
Minerva: A Programmable Memory Test Benchmark for Language Models

Menglin Xia * 1 Victor Rühle 1 Saravan Rajmohan 1 Reza Shokri * 2

Abstract
How effectively can LLM-based AI assistants uti-
lize their memory (context) to perform various
tasks? Traditional data benchmarks, which are
often manually crafted, suffer from several limi-
tations: they are static, susceptible to overfitting,
difficult to interpret, and lack actionable insights–
failing to pinpoint the specific capabilities a model
lacks when it does not pass a test. In this paper,
we present a framework for automatically generat-
ing a comprehensive set of tests to evaluate mod-
els’ abilities to use their memory effectively. Our
framework extends the range of capability tests
beyond the commonly explored (passkey, key-
value, needle in the haystack) search, a dominant
focus in the literature. Specifically, we evaluate
models on atomic tasks such as searching, recall-
ing, editing, matching, comparing information
in context memory, performing basic operations
when inputs are structured into distinct blocks,
and maintaining state while operating on mem-
ory, simulating real-world data. Additionally, we
design composite tests to investigate the models’
ability to perform more complex, integrated tasks.
Our benchmark enables an interpretable, detailed
assessment of memory capabilities of LLMs.

1. Introduction
What capabilities should we expect from AI assistants? The
AI assistants are provided with a (large) input context con-
taining all the available information that is potentially rele-
vant to the user’s request (e.g., all the prior emails, messages,
and confirmed calendar events). This input, commonly re-
ferred to as the context (for the LLM), encapsulates what
the AI assistant knows about the world in which it is tasked
to operate. This representation of the world, expressed in
natural language, functions as the model’s memory. In this

*Equal contribution 1M365 Research, Microsoft 2National Uni-
versity of Singapore. Correspondence to: Menglin Xia <mol-
lyxia@microsoft.com>, Reza Shokri <reza@comp.nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

paper, we address a fundamental question that is critical to
improving AI assistants: What specific capabilities do large
language models demonstrate in utilizing their memory?

One common approach to testing models is through data
benchmarks. However, evaluating model capabilities using
static data benchmarks–based on some user queries, their
data, and expected outcomes–can be costly, imprecise, and
lacks scalability. Additionally, performing tasks in realistic
scenarios often requires multiple capabilities, making it
challenging to identify which specific capability a model
lacks when it fails a data benchmark. This limitation reduces
the effectiveness of these benchmarks in designing better
models. Moreover, blindly optimizing models to improve
on such benchmarks risks overfitting, often rendering the
data benchmarks obsolete over time.

To address some of these concerns, recently, there have been
many attempts to test models using automatically generated
benchmarks, but these efforts have primarily focused on
evaluating basic search capabilities (e.g., passkey or key-
value search) in long-contexts (Kamradt, 2023; Liu et al.,
2024; Zhang et al., 2024; Anthropic, 2024; Wu et al., 2024;
Li et al., 2024; Hsieh et al., 2024). In this paper, we go
beyond simple search tasks and introduce a framework to
test a comprehensive range of memory-related capabilities
in LLMs. Note that, we deliberately avoid conflating the
memory usage capabilities with the complex reasoning abil-
ities (e.g., complex mathematical or logical reasoning) in
language models, as the latter is a separate skill that is cur-
rently the focus of extensive study (Clark et al., 2018; Cobbe
et al., 2021; Hendrycks et al., 2021b; Suzgun et al., 2022).

What are memory-usage capabilities? We define these as
the abilities to retrieve relevant information, compose it for
the instructed task, and recall key details when synthesizing
the output. This process also involves creating associations
between the instruction and the stored information, as well
as among different parts of the memory itself. Without ex-
tracting these relationships, the memory remains flat and
formless, rendering it less useful. Consequently, the model
must be able to recognize differences, identify similarities,
and take appropriate actions based on them. We design a
series of atomic tests aimed at evaluating each of these indi-
vidual capabilities in isolation, to the extent that isolating
such capabilities is possible.

1

Minerva: A Programmable Memory Test Benchmark for Language Models

To evaluate the more complex scenarios in memory usage,
we construct composite tests that reflect real-world scenar-
ios, where memory is divided into multiple compartments
(i.e., information relevant to distinct contexts). The model is
expected to recognize the boundaries of these compartments,
trace the knowledge contained within them, and perform
operations such as information retrieval, memory associ-
ation, and other tasks while respecting these boundaries.
The complexity increases further when there is interaction
between compartments. In such cases, information must
flow across boundaries–for example, when stories about two
parallel events converge at a particular moment, when inter-
actions occur between different events, or when information
known to certain entities in memory is shared with others.
Examples include AI assistants managing calendar events,
tracking financial transactions, or suggesting medical di-
agnoses. Handling these scenarios is highly challenging,
yet it is essential for AI assistants to achieve practical and
reliable performance. The core challenge is due to the fact
that context memory, as provided to the model, flattens data
from multiple parallel and potentially interrelated memory
compartments. This requires the model to disentangle the
content by leveraging the available labels and clues, and
tracking the state of relevant information throughout the
memory scanning, while performing the task.

Table 1 presents an overview of the types of memory tests
included in our benchmark. For each test, we use ef-
ficient parametric programs to generate randomized test
cases. We run a comprehensive evaluation of several major
open-source and black-box models (e.g., GPT-4(o), Cohere,
Gemma, LLaMA, Mistral, Phi). Our experimental results
show that while models perform relatively well on simple
search tasks, they exhibit significant disparities across con-
text utilization capabilities even at a context length of 4k
tokens. This indicates that strong performance in basic
retrieval does not necessarily translate to other context pro-
cessing abilities. Our framework goes beyond search-based
tests by incorporating atomic tests that pinpoint distinct ca-
pabilities, providing a more nuanced picture of the strengths
and weaknesses of models in context processing. Moreover,
composite tests, which combine multiple atomic capabili-
ties, resulted in substantial performance drops for all models.
These tests present the limitations of current models and
provide valuable insights for guiding future model training
and development.

The code and data will be available at https://github.
com/microsoft/minerva_memory_test.

2. Benchmark for Memory Tests
We define the entirety of context data available to a large
language model (LLM) as its memory. Users of an AI as-
sistant leveraging the LLM can instruct the model to parse

this memory and execute potentially complex retrieval tasks.
Accordingly, we expect the AI assistant to demonstrate spe-
cific capabilities in memory utilization, including accurate
retrieval, effective synthesis of relevant information, and
adaptability to evolving context. These capabilities include:

• Information Retrieval and Localization: The ability
to efficiently locate, search for, and extract relevant
information from the memory (i.e., input data) based
on specific instructions or user queries.

• Processing and Basic Reasoning: The capability to
perform modifications, computations, and logical oper-
ations on the input data, including identifying patterns,
recognizing repetitions, and understanding relation-
ships within the memory.

• Content Transfer and Synthesis: The ability to copy,
rephrase, or generate synthesized output by integrating
both original and modified elements from the input.

• Structural Awareness and Organization: The capac-
ity to interpret the spatial, structural, or organizational
layout of the memory, such as distinguishing labeled
fragments of text, sets, lists, or hierarchical structures.

In our benchmark, we focus on isolating the atomic memory-
related capabilities of LLMs. Success or failure in these
tests provides a clear and interpretable assessment of the
strengths and limitations of the models. We design mul-
tiple atomic tests to measure fundamental skills without
interference from other factors. These tests are simple, tar-
geted, and structured to assess specific abilities with clarity.
Our benchmark includes the existing basic tests, notably the
needle-in-the-haystack tests and its variations, but it goes
beyond the search methods and includes a diverse set of
atomic capabilities. In our benchmark, we focus on some
fundamental capabilities: search, recall and edit, match and
compare, spot the differences, compute on sets and lists, and
stateful processing.

We also develop composite tests to evaluate how effectively
models can perform more complex, integrated tasks. These
tests assess the integration of multiple atomic capabilities
to simulate real-world scenarios. By combining elements
such as retrieval, reasoning, synthesis, and structural aware-
ness, composite tests measure how well an AI assistant can
coordinate different skills to execute complex operations.
We provide two class of composite tests: processing data
blocks, and composite-state tracking (theory of mind). Our
objective here is to test the composition of various atomic
operations and the ability to interpret segments of data (e.g.,
messages or paragraphs associated with a particular person
or topic). These composite tests evaluate if the model can
make sense of the “spatial” structure of the memory, and
also keep track of its “temporal” changes (e.g., information

2

https://github.com/microsoft/minerva_memory_test
https://github.com/microsoft/minerva_memory_test

Minerva: A Programmable Memory Test Benchmark for Language Models

that gets updated across many emails). This can become
particularly challenging for the current architecture of major
LLMs because the context has a flat structure.

Table 1 presents the list and description of representative
tests in each category. Appendix A presents the exact tem-
plates for all our tests. Our benchmark differs from tradi-
tional data benchmarks by allowing the generation of fresh,
randomized test cases for each category. Each test acts as
a programmable script that measures the model’s capabil-
ity while adjusting the hyperparameters that influence test
difficulty. The programmable tests also enable us compos-
ing them easily, which is one of the key advantages of our
benchmark. New categories, and new tests, can be easily
added to this framework enabling a more diverse set of tests.

3. Evaluation
3.1. Experimental Setup

We use the proposed framework to evaluate nine widely used
language models on a fixed snapshot of 1110 randomly gen-
erated test samples. For all tests, we fixed the context length
to 4k tokens, except in the Stateful Processing category,
where the context length depends on the number of opera-
tion steps. We set the number of steps as 200 for quantity
state and 100 for set state, corresponding to an approximate
context length of 1.5k tokens. For evaluation, we use ex-
act match accuracy for binary tasks, ROUGE-L(Lin, 2004)
for tests that require sequence overlap measurement, and
Jaccard similarity (Jaccard, 1901) for set overlap. Further
details on the number of examples, hyperparameter configu-
rations, and evaluation metrics for the tests are provided in
Appendices B and C.

The evaluated models are divided into two groups:

Black-box models: GPT-4-turbo, GPT-4o, GPT-4o-mini,
and Cohere-command-rplus.

Open-source models: Mistral-7b-instruct-v02, Phi-3-small-
128k-instruct (7B), LLaMA-3.1-8b-instruct, Gemma-2-9b,
and Phi-3-medium-128k-instruct (14B).

We set the max output token to 4096, temperature to 0, and
top p to 1 for all model inference.

3.2. Model Performance Overview

Figure 1 summarizes the overall performance of the eval-
uated models on the memory test snapshot within 4k con-
text length. Notably, this context length is usually consid-
ered short for context utilization benchmarks, and many
models are expected to perform perfectly at this length.
However, our evaluation reveals significant disparities in
performance across the capabilities, even within this man-
ageable context length. Overall, the GPT-4-turbo/GPT-4o

models show stronger all-around performance across the
capabilities. In contrast, other models excel at the search
task but struggle significantly in other areas, leading to a
widening performance gap compared to stronger models.
This is especially evident in the Stateful Processing tasks,
where models exhibit steep performance drops. Even within
the GPT-4(o) models, there were noticeable variations in
performance across different tasks, despite them being the
best-performing models. This suggests that strong perfor-
mance in simple retrieval tasks does not imply effective
context processing, highlighting that using NIAH-like tests
alone for evaluating context utilization is not sufficient to
capture the full spectrum of model capabilities. Our frame-
work instead reveals significant variability in performance
across distinct capability categories, offering a more nu-
anced understanding of model limitations.

The following sections analyze each test type in detail, high-
lighting key insights from the evaluations.

3.3. Analysis on Atomic Tests

Search All models performed relatively well on Search
tasks, which is unsurprising given the 4k context length.
However, even at this length, model performance varied sig-
nificantly depending on the specific search type (see Table
2). For example, in the binary String Search task, models
handled individual word searches well but struggled with
subsequence searches, where queries consisted of multi-
word sequences. The performance drop can be attributed
to two factors: (1) length of query affects the difficulty of
precise memory access; (2) negative samples are created by
replacing a single word in present subsequences, making
absent longer subsequence more distracting.

Figure 2 further analyzes subsequence search performance
for GPT-4o, Mistral, and Phi-3-medium. These models ex-
hibit distinct error patterns as the length of the subsequence
increases: GPT-4o has no false negative errors (it never
misses a present subsequence) but makes more false posi-
tive errors as the subsequence length grows, suggesting it
overestimates presence in more ambiguous cases. Mistral
also makes no false negative errors but exhibits a decreasing
false positive rate, implying it struggles more with shorter
distractors. Phi-3-medium, in contrast, makes few false pos-
itive errors (rarely identifies an absent sequence as present),
but struggles more with false negatives, indicating a general
tendency to deny presence. These differing patterns sug-
gest that the models may employ different search strategies,
affecting their susceptibility to different types of errors.

For Batch Search and Key-Value Search tasks (analogous to
multi-NIAH and NIAH, respectively), models like Mistral,
Phi-3, and Cohere show a notable performance drop, reveal-
ing their limitations in handling multiple memory accesses
effectively.

3

Minerva: A Programmable Memory Test Benchmark for Language Models

Search
String search (binary test) Is the string x in memory? x could be a word or a sequence.
Key-value search What is the word or phrase that is paired with keyword x?
Batch search For each of the keywords in the batch x1, x2, · · · , xk, perform the search

and return the batch of corresponding responses.
Recall and Edit
Snapshot Share a snapshot of the entire memory (as a verbatim copy).
Replace all Share the entire memory after replacing all occurrences of x with y.
Overwrite positions Share the entire memory after overwriting the words that are on particular

positions (e.g., every kth word) with y.
Functional updates Update every x with the output of a function f(x).
Match and Compare
Compare positions (binary test) Does x appear before y?
Find duplicates Which word/string has duplicates in memory?
Count How many times is x repeated in memory?
Check association (binary test) Check if both x and y are associated with the same tag in memory

(assuming every term is associated with a tag).
Spot the Differences
Compare two lists Give two lists X and Y of the same length (e.g., same number of words),

report the difference (i.e., X − Y).
Identify the odd group Given multiple sets, identify which one is different (assuming n − 1

identical sets with shuffled elements, and 1 set with some differences).
Patch the difference A sequence of words is repeated multiple times, and then there is a partial

sequence. What is the next kth element in the sequence?
Compute on Sets and Lists
Group membership Given k sets, identify which set includes x.
Group association Check if x and y belong to the same set.
Iterate Given k lists, return the last element in each list.
Stateful Processing
Quantity Keep track of the total quantity of items, based on a sequence of addition

and subtraction operations (e.g., “add 10, subtract 2, add 7, ...”).
Set Keep track of the items in a set, based on a sequence of addition and

removal operation (e.g., “add apple, pear; add orange; remove apple;
add lime, ...”).

Processing Data Blocks
Search, recall, and edit The input contains alternating labeled lists of elements (e.g., “L1: a, b,

c; L2: h, f, i; L1: d, z, k; ...”). For a given list label (e.g., L1 or L2) and
a specified element within that list, return all the elements that appear
after that specified element in the same list.

Composite-State Tracking (Theory of Mind)
State tracking across data blocks Perform “Stateful Processing” for multiple agents, and report the final

set state for each agent. The input provides a list of operations by k
agents over time, including both independent actions (add/remove) and
interactive actions (swap) (e.g., “Alice: add apple, pear, remove orange,
add banana; Bob: add peach, berry, remove kiwi; Charley: add lime;
Bob: remove peach, swap berry with Alice for banana; ...”).

Table 1. List of memory tests. We divide the tests into different categories based on the core expected capability for passing the test. Most
the initial tests are atomic, i.e., the expected capability cannot be broken down into other meaningful capabilities. The tests at the bottom
of the list are composite tests and require the model to have multiple atomic capabilities at the same time in order to succeed.

Recall and Edit Figure 3 presents the results for the Re-
call and Edit tasks. While models performed well on ba-

sic recall (Snapshot), their performance dropped sharply
when tasked with making regular edits. A closer analysis

4

Minerva: A Programmable Memory Test Benchmark for Language Models

(a) Performance of the black-box models. (b) Performance of the open-source models.

Figure 1. Overall performance of nine models on a snapshot within 4k context length of Minerva.

Models Word Subsequence Key-value Batch

gpt-4-turbo 0.94 0.94 (-0.00) 1.00 1.00 (-0.00)
gpt-4o 1.00 0.82 (-0.18) 1.00 1.00 (-0.00)
gpt-4o-mini 0.98 0.64 (-0.34) 1.00 0.96 (-0.04)
cohere-command-rplus 1.00 0.85 (-0.15) 0.98 0.87 (-0.11)
mistral-7b 0.78 0.80 (+0.02) 0.92 0.47 (-0.45)
phi-3-small 0.94 0.84 (-0.10) 0.94 0.77 (-0.17)
phi-3-medium 1.00 0.55 (-0.45) 1.00 0.72 (-0.28)
gemma-2-9b 1.00 0.60 (-0.40) 1.00 1.00 (-0.00)
llama-3.1-8b 1.00 0.57 (-0.43) 1.00 0.99 (-0.01)

Table 2. Results for the Search tasks. The four columns represent:
String Search (with word), String Search(with subsequence), Key-
value Search, and Batch Search. Numbers in parentheses indicate
comparative performance differences between String Search (with
subsequence vs. word) and Batch Search vs. Key-Value Search.

Model String Search (word) Snapshot
gpt-4-turbo 1.00 (0.06) 1.00 (0.04)
gpt-4o 1.00 (0.00) 1.00 (0.00)
gpt-4o-mini 0.94 (-0.04) 1.00 (0.00)
cohere 1.00 (0.00) 1.00 (0.26)
mistral-7b 1.00 (0.22) 0.96 (0.00)
phi-3-small 1.00 (0.06) 0.99 (0.04)
phi-3-medium 0.98 (-0.02) 0.87 (-0.09)
gemma-2-9b 0.96 (-0.04) 0.96 (0.05)
llama-3.1-8b 0.98 (-0.02) 1.00 (0.00)

Table 3. Ablation study with gibberish context.

of the generated outputs reveals that models struggled with
maintaining coherence during edits, often getting trapped
in repetitive word loops. For the Functional Update task,
we deliberately selected simple numerical updates, such as
“Subtract 1 from every number,” to ensure the edits were
within the models’ capabilities. Nevertheless, when compar-
ing performance on Snapshot (with numbers) to Functional
Updates, all models exhibited a steep decline, especially
for smaller ones. Analysis of generated outputs revealed

8 16 32 64
0

0.2

0.4

0.6

0.8

1

gpt-4o (pos) gpt-4o (neg) mistral-7b (pos)
mistral-7b (neg) phi-3-medium (pos) phi-3-medium (neg)

Figure 2. Analysis on String Search (with subsequence) across
increasing subsequence lengths. This figure examines the behavior
of models on positive samples (where the subsequence is present)
and negative samples (where the subsequence is absent).

that these models frequently deviated from instructions over
longer sequences, suggesting difficulties in maintaining con-
sistent rule applications over extended contexts.

Additionally, we conducted a separate ablation study on
Snapshot and String Search. In this study, we replaced
meaningful words in the context with gibberish tokens con-
sisting of randomly generated alphabetical characters. As
shown in Table 3, performance remained largely unchanged,
suggesting that semantic meaning was not a significant dis-
tractor in these tasks.

Match and Compare As shown in Figure 4, model per-
formance in the Match and Compare tasks was relatively
consistent across different model sizes. Given that counting
is a well-known weakness in LLMs, it is unsurprising that
all models struggled significantly with the counting task,
though GPT models performed slightly better than others.
However, models generally succeeded in identifying the

5

Minerva: A Programmable Memory Test Benchmark for Language Models

Model Group membership Group association Group assoc. (alternating) Iterate
(Compared against) (Sub-string search) (Group membership) (Group association) (Iterate (last))

gpt-4-turbo 0.96 (0.02) 0.75 (-0.21) 0.68 (-0.07) 0.83 (-0.17)
gpt-4o 0.98 (-0.02) 0.65 (-0.33) 0.52 (-0.13) 0.86 (-0.14)
gpt-4o-mini 0.96 (-0.02) 0.68 (-0.28) 0.52 (-0.16) 0.67 (-0.33)
cohere-command-rplus 0.93 (-0.07) 0.70 (-0.23) 0.72 (0.02) 0.10 (-0.9)
mistral-7b 0.50 (-0.28) 0.57 (0.07) 0.52 (-0.05) 0.04 (-0.25)
phi-3-small 0.52 (-0.42) 0.55 (0.03) 0.68 (0.13) 0.04 (-0.7)
phi-3-medium 0.60 (-0.4) 0.72 (0.12) 0.50 (-0.22) 0.04 (-0.69)
gemma-2-9b 0.80 (-0.2) 0.60 (-0.2) 0.62 (0.02) 0.14 (-0.65)
llama-3.1-8b 0.84 (-0.16) 0.78 (-0.06) 0.82 (0.04) 0.05 (-0.43)

Table 4. Results for Compute on Sets and Lists. The numbers in parentheses indicate the performance difference compared to the
corresponding tasks they are evalauted against.

Snapshot (words)

Replace all

Overwrite positions

Snapshot (numbers)

Functional updates0

0.2

0.4

0.6

0.8

1

gpt-4-turbo gpt-4o gpt-4o-mini cohere

Snapshot (words)

Replace all

Overwrite positions

Snapshot (numbers)

Functional updates0

0.2

0.4

0.6

0.8

1

mistral-7b phi-3-small phi-3-medium
gemma-2-9b llama-3.1-8b

Figure 3. Results for the Recall and Edit tasks.

Compare positions

Find duplicates
Count

Check association0

0.2

0.4

0.6

0.8

1

gpt-4-turbo gpt-4o gpt-4o-mini cohere

Compare positions

Find duplicates
Count

Check association0

0.2

0.4

0.6

0.8

1

mistral-7b phi-3-small phi-3-medium
gemma-2-9b llama-3.1-8b

Figure 4. Results for the Match and Compare tasks.

duplicates (in Find duplicates), and primarily struggled with
the counting aspect, which requires tracking and updating
an integer state, a skill that is more similar to stateful pro-
cessing. This suggests that relying solely on counting-based
tests (Song et al., 2024) could overly bias the evaluation
and fail to capture broader model capabilities. The results
also indicate that models exhibit some ability to recognize
relative positions and group associations, but their accuracy
remains limited (ranging between 0.6-0.8). A closer ex-
amination of model generations reveals an overwhelming
tendency for the models to produce false positive errors –
models often answer “yes” when the correct answer is “no”,
while making very few false negative errors. This means
that when the relationship is correct, the models can more

reliably identify it. This may stem from a combination
of their inherent inclination to agree and the difficulty in
recognizing relative comparisons and associations.

Compare two lists
Identify the odd group

Patch the difference
0

0.2

0.4

0.6

0.8

1

gpt-4-turbo gpt-4o gpt-4o-mini cohere
mistral-7b phi-3-small phi-3-medium gemma-2-9b

llama-3.1-8b

Figure 5. Results for Spot the Differences tasks.

Spot the Differences As shown in Figure 5, performance
across all models are poor on Compare Two Lists, suggest-
ing inherent difficulties in cross-referencing information
across long contexts, even for larger models. GPT-4o and
the LLaMA model significantly outperform the others in
the Identify the Odd Group task, highlighting a general
weakness in detecting contextual differences by the other
models. However, an 8B LLaMA model outperforms both
equivalently-sized models and even GPT-4 in this task, sug-
gesting that model size alone was not the determining fac-
tor. This indicates that architectural differences, training
objectives, or specific inductive biases may contribute to
improved performance in comparative memory utilization.

Compute on Sets and Lists The tasks in this category
require models to recognize and process group structures
within the context, and performance gradually declines as
the complexity of the task increases (see Table 4). For in-
stance, in comparing the Group Membership task with the

6

Minerva: A Programmable Memory Test Benchmark for Language Models

Model Quantity state Set state

gpt-4-turbo 0.8 0.80
gpt-4o 1.0 0.65
gpt-4o-mini 0.7 0.24
cohere 0.0 0.58
mistral-7b 0.0 0.08
phi-3-small 0.0 0.13
phi-3-medium 0.0 0.11
gemma-2-9b 0.0 0.24
llama-3.1-8b 0.0 0.13

Table 5. Results for Stateful Processing tasks.

50200 400 800 1,200 1,600
0

0.2

0.4

0.6

0.8

1

Step

gpt-4-turbo gpt-4o phi-3-small
cohere mistral-7b

50200 400 800 1,200 1,600
0

0.2

0.4

0.6

0.8

1

Step

gpt-4-turbo gpt-4o cohere
mistral-7b phi-3-small

Figure 6. Effect of context length (number of operation steps) on
performance in the quantity state (left) and set state (right) tasks.

String Search task, where the former requires identifying
which list a word belongs to rather than simply determining
its presence, the performance of open-source models drops
considerably. Similarly, in comparing the Group Associa-
tion task with the Group Membership task, where the former
requires determining whether two words belong to the same
group, all models exhibit a noticeable decline in perfor-
mance. The decline becomes even more pronounced when
comparing the Group Association (alternating) variant of
the task to the standard Group Association task. Here, the
context involves alternating repeated groups rather than sim-
ple group structures, which further challenges the models’
abilities to handle partitioned contexts effectively.

An interesting observation was found during the Iterate task.
In an ablation study, we modified the task to require re-
turning the first words in each list instead of the last words
(making it more similar to the Batch Search task). The
performance sharply declines when models are asked to re-
turn the last words, despite their strong information-fetching
capabilities. This suggests that, while the models can re-
trieve information effectively, they struggle to accurately
recognize and process partitions within the context.

Stateful Processing Table 5 presents the results for the
Stateful Processing tasks, where performance gaps among
models are the most pronounced. The GPT-4(o) models
perform well on integer state tracking, while most other

Model Processing Data Blocks Theory of Mind

gpt-4-turbo 0.31 0.26
gpt-4o 0.37 0.38
gpt-4o-mini 0.31 0.21
cohere 0.26 0.18
mistral-7b 0.18 0.16
phi-3-small 0.21 0.20
phi-3-medium 0.18 0.10
gemma-2-9b 0.26 0.12
llama-3.1-8b 0.15 0.03

Table 6. Results for the composite tests.

models struggle (near zero accuracy). For set state tracking,
larger models generally perform better.

We conducted an ablation study to examine how the number
of operation steps influences performance of five selected
models (Fig. 6). For quantity state tracking, GPT-4(o) mod-
els perform well within fewer than 200 steps but experience
a sharp decline in accuracy beyond this threshold. For set
state tracking, the performance decline is more gradual. The
differences in performance drop between the two tasks can
be attributed to the nature of the two tasks. While tracking
an integer state might seem simpler than tracking a set, it
actually requires the model to maintain and apply every op-
eration sequentially to compute the final value. In contrast,
for set state, the fixed size of the set makes more recent
operations more relevant to the final state, reducing the need
for exhaustive step-by-step tracking. Nevertheless, even in
this scenario, all models show a clear inability to handle
longer or more complex operation sequences effectively.
Interestingly, GPT-4 model outperformed GPT-4o at this
task, suggesting potential optimization trade-offs may have
affected its ability to manage set-based updates.

Overall, while larger models like GPT-4(o) exhibit some
ability to track state over time, their effectiveness rapidly
deteriorates as task complexity increases. Smaller models,
in particular, struggle to track operations over time, pointing
to significant gaps in their ability to manage and process
sequential dependencies critical for state tracking tasks.

3.4. Results on Composite Tests

The composite tests significantly challenge the models by
combining multiple atomic capabilities into a single test. In
the Processing Data Blocks task, the context is fixed at 4k
tokens, while for the Theory of Mind task, the number of
operation steps is set to 100. As shown in Table 6, model
performance on both tasks are generally low, showing a
broad inability to handle the more complex scenarios. Per-
formance across all models drop substantially on composite
tasks compared to their performance on individual capability
tasks, such as search, recall, and group processing.

7

Minerva: A Programmable Memory Test Benchmark for Language Models

Interestingly, some smaller models, like Mistral and Phi-3-
small, exhibit slightly better performance on the Theory of
Mind task than on the set state tracking task. This anomaly
likely stems from their already weak state tracking ability,
which limits their performance across both tasks. Addition-
ally, these models tend to generate longer answers in the set
state task which reduces the set overlap.

Notably, even the most capable models, such as GPT-4-
turbo and GPT-4o, struggle, showing that scaling model
size alone is not enough for solving these composite tasks.
Additionally, the variation in performance among smaller
models suggests that their limitations stem not only from
size but also from underlying architectural or training dif-
ferences. This indicates that smaller models require more
targeted care to bridge the gap in effective memory use.

3.5. Extending the benchmark to other configurations

Our benchmark is fully programmable and supports flexi-
ble experimentation across a wide range of configurations,
including varying context lengths, evaluation criteria, and
prompt phrasing. In this section, we illustrate how the
benchmark can be adapted beyond the default setup used in
the main paper. These examples highlight its versatility in
probing model behavior under diverse conditions.

Context length In the main experiments, we fixed the
context length to 4K tokens to emphasize that models al-
ready exhibit notable failures at this moderate length across
many memory tasks. However, the benchmark is scalable
to longer contexts. Table 7 presents additional results for
two representative tasks Functional updates and Counting
evaluated at various context lengths up to 16K tokens.

In both cases, we observe that model performance begins
to degrade significantly well before reaching what is typi-
cally considered a “long” context window. These failures
reveal underlying limitations in how models manage long-
range memory beyond simple retrieval. In contrast, mod-
els tend to maintain strong performance on retrieval-style
tasks (e.g., String search) even at extended lengths, making
such tasks less effective at distinguishing model capabili-
ties. Additional results and task examples are provided in
Appendix D.

Prompt Variation We also investigated the model perfor-
mance sensitivity to minor variations in prompt phrasing.
Specifically, we tested different phrasings of task instruc-
tions while keeping the underlying task logic unchanged.
For instance, in the String search task, we compared “Given
the context, determine if XXX is present (Var 1)” versus
“Is XXX present in the context? (Var 2)”. Similarly, in the
Group association task, we tested “Determine if word ‘AAA’
and word ‘BBB’ are in the same list (Var 1)” versus “Check

if the words ‘AAA’ and ‘BBB’ belong to the same list (Var
2)”.

As shown in Table 8, performance differences between
prompt variants are generally small, suggesting that instruc-
tion interpretation is not the primary bottleneck in these
tasks, rather, the main challenge lies in actually executing
the task correctly. Nevertheless, we recognize that more
intensive prompt engineering could potentially affect model
performance. Given these findings, we standardized the
prompts to a single, simple version (as shown in Appendix
A) for all experiments in this paper to ensure consistency
and comparability across models. However, because the
benchmark is programmable, researchers can easily swap
in alternate prompts to explore additional prompt settings.
Appendix D provides additional examples on more tests for
prompt variations.

4. Related Work
LLM Evaluation with Benchmarks The evaluation of
LLMs has traditionally relied on static benchmarks, from
early benchmarks for perplexity-based evaluation (Marcus
et al., 1993) to datasets focused on specific downstream
tasks such as question answering (Kwiatkowski et al., 2019),
summarization (Gliwa et al., 2019), math reasoning (Cobbe
et al., 2021), and code generation (Chen et al., 2021). As
LLMs began to address a broader range of tasks across var-
ious domains (Wu et al., 2023; Wang et al., 2023), more
comprehensive benchmark suites (Hendrycks et al., 2021a;
Zhong et al., 2023) were developed to assess general ca-
pabilities rather than individual task performance. Recent
advancements in LLM evaluation have introduced the con-
cept of LLM-as-a-judge, enabling the use of open-ended
benchmarks without predefined answers (Zheng et al., 2023).
However, these benchmarks remain static in nature and can
easily get overfit. Recently, platforms like ChatBot Arena
(Zheng et al., 2023) utilize crowdsourcing to rank LLM
responses and provides more dynamic evaluations. How-
ever, its reliance on human annotation makes it less scal-
able. Moreover, despite their utility, existing benchmarks
primarily assess downstream applications that usually re-
quire multiple capabilities, making it difficult to debug and
understand model weaknesses.

Tests and Benchmarks for Evaluating Context Utiliza-
tion As LLMs become capable of processing increasingly
long inputs, designing automated tests to evaluate their abil-
ity to utilize context has become an area of active research.
A notable example is the needle-in-a-haystack (NIAH) task1,
where a small piece of information (the “needle”) is hid-
den within a long document, and the model needs to re-

1https://github.com/gkamradt/LLMTest_
NeedleInAHaystack

8

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Minerva: A Programmable Memory Test Benchmark for Language Models

Model 500 1K 2K 4K 8K

gpt-4o 1.00 1.00 0.99 0.93 0.59
gpt-4o-mini 0.69 0.66 0.42 0.24 0.10
phi-3-small 0.49 0.45 0.21 0.07 0.03

(a) Functional updates (ROUGE-L)

Model 1K 2K 4K 8K 16K

gpt-4-turbo 0.52 0.44 0.40 0.32 0.28
cohere 0.36 0.24 0.20 0.20 0.12
phi-3-medium 0.20 0.16 0.12 0.08 0.04

(b) Counting (Exact match)

Table 7. Performance across context lengths on two representative tasks.

Model Var 1 CI95% Var 2 CI95%
gpt-4o 1.00 (0.93, 1.00) 1.00 (0.93, 1.00)
gpt-4o-mini 0.98 (0.90, 1.00) 0.98 (0.90, 1.00)
phi-3-medium 1.00 (0.93, 1.00) 1.00 (0.93, 1.00)

(a) String search (Exact match)

Model Var 1 CI95% Var 2 CI95%
gpt-4o 0.65 (0.50, 0.78) 0.63 (0.47, 0.76)
cohere 0.70 (0.55, 0.82) 0.75 (0.60, 0.86)
phi-3-small 0.55 (0.40, 0.69) 0.55 (0.40, 0.69)

(b) Group association (Exact match)

Table 8. Prompt variation performance on the String search task (with 50 samples) and the Group association task (with 40 samples).
Variation 1 and Variation 2 differ slightly in phrasing but preserve task intent.

trieve it. Similar tests include key-value retrieval (Liu et al.,
2024) and passkey retrieval (Mohtashami & Jaggi, 2023).
The simplicity and interpretability of NIAH have made it a
standard for evaluating LLM context utilization, and it has
since inspired various methods for improving long-context
processing (Mohtashami & Jaggi, 2023; Ding et al., 2024;
Xiong et al., 2023; Behrouz et al., 2024).

However, these tests focus solely on basic information re-
trieval, without capturing more complex aspects of context
processing. To address this limitation, other tests have been
proposed. Needlebench (Li et al., 2024) extends simple
retrieval tasks to include multi-needle reasoning and a an-
cestral trace task which requires navigating chains or graphs
of information. Song et al. (2024) introduce the Count-
ing Stars task, which involves tallying numbers of stars
embedded in phrases. Ruler (Hsieh et al., 2024) proposes
additional tasks such as variable tracking and frequent word
extraction. While these tests increase task complexity or
broaden the range of evaluated tasks, they remain limited in
scope for systematically evaluating contextual processing.

Beyond individual tests, several benchmarks explicitly tar-
get long-context processing, including InftyBench (Zhang
et al., 2024), L-Eval (An et al., 2024), and LongBench (Bai
et al., 2024). These benchmarks use NIAH-like tasks along-
side question answering, summarization, and code genera-
tion over long contexts. However, like other benchmarks,
they remain static and primarily measure end-to-end perfor-
mance rather than systematically dissecting capabilities.

Analogies to Human Cognitive Testing Memory tests
are widely used in cognitive research to assess specific func-
tions. Such assessments often involve evaluating short term
memory via recall tests (Crannell & Parrish, 1957; Towse
et al., 2008), inductive reasoning via pattern recognition
tasks, or attention via instruction-following(Kane et al.,

2007; Nasreddine et al., 2005). By isolating distinct abil-
ities while minimizing confounding factors like attention,
memory span, and reasoning (Kane et al., 2007), such tests
provide detailed profiles of cognitive functions, guiding in-
terventions and shaping broader theories of human thought.
Inspired by this approach, we design atomic tests that sys-
tematically isolate core aspects of LLM context processing,
aiming for a fine-grained understanding of LLM memory-
usage capabilities – analogous to memory testing in humans.

5. Conclusions
AI assistants powered by LLMs are expected to handle nu-
merous operations involving memory. However, simple tests
reveal that they often fall short of meeting user expectations,
even in basic retrieval and processing tasks. For instance,
retrieving vacation schedules for each team member from
a message history that includes evolving plans over time
proves challenging. To enable targeted improvements, it
is essential to establish a comprehensive benchmark that
tests each capability in isolation while also allowing for pro-
grammable composition to evaluate more complex scenarios.
Our benchmark provides a straightforward yet effective ap-
proach to achieving this goal. We primarily focus on short-
context scenarios to demonstrate that current limitations
are not solely attributable to the models’ challenges with
parsing long contexts. Addressing these issues demands
attention beyond merely solving the “attention” problem.

Impact Statement
This paper contributes to the advancement of Machine
Learning by introducing a systematic and programmable
evaluation framework for assessing the contextual process-
ing capabilities of large language models. Our work pro-
vides insights into model strengths and limitations in han-

9

Minerva: A Programmable Memory Test Benchmark for Language Models

dling various atomic and composite tasks, offering a struc-
tured way to analyze model behavior. These contributions
can guide future research in improving model efficiency and
reliability.

We do not foresee any direct ethical concerns or negative so-
cietal consequences arising from this work. Our evaluation
methodology is designed to be model-agnostic and does not
involve sensitive data or high-stakes applications.

References
An, C., Gong, S., Zhong, M., Zhao, X., Li, M., Zhang,

J., Kong, L., and Qiu, X. L-eval: Instituting standard-
ized evaluation for long context language models. In
Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pp. 14388–14411, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.776. URL https:
//aclanthology.org/2024.acl-long.776/.

Anthropic. Introducing the next generation of
claude. https://www.anthropic.com/news/
claude-3-family, 2024. Accessed: 2024-03-27.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z., Du,
Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J., and Li,
J. LongBench: A bilingual, multitask benchmark for long
context understanding. In Ku, L.-W., Martins, A., and
Srikumar, V. (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.172. URL https:
//aclanthology.org/2024.acl-long.172/.

Behrouz, A., Zhong, P., and Mirrokni, V. Titans: Learning
to memorize at test time, 2024. URL https://arxiv.
org/abs/2501.00663.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,

W. Evaluating large language models trained on code.
2021.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal,
A., Schoenick, C., and Tafjord, O. Think you have
solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/
1803.05457.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Crannell, C. and Parrish, J. A comparison of immediate
memory span for digits, letters, and words. The Journal
of Psychology, 44(2):319–327, 1957.

Ding, Y., Zhang, L. L., Zhang, C., Xu, Y., Shang, N., Xu, J.,
Yang, F., and Yang, M. Longrope: Extending llm context
window beyond 2 million tokens, 2024.

Gliwa, B., Mochol, I., Biesek, M., and Wawer, A. Sam-
sum corpus: A human-annotated dialogue dataset for
abstractive summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization. Asso-
ciation for Computational Linguistics, 2019. doi: 10.
18653/v1/d19-5409. URL http://dx.doi.org/
10.18653/v1/D19-5409.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference
on Learning Representations, 2021a. URL https://
openreview.net/forum?id=d7KBjmI3GmQ.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021b.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., and Ginsburg, B. RULER: What’s the real context
size of your long-context language models? In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=kIoBbc76Sy.

Jaccard, P. Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bull Soc Vaudoise Sci
Nat, 37:547–579, 1901.

Kamradt, G. Needle in a haystack - pres-
sure testing llms. GitHub, 2023. URL
https://github.com/gkamradt/LLMTest_
NeedleInAHaystack/tree/main.

10

https://aclanthology.org/2024.acl-long.776/
https://aclanthology.org/2024.acl-long.776/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
http://dx.doi.org/10.18653/v1/D19-5409
http://dx.doi.org/10.18653/v1/D19-5409
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

Minerva: A Programmable Memory Test Benchmark for Language Models

Kane, R. L., Roebuck-Spencer, T., Short, P., Kabat, M., and
Wilken, J. Identifying and monitoring cognitive deficits in
clinical populations using automated neuropsychological
assessment metrics (anam) tests. Archives of Clinical
Neuropsychology, 22(Suppl 1):S115–S126, 2007.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin,
J., Lee, K., et al. Natural questions: a benchmark for ques-
tion answering research. Transactions of the Association
for Computational Linguistics, 7:453–466, 2019.

Li, M., Zhang, S., Liu, Y., and Chen, K. Needlebench:
Can llms do retrieval and reasoning in 1 million context
window?, 2024. URL https://arxiv.org/abs/
2407.11963.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013/.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–
173, 2024. doi: 10.1162/tacl a 00638. URL https:
//aclanthology.org/2024.tacl-1.9/.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313–
330, 1993. URL https://aclanthology.org/
J93-2004/.

Mohtashami, A. and Jaggi, M. Random-access infi-
nite context length for transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=7eHn64wOVy.

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbon-
neau, S., Whitehead, V., Collin, I., Cummings, J. L., and
Chertkow, H. The montreal cognitive assessment, moca:
a brief screening tool for mild cognitive impairment. Jour-
nal of the American Geriatrics Society, 53(4):695–699,
2005.

Song, M., Zheng, M., and Luo, X. Counting-stars: A
multi-evidence, position-aware, and scalable benchmark
for evaluating long-context large language models, 2024.
URL https://arxiv.org/abs/2403.11802.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., , and Wei, J. Challenging big-bench tasks and

whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Towse, J. N., Cowan, N., Hitch, G. J., and Horton, N. J. The
recall of information from working memory: Insights
from behavioural and chronometric perspectives. Experi-
mental Psychology, 55(6):371–383, 2008.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv: Arxiv-2305.16291, 2023.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang,
L., Zhang, X., Zhang, S., Liu, J., Awadallah, A. H., White,
R. W., Burger, D., and Wang, C. Autogen: Enabling next-
gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Wu, Y., Hee, M. S., Hu, Z., and Lee, R. K.-W. Longgen-
bench: Benchmarking long-form generation in long con-
text llms. arXiv preprint arXiv:2409.02076, 2024.

Xiong, W., Liu, J., Molybog, I., Zhang, H., Bhargava, P.,
Hou, R., Martin, L., Rungta, R., Sankararaman, K. A.,
Oguz, B., Khabsa, M., Fang, H., Mehdad, Y., Narang,
S., Malik, K., Fan, A., Bhosale, S., Edunov, S., Lewis,
M., Wang, S., and Ma, H. Effective long-context scaling
of foundation models, 2023. URL https://arxiv.
org/abs/2309.16039.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M.,
Han, X., Thai, Z., Wang, S., Liu, Z., and Sun, M. Infty-
bench: Extending long context evaluation beyond 100K
tokens. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 15262–15277, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.814. URL https:
//aclanthology.org/2024.acl-long.814/.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., Zhang, H.,
Gonzalez, J. E., and Stoica, I. Judging LLM-as-a-judge
with MT-bench and chatbot arena. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang,
Y., Saied, A., Chen, W., and Duan, N. Agieval: A
human-centric benchmark for evaluating foundation mod-
els, 2023. URL https://arxiv.org/abs/2304.
06364.

11

https://arxiv.org/abs/2407.11963
https://arxiv.org/abs/2407.11963
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://openreview.net/forum?id=7eHn64wOVy
https://openreview.net/forum?id=7eHn64wOVy
https://arxiv.org/abs/2403.11802
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://aclanthology.org/2024.acl-long.814/
https://aclanthology.org/2024.acl-long.814/
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364

Minerva: A Programmable Memory Test Benchmark for Language Models

A. Test Templates
In this appendix, we provide the templates of the test prompts. Placeholder context words such as “aaa, bbb, ccc,” etc.,
are used for illustration purposes. During testing, these context words are uniformly sampled from an English dictionary.
Variable tokens in the instruction part are marked with the bold font.

Search

Task name Prompt

String search (with
word)

Context:
aaa, bbb, ccc, ...
Instruction:
Given the context, determine if the word “bbb” is present in the context. Answer with
“yes” or ‘no”.
Answer:

String search (with
subsequence)

Context:
aaa, bbb, ccc, ...
Instruction:
Given the list of words in the context, determine if the sequence “bbb, xxx, ddd”
appears in the context. Answer with ‘yes’ or ’no’.
Answer:

Key-value search Context:
aaa:bbb, ccc:ddd, ...
Instruction:
Given a list of word pairs formatted as “word 1: word 2” in the context, return the
second word associated with the provided first word. For the first word “aaa”, the
corresponding second word is:

Batch search Context:
aaa:bbb, ccc:ddd, ...
Instruction:
Given a list of word pairs formatted as “word 1: word 2” in the context, return the
second word associated with the provided first words. For the first words: aaa, ccc, ...,
the corresponding second words are:

Recall and Edit

Task name Prompt

Snapshot Context:
aaa, bbb, ccc, ...
Instruction:
Repeat the previous context exactly as it is, without making any additions or deletions.
Answer:

Replace all (x to y) Context:
aaa, bbb, aaa, ccc, aaa, ddd, ...
Instruction:
Repeat the previous context and replace the word “aaa” with “zzz” each time it appears.
Answer:

Replace all (x to null) Context:
aaa, bbb, aaa, ccc, aaa, ddd, ...
Instruction:
Repeat the previous context but skip the word “aaa” each time it appears.
Answer:

12

Minerva: A Programmable Memory Test Benchmark for Language Models

Overwrite positions
(nth to y)

Context:
aaa, bbb, ccc, ...
Instruction:
Repeat the previous context and replace every third word with “zzz”.
Answer:

Overwrite positions
(nth to null)

Context:
aaa, bbb, ccc, ...
Instruction:
Repeat the previous context and skip every other word.
Answer:

Functional updates Context:
111, 222, 333, ...
Instruction:
Add 3 to every number in the previous context.
Answer:

Match and Compare

Task name Prompt

Compare positions Context:
aaa, bbb, ccc, ...
Instruction:
Given the list of words in the context, determine the relative positions of two words.
Does the word “aaa” appear before the word “ccc” in the list? Answer “yes” or “no”.
Answer:

Find duplicates Context:
aaa, bbb, aaa, ...
Instruction:
A word is repeated multiple times in the context. Your task is to identify the word that
is repeated.
The repeated word is:

Count Context:
aaa, bbb, aaa, ...
Instruction:
Count the number of times the word “aaa” appeared in the context.
Answer: The word “aaa” appeared

Check association Context:
aaa:attribute 1, bbb:attribute 2, ccc: attribute 2, ddd: attribute 1, ...
Instruction:
Given the list of words and their respective attributes in the format of “word:attribute”,
determine if the word “aaa” and the word “ggg” have the same attribute. Answer with
“yes” or “no”.
Answer:

Spot the Differences

Task name Prompt

13

Minerva: A Programmable Memory Test Benchmark for Language Models

Compare two lists Context:
List 1: aaa, bbb, ccc, ...
List 2: aaa, ddd, ccc, ...
Instruction:
There are two lists of words in the context. The first list contains the original words.
The second list is similar to the first but has some words replaced with different ones.
Your task is to identify the words in the first/second list that are different from those in
the other list. Provide the different words as your answer.
Answer:

Identify the odd
group

Context:
List 1: aaa, bbb, ccc, ...
List 2: bbb, aaa, ccc, ...
List 3: aaa, zzz, ccc, ...
List 4: ccc, aaa, bbb, ...
Instruction:
Given the lists of words in the context, identify the list that is different from the others.
Provide the list number as your answer. For example, if the Nth list is different, provide
“List N” as your answer.
Answer:

Patch the difference Context:
aaa, bbb, ccc, aaa, bbb, ccc, ...
Instruction:
Given the sequence of words that follows a specific pattern in the context, predict the
Nth word that appears after the final word in the given sequence.
Answer: The Nth word that appears after the final word in the given sequence is

Compute on Sets and Lists

Task name Prompt

Group membership Context:
List 1: aaa, bbb, ccc, ...
List 2: ddd, eee, fff, ...
...
Instruction:
Given the lists of words in the context, determine which list contains the word “fff”. If
the word is not present in either list, answer “no”.
Answer:

Group association Context:
List 1: aaa, bbb, ccc, ...
List 2: ddd, eee, fff, ...
...
Instruction:
Given the lists of words in the context, determine if the word “aaa” and the word “eee”
are in the same list. Answer with “yes” or “no”.
Answer:

14

Minerva: A Programmable Memory Test Benchmark for Language Models

Group association (al-
ternating)

Context:
Role A: aaa, bbb, ...
Role B: ccc, ddd, ...
Role A: eee, fff, ...
Role B: ggg, hhh, ...
...
Instruction:
Given the context with alternating roles and their respective context words, determine
if the word “aaa” and the word “ggg” are in the same role. Answer with “yes” or “no”.
Answer:

Iterate Context:
List 1: aaa, bbb, ccc, ...
List 2: ddd, eee, fff, ...
...
Instruction:
Given the lists of words in the context, identify and recall the last word from each list.
Provide your answer as a list of these words separated by commas.
Answer:

Stateful Processing

Task name Prompt

Quantity state Context:
Begin with the number xx. Perform the following operations:
1. Add xx 2. Subtract xx 3. ...
Instruction:
In the context, you are given an initial number and a series of operations to perform on
that number. Your task is to determine the final result of the operations. Write your
final answer after the text “FINAL ANSWER:”. For example, “FINAL ANSWER:
42”.
FINAL ANSWER:

Set state Agent actions:
Agent draws aaa, bbb, ccc
Agent discards bbb, ccc
Agent draws ddd, fff
Agent discards ddd
...
Instruction:
Given the actions of the agent, your task is to determine the final list of words the agent
ends up with after a series of actions. Write your final answer after the text “FINAL
ANSWER:”. For example, “FINAL ANSWER: word1, word2, word3”.
FINAL ANSWER:

Processing Data Blocks

Task name Prompt

15

Minerva: A Programmable Memory Test Benchmark for Language Models

Processing Data
Blocks

Context:
Role 1: aaa, bbb, ccc, ...
Role 2: ddd, eee, fff, ...
Role 3: ggg, hhh, iii, ...
Role 1: jjj, kkk, ...
...
Instruction:
The context consists of a series of alternating roles, each associated with a list of words.
Your task is to identify and recall all the words from the role labeled “Role 2” that
appear after the word “zzz” in the sequence. Please write your answer after the text
“Answer:”. For example, “Answer: word1, word2, word3”.
Answer:

Composite-State Tracking (Theory of Mind)

Task name Prompt

Theory of Mind Agents actions::
Agent A starts with the following words: aaa, bbb, ccc, ...
Agent B starts with the following words: ddd, eee, fff, ...
Agent B starts with the following words: ggg, hhh, iii, ...
Agent B swaps the following words “ddd” with Agent C for the following words “hhh”.
Agent A discards the following words: ccc, zzz,
Agent C draws the following words: xxx, yyy,
...
Instruction:
Given the actions of the agents, your task is to determine the final list of words each
agent ends up with after a series of actions. Write your final answer after the text
“FINAL ANSWER:”. For example, “FINAL ANSWER: Agent A: word1, word2,
word3\nAgent B: word4, word5”.
FINAL ANSWER:

B. Task Details
This appendix provides details for each task, including the number of examples, evaluation metrics, and configurable
hyperparameters. The context length is fixed at 4k for almost all tasks, apart from Stateful Processing, where the context is
determined by number of operation steps and set to 200 for quantity state and 100 for set state, which maps to around 1.5k
context tokens.

Here is an example of number of examples calculation String search (with word): 5 (query depth) * 2 (labels) * 5 (samples
per parameter setting) = 50.

Table 10: Task Overview with Hyperparameters, Number of Examples, and Evaluation Metrics

Task Name Hyperparameters # of Examples Metric

Search
String search (word) query depth = [0, 0.25, 0.5, 0.75, 1], label =

[positive, negative], samples = 5
50 exact match

String search (sequence) sequence length = [8, 16, 32, 64], label = [posi-
tive, negative], samples = 10

80 exact match

Key-value search query depth = [0, 0.25, 0.5, 0.75, 1], samples =
10

50 exact match

Continued on next page

16

Minerva: A Programmable Memory Test Benchmark for Language Models

Task Name Hyperparameters # of Examples Metric

Batch search batch size = [4, 8, 16, 32], samples = 5 20 rouge-L recall

Number of Entries for Category: 200

Recall and Edit
Snapshot (words) samples = 10 10 rouge-L
Replace all density = [0.2, 0.4, 0.6, 0.8], y = [random word,

null], samples = 5
40 rouge-L

Overwrite positions nth = [2, 3, 4], y = [random word, null], samples
= 5

30 rouge-L

Snapshot (numbers) samples = 10 10 rouge-L
Functional updates function type = [add (3), subtract (1), multiply

(2)], samples = 5
15 rouge-L

Number of Entries for Category: 105

Match and Compare
Compare positions query 1 depth = [0, 0.25, 0.5, 0.75, 1], query 2

depth = [0, 0.25, 0.5, 0.75, 1], samples = 3
75 exact match

Find duplicates repetition = [2, 4, 8, 16, 32], samples = 5 25 exact match
Count repetition = [2, 4, 8, 16, 32], samples = 5 25 exact match
Check association n attribute = [2, 4, 8, 16, 32], label = [positive,

negative], samples = 5
50 exact match

Number of Entries for Category: 175

Spot the Differences
Compare two lists num different words = [1, 5, 10, 20], chosen

list = [first, second], samples = 10
80 rouge-L recall

Identify the odd group words per group = [25, 50, 75, 100], percentage
of difference = [0, 0.25, 0.5], samples = 5

60 exact match

Patch the difference pattern length = [2, 15, 30], cut off depth = [0,
0.5, 1], nth = [1, 3, 6], samples = 5

1202 exact match

Number of Entries for Category: 260

Compute on Sets and Lists
Group membership number of groups = [4, 8, 16, 32], query depth

= [0, 0.25, 0.5, 0.75, 1], samples = 5
100 exact match

Group association number of groups = [4, 8, 16, 32], label = [pos-
itive, negative], samples = 5

40 exact match

Group association (alternating) number of groups = [2, 4, 8, 16, 32], number of
turns = 10, label = [positive, negative], sample
= 5

50 exact match

Iterate number of groups = [4, 8, 16, 32], samples = 5 20 rouge-L

Number of Entries for Category: 210

Stateful Processing
Set state number of steps = 100, set size = [5, 10, 15,

20], samples = 10
40 jaccard similarity

Quantity state number of steps = 200, samples = 10 10 exact match

Number of Entries for Category: 50

Continued on next page

2For Patch the difference task with pattern length 2, there is only two cut off percentage options; therefore the total number of data
points is 120 instead of 135.

17

Minerva: A Programmable Memory Test Benchmark for Language Models

Task Name Hyperparameters # of Examples Metric

Composite
Processing data blocks number of blocks = [2, 4, 8, 16, 32], number of

turns = 10, samples = 5
50 rouge-L

Theory of mind number of steps = 100, number of agents = [2,
3, 4], samples = [10, 20]

60 jaccard similarity

Number of Entries for Category: 110

Total Number of Entries: 1110

C. Evaluation Metrics
In this appendix section, we provide details about the evaluation metrics we have used in the tests.

• Exact Match: The exact match accuracy measures whether the generated answer exactly matches the reference answer.
It is computed as follows:

Exact Match =

{
1 if reference answer = generated answer,
0 otherwise.

• ROUGE-L / ROUGE-L-recall: ROUGE (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) measures
the verbatim overlap between the reference and the generated answers. ROUGE-L specifically looks for the longest
common subsequence (LCS) between the two texts, which reflects the structure of the text and the longest sequence of
matching words. ROUGE-L recall focuses on the ability of the model to recall the content from the reference answer,
and it emphasizes matching the longest subsequences.

ROUGE-L-recall can be defined as:

ROUGE-L-recall =
LCS(generated answer, reference answer)

length of reference answer

ROUGE-L is computed as the F1-score, which combines both precision and recall to provide a more balanced measure
of overlap.

• Jaccard Similarity: Jaccard similarity measures the overlap between two sets by comparing the intersection and union
of the sets. It is computed as:

Jaccard Similarity =
|A ∩B|
|A ∪B|

where A and B are sets representing the elements in the generated and reference answers, respectively. This metric
is used for tasks involving set-based comparisons or when the goal is to measure the similarity between two sets of
elements (e.g., word sets).

D. More Examples for Context Length Variation and Prompt Variation
In this section, we present additional examples illustrating the effects of context length and minor variations in prompt
instructions on selected models.

Length variation Table 11 reports results from three additional tasks: string search (word), replace all, and iterate. The
results reaffirm that while models tend to perform well on the search task even at long context lengths, their performance on
other tasks degrades significantly at much shorter lengths. This highlights a fundamental limitation in how effectively these
models utilize long-range context for non-search tasks.

18

Minerva: A Programmable Memory Test Benchmark for Language Models

Model 2000 4000 8000 16000 32000

gpt-4o 1.00 1.00 1.00 1.00 0.98
gpt-4o-mini 0.98 0.98 0.94 0.90 0.78
phi-3-small 1.00 0.94 0.90 0.98 0.98

(a) String search (word)

Model 1000 2000 4000 8000 16000

gpt-4o 1.00 1.00 0.99 0.81 0.48
gpt-4o-mini 0.99 0.91 0.84 0.71 0.42
phi-3-small 0.87 0.67 0.49 0.32 0.06

(b) Replace all

Model 1000 2000 4000 8000 16000

gpt-4o 1.00 0.97 0.86 0.70 0.57
gpt-4o-mini 0.91 0.87 0.67 0.43 0.28
phi-3-small 0.15 0.09 0.04 0.01 0.01

(c) Iterate

Table 11. Model performance across varying context lengths for three tasks.

Prompt variation. We provide additional results examining how small changes in prompt phrasing affect model perfor-
mance across three tasks (see Table 12). In general, we find that minor wording changes (e.g., in replace all and quantity
state) do not significantly affect performance. This suggests that task accuracy is primarily driven by the model’s underlying
capability to process memory rather than sensitivity to prompt wording. However, more substantial prompt changes, such as
shown in check association task, can lead to notable differences in performance across models. To minimize the impact of
prompt tuning, we standardize all prompts to the versions specified in the main paper.

Model Var 1 CI95% Var 2 CI95%

gpt-4o 0.99 (0.93, 1.00) 0.98 (0.93, 1.00)
gpt-4o-mini 0.84 (0.71, 0.94) 0.83 (0.71, 0.94)
phi-3-small 0.49 (0.32, 0.63) 0.51 (0.35, 0.65)

(a) Replace all (ROUGE-L)

Model Var 1 CI95% Var 2 CI95%

gpt-4o 0.72 (0.58, 0.83) 0.76 (0.63, 0.86)
gpt-4o-mini 0.60 (0.46, 0.72) 0.58 (0.42, 0.69)
phi-3-small 0.70 (0.56, 0.81) 0.60 (0.46, 0.72)

(b) Check association (Exact match)

Model Var 1 CI95% Var 2 CI95%

gpt-4o 1.00 (0.72, 1.00) 1.00 (0.72, 1.00)
gpt-4o-mini 0.70 (0.40, 0.89) 0.80 (0.49, 0.94)
phi-3-small 0.00 (0.00) 0.00 (0.00)

(c) Quantity state (Exact match)

Table 12. Effect of prompt variations on model performance across three tasks. We report accuracy (or ROUGE-L) and 95% confidence
intervals.

Prompt variants used in the table above:

• Replace all

– Var 1: “Repeat the previous context and replace the word aaa with bbb.”
– Var 2: “Copy the previous context but replace the word aaa with bbb.”

• Check association

– Var 1: “Given the context with words and their assigned attributes in the format of word: ATT N, determine if
the word aaa has the same attribute as the word bbb?”

– Var 2: “Given the context”

• Quantity state

– Var 1: “Your task is to determine the final result of the operations.”
– Var 2: “Determine the final result after the operations.”

19

