
Under review as a conference paper at ICLR 2023

MODEL OBFUSCATION FOR SECURING DEPLOYED
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

More and more edge devices and mobile apps are leveraging deep learning (DL)
capabilities. Deploying such models on devices – referred to as on-device models
– rather than as remote cloud-hosted services, has gained popularity as it avoids
transmitting user’s data off of the device and for high response time. However,
on-device models can be easily attacked, as they can be accessed by unpacking
corresponding apps and the model is fully exposed to attackers. Recent studies
show that adversaries can easily generate white-box-like attacks for an on-device
model or even inverse its training data. To protect on-device models from white-
box attacks, we propose a novel technique called model obfuscation. Specifically,
model obfuscation hides and obfuscates the key information – structure, param-
eters and attributes – of models by renaming, parameter encapsulation, neural
structure obfuscation, shortcut injection, and extra layer injection. We have de-
veloped a prototype tool ModelObfuscator to automatically obfuscate on-device
TFLite models. Our experiments show that this proposed approach can dramati-
cally improve model security by significantly increasing the difficulty of extract-
ing models’ inner information, without increasing the latency of DL models. Our
proposed on-device model obfuscation has the potential to be a fundamental tech-
nique for on-device model deployment. Our prototype tool is publicly available at
https://github.com/AnonymousAuthor000/Code2536.

1 INTRODUCTION

Numerous edge and mobile devices are leveraging deep learning (DL) capabilities. Though DL mod-
els can be deployed on a cloud platform, data transmission between mobile devices and the cloud
may compromise user privacy and suffer from severe latency and throughput issues. To achieve
high-level security, users’ personal data should not be sent outside the device. To achieve high
throughput and short response time, especially for a large number of devices, on-device DL models
are needed. The capabilities of newer mobile devices and some edge devices keep increasing, with
more powerful systems on a chip (SoCs) and a large amount of memory, making them suitable for
running on-device models. Indeed, many intelligent applications have already been deployed on
devices (Xu et al., 2019) and benefited millions of users.

Unfortunately, it has been shown that on-device DL models can be easily extracted. Then, the
extracted model can be used to produce many kinds of attacks, such as adversarial attacks, member-
ship inference attacks, model inversion attacks, etc. (Szegedy et al., 2013; Chen et al., 2017b; Shokri
et al., 2017; Fang et al., 2020). The deployed DL model can be extracted by three kinds of attacks:
(1) extracting the model’s weights through queries (Tramèr et al., 2016). (2) extracting the entire
model from devices using software analysis (Vallée-Rai et al., 2010) or reverse engineering (Li et al.,
2021b). (3) extracting the model’s architecture by side-channel attacks(Li et al., 2021a).

According to our observation, existing defense methods can be categorized into two different levels:
(1) algorithm level, and (2) side-channel level. For securing the AI model at the algorithm level,
some studies (Orekondy et al., 2019b; Kariyappa & Qureshi, 2020; Mazeika et al., 2022) propose
methods to degenerate the effectiveness of query-based model extraction. While other studies (Xu
et al., 2018; Szentannai et al., 2019; 2020) propose methods to train a simulating model, which has
similar performance to the original model but is more resilient to extraction attacks. For securing

1

https://github.com/AnonymousAuthor000/Code2536

Under review as a conference paper at ICLR 2023

the AI model at the side-channel level, a recent work modifies the CPU and Memory costs to resist
the model extraction attacks (Li et al., 2021a).

Although many attacks have been proposed to extract DL models, it is hard for adversaries to pre-
cisely reconstruct DL models that are identical to the original ones using queries or side-channel
information. These attack cannot access the inner information of the model, which means they are
black-box attacks. In contrast, since on-device models are delivered in mobile apps and hosted on
mobile devices, adversaries can easily unpack the mobile apps to extract the original models for
exploitation. It will enable serious intellectual property leakage and adversaries can further gener-
ate white-box attacks, which are much more effective than black-box attacks (Zhang et al., 2022).
Despite that model extraction using software analysis may lead to severe consequences, to the best
of our knowledge, the community has not yet been aware of this attack, and no effective defense
method has been proposed against it.

In this paper, we propose a novel model protection approach based on model obfuscation, which
focuses on improving AI safety for resisting model extraction using software analysis. Given
a trained model and its underlying DL library (e.g., PyTorch, TensorFlow, TFLite and etc.), an
end2end prototype tool, ModelObfuscator, is developed to generate the obfuscated on-device model
and the corresponding DL library. Specifically, ModelObfuscator first extracts the information of
the target model and locates the source code in the library used by its layers. Then, it obfuscates the
information of the models and builds a customized DL library that is compatible with the obfuscated
model. To achieve this, we design five obfuscation methods, including: (1) renaming, (2) parame-
ter encapsulation, (3) neural structure obfuscation, (4) random shortcut injection, and (5) random
extra layer injection. These obfuscation methods significantly increase the difficulty of parsing the
information of the model. The model obfuscation can prevent adversaries from reconstructing the
model. In addition, adversaries also hard to transfer the trained weights and structure of models to
steal intellectual property using model conversion because the connection between the obfuscated
information and the original one is randomly generated. Experiments on 10 different models show
that ModelObfuscator can against state-of-the-art model parsing and attack tools with a negligible
time overhead and 20% storage overhead. Our contributions in this work include:

• We propose the model obfuscation framework to hide the key information of deployed DL models
at the software level. It can prevent adversaries from generating white-box attacks and stealing
the knowledge of on-device models.

• We design five obfuscation strategies for protecting on-device models and provide an end2end
prototype tool, ModelObfuscator. This tool automatically obfuscates the model and builds a com-
patible DL software library. The tool is open-source available.

• We provide a taxonomy and comparison of different obfuscation methods in terms of effectiveness
and overhead, to guide model owners in choosing appropriate defense strategies.

2 RELATED WORK

Model Extraction Attacks and Defenses For model extraction attacks, adversaries can effec-
tively extract the model in black-box setting. They can use collected samples to query the target
model to reconstruct the target model (Tramèr et al., 2016; Papernot et al., 2017; Orekondy et al.,
2019a; He et al., 2021; Rakin et al., 2022), or use the synthetic sample to steal the information of
target models (Zhou et al., 2020; Kariyappa et al., 2021; Yuan et al., 2022; Sanyal et al., 2022). For
defending against the model extraction attacks, various methods (Orekondy et al., 2019b; Kariyappa
& Qureshi, 2020; Mazeika et al., 2022) have been proposed to degenerate the performance of model
extraction attacks. Some methods (Szentannai et al., 2019; 2020) have been proposed to train a
simulating model, which has similar performance to the original model, but can reduce the effec-
tiveness of attacks. In addition, watermarking is also a promising method to defend against the
model extraction (Yang et al., 2019; Fan et al., 2019; Lukas et al., 2019).
Adversarial Machine Learning: Currently, adversaries can use many kinds of attacks to chal-
lenge the reliability of DL models, such as adversarial attacks, membership inference attacks, model
stealing attacks, and model inversion attacks. For the adversarial attack, depending on the knowl-
edge required by the adversary, adversarial attacks can be categorized into white-box attacks such as
gradient-based attacks (Croce & Hein, 2020; Goodfellow et al., 2015; Kurakin et al., 2017; Papernot
et al., 2016; Moosavi-Dezfooli et al., 2016; Madry et al., 2018; Moosavi-Dezfooli et al., 2017), and

2

Under review as a conference paper at ICLR 2023

Python code
TensorFlow library

generateprogram compile

(3) model
assembling

(3) package
compilation

TFLite modelTF model

obfuscated
TFLite model

TFLite library
inference

modified TFLite library

compatibility checka. Producing TFLite model

b. ModelObfuscator
user

Renaming

Parameter encapsulation

Neural node obfuscation

Shortcut injection

Shortcut injection

(2) model obfuscation

(1) model parsing

inference

TFLite source code modified source code

Figure 1: The working process of our ModelObfuscator on-device DL model obfuscation tool.

black-box attacks such as query-based attacks (Chen et al., 2017a; Ilyas et al., 2018a;b; Guo et al.,
2019; Brendel et al., 2017; Cheng et al., 2018; Chen et al., 2020; Mopuri et al., 2018). For member-
ship inference attacks, several studies (Shokri et al., 2017; Truex et al., 2019; Choquette-Choo et al.,
2021; Carlini et al., 2022) challenge the privacy-preserving ability of model by predicting whether
a sample is in the collected training set.

Code obfuscation: Code obfuscation methods are initially developed for hiding the functionality
of the malware. Then, the software industry also uses it against reverse engineering (Schrittwieser
et al., 2016). They provide complex obfuscating algorithms for programs like JAVA code (Collberg
et al., 1997; 1998), including robust methods for high-level languages (Wang, 2001) and machine
code level (Wroblewski, 2002) obfuscation. Code obfuscation is a well-developed technique to
secure the source code. However, traditional code obfuscation approaches are not capable of pro-
tecting on-device models, especially for protect the structure of the models and their parameters. In
this work, inspired by traditional code obfuscation, we propose a novel model obfuscation approach
to obfuscate the model files and then produce a corresponding DL library for them.

3 METHODOLOGY

Threat Model The on-device model is usually saved as a separate file (e.g., .tflite file) and packed
into the app package. The attackers can either download the target app from the app markets (e.g.,
Google Play and iOS App store) or extract the app package file (e.g., APK file for Android, and
IPA file for iOS) from the hosting devices. These app package files can then be decompiled by
off-the-shelf reverse-engineering tools (e.g., Apktool 1 and IDA Pro 2) to get the original DL model
file. Although many on-device DL platforms do not support some advanced functions like back-
propagation, attackers can assemble the model architecture and weights into a differentiable model
format, or they can use software analysis methods to generate attacks for the target model file (Li
et al., 2021b; Huang & Chen, 2022). In this study, we will obfuscate the information of the model
to disable the software analysis and model conversion tools, and generate a compatible DL library
for the obfuscated model that only supports the forward inference function.

We chose the TensorFlow Lite (TFLite) platform to demonstrate our model obfuscation approach.
TFLite is currently the most commonly used on-device DL platform. The steps to produce TFLite
models are shown in the top half of Figure 1. Usually, DL developers use TensorFlow application
programming interfaces (APIs) to define and train the TensorFlow (TF) model. The trained TF
model is then compiled to a TFLite model. Note that TFLite has different implementations with
TF, their operators (i.e., layers) may not be compatible. Therefore, the TFLite library will check the
compatibility during compilation. Once the compatibility check passed, the compiled TFLite model
can run on devices using the TFLite library. Hence, the problem of obfuscating TFLite models is to
design obfuscation strategies and make the obfuscated model compatible with the TFLite library.

We analyzed the current mainstream DL platforms (i.e., TensorFlow and PyTorch) and identified the
following two main findings. First, these platforms are open-source and provide a set of tools to build

1https://ibotpeaches.github.io/Apktool/
2https://hex-rays.com/ida-pro/

3

https://ibotpeaches.github.io/Apktool/
https://hex-rays.com/ida-pro/

Under review as a conference paper at ICLR 2023

the library (e.g., TFLite library) from the source code. Second, they officially support customized
operators (e.g., neural layers). Specifically, on top of these DL platforms, users could implement cus-
tomized layers in C/C++ and compile customized layers to executing files (.so file in TensorFlow).
Then, users can use these customized layers via high-level Python interfaces. Those features enable
us to design obfuscation techniques to obfuscate model and DL library code together. The bottom
half of Figure 1 shows the overview of our model obfuscation framework. Specifically, ModelOb-
fuscator has three main steps: (1) model parsing, (2) model obfuscation, and (3) model assembling
& library recompilation. In the following subsections, we detail our proposed ModelObfuscator.

3.1 MODEL PARSING

Minimal model structure

{
”Layer name”: ”Conv2D”,
”Input”: [0],
”Output”: [1],
”ID”: 0,

}
· · ·

The first step of ModelObfuscator model obfuscation is to parse
the deployed model to extract its key information. ModelOb-
fuscator first extracts the structure information of each layer, in-
cluding the name of layers (e.g., Conv2D) and model structures
(including model’s input, output, layer ID and etc.). The ex-
tracted structure information are depicted using a data structure
as shown in the right example. Then, ModelObfuscator will ex-
tract the parameter of each layer. Moreover, ModelObfuscator
will identify the source code used by each layer by referring to the underlying libraries. The identi-
fied source code includes relevant packages or functions of the TFLite layers.

3.2 MODEL OBFUSCATION

Obfuscated minimal model structure

{
”Layer name”: ”Tbuszp”,
”Input”: [0],
”Output”: [1],
”ID”: 0,

}
· · ·
Source code registration (C/C++ code)

TfLiteRegistration* Register Conv2D()
↓

TfLiteRegistration* Register Tbuszp()

After getting the model information and corresponding source
codes, ModelObfuscator will obfuscate the model as well
as the source codes. ModelObfuscator uses five obfuscation
strategies: renaming, parameter encapsulation, neural struc-
ture obfuscation, shortcut injection, and extra layer injection.

Renaming The most straightforward obfuscation strategy is
the renaming of a layer. Usually, the layer’s name contains
important information, which is the function of this layer. For
instance, “Conv2D” indicates a 2D convolution layer. Such
information is useful for adversaries to reconstruct the model
to generate white-box attacks or to obtain a similar surrogate
model to conduct effective black-box attacks. To hide such important information, we randomly
change each model layer’s name. On the right is an example of an obfuscated Conv2D layer. Mod-
elObfuscator automatically replaces the real name with the random meaningless string Tbuszp.
Meanwhile, ModelObfuscator creates a copy of Conv2D’s source code and replaces the layer name
(i.e., Conv2D) in the source code with Tbuszp. Note that we modify the duplicate of Conv2D in
case the modification affects other parts of the TFLite library. After adding modified source codes
into the TFLite project, the recompiled TFLite library will recognize obfuscated layers as custom
layers and correctly execute them at runtime.

Parameter encapsulation Existing TFLite models have two main assets: model structure and pa-
rameters. The parameter can be obtained in the training period. Given an input, a TFLite model will
compute the results using the input tensor and parameters that are stored in the model file. As we
discussed above, parameter exposure is very dangerous. An adversary could use the parameter in-
formation to perform many kinds of white-box attacks, e.g., adversarial attacks and model inversion
attacks. Besides, an adversary can guess the function of this layer according to the shape of the pa-
rameter, because different layers have different numbers of parameters (e.g., two in the convolution
layer) and different shapes of parameters (e.g., (3, 3, 64) in the convolution layer).

To hide key model parameter information, we instead encapsulate parameters into their correspond-
ing generated custom source codes of the obfuscated layer. For example, for a simple one-layer
feed-forward neural network, the output can be computed by Y = θ(W TX + b), where X , W ,
and b is input tensor, parameter of the layer, and bias, respectively. θ is the activation for neural
nodes. For ModelObfuscator obfuscation, the network layer can be disguised as Y = g(X), where
g is an unknown function. We then implement the correct computation (i.e., g) in the generated

4

Under review as a conference paper at ICLR 2023

(a) Orginal neural nodes (b) Random neural nodes (c) Unchanged neural nodes

Figure 2: Neural structure obfuscation for a simple feed-forward neural network.

（a）

（b）
extra layer injection shortcut injection

renaming parameter encapsulation
neural structure obfuscation

Figure 3: Example of shortcut injection and extra layer injection for the TFLite model extract from
a real-world app. (a) part of the original model. (b) the corresponding obfuscated model. This
visualization is generated by Netron (Roeder, 2017).

custom TFLite source code, which we then obfuscate. At runtime, function g will be invoked to
achieve the computation from X to Y . Now an adversary is unable to extract the key parameter
information from our obfuscated model. Furthermore, the implementation of g can be obfuscated us-
ing transitional and well-proven code obfuscation strategies (Collberg & Thomborson, 2002). After
compiling the modified TFLite, adversaries will find it very hard to identify key model parameters
by reverse engineering the compiled library.

Neural structure obfuscation Just obfuscating layer names and parameters is not enough, since an
adversary may still infer the function of each layer according to the model structure. For instance,
Figure 2(a) presents the structure of the neural network, where the input, hidden and output layers
include four, two, and one node, respectively. Attacker could search for a surrogate model according
to the neural architecture. To solve this problem, ModelObfuscator uses neural structure obfuscation
to obfuscated neural architecture with the goal of confusing the adversary. We propose two strategies
for network structure obfuscation: random and align-to-largest. Given a model with output shapes
s = (s0, · · · , sn), where sn refers to the number of dimensions for the n-th channel, the random
strategy generate a random shape r = (r0, · · · , rn) of the output for each layer. Figure 2(b) shows an
obfuscated model of Figure 2(a) using random strategy. Second, the align-to-largest strategy finds
the largest output shape s′ and then fill the output shapes of other layers to the size of s′. Figure 2(c)
shows such an obfuscated model, where the output shapes of each layer are filled up to (4). Note that
this will not affect the performance of models because the modified TFLite library will not compute
the output using the provided neural structure information.

Shortcut injection & extra layer injection Neural structure obfuscation changes the network struc-
ture by inserting new nodes, but the spatial relationships of original layers remain the same. There-
fore, even with the above three obfuscation strategies, the adversary can still infer node informa-
tion by analyzing the spatial relationships of runtime data (e.g., actual input-output values of each
node). To further obfuscate the model structure, hence, ModelObfuscator applies two more strate-
gies: shortcut and extra layer injection. The injected shortcut and extra layers would destroy the
original spatial relationships of TFLite models.

To automatically inject random shortcuts, ModelObfuscator first randomly select a shortcut pair
(r1, r2). The outputs of r1-th layer are then added to the input list of r2-th layer. For example, the
blue solid line in Figure 3(b) is a shortcut inserted into the model extracted from a fruit recognition
app, which connects the 2-nd convolution layer and the 5-th convolution layer. Second, to inject
extra layers, just like the shortcut injection, ModelObfuscator randomly picks a layer pair (r′1, r′2).

5

Under review as a conference paper at ICLR 2023

Table 1: The obfuscation error of the proposed model obfuscation method. ‘Error’: the output
difference between the original model and the obfuscated model.

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Average

Error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The input of the extra layer is the output node list of r′1-th layer, and its output is added to the
input list of r′2-th layer. For instance, an extra layer Ypxumu (as shown in the red dotted line in
Figure 3(b)) is injected between the 2-nd and 3-rd convolution layers.

Note that the injected shortcut and layers will not affect the prediction results of the deployed model
because the modified TFLite library will ignore the obfuscation part (e.g., Ypxumu layers) in model
inference. Specifically, the extra layer Y = f(X) just needs to create the output with a specific
shape to confuse the adversary. In addition, extra layer injection will not significantly increase the
latency of on-device models because the extra layer does not need much computational resources.

Combine five obfuscation strategies The proposed five obfuscation strategies are applied to the
target model sequentially. Figure 3 show an example, where Figure 3(a) is the original model, while
Figure 3(b) shows the final obfuscated model. The structure and parameters of the obfuscated model
are quite different from that of the original model, which will make the obfuscated model hard to
attack. To prevent an adversary from parsing the obfuscated model through reverse engineering the
modified TFLite library and customized layers, we use code obfuscation strategies, a well-developed
technology to make the code unreadable and unable to be reverse engineered (Appendix B). The
combination of model and code obfuscation would hide the key information of models.

3.3 MODEL ASSEMBLING AND LIBRARY RECOMPILATION

After obtaining the obfuscated model and modified TFLite source codes, ModelObfuscator assem-
bles the new obfuscated model using the obfuscated model structure and then recompiles the modi-
fied TFLite library to support the newly generated obfuscated model.

4 EVALUATION

4.1 EXPERIMENTAL SETTING

Dataset To evaluate ModelObfuscator’s performance on models with various structures for mul-
tiple tasks, we collected 10 TFLite models including a fruit recognition model, a skin cancer diag-
nosis model, MobileNet (Howard et al., 2017), MNASNet (Tan et al., 2019), SqueezeNet (Iandola
et al., 2016), EfficientNet (Tan & Le, 2019), MiDaS (Ranftl et al., 2020), Inception-ResNetV2,
PoseNet (Kendall et al., 2015), and SSD (Liu et al., 2016), which are referred to as model ➀ - ➉, re-
spectively. The fruit recognition and skin cancer diagnosis model were collected from Android apps
(see the provided code repository). The other models were collected from the TensorFlow Hub 3.

Experimental Environment ModelObfuscator is evaluated on a workstation with Intel(R)
Xeon(R) W-2175 2.50GHz CPU, 32GB RAM, and Ubuntu 20.04.1 operating system.

4.2 EFFECTIVENESS OF ModelObfuscator

We first evaluate the effectiveness of ModelObfuscator. Ideally, ModelObfuscator should not affect
the prediction accuracy of the original models, while providing sufficient defense against model
attacks. To this end, we apply all five proposed obfuscation strategies to each model and compare the
prediction results based on 1,000 randomly generated inputs. The obfuscation error is calculated as
||y−y′||2, where y and y′ is the output of original models and obfuscated models, respectively. Note
that the number of extra layers and shortcuts is set to 30 in shortcut injection & extra layer injection.
Table 1 demonstrates that ModelObfuscator model obfuscation strategies have no impact on the
prediction results of the original models.

To show the effectiveness of ModelObfuscator in hiding the model’s key information, we try to
extract the model information of obfuscated models using five software analysis tools. The tools

3https://tfhub.dev/

6

https://tfhub.dev/

Under review as a conference paper at ICLR 2023

Table 2: The success number of existing software analysis tools to extract mobile models with each
obfuscation strategy. ‘Basic obfuscation’: renaming + parameter encapsulation.

TF-ONNX TFLite2ONNX TFLite2TF FlatBuffer App Attack

Original 10 9 9 10 8
Renaming 0 0 0 0 8
Parameter encapsulation 0 0 0 0 2
Neural structure 0 0 0 0 8
Shortcut injection 0 0 0 0 8
Extra layer injection 0 0 0 0 8

Basic obfuscation 0 0 0 0 0

include TF-ONNX (Developers, 2022) TFLite2ONNX (Wang, 2021), TFLite2TF (Hyodo, 2022),
FlatBuffer (Li et al., 2021b), and Smart App Attack (Huang & Chen, 2022), which is proposed to
attack the on-device models. In this experiment, we apply the basic obfuscation strategies renam-
ing and parameter encapsulation on the original models. For model conversion tools, if they can
successfully convert the model format, we consider it a successful case for extracting the model
information. If ModelObfuscator method is effective, these tools cannot work on the models. For
the app attacking method, if it can correctly identify the obfuscated model that has the same model
structure as the original one on TensorFlow Hub, we consider it a success case. If ModelObfusca-
tor is effective, the FlatBuffer extractor cannot parse the information of the obfuscated model and
reverse it to the original one. As shown in Table 2, two basic obfuscation strategies can prevent
all existing model extraction tools from parsing the deployed TFLite model. Besides, parameter
encapsulation could prevent App Attack from finding surrogate models on 6 models. When com-
bining renaming and Parameter encapsulation, the App Attack on all the models can be prevented.
However, except for parameter encapsulation, applying other strategies separately does not confuse
the App Attack, because App Attack can identify the same model through the parameter comparison.

(8, 128, 128)

(8, 64, 64)

(24, 48, 48)

(24, 16, 16)

(1, 256)

(1,128)

(8, 128, 128)

(8, 64, 64)

(24, 48, 48)

(24, 16, 16)

(1, 256)

(1,128)

(12, 24, 24)

(8, 128, 128)

(8, 64, 64)

(24, 48, 48)

(24, 16, 16)

(1, 256)

(1,128)

(12, 24, 24)

(24, 64, 64)

(1, 512)

(a) (b) (c)

Figure 4: Visualization of structure obfuscation for LeNet. (a) original data flow of LeNet (b)
obfuscated model with one shortcut and extra layer (c) obfuscated model with three shortcuts and
three extra layers. Red dotted line and red dotted block represent injected shortcut and extra layer.

As we discussed above, adversaries may infer the functionality of each layer by analyzing the data
flows of the model. To demonstrate the capability of ModelObfuscator in obfuscating the data
flows, we show a visualization of LeNet (LeCun et al., 1998) before and after applying Shortcut
injection & extra layer injection. The visualization of model structure and data flows before and
after obfuscation are shown in Figure 4. As can be seen, it is difficult to recognize the shortcut or
extra layer without prior knowledge of the model structure. When a large number (e.g., more
than 30) of shortcuts and extra layers is used to obfuscate the TFLite, the structure of the obfuscated
model will become extremely confused (Figure 7). Therefore, the shortcut and extra layer injection
are effective in making it extremely difficult to understand the model structure.

4.3 EFFICIENCY OF ModelObfuscator

We evaluate the efficiency of ModelObfuscator obfuscation strategies by demonstrating the run-
time overhead of each model in our dataset. Specifically, we report both the time overhead and
memory overhead of the proposed obfuscation method under various settings based on 1,000 ran-
domly generated instances. The results of time and memory overhead are shown in Table 3 and
Table 4, respectively. ‘(n1, n2)’ in the table indicates the the number of shortcuts (n1) and num-

7

Under review as a conference paper at ICLR 2023

Table 3: Time overhead (seconds per 1000 inputs) of the original model and obfuscated model. We
use five obfuscation strategies. ‘(n1, n2)’: obfuscated models with n1 shortcuts and n2 extra layers.

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Average

Original 30.3 98.5 62.1 72.5 33.4 81.2 346.6 247.4 130.4 231.2 133.4
(0, 0) 30.4 98.7 61.1 70.4 33.5 82.3 346.4 247.0 130.7 232.1 133.3
(30, 0) 30.7 97.9 62.3 72.7 33.1 82.0 346.9 247.1 130.2 231.0 133.4
(0, 10) 30.2 98.6 61.1 74.1 34.9 82.3 346.7 251.5 130.9 231.6 134.2
(0, 20) 30.6 98.3 63.3 74.1 36.8 81.3 348.2 247.1 130.5 231.3 134.2
(0, 30) 30.4 98.5 63.2 74.6 34.5 82.8 349.0 251.9 130.4 236.7 135.2

Table 4: Overhead of the model obfuscation on random access memory (RAM) cost (Mb per model).
We use five obfuscation strategies. To eliminate the influence of other processes on the test machine,
we show the increment of RAM usage for the model inference.

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Average

Original 18.8 49.5 33.1 46.5 41.3 51.9 241.1 373.8 39.4 97.8 99.3
(0, 0) 18.9 53.3 33.1 49.9 45.5 56.8 244.8 381.2 40.6 99.8 102.4
(30, 0) 18.7 51.4 32.6 49.5 46.0 55.8 244.6 381.6 40.3 100.2 102.0
(0, 10) 25.9 58.8 42.5 53.6 49.2 69.5 248.1 386.7 55.0 107.5 109.7
(0, 20) 30.0 67.3 50.4 56.7 56.0 66.2 253.1 387.7 66.9 112.0 114.6
(0, 30) 35.9 81.9 55.2 57.3 71.6 73.0 267.7 397.3 73.4 123.8 123.71

ber of extra layers (n2) applied, where (0, 0) indicates only the basic obfuscations (i.e., renaming,
parameter encapsulation) and neural structure are involved. We also include the time and memory
consumption of the original models as the baseline. As shown in Table 3, even though extra layers
are injected into the obfuscated model, ModelObfuscator obfuscated models incur a negligible
time overhead (i.e., approximately 1% on average for the most time-consuming obfuscation). The
differences between using various obfuscation settings are also not significant. Because the param-
eter encapsulation will remove some data processing steps in the source code of APIs, the basic
obfuscation (‘(0,0)’ in Table 3) may reduce the latency of TFLite models.

The memory overhead for ModelObfuscator obfuscated models is shown in Table 4. To eliminate
the impact of different memory optimization methods, we use peak RAM usage where the model
preserves all intermediate tensors. It can be seen that the other obfuscation strategies do not affect
memory usage except for the extra layer injection. Memory usage increases when the number of
extra layers increases. Therefore, a trade-off between the complexity of the obfuscation and the
memory overhead is worth considering when choosing the obfuscation strategy. Nevertheless, we
argue that even with the most complex settings in our experiment, which provide sufficient protection
to the original model, the memory overhead is acceptable (approximately 20%).

Table 5: Size change (Mb) of the TFLite library and models after the obfuscation. The size of the
obfuscated model is reduced to a few Kb. The original library size is 191.5 Mb. ‘+’ and ‘-’ refer to
the increase and decrease, respectively.

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉

library-all +8.7 +31.9 +19.6 +38.7 +8.8 +40.6 +126.1 +231.8 +9.7 +52.1
model -5.5 -16.9 -10.3 -17.5 -5.0 -18.6 -66.3 -121.1 -5.0 -27.5
total +3.2 +15.0 +9.3 +21.2 +3.8 +22.0 +59.8 +110.7 +4.7 +24.4

library-renaming +8.7 +31.9 +19.6 +38.7 +8.8 +40.6 +126.1 +231.7 +9.7 +52.1

Considering that the models are deployed on mobile devices that have limited storage space, we
also present the size differences of the modified TFLite software library and the obfuscated models.
Note that the size change is caused by creating additional .so files to support the inference of the
obfuscated layer. Hence, the size difference will be the same with different implementations (e.g.,
Python, Java). Table5 shows the size change to the TFLite software library and the TFLite models
after applying ModelObfuscator obfuscation strategies. We use all obfuscation strategies in this
experiment and the number of injecting shortcuts and extra layers is 30. Our results show that the
library size change is mainly caused by the renaming method, because it will create a new API
for the renamed layer in TFLite library. In addition, the extra layer injection will also increase the
size of library because it will create the new API to support the extra layer. As the extra layer just

8

Under review as a conference paper at ICLR 2023

RenamingParameter
encapsulation

Neural node
obfuscation

Shortcut
injection

Extra layer
injection

Basic obfuscation
Stru

ctu
re
obf
usc
atio
nCam

ouf
lag

e O
bfu

sca
tio

n
Free obfuscation

Size-expand obfuscation

Figure 5: Taxonomy of model obfuscation methods.

has simple function, the affect of the extra layer injection is negligible. Our obfuscation strategies
significantly reduce the size of the TFLite model file because it only keeps the obfuscated minimal
structure information. However, the size of the TFLite library is significantly increased, and
increases the size of the application deployed on the mobile device.

5 DISCUSSION

Taxonomy of model obfuscation methods In this paper, we proposed five different model ob-
fuscation strategies. Figure 5 shows a preliminary taxonomy of the different model obfuscation
methods and the best practice for model deployment. First, developers can use the renaming and
parameter encapsulation to prevent most model parsing or reverse engineering tools from extract-
ing the information of the deployed model. In the scenarios that computational costs are critical,
developers can use the neural structure obfuscation and shortcut injection, as they do not introduce
additional overhead. For structure obfuscation, developers can use neural structure obfuscation,
shortcut injection, and extra layer injection. These three methods can significantly increase the
difficulty of understanding the data flow of the deployed models. In addition, developers can use
renaming and neural structure obfuscation to disguise the deployed model, which can mislead the
adversary into choosing the wrong architecture to produce a surrogate model. If the size of the app
package is critical (e.g., deploying the model on devices with limited storage), developers need to
carefully consider the trade-off between the number of obfuscated layers leveraging extra layer in-
jection with renaming. The reason is that if renaming is used to create a different obfuscated layer
for every layer, ModelObfuscator will need to create the corresponding APIs in the TFLite library
to support the obfuscated layers, hence increasing the size of the library.
Limitations Although the proposed model obfuscation does not introduce significant computa-
tional overhead, it will increase the size of the modified TFLite library. This is because we need
to provide support for the new obfuscations made. For a huge network like a 1000-layer network
deployed model (although it is unlikely to find such deployed model in real world), the size of the
modified TFLite library will significantly increase if we rename every layer. As a result, the app
package also increases as the modified TFLite library will also need to be deployed on the device.
Extracting obfuscated model When ModelObfuscator obfuscates the model, it will create a cache
file to guide the tool to generate a compatible DL library. Attackers cannot automatically extract the
obfuscated model unless they obtain the cache file from the developer’s computer (which is unlikely
to happen). Generally speaking, attackers must use reverse engineering to get source codes from the
compiled library file and cost manual effort to understand them for extracting the obfuscated model.

6 CONCLUSION

In this work, we analyzed the risk of deep learning models deployed on mobile devices. Adversaries
can extract information from the deployed model to perform white-box attacks and steal its intellec-
tual property. To this end, we proposed a model obfuscation framework to secure the deployment
of DL models. We utilized five obfuscation methods to obfuscate the information of the deployed
model, i.e., renaming, parameter encapsulation, neural node obfuscation, shortcut injection, and
extra layer injection. We developed a prototype tool ModelObfuscator to automatically obfuscate a
TFLite model and produce a compatible library with the model. Experiments show that our method
is effective in resisting the model parsing tools without performance sacrifice. Considering the neg-
ligible extra resources required, and the extra security it achieves, we believe that model obfuscation
has the potential to be a fundamental step for on-device model deployment in the future. In future
works, optimizing model obfuscation to reduce overhead is worthwhile to be explored.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A query-efficient
decision-based attack. In 2020 ieee symposium on security and privacy (sp), pp. 1277–1294.
IEEE, 2020.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017a.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017b.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. arXiv preprint
arXiv:1807.04457, 2018.

Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
membership inference attacks. In International conference on machine learning, pp. 1964–1974.
PMLR, 2021.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transforma-
tions, 1997.

Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 184–196, 1998.

Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and obfuscation-
tools for software protection. IEEE Transactions on software engineering, 28(8):735–746, 2002.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020.

Developers. tf2onnx - Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONN, August
2022. URL https://github.com/onnx/tensorflow-onnx.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership ver-
ification: Embedding passports to defeat ambiguity attacks. Advances in neural information
processing systems, 32, 2019.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to
{Byzantine-Robust} federated learning. In 29th USENIX Security Symposium (USENIX Secu-
rity 20), pp. 1605–1622, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
black-box adversarial attacks. In International Conference on Machine Learning, pp. 2484–2493,
2019.

Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang. Stealing links
from graph neural networks. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2669–2686, 2021.

10

https://github.com/onnx/tensorflow-onnx

Under review as a conference paper at ICLR 2023

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yujin Huang and Chunyang Chen. Smart app attack: Hacking deep learning models in android apps.
IEEE Transactions on Information Forensics and Security, 17:1827–1840, 2022.

Katsuya Hyodo. tflite2tensorflow, 2022. URL https://github.com/PINTO0309/
tflite2tensorflow.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In ICML, pp. 2142–2151, 2018a.

Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial
attacks with bandits and priors. arXiv preprint arXiv:1807.07978, 2018b.

Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model stealing attacks with adap-
tive misinformation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 770–778, 2020.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Maze: Data-free model stealing attack
using zeroth-order gradient estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13814–13823, 2021.

Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-
time 6-dof camera relocalization. In Proceedings of the IEEE international conference on com-
puter vision, pp. 2938–2946, 2015.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
International Conference on Learning Representations (ICLR), 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jingtao Li, Zhezhi He, Adnan Siraj Rakin, Deliang Fan, and Chaitali Chakrabarti. Neurobfuscator:
A full-stack obfuscation tool to mitigate neural architecture stealing. In 2021 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 248–258. IEEE, 2021a.

Yuanchun Li, Jiayi Hua, Haoyu Wang, Chunyang Chen, and Yunxin Liu. Deeppayload: Black-box
backdoor attack on deep learning models through neural payload injection. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp. 263–274. IEEE, 2021b.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21–37. Springer, 2016.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by con-
ferrable adversarial examples. arXiv preprint arXiv:1912.00888, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations(ICLR), 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

Mantas Mazeika, Bo Li, and David Forsyth. How to steer your adversary: Targeted and efficient
model stealing defenses with gradient redirection. In International Conference on Machine Learn-
ing, pp. 15241–15254. PMLR, 2022.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

11

https://github.com/PINTO0309/tflite2tensorflow
https://github.com/PINTO0309/tflite2tensorflow
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Under review as a conference paper at ICLR 2023

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1765–1773, 2017.

Konda Reddy Mopuri, Phani Krishna Uppala, and R Venkatesh Babu. Ask, acquire, and attack:
Data-free uap generation using class impressions. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 19–34, 2018.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of
black-box models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4954–4963, 2019a.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. arXiv preprint arXiv:1906.10908, 2019b.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan. Deepsteal: Advanced
model extractions leveraging efficient weight stealing in memories. In 2022 IEEE Symposium on
Security and Privacy (SP), pp. 1157–1174. IEEE, 2022.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transac-
tions on pattern analysis and machine intelligence, 2020.

Lutz Roeder. Netron, Visualizer for neural network, deep learning, and machine learning mod-
els, December 2017. URL https://doi.org/10.5281/zenodo.7109451. If you use
Netron in your research, please cite it using these metadata.

Sunandini Sanyal, Sravanti Addepalli, and R Venkatesh Babu. Towards data-free model stealing in a
hard label setting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15284–15293, 2022.

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar
Weippl. Protecting software through obfuscation: Can it keep pace with progress in code analy-
sis? ACM Computing Surveys (CSUR), 49(1):1–37, 2016.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Kálmán Szentannai, Jalal Al-Afandi, and András Horváth. Mimosanet: An unrobust neural network
preventing model stealing. arXiv preprint arXiv:1907.01650, 2019.

Kálmán Szentannai, Jalal Al-Afandi, and András Horváth. Preventing neural network weight steal-
ing via network obfuscation. In Science and Information Conference, pp. 1–11. Springer, 2020.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

12

https://doi.org/10.5281/zenodo.7109451

Under review as a conference paper at ICLR 2023

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction {APIs}. In 25th USENIX security symposium (USENIX Security
16), pp. 601–618, 2016.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Demystifying membership
inference attacks in machine learning as a service. IEEE Transactions on Services Computing,
2019.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.
Soot: A java bytecode optimization framework. In CASCON First Decade High Impact Papers,
pp. 214–224. 2010.

Chenxi Wang. A security architecture for survivability mechanisms. University of Virginia, 2001.

Zhenhua Wang. tflite2onnx - Convert TensorFlow Lite models to ONNX, August 2021. URL
https://github.com/jackwish/tflite2onnx.

Gregory Wroblewski. General method of program code obfuscation. 2002.

Hui Xu, Yuxin Su, Zirui Zhao, Yangfan Zhou, Michael R Lyu, and Irwin King. Deepobfuscation:
Securing the structure of convolutional neural networks via knowledge distillation. arXiv preprint
arXiv:1806.10313, 2018.

Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe Liu. A first
look at deep learning apps on smartphones. In The World Wide Web Conference, pp. 2125–2136,
2019.

Ziqi Yang, Hung Dang, and Ee-Chien Chang. Effectiveness of distillation attack and countermeasure
on neural network watermarking. arXiv preprint arXiv:1906.06046, 2019.

Xiaoyong Yuan, Leah Ding, Lan Zhang, Xiaolin Li, and Dapeng Oliver Wu. Es attack: Model
stealing against deep neural networks without data hurdles. IEEE Transactions on Emerging
Topics in Computational Intelligence, 2022.

Chaoning Zhang, Philipp Benz, Adil Karjauv, Jae Won Cho, Kang Zhang, and In So Kweon. In-
vestigating top-k white-box and transferable black-box attack. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15085–15094, 2022.

Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, and Ce Zhu. Dast: Data-free substitute training
for adversarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 234–243, 2020.

13

https://github.com/jackwish/tflite2onnx

Under review as a conference paper at ICLR 2023

A APPENDIX - THE VISUALIZATION OF THE MODEL OBFUSCATION

Figure 6: The visualization of the original SqueezeNet model. It is plotted by Netron (Roeder,
2017).

14

Under review as a conference paper at ICLR 2023

Figure 7: The visualization of the obfuscated SqueezeNet model with all obfuscation strategies.
This figure is plotted by Netron (Roeder, 2017). The number of injected shortcuts and extra layers
is 30. The obfuscated model can run on the modified TFLite library. The computational time and
memory overhead of model obfuscation for this model can be found in Figure 3 and 4. The size
change can be found in Figure 5.

B APPENDIX - EXAMPLE OF CODE OBFUSCATION

The following code is the ‘Eval’ function of the modified source code to support the
Concatenation layer. It will finally call the ‘EvalImpl’ function, which is the detailed im-
plementation for the forward inference.

t empla te <Kerne lType k e r n e l t y p e >
T f L i t e S t a t u s Eva l (T f L i t e C o n t e x t * c o n t e x t , TfLi teNode * node) {

/ / au to * params =
/ / r e i n t e r p r e t c a s t <T f L i t e C o n c a t e n a t i o n P a r a m s *>(node−>b u i l t i n d a t a) ;
/ / i n t a x i s = params−>a x i s ;
T f L i t e T e n s o r * o u t p u t ;
TF LITE ENSURE OK (c o n t e x t , G e t O u t p u t S a f e (c o n t e x t , node , 0 , &o u t p u t)) ;
i f (I s C o n s t a n t O r P e r s i s t e n t T e n s o r (o u t p u t)) {

/ / Ou tpu t i s computed i n Prepare .
re turn kTfLi teOk ;

}
i f (a x i s < 0) a x i s += o u t p u t −>dims−> s i z e ;

re turn EvalImpl<k e r n e l t y p e >(c o n t e x t , node , a x i s , o u t p u t) ;
}

After obfuscating the simple code by some simple obfuscation method (e.g., comments removal,
functions and variables renaming, whitespaces removal. We use an open-source tool to implement
it 4), the code will become the following form:

template<l pu rqacghdzw uowpojpkaqnn>T f L i t e S t a t u s o j m f j d q x l k r j (T f L i t e C o n t e x t
* z s f l m t a b f s l q , TfLi t eNode * node){ gqgyxfwmpoax* o u t p u t ; TF LITE ENSURE OK (
z s f l m t a b f s l q , G e t O u t p u t S a f e (z s f l m t a b f s l q , node ,0 ,& o u t p u t)) ; i f (
I s C o n s t a n t O r P e r s i s t e n t T e n s o r (o u t p u t)) { re turn t s c i s z k l z s z y ;} i f (
dwzzpibyhyhk <0) dwzzpibyhyhk+= o u t p u t −>dims−> s i z e ; re turn
t i z p e e x t a c q k <uowpojpkaqnn >(z s f l m t a b f s l q , node , dwzzpibyhyhk , o u t p u t) ; }

4https://github.com/whoward3/C-Code-Obfuscator

15

https://github.com/whoward3/C-Code-Obfuscator

Under review as a conference paper at ICLR 2023

Note that this is just a simple example. For the case when the original model is a 30-layer neural
network, it will create more than 10 thousand lines of code for supporting the obfuscated model, and
then add the code to the TFLite project to compile a modified TFLite library. If adversaries use the
reverse engineering method to extract the source code of the obfuscated layer, ideally they can get
the above obfuscated code. But the code will be extremely difficult to read. This is the reason why
we think developers can use code obfuscation to resist further reverse engineering for the source
code of the modified TFLite library.

16

	Introduction
	Related Work
	Methodology
	Model Parsing
	Model obfuscation
	Model assembling and library recompilation

	Evaluation
	Experimental Setting
	Effectiveness of ModelObfuscator
	Efficiency of ModelObfuscator

	Discussion
	Conclusion
	Appendix - The visualization of the model obfuscation
	Appendix - example of code obfuscation

