the ma-
licious functions highest, whereas GPT5 mini scores
them generally lower. This demonstrates that the
LLMs correctly identify sensitive behaviors using
the FSS categorization.

Figure 6 shows the diff summaries generated by
GPT5 for the two highlighted functions. Highlighted
in red, we see the model describe how the function-
alities are “atypical for liblzma” and differ from “li-
blzma’s expected functionality”. This case study il-
lustrates that LLMs utilize the binary diff summa-
rization framework and FSS categorization to pro-
duce meaningful summaries that highlight malicious
behavior when analyzing software updates.

7 CONCLUSION

In this work, we presented a novel framework for binary diff summarization using LLMs, with a
specific focus on enhancing software supply chain security. We introduce the functional sensitivity
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score (FSS), a metric designed for automated triage of sensitive functions within binary diffs. To
evaluate our approach, we created a new benchmark for software supply chain security, comprising
104 versions of 6 open-source projects, into which we injected 3 different types of malware. Our
framework achieved a high precision of 0.95 and a recall of 0.71 for malware detection. Furthermore,
the FSS demonstrated a clear separation of 3.0 points between malicious and benign functions,
highlighting its effectiveness. On the real-world XZ backdoor case study, our framework correctly
captured the injected malicious functions with high FSS and correctly marked the software update
as malicious, exemplifying the applications to real-world scenarios. These findings illustrate the
significant potential of leveraging LLMs for automation of software supply chain security. Future
work could explore the application of this framework to other security-critical domains, such as
vulnerability detection and patch analysis. The FSS could be adapted and refined for other security
applications, and the framework could be extended to support a wider range of architectures.

Ethics: This work explores the use of large language models (LLMs) for binary diff summarization,
which identifies changes between binary versions to help analysts detect bugs, vulnerabilities, and
supply chain threats. Although the technique strengthens patch management and software integrity
verification, it also has dual-use implications. Malicious actors could potentially exploit the same
methods for reverse engineering, intellectual property theft, or scalable attacks on software supply
chains. Our study is conducted purely for defensive and research purposes, aiming to advance the
ability of the security community to manage patches and identify vulnerabilities. We acknowledge
the risks of misuse and emphasize the importance of safeguards, rigorous evaluation, and gover-
nance mechanisms in guiding responsible adoption of LLM-based tools. By contextualizing and
transparently reporting our findings, we seek to raise awareness of emerging attack vectors while
supporting the development of effective countermeasures.
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posium sur la Sécurité des Technologies de l’Information et des Communications (SSTIC),
2005. URL https://actes.sstic.org/SSTIC05/Analyse_differentielle_
de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_
Executable_Objects.pdf. English version (PDF). See also BinDiff historical references
and implementations.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
code changes and cve summaries. In Proceedings of the 17th international conference on mining
software repositories, pp. 508–512, 2020.

Halvar Flake. Structural Comparison of Executable Objects. In Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), pp. 161–173, 2004.

FortiGuard Labs. 3CX Desktop App Compromised (CVE-2023-29059),
2023. URL https://www.fortinet.com/blog/threat-research/
3cx-desktop-app-compromised.

Debin Gao, Michael K. Reiter, and Dawn Song. BinHunt: Automatically Finding Semantic Differ-
ences in Binary Programs. In Proceedings of the International Conference on Information and
Communications Security (ICICS), pp. 238–255, 2008. doi: 10.1007/978-3-540-88625-9 16.

Irfan Ul Haq and Juan Caballero. A Survey of Binary Code Similarity. ACM Comput. Surv., 54(3),
April 2021. ISSN 0360-0300. doi: 10.1145/3446371. URL https://doi.org/10.1145/
3446371.

Henry Howland. Cvss: Ubiquitous and broken. Digital Threats, 4(1), February 2022. doi: 10.1145/
3491263. URL https://doi.org/10.1145/3491263.

Nasir Hussain, Haohan Chen, Chanh Tran, Philip Huang, Zhuohao Li, Pravir Chugh, William Chen,
Ashish Kundu, and Yuan Tian. Vulbinllm: Llm-powered vulnerability detection for stripped
binaries. arXiv preprint arXiv:2505.22010, 2025.

Xin Jin, Jonathan Larson, Weiwei Yang, and Zhiqiang Lin. Binary code summarization: Bench-
marking chatgpt/gpt-4 and other large language models. arXiv preprint arXiv:2312.09601, 2023.

İlker Kara and Murat Aydos. The ghost in the system: technical analysis of remote access trojan.
International Journal on Information Technologies & Security, 11(1):73–84, 2019.

Joxean Koret. Diaphora – Program Diffing Plugin for IDA Pro (GitHub). https://
github.com/joxeankoret/diaphora, 2015–2025. URL https://github.com/
joxeankoret/diaphora.

11

https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://www.sstic.org/media/SSTIC2024/SSTIC-actes/qbindiff_a_modular_differ/SSTIC2024-Article-qbindiff_a_modular_differ-rossi_yger_mori_david_cohen.pdf
https://dmas.lab.mcgill.ca/fung/pub/DFC19sp.pdf
https://dmas.lab.mcgill.ca/fung/pub/DFC19sp.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf
https://actes.sstic.org/SSTIC05/Analyse_differentielle_de_binaires/SSTIC05-article-Flake-Graph_based_comparison_of_Executable_Objects.pdf
https://www.fortinet.com/blog/threat-research/3cx-desktop-app-compromised
https://www.fortinet.com/blog/threat-research/3cx-desktop-app-compromised
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3446371
https://doi.org/10.1145/3491263
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltos Allamanis, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. DIRE: A neural approach to decompiled identifier naming. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
628–639. IEEE, 2019.

Adrian Shuai Li. An analysis of the recent ransomware families. Project Report. Purdue University,
2021.

Jie Lin and David Mohaisen. From large to mammoth: A comparative evaluation of large language
models in vulnerability detection. In Proceedings of the 2025 Network and Distributed System
Security Symposium (NDSS), 2025.

Cullen Linn and Saumya Debray. Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. In Proceedings of the 10th ACM Conference on Computer and Communications
Security, pp. 290–299, 2003.

John McIntosh. Ghidriff: Python Command-Line Ghidra Binary Diffing Engine, 2023. URL
https://github.com/clearbluejar/ghidriff.

Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. Direct: a transformer-based model
for decompiled identifier renaming. In Proceedings of the 1st Workshop on Natural Language
Processing for Programming (NLP4Prog 2021), pp. 48–57, 2021.

Jeong Wook Oh. DarunGrim: A Patch Analysis and Binary Diff-
ing Tool. https://sgros-students.blogspot.com/2014/06/
binary-diffing-using-darungrim.html, 2008.

OpenAI. GPT-5 System Card, 2025a. URL https://openai.com/index/
gpt-5-system-card/.

OpenAI. GPT-OSS System Card, 2025b. URL https://openai.com/index/
gpt-oss-model-card/.

Piotr Przymus and Thomas Durieux. Wolves in the repository: A software engineering analysis of
the xz utils supply chain attack. In 2025 IEEE/ACM 22nd International Conference on Mining
Software Repositories (MSR), pp. 91–102. IEEE, 2025.

Qwen. Qwen3 System Card, 2025. URL https://huggingface.co/Qwen/Qwen3-8B.

Beatriz M. Reichert and Rafael R. Obelheiro. Software supply chain security: a systematic literature
review. International Journal of Computers and Applications, 46(10):853–867, 2024. doi: 10.
1080/1206212X.2024.2390978. URL https://doi.org/10.1080/1206212X.2024.
2390978.

Paul Royal, Matthew Halpin, David Dagon, Robert Edmonds, and Wenke Lee. PolyUnpack: Au-
tomating the Hidden-Code Extraction of Unpack-Executing Malware. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC), pp. 289–300, 2006. doi:
10.1109/ACSAC.2006.20.

Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov. Evolving exact
decompilation. In Workshop On Binary Analysis Research (BAR), 2018. doi: 10.14722/ndss.
2018.23002.

Xiuwei Shang, Shaoyin Cheng, Guoqiang Chen, Yanming Zhang, Li Hu, Xiao Yu, Gangyang Li,
Weiming Zhang, and Nenghai Yu. How far have we gone in binary code understanding using
large language models. In 2024 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 1–12. IEEE, 2024.

Paria Shirani, Lingyu Wang, and Mourad Debbabi. Binshape: Scalable and Robust Binary Library
Function Identification Using Function Shape. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pp. 301–324. Springer, 2017.

12

https://github.com/clearbluejar/ghidriff
https://sgros-students.blogspot.com/2014/06/binary-diffing-using-darungrim.html
https://sgros-students.blogspot.com/2014/06/binary-diffing-using-darungrim.html
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-5-system-card/
https://openai.com/index/gpt-oss-model-card/
https://openai.com/index/gpt-oss-model-card/
https://huggingface.co/Qwen/Qwen3-8B
https://doi.org/10.1080/1206212X.2024.2390978
https://doi.org/10.1080/1206212X.2024.2390978


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
SOK: (state of) the art of war: Offensive techniques in binary analysis. In IEEE Symposium on
Security and Privacy (SP), pp. 138–157, USA, 2016. IEEE.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. Llm4decompile: Decompiling binary code with
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 3473–3487. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.emnlp-main.203. URL http://dx.doi.org/10.18653/v1/2024.
emnlp-main.203.

Meet Udeshi, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Remend: Neural
decompilation for reverse engineering math equations from binary executables. ACM Trans.
Intell. Syst. Technol., July 2025. ISSN 2157-6904. doi: 10.1145/3749988. URL https:
//doi.org/10.1145/3749988. Just Accepted.

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao
Zhang. jTrans: Jump-Aware Transformer for Binary Code Similarity. arXiv Preprint, 2022. URL
https://arxiv.org/abs/2205.12713.

Zheng Wang, Ken Pierce, and Scott McFarling. BMAT – A Binary Matching Tool for Stale Profile
Propagation. The Journal of Instruction-Level Parallelism, 2:1–20, 2000.

Laurie Williams, Giacomo Benedetti, Sivana Hamer, Ranindya Paramitha, Imranur Rahman, Mahz-
abin Tamanna, Greg Tystahl, Nusrat Zahan, Patrick Morrison, Yasemin Acar, Michel Cukier,
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A APPENDIX

A.1 RELATED WORK COMPARISON

A.2 BENCHMARK DETAILS

Table 7 lists the URLs for each open-source project in our software supply chain security benchmark.

A.3 MALWARE IMPLEMENTATIONS DETAILS

Ransomware: The ransomware is implemented as a C program that utilizes self-contained versions
of tiny-AES2 and tiny-ECDH3 for its cryptographic operations. The malware recursively scans for
files and encrypts each one with a unique, randomly generated AES-128 key in Counter (CTR)
mode, appending a .CRYPT extension to the filename. To protect these individual file keys, it
employs an Elliptic Curve Diffie-Hellman (ECDH) key exchange using the NIST B-163 curve; it

2https://github.com/kokke/tiny-AES-c
3https://github.com/kokke/tiny-ECDH-c
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Tool / Paper Category / Approach
BMAT (Wang et al., 2000) Symbol / Name-based / Fuzzy

BinDiff (Flake, 2004) Graph-based
BinDiff extended (Dullien & Rolles, 2005) Graph-based

BinHunt (Gao et al., 2008) Graph-based + Symbolic Execution
DarunGrim (Oh, 2008) Graph-based

BinSlayer (Bourquin et al., 2013) Graph-based + Bipartite matching
Diaphora (Koret, 2015–2025) Graph-based
Asm2Vec (Ding et al., 2019) ML-based embedding

DeepBinDiff (Duan et al., 2020) ML-based embedding
jTrans (Wang et al., 2022) Deep Learning

QBinDiff (Cohen et al., 2024) Network alignment/Belief Propagation

Table 6: Implementation approach for related works

Program URL
gzip https://ftp.gnu.org/gnu/gzip
openssl https://github.com/openssl/openssl/releases/download
tar http://mirror.rit.edu/gnu/tar
sqlite https://sqlite.org
microhttpd https://ftp.gnu.org/gnu/libmicrohttpd
paho-mqtt https://github.com/eclipse-paho/paho.mqtt.c/archive/

refs/tags

Table 7: URLs for each project in the benchmark.

generates a shared secret by combining a new local private key with a hardcoded attacker’s public
key. This shared secret is then used as a master key to encrypt all the individual file keys and their
paths into an info.bin file, after which the ransomware drops a note containing the victim’s public
key needed for decryption.

Remote access trojan: The RAT implements a stealthy reverse shell that connects a target machine
back to an attacker. It begins by reading the attacker’s IP address and port from an environment
variable, a technique used to avoid hardcoding sensitive information. The program then uses fork()
to create a child process, allowing the parent to exit immediately while the malicious code continues
to run in the background, detached from the original application. This child process establishes a
network connection to the attacker’s machine. The core of its functionality lies in using the dup2()
system call to redirect the standard input, output, and error streams to the network socket. Finally,
it calls execve() to replace its own process with /bin/sh, which is cleverly obfuscated in the code
as a series of integer multiplications. Because the I/O streams are already redirected, this new shell
process is fully interactive for the remote attacker, granting them command-line control over the
compromised system.

Botnet: The botnet client is implemented based on the leaked source code of the Mirai botnet
(Antonakakis et al., 2017). The program is designed to connect to a Command and Control (C2)
server, which is hardcoded as “localhost” on port 5034. Once connected, the bot enters a loop where
it sends a periodic keep-alive message to the C2 server and listens for attack commands. When a
command is received, it is parsed to extract a target IP address, port, payload size, and the number
of packets to send. Unlike the original Mirai, which featured multiple attack vectors, this simplified
version only implements a basic UDP flood attack. This attack function bombards the specified
target with a high volume of UDP packets containing randomized data, generated by a Xorshift
pseudo-random number generator identical to the one used in Mirai, with the goal of overwhelming
the target’s network resources.
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Figure 8: Cost vs Recall.

A.4 TOKEN CONSUMPTION AND COST ANALYSIS

Figure 7 shows the total input and output token consumption per model on the entire benchmark.
The tokens range from 100M for Qwen3 models to 500M for GPT5 mini. The wide difference
in token consumption may be due to different tokenizers for each model and because GPT5 nano
and GPT5 mini may produce larger and more detailed function summaries that are sent back in the
followup prompt. Output tokens are around 5% to 25% of input tokens. Considering 46K functions
in the benchmark, the average per-function token consumption is around 2K to 12K.

Figure 8 shows the cost versus recall analysis for different GPT5 variants. Each point is labeled
with two models indicating the summarizer + predictor. GPT5 mini and GPT5 predictors see a
sharp increase in recall due to higher capabilties, however the cost only changes slightly. The recall
increases sharply with more capable predictors. However, it is expected that recall will saturate with
increasing cost.
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