

000 001 002 003 004 005 **SEM: REINFORCEMENT LEARNING FOR SEARCH- 006 EFFICIENT LARGE LANGUAGE MODELS**

007
008
009
010
011
012 **Anonymous authors**
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Recent advancements in Large Language Models (LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools, particularly search engines. However, teaching models to discern when to invoke search and when to rely on their internal knowledge remains a significant challenge. Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost. In this paper, we propose *SEM*, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage. By constructing a balanced dataset combining MuSiQue and MMLU, we create scenarios where the model must learn to distinguish between questions it can answer directly and those requiring external retrieval. We design a structured reasoning template and employ Group Relative Policy Optimization (GRPO) to post-train the model’s search behaviors. Our reward function encourages accurate answering without unnecessary search while promoting effective retrieval when needed. Experimental results demonstrate that our method significantly reduces redundant search operations while maintaining or improving answer accuracy across multiple challenging benchmarks. This framework advances the model’s reasoning efficiency and extends its capability to judiciously leverage external knowledge.

1 INTRODUCTION

Large Language Models (LLMs) have increasingly shown that incorporating extended reasoning processes can significantly enhance their performance on complex tasks (Plaat et al., 2024; Xu et al., 2025). Beyond their reasoning capabilities, LLMs have also demonstrated a surprising aptitude for tool invocation (Shen, 2024; Qin et al., 2025; Yang et al., 2023b; Qiao et al., 2024). By explicitly instructing the model through prompts on when and how to invoke external tools, it becomes capable of performing tasks beyond the limits of pure linguistic reasoning.

Among various tools, the search functionality stands out as particularly essential (OpenAI, 2025). When confronted with uncertain or unfamiliar questions, models can leverage search interfaces to retrieve relevant information, subsequently using the acquired data to generate more accurate and contextually precise responses.

Teaching models to effectively utilize search functions has presented significant challenges. The most straightforward method involves embedding explicit instructions within the context prompts (Trivedi et al., 2023; Shao et al., 2023; Li et al., 2025). If a model has robust contextual understanding, it can efficiently learn and apply these instructions, invoking appropriate tools when necessary. However, models frequently encounter difficulties in mastering sophisticated search behaviors, particularly in recognizing errors from initial searches and initiating subsequent searches—an issue commonly observed during iterative search interactions.

Previous research has illustrated the potential of reinforcement learning in training models to optimize their search behaviors (Chen et al., 2025; Feng et al., 2025; Zheng et al., 2025). By incorporating reward mechanisms tied to the efficacy of searches, models progressively enhance their understanding and utilization of search tools. Nonetheless, this approach has noticeable limitations, notably that models often execute searches unnecessarily, irrespective of the actual need.

As demonstrated in [Table 3](#), even for a trivial question like “1+1=?”, the model redundantly performs multiple unnecessary searches, such as queries on “the basic principle of addition.” Clearly, there is a pressing need to optimize how models discern when a search is truly necessary, preventing wasteful use of resources and ensuring efficiency in their reasoning processes.

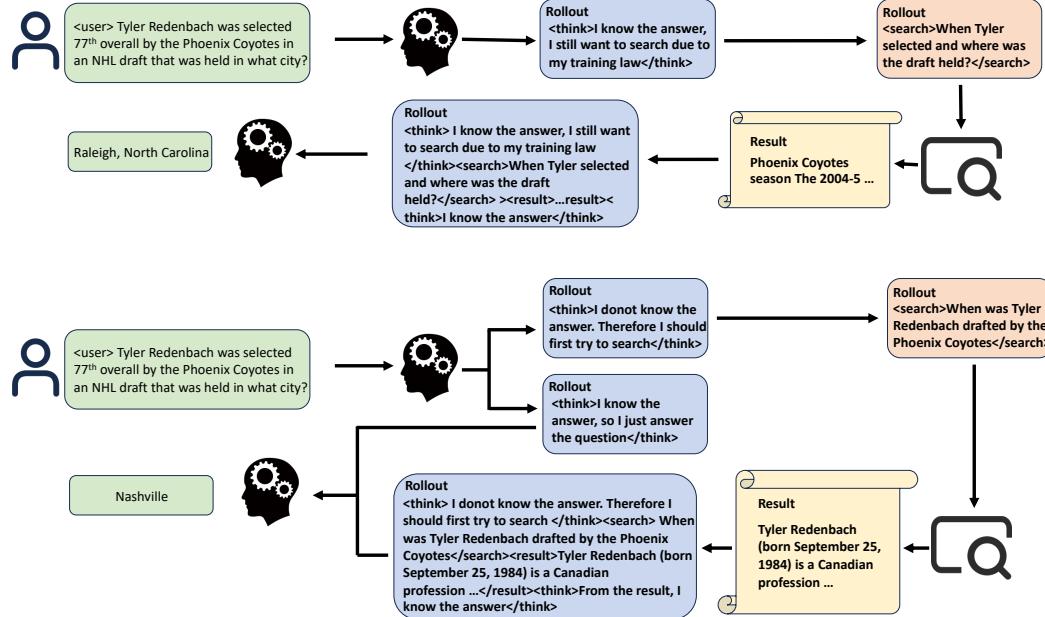


Figure 1: Comparison of the previous method and *SEM*.

1.1 OUR CONTRIBUTION

Addressing these challenges, we introduce a novel post-training reinforcement learning framework, *SEM*, designed specifically to teach models to distinguish when to invoke search and when it is unnecessary. Specifically, if the model is confident in its understanding of a question, it directly outputs the answer without invoking search tools. Conversely, if the model is uncertain, it will initiate a search to acquire relevant context, thereby enhancing its comprehension and response accuracy.

To equip the model with effective search-awareness, we construct a balanced dataset comprising two equal portions: one in which the model already knows the correct answers and one in which it does not. During training, we require the model to generate its responses using explicit `<think>` and `<answer>` annotations. Whenever the model's initial `<answer>` is correct, we impose a penalty on any subsequent attempt to invoke the search tool. In contrast, if the initial `<answer>` is incorrect, we provide a positive reward for issuing a `<search>` query. In this latter scenario, the model is expected first to emit a `<search>` request, retrieve relevant information, and then produce a refined `<answer>` based on the newly acquired knowledge.

This carefully structured reinforcement pipeline enables the model to progressively sharpen its judgment on the necessity of searches, significantly reducing redundant actions and enhancing response precision. Extensive evaluations affirm that our proposed framework substantially improves the model's efficiency and effectiveness, empowering it to leverage search tools optimally, especially in complex and uncertain scenarios.

Implication. The proposed *SEM* significantly enhances the efficiency and accuracy of LLMs in utilizing external search tools. By explicitly training models to discern when external retrieval is necessary, this approach substantially reduces redundant search behaviors, thereby optimizing resource usage. Moreover, equipping models with robust search-awareness extends their reasoning capabilities, enabling them to handle a broader range of complex and uncertain questions effectively. This advancement not only improves the practical applicability of LLMs in real-world scenarios but

108 also sets a foundation for more sophisticated integrations of external tools, paving the way for future
 109 developments in interactive and context-aware AI systems.
 110

111 2 METHOD

113 To effectively integrate external search capabilities into the model’s intrinsic reasoning mechanisms,
 114 we employ reinforcement learning to post-train the base model. The comprehensive methodology is
 115 illustrated in Figure 1.
 116

117 2.1 DATASET PREPARATION

119 The primary goal of *SEM* is to equip the model with the ability to make intelligent use of external
 120 search tools in order to improve the accuracy and relevance of its responses to users’ queries.
 121 Rather than relying solely on its internal knowledge, the model should learn when to retrieve
 122 additional information through search and how to incorporate the retrieved content into its final
 123 answer effectively.

124 To develop this capability, the first critical step is to construct a training dataset that explicitly reflects
 125 the need for such behavior. Specifically, we aim to provide a clear distinction between questions
 126 that the model is likely to answer correctly using its existing knowledge and those for which it lacks
 127 sufficient information and would benefit from a search.

128 To this end, we combine two complementary datasets—MuSiQue (Trivedi et al., 2022) and
 129 MMLU (Hendrycks et al., 2021)—to form the training corpus. MuSiQue primarily consists of
 130 multi-hop, fact-based questions that often go beyond the model’s pretraining knowledge, making
 131 them ideal candidates for demonstrating the value of search. In contrast, MMLU includes a broad
 132 range of academic and professional exam questions that are generally well-covered in existing training
 133 corpora, and thus, are typically answerable without search.

134 By integrating these two datasets, we establish a balanced training distribution that includes both
 135 “known” and “unknown” questions. This balanced composition enables us to design a reinforcement
 136 learning framework where the model is rewarded differently based on context: it receives direct
 137 positive feedback for answering known questions correctly without invoking search, while it is
 138 incentivized to use search strategically in cases where its initial response is insufficient or incorrect.

139 This approach not only encourages the model to recognize its knowledge boundaries but also helps it
 140 develop a decision-making process around when and how to invoke search. Over time, the model
 141 learns to optimize for both answer quality and computational efficiency by selectively engaging the
 142 search module only when necessary.
 143

144 2.2 REWARD POLICY

146 We implement a carefully structured reward policy to teach the model effective search reasoning,
 147 utilizing the Group Relative Policy Optimization (GRPO) framework for optimization.

148 **Group Relative Policy Optimization** (Shao et al., 2024). To effectively teach the model when and
 149 how to utilize external tools such as search engines, we adopt a Group Relative Policy Optimization
 150 (GRPO) framework. Instead of applying a uniform reward across all trajectories, GRPO considers the
 151 relative quality of model outputs within the same query group. This encourages the model to produce
 152 the best possible reasoning chain for a given input, even if the final answer is correct in multiple
 153 cases.
 154

155 **Reward Modeling.** Our reward function is designed to simultaneously encourage correct reasoning
 156 without unnecessary tool invocation and incentivize effective search usage when required. Concretely,
 157 the model is rewarded for: (1) correctly predicting the answer without relying on search when its
 158 internal knowledge suffices, (2) using search judiciously when the question is beyond its knowledge
 159 scope, and (3) adhering to a strict response format that includes `<think>`, `<answer>`, `<search>`,
 160 `<result>` tags in proper order. We show the reward formula in Equation 1.

161 Specifically, we first extract all answers enclosed in the `<answer>` tag and evaluate their correctness
 162 using an F1 score based on token-level overlap with the ground truth. If the first answer achieves a

162 high F1 score (above a predefined threshold), but the model still invokes search or produces redundant
 163 reasoning steps, it is penalized for unnecessary exploration. Otherwise, when the first answer is
 164 incorrect, the model must engage in search and generate a second answer, which is then evaluated for
 165 correctness. Invalid formatting or improper tag ordering results in zero reward.
 166

$$167 \quad \mathcal{R} = f \left[\mathbf{1}\{F_1(a_1) \geq \tau \wedge s = 0 \wedge t = 1\} F_1(a_1) + \mathbf{1}\{F_1(a_1) < \tau \wedge u = 1\} F_1(a_2) \right]. \quad (1)$$

170 where

$$\begin{aligned} 171 \quad f &\in \{0, 1\}, && \text{valid structure indicator,} \\ 172 \quad s &\in \{0, 1\}, && \text{search-invoked indicator,} \\ 173 \quad t &\in \{0, 1\}, && \text{single think/answer indicator,} \\ 174 \quad u &\in \{0, 1\}, && \text{valid search–result format indicator,} \\ 175 \quad \tau &\in \mathbb{R}, && \text{confidence threshold,} \\ 176 \quad \mathbf{1}\{\cdot\} &&& \text{indicator function.} \\ 177 \\ 178 \end{aligned}$$

179 **Rollout with Search.** During rollout, the model generates its complete reasoning trajectory in a
 180 structured template that includes optional search. The search invocation is treated as an intermediate
 181 sub-action between two phases of reasoning. If a search is triggered, the model must produce a
 182 <search> query, followed by the <result> retrieved from the external source, and finally update its
 183 belief state before issuing the final <answer>. This design allows us to explicitly assess the impact of
 184 search and isolate its contribution to the accuracy of the final output.
 185

186 2.3 TRAINING TEMPLATE

188 To standardize the reasoning and search process, we define a consistent response format used
 189 throughout training. Each model output follows the template:
 190

```
191 <think> initial reasoning </think>
192 <answer> preliminary answer </answer>
193 <search> search query (if any) </search>
194 <result> retrieved result </result>
195 <think> updated reasoning based on retrieved info </think>
196 <answer> final answer </answer>
```

197 This structured format allows robust parsing and evaluation during reward computation. It also
 198 supports modular supervision, enabling us to provide targeted feedback on both the reasoning quality
 199 and the utility of search. Models are trained to optimize for both accuracy and minimal, justified
 200 usage of external tools, promoting a balance between confidence and curiosity.
 201

202 3 EXPERIMENTS

205 3.1 EXPERIMENTAL SETUP

207 **Datasets.** As we have stated in [Section 2.1](#), to enable the model to learn when it knows the answer
 208 and when it does not, we build the training dataset combining MuSiQue and MMLU. Specifically,
 209 most of the questions in MuSiQue are unfamiliar to the model, and the use of retrieval-augmented
 210 generation (RAG) ([Lewis et al., 2020](#); [Asai et al., 2024](#); [Yoran et al., 2024](#)) significantly improves
 211 its ability to answer these questions. In contrast, the questions in MMLU are generally within the
 212 model’s existing knowledge, making an external search unnecessary.
 213

214 After training, we evaluate the model on MuSiQue ([Trivedi et al., 2022](#)) and HotpotQA ([Yang et al., 2018](#)),
 215 where the questions are challenging for LLMs, as well as on MMLU ([Hendrycks et al., 2021](#))
 216 and GSM8k ([Cobbe et al., 2021](#)), which consists of logic math problems that typically do not require
 217 search.

Metrics. We consider three metrics: Exact Match(EM), LLM as a Judger(LJ), and Search Ratio(SR) to measure the results of the trained model. We compute the EM by measuring the percentage of examples for which the model’s final answer exactly matches one of the ground-truth answers. However, EM metric is too hard to measure the accuracy of the model answer due to the fact that sometimes, the model’s answer is right but only a few words are different from the ground truth. In this case, we also use LLMs to determine whether the answer is correct or not. We take advantage of deepseek-671B AWQ (DeepSeek-AI, 2025) as a judge. Note that for datasets like MMLU or GSM8k, there is no need to use LJ as the model can always answer the exact right number or choices from the given options. Moreover, we also consider the SR as one of the metrics. We emphasize that in different cases, the SR should be different. For datasets like MuSiQue and HotpotQA, a higher SR is better as the questions are unknown for the models. For other datasets like MMLU and GSM8k, the lower SR is better due to the fact that these questions are all logical reasoning questions that do not rely on external knowledge but the internal ability of the model.

Implementation. We implement our training framework based on ReSearch (Chen et al., 2025), Verl (Sheng et al., 2025), and FlashRAG (Jin et al., 2024). Note that we train the model for only 200 steps because, in the reinforcement learning setup, this number of updates is already sufficient to observe significant gains in performance. We retrieve the information from the wiki18-100w. We take advantage of Qwen models (Yang et al., 2024) as our base models. We use 8 A100 and set the batch size as 8.

3.2 MAIN RESULTS

Table 1: Performance on HotpotQA and MuSiQue.

Dataset	Model	EM	LJ	SR
HotpotQA	<i>7B-Instruct</i>	Naive RAG	18.01	47.51
		ReSearch	21.75	32.06
		<i>SEM</i>	35.84	61.67
	<i>14B-Instruct</i>	Naive RAG	35.11	59.55
		ReSearch	33.29	52.01
		<i>SEM</i>	40.42	58.43
MuSiQue	<i>7B-Instruct</i>	Naive RAG	7.19	26.69
		ReSearch	6.08	11.67
		<i>SEM</i>	15.59	36.41
	<i>14B-Instruct</i>	Naive RAG	13.52	30.74
		ReSearch	14.43	29.42
		<i>SEM</i>	20.56	32.28

We present the performance results of our experiments in Table 1 and Table 2. It is important to note that our ReSearch results differ from the original paper due to discrepancies in training datasets.

As demonstrated in the table, our proposed *SEM* consistently demonstrates superior performance across all evaluated benchmarks. On the HotpotQA dataset, our Qwen2.5-7B-Instruct model trained under *SEM* achieves an Exact Match (EM) score of 35.84, significantly outperforming the Naive RAG approach, which attains an EM of only 18.01. This improvement indicates that our reinforcement learning (RL) framework effectively teaches the model when and how to perform external searches. Similar trends are observed on MuSiQue, where the EM score for our 7B-Instruct model (15.59) markedly surpasses the Naive RAG’s 7.19, reinforcing the effectiveness of our search-optimized training.

For logic-based datasets such as MMLU, our method also excels at guiding the model to recognize when internal knowledge suffices, thereby avoiding unnecessary searches. Specifically, the search

270
271
272 Table 2: Performance on MMLU and GSM8K.
273
274
275
276
277
278
279
280
281

272 Dataset	273 Model	274 EM	275 SR
MMLU	<i>7B-Instruct</i>	Naive RAG	12.48
		ReSearch	69.84
		<i>SEM</i>	70.88
	<i>14B-Instruct</i>	Naive RAG	70.49
		ReSearch	75.16
		<i>SEM</i>	75.62
	<i>7B-Instruct</i>	Naive RAG	12.48
		ReSearch	82.63
		<i>SEM</i>	71.79
GSM8K	<i>14B-Instruct</i>	Naive RAG	83.93
		ReSearch	50.41
		<i>SEM</i>	79.37

290
291 ratio for our Qwen2.5-7B-Instruct model on MMLU is impressively low at 1.77%, substantially
292 less than that of both Naive RAG (47.98%). Note that the Qwen2.5-7B-Instruct model trained with
293 ReSearch lacks the ability to perform search, resulting in a 0% SR. Remarkably, even without frequent
294 search invocations, our model achieves a robust EM score of 70.88, whereas the Naive RAG model
295 manages only 12.48. These results highlight the dual benefits of our proposed approach: enhancing
296 search decision-making capabilities and significantly awakening the model’s intrinsic reasoning and
297 teaching-following abilities.

298 Conversely, ReSearch exhibits relatively weaker performance under our experimental setup. This
299 degradation is primarily due to the composition of our training dataset, which makes models trained
300 with the ReSearch framework prone to gradient explosion. As a result, these models either excessively
301 rely on search or fail to utilize it effectively, ultimately leading to lower accuracy compared to our
302 method.

303 The GSM8K results further illustrate these dynamics. Note that the model is only trained on MMLU,
304 which is totally different with the GSM8k. However, the model trained under *SEM* can still achieve
305 great results without redundant search. For instance, Qwen2.5-7B-Instruct trained under *SEM* only
306 invoke 0.76% search during the all queries. Moreover, the thinking process can still make the model
307 maintain high accuracy on the math problems as Qwen-2.5-14B-Instruct can achieve 79.37% EM,
308 which is much higher than same model trained under ReSearch(50.41).

309 Overall, our results clearly indicate that the proposed *SEM* significantly enhances the model’s ability
310 to discern when external information retrieval is beneficial, substantially improves its reasoning
311 capabilities, and promotes adherence to structured response protocols.

313 3.3 TRAINING PROCESS

315 We present the training dynamics of our models in [Figure 2](#) to illustrate the effectiveness of the pro-
316 posed framework. The plotted curves represent the average F1 scores computed over 100 evaluation
317 samples at every checkpoint, where an answer is considered correct if it achieves an F1 score of
318 1.0. As shown in the figure, *SEM* consistently outperforms the ReSearch baseline across both the
319 7B and 14B model sizes. Notably, the performance of our approach improves steadily over time,
320 exhibiting a smoother and more stable learning trajectory. In contrast, the ReSearch models suffer
321 from larger fluctuations and slower gains in F1 score, particularly in the 7B setting. The advantage of
322 our method becomes more pronounced in the 14B model, where it maintains a significantly higher F1
323 score throughout training. These results suggest that our framework not only accelerates convergence
but also enhances the model’s ability to generalize more reliably as training progresses.

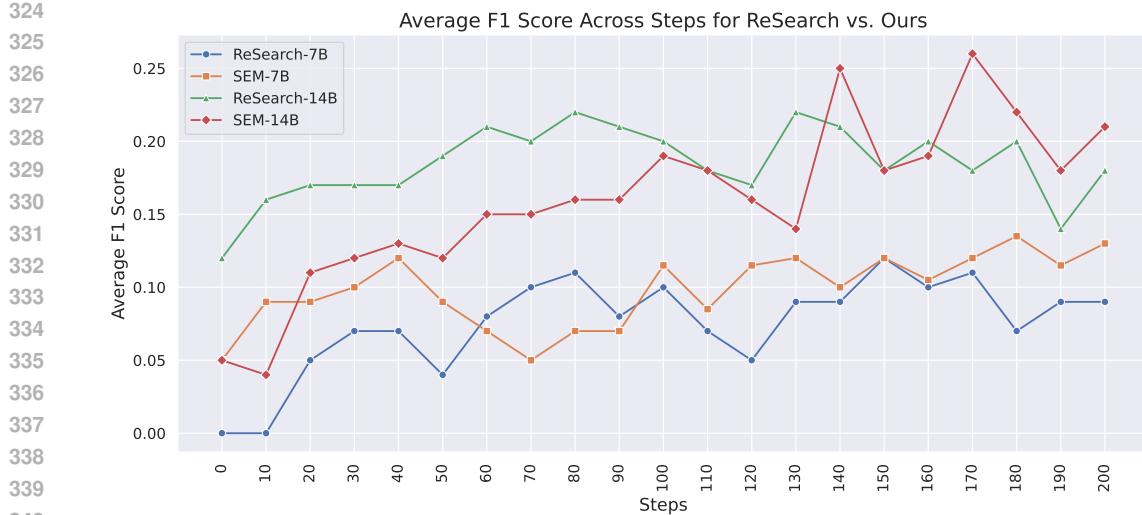


Figure 2: The performance of different models on different training steps.

Table 3: Case Studys for known Questions.

Questions	1+1=?
ReSearch	<think> This is a straightforward mathematical question. I will first check if there is any need to search for information to solve this problem.</think><search> search query: What is the basic principle of addition in mathematics? </search><result>some result here</result><think> The information provided is about the rule of sum in combinatorics, which is not directly related to the question. However, the basic principle of addition is clearly stated in the arithmetic section. Since the question is about 1+1, I can directly solve this using the basic principle of addition.</think><search> search query: What is 1+1 in mathematics? </search><result>some result here</result><think> The information provided is about the concept of 1+1 in the context of infinite series and other mathematical contexts, but the question is asking for the simplest form of 1+1. I can directly use the basic principle of addition to solve this.</think><search> search query: What is the result of 1+1 in basic arithmetic? </search><result>some result here</result><think> The information confirms that the simplest form of 1+1 in basic arithmetic is 2. I can now provide the answer.</think><answer> \boxed {2} </answer>
SEM	<think>The question is asking for the sum of 1+1. This is a basic arithmetic operation.</think> <answer>The answer is \boxed {2} .</answer>

3.4 CASE STUDY

To further highlight the effectiveness of the proposed framework, we present illustrative case studies in Table 4, showcasing the reasoning behaviors of models trained under ReSearch and SEM. All responses are generated under a unified prompting format that incorporates a system-defined reasoning template involving `<think>`, `<search>`, `<result>`, and `<answer>` tags. This standardized structure ensures a fair comparison of model behaviors across different reasoning scenarios.

The first case in Table 4 features a simple arithmetic question: “ $1+1=?$ ”. As this question lies well within the model’s internal knowledge, an ideal agent should answer it directly without invoking external search. The ReSearch model, however, redundantly queries multiple times, demonstrating inefficient tool usage. In contrast, our model recognizes the simplicity of the problem and immediately produces the correct answer without performing any unnecessary retrieval, showcasing a more efficient and targeted reasoning process.

378 Table 4: Case Studys for Unknown Questions.
379

380	Questions	Tyler Redenbach was selected 77th overall by the Phoenix Coyotes in an NHL draft 381 that was held in what city?
382	ReSearch	<think> To identify the NHL draft city in which Tyler Redenbach was selected, I will first need to ascertain the specific draft year he was chosen. I will then use that infor- mation to find the city where the draft was conducted.</think><search> search query: When was Tyler Redenbach drafted by the Phoenix Coyotes? </search><result>some result here</result><think> Now that I have the draft year, I can proceed to ascertain the location of the draft ceremony. I will now search for the city that hosted the 2003 NHL Entry Draft.</think><search> search query: Where was the 2003 NHL Entry Draft held? </search><result>some result here</result><think> Having found the location of the 2003 NHL Entry Draft, I can now ascertain the city in which Tyler Redenbach was drafted by the Phoenix Coyotes.</think><search> search query: Where was the 2003 NHL Entry Draft? </search><result>some result here</result><think> Now that I have confirmed the location of the 2003 NHL Entry Draft, I can con- clude that Tyler Redenbach was drafted in Nashville, Tennessee.</think> <answer> \boxed {Nashville} </answer>
396	SEM	<think>To answer this, I need to find information about the NHL draft where Tyler Redenbach was selected 77th by the Phoenix Coyotes. I'll start by finding details about Tyler Redenbach and his draft information.</think> <answer> The initial answer is \boxed { }. </answer><search>Wikipedia search query: Tyler Redenbach NHL draft</search><result>some result here</result><think>From the information provided, we know Tyler Redenbach was drafted by the Phoenix Coyotes in 2003. Now, I need to find the location of the 2003 NHL Entry Draft.</think><search>Wikipedia search query: 2003 NHL Entry Draft lo- cation</search><result>some result here</result><think>The 2003 NHL Entry Draft, where Tyler Redenbach was selected, was held in Nashville, Tennessee. </think><answer>The Phoenix Coyotes selected Tyler Redenbach 77th over- all in the 2003 NHL Entry Draft, which was held in Nashville, Tennessee. \boxed {Nashville, Tennessee}</answer>

410 The second example demonstrated in [Table 4](#) involves a fact-based open-domain question: “*Tyler
411 Redenbach was selected 77th overall by the Phoenix Coyotes in an NHL draft that was held in what
412 city?*”. This query requires external factual knowledge beyond the model’s pretraining corpus. The
413 ReSearch model executes a multi-step search to first determine the draft year and then locate the
414 corresponding host city, ultimately yielding the correct answer. Our model exhibits similar multi-hop
415 reasoning but accomplishes the task with fewer and more focused search operations, demonstrating
416 improved retrieval efficiency and interpretability.

417 These examples collectively underscore two key advantages of our approach: (1) the ability to
418 avoid unnecessary retrieval for answerable questions, and (2) the capability to efficiently orchestrate
419 multi-hop retrieval when external information is required. Such dynamic control over tool invocation
420 is critical for enhancing both the interpretability and computational efficiency of tool-augmented
421 language models.

4 RELATED WORK

4.1 REINFORCEMENT LEARNING

427 Reinforcement learning (RL) ([Mnih et al., 2015](#); [Wang et al., 2016](#); [Thomas & Brunskill, 2017](#); [Mnih
428 et al., 2016](#)) has become a cornerstone in aligning large language models (LLMs) with human prefer-
429 ences and enhancing their reasoning capabilities. Proximal Policy Optimization(PPO) ([Schulman
430 et al., 2017](#)) is a widely adopted policy gradient method in RL that balances exploration and exploita-
431 tion by limiting the deviation from the current policy during updates. Direct Preference Optimiza-
432 tion (DPO) ([Rafailov et al., 2023](#)) offers a streamlined alternative to traditional RL approaches by directly

432 optimizing the model’s parameters based on human preference data. Unlike methods that require
 433 training a separate reward model, DPO simplifies the alignment process through a classification loss
 434 that encourages the model to prefer responses aligned with human preferences.

435 Group Relative Policy Optimization (GRPO) (Shao et al., 2024) builds upon the foundations of PPO
 436 by introducing a group-based comparison mechanism. Instead of evaluating individual responses,
 437 GRPO assesses groups of outputs to derive a relative advantage, promoting more nuanced learning.
 438 This method has shown promise in enhancing the reasoning abilities of LLMs, particularly in complex
 439 tasks such as mathematical problem-solving (Zhang & Zuo, 2025).

440 Collectively, these reinforcement learning methodologies contribute significantly to the post-training
 441 refinement of LLMs, ensuring that the models not only generate coherent text but also align closely
 442 with human expectations and demonstrate improved reasoning skills.

444

445 4.2 LARGE LANGUAGE MODELS AS AGENTS

446

447 Framing LLMs as autonomous agents capable of planning and executing multi-step reasoning has
 448 become an emerging paradigm (Luo et al., 2025; Zhao et al., 2023; Sumers et al., 2024; Jiabin Tang,
 449 2025). Agent frameworks such as AutoGPT (Yang et al., 2023a) and LangChain (lan, 2023) demon-
 450 strate how models can iteratively refine tasks, search information, and generate solutions. Recent
 451 work (Chen et al., 2025; Feng et al., 2025; Zheng et al., 2025) emphasizes the importance of tool
 452 selection and usage timing. However, existing systems often rely on heuristics or fixed prompting
 453 strategies to manage tool invocation. In contrast, our method explicitly trains the model through RL
 454 to learn optimal tool usage patterns, enhancing both interpretability and performance.

455

456 5 LIMITATION

457

458 In this paper, we proposed the *SEM* to help the LLMs better understand how to search. Despite the
 459 demonstrated benefits of *SEM*, our work has serveral limitations that warrant further study:

460

461 Exclusive Focus on Search. We evaluate and train our framework solely on search-based tool
 462 invocation, without exploring how the model might learn to call other types of tools (e.g., calculators,
 463 knowledge graphs, code execution). As a result, the learned policy may not generalize to scenarios
 464 requiring diverse or specialized tool interactions beyond simple information retrieval. However, as
 465 one of the most important tools for agent, understanding how to search better is the current priority.

466

467 Fixed RL Algorithm Design. Our *SEM* framework is built upon Group Relative Policy Optimization
 468 (GRPO) to govern search-invocation decisions. Nevertheless, the broader landscape of tool-enabled
 469 language agents suggests that alternative reinforcement learning paradigms—such as hierarchical
 470 policies for multi-tool selection, off-policy methods emphasizing sample efficiency, or meta-learning
 471 approaches that adapt invocation strategies dynamically—could yield superior performance. Explor-
 472 ing these more specialized algorithms may not only improve training efficiency but also enhance the
 473 framework’s extensibility to diverse toolsets and real-world applications.

474

475 6 CONCLUSION

476

477 In this work, we proposed a novel post-training reinforcement learning framework, *SEM*, to optimize
 478 search behavior in large language models. We first construct a balanced dataset that explicitly
 479 distinguishes between known and unknown questions, and designing a reward function that penalizes
 480 unnecessary search while encouraging effective retrieval.

481

482 Our experimental results demonstrate that we can significantly improve both the efficiency and
 483 performance of tool-augmented models. Specifically, we train the model on the dataset combined by
 484 MuSiQue and MMLU and then evaluate the model on HotpotQA, MuSiQue, MMLU, and GSM8k.
 485 Our results demonstrate that *SEM* not only reduces redundant search operations but also enhances
 answer accuracy. This work opens new directions for training intelligent and resource-efficient agents.

486 REFERENCES
487

488 Langchain, 2023. URL <https://github.com/langchain-ai/langchain>.

489 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
490 retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on*
491 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
492 URL <https://openreview.net/forum?id=hSyW5go0v8>.

493 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
494 Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to
495 reason with search for llms via reinforcement learning. *CoRR*, abs/2503.19470, 2025. doi: 10.
496 48550/ARXIV.2503.19470. URL <https://doi.org/10.48550/arXiv.2503.19470>.

497 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
498 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
499 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL
500 <https://arxiv.org/abs/2110.14168>.

501 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
502 2025. URL <https://arxiv.org/abs/2501.12948>.

503 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
504 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms, 2025.
505 URL <https://arxiv.org/abs/2504.11536>.

506 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
507 Steinhardt. Measuring massive multitask language understanding. In *9th International Conference*
508 *on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
509 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

510 Chao Huang, Jabin Tang, Tianyu Fan. AutoAgent: A Fully-Automated and Zero-Code Framework
511 for LLM Agents, 2025. URL <https://arxiv.org/abs/2502.05957>.

512 Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. Flashrag: A modular toolkit
513 for efficient retrieval-augmented generation research. *CoRR*, abs/2405.13576, 2024. doi: 10.48550/
514 ARXIV.2405.13576. URL <https://doi.org/10.48550/arXiv.2405.13576>.

515 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
516 Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
517 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In
518 Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
519 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference*
520 *on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,*
521 *2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>.

522 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
523 and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*,
524 abs/2501.05366, 2025. doi: 10.48550/ARXIV.2501.05366. URL <https://doi.org/10.48550/arXiv.2501.05366>.

525 Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
526 Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang,
527 Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu,
528 Hanqing Zhao, Dacheng Tao, Philip S. Yu, and Ming Zhang. Large language model agent: A
529 survey on methodology, applications and challenges. *CoRR*, abs/2503.21460, 2025. doi: 10.48550/
530 ARXIV.2503.21460. URL <https://doi.org/10.48550/arXiv.2503.21460>.

531 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
532 Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
533 tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
534

540 Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nat.*, 518(7540):529–533, 2015. doi: 10.1038/NATURE14236. URL <https://doi.org/10.1038/nature14236>.

541

542

543 Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 1928–1937. JMLR.org, 2016. URL <http://proceedings.mlr.press/v48/mnih16.html>.

544

545

546

547

548

549

550 OpenAI. Introducing deep research, 2025. URL <https://openai.com/index/introducing-deep-research/>.

551

552

553 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Reasoning with large language models, a survey. *arXiv preprint arXiv:2407.11511*, 2024.

554

555

556 Shuofei Qiao, Honghao Gui, Chengfei Lv, Qianghuai Jia, Huajun Chen, and Ningyu Zhang. Making language models better tool learners with execution feedback. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 3550–3568. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.195. URL <https://doi.org/10.18653/v1/2024.naacl-long.195>.

557

558

559

560

561

562

563 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, Yufei Huang, Chaojun Xiao, Chi Han, Yi R. Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models. *ACM Comput. Surv.*, 57(4):101:1–101:40, 2025. doi: 10.1145/3704435. URL <https://doi.org/10.1145/3704435>.

564

565

566

567

568

569

570

571 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

572

573

574

575

576

577

578 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.

579

580

581

582 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing retrieval-augmented large language models with iterative retrieval-generation synergy. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023*, pp. 9248–9274. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.620. URL <https://doi.org/10.18653/v1/2023.findings-emnlp.620>.

583

584

585

586

587

588 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL <https://doi.org/10.48550/arXiv.2402.03300>.

589

590

591

592

593 Zhuocheng Shen. LLM with tools: A survey. *CoRR*, abs/2409.18807, 2024. doi: 10.48550/ARXIV.2409.18807. URL <https://doi.org/10.48550/arXiv.2409.18807>.

594 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 595 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. In *Proceedings*
 596 *of the Twentieth European Conference on Computer Systems, EuroSys 2025, Rotterdam, The*
 597 *Netherlands, 30 March 2025 - 3 April 2025*, pp. 1279–1297. ACM, 2025. doi: 10.1145/3689031.
 598 3696075. URL <https://doi.org/10.1145/3689031.3696075>.

599 Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
 600 architectures for language agents. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://openreview.net/forum?id=1i6ZCvflQJ>.

601 Philip S. Thomas and Emma Brunskill. Policy gradient methods for reinforcement learning with
 602 function approximation and action-dependent baselines. *CoRR*, abs/1706.06643, 2017. URL
 603 <http://arxiv.org/abs/1706.06643>.

604 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
 605 questions via single-hop question composition. *Transactions of the Association for Computational*
 606 *Linguistics*, 2022.

607 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 608 with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna Rogers,
 609 Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of*
 610 *the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,*
 611 *Canada, July 9-14, 2023*, pp. 10014–10037. Association for Computational Linguistics, 2023.
 612 doi: 10.18653/V1/2023.ACL-LONG.557. URL <https://doi.org/10.18653/v1/2023.acl-long.557>.

613 Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
 614 Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and
 615 Kilian Q. Weinberger (eds.), *Proceedings of the 33nd International Conference on Machine*
 616 *Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016*, volume 48 of *JMLR Workshop*
 617 *and Conference Proceedings*, pp. 1995–2003. JMLR.org, 2016. URL <http://proceedings.mlr.press/v48/wangf16.html>.

618 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 619 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 620 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

621 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 622 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 623 *arXiv:2412.15115*, 2024.

624 Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
 625 additional opinions. *CoRR*, abs/2306.02224, 2023a. doi: 10.48550/ARXIV.2306.02224. URL
 626 <https://doi.org/10.48550/arXiv.2306.02224>.

627 Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools:
 628 Teaching large language model to use tools via self-instruction. In Alice Oh, Tristan
 629 Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural*
 630 *Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,*
 631 *2023*, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/e393677793767624f2821cec8bdd02f1-Abstract-Conference.html.

632 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 633 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 634 answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings*
 635 *of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,*
 636 *October 31 - November 4, 2018*, pp. 2369–2380. Association for Computational Linguistics, 2018.
 637 doi: 10.18653/V1/D18-1259. URL <https://doi.org/10.18653/v1/d18-1259>.

638 Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented lan-
 639 guage models robust to irrelevant context. In *The Twelfth International Conference on Learning*

648 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
649 <https://openreview.net/forum?id=ZS4m74kZpH>.
650

651 Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
652 for concise mathematical reasoning in language models, 2025. URL <https://arxiv.org/abs/2504.09696>.
653

654 Pengyu Zhao, Zijian Jin, and Ning Cheng. An in-depth survey of large language model-based
655 artificial intelligence agents. *CoRR*, abs/2309.14365, 2023. doi: 10.48550/ARXIV.2309.14365.
656 URL <https://doi.org/10.48550/arXiv.2309.14365>.
657

658 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
659 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments,
660 2025. URL <https://arxiv.org/abs/2504.03160>.

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701