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ABSTRACT

Recent advancements in Large Language Models (LLMs) have demonstrated their
capabilities not only in reasoning but also in invoking external tools, particularly
search engines. However, teaching models to discern when to invoke search and
when to rely on their internal knowledge remains a significant challenge. Exist-
ing reinforcement learning approaches often lead to redundant search behaviors,
resulting in inefficiencies and over-cost. In this paper, we propose SEM, a novel
post-training reinforcement learning framework that explicitly trains LLMs to opti-
mize search usage. By constructing a balanced dataset combining MuSiQue and
MMLU, we create scenarios where the model must learn to distinguish between
questions it can answer directly and those requiring external retrieval. We design
a structured reasoning template and employ Group Relative Policy Optimization
(GRPO) to post-train the model’s search behaviors. Our reward function encour-
ages accurate answering without unnecessary search while promoting effective
retrieval when needed. Experimental results demonstrate that our method signifi-
cantly reduces redundant search operations while maintaining or improving answer
accuracy across multiple challenging benchmarks. This framework advances the
model’s reasoning efficiency and extends its capability to judiciously leverage
external knowledge.

1 INTRODUCTION

Large Language Models (LLMs) have increasingly shown that incorporating extended reasoning
processes can significantly enhance their performance on complex tasks (Plaat et al., 2024; Xu et al.,
2025). Beyond their reasoning capabilities, LLMs have also demonstrated a surprising aptitude for
tool invocation (Shen, 2024; Qin et al., 2025; Yang et al., 2023b; Qiao et al., 2024). By explicitly
instructing the model through prompts on when and how to invoke external tools, it becomes capable
of performing tasks beyond the limits of pure linguistic reasoning.

Among various tools, the search functionality stands out as particularly essential (OpenAl, 2025).
When confronted with uncertain or unfamiliar questions, models can leverage search interfaces to
retrieve relevant information, subsequently using the acquired data to generate more accurate and
contextually precise responses.

Teaching models to effectively utilize search functions has presented significant challenges. The most
straightforward method involves embedding explicit instructions within the context prompts (Trivedi
et al., 2023; Shao et al., 2023; Li et al., 2025). If a model has robust contextual understanding, it can
efficiently learn and apply these instructions, invoking appropriate tools when necessary. However,
models frequently encounter difficulties in mastering sophisticated search behaviors, particularly
in recognizing errors from initial searches and initiating subsequent searches—an issue commonly
observed during iterative search interactions.

Previous research has illustrated the potential of reinforcement learning in training models to optimize
their search behaviors (Chen et al., 2025; Feng et al., 2025; Zheng et al., 2025). By incorporating
reward mechanisms tied to the efficacy of searches, models progressively enhance their understanding
and utilization of search tools. Nonetheless, this approach has noticeable limitations, notably that
models often execute searches unnecessarily, irrespective of the actual need.
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As demonstrated in Table 3, even for a trivial question like “1+1=?", the model redundantly performs
multiple unnecessary searches, such as queries on “the basic principle of addition.” Clearly, there is a
pressing need to optimize how models discern when a search is truly necessary, preventing wasteful
use of resources and ensuring efficiency in their reasoning processes.
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Figure 1: Comparison of the previous method and SEM.

1.1 OUR CONTRIBUTION

Addressing these challenges, we introduce a novel post-training reinforcement learning framework,
SEM, designed specifically to teach models to distinguish when to invoke search and when it is
unnecessary. Specifically, if the model is confident in its understanding of a question, it directly
outputs the answer without invoking search tools. Conversely, if the model is uncertain, it will initiate
a search to acquire relevant context, thereby enhancing its comprehension and response accuracy.

To equip the model with effective search-awareness, we construct a balanced dataset comprising
two equal portions: one in which the model already knows the correct answers and one in which it
does not. During training, we require the model to generate its responses using explicit <think> and
<answer> annotations. Whenever the model’s initial <answer> is correct, we impose a penalty on
any subsequent attempt to invoke the search tool. In contrast, if the initial <answer> is incorrect, we
provide a positive reward for issuing a <search> query. In this latter scenario, the model is expected
first to emit a <search> request, retrieve relevant information, and then produce a refined <answer>
based on the newly acquired knowledge.

This carefully structured reinforcement pipeline enables the model to progressively sharpen its
judgment on the necessity of searches, significantly reducing redundant actions and enhancing
response precision. Extensive evaluations affirm that our proposed framework substantially improves
the model’s efficiency and effectiveness, empowering it to leverage search tools optimally, especially
in complex and uncertain scenarios.

Implication. The proposed SEM significantly enhances the efficiency and accuracy of LLMs in
utilizing external search tools. By explicitly training models to discern when external retrieval
is necessary, this approach substantially reduces redundant search behaviors, thereby optimizing
resource usage. Moreover, equipping models with robust search-awareness extends their reasoning
capabilities, enabling them to handle a broader range of complex and uncertain questions effectively.
This advancement not only improves the practical applicability of LLMs in real-world scenarios but
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also sets a foundation for more sophisticated integrations of external tools, paving the way for future
developments in interactive and context-aware Al systems.

2 METHOD

To effectively integrate external search capabilities into the model’s intrinsic reasoning mechanisms,
we employ reinforcement learning to post-train the base model. The comprehensive methodology is
illustrated in Figure 1.

2.1 DATASET PREPARATION

The primary goal of SEM is to equip the model with the ability to make intelligent use of external
search tools in order to improve the accuracy and relevance of its responses to users’ queries.
Rather than relying solely on its internal knowledge, the model should learn when to retrieve
additional information through search and how to incorporate the retrieved content into its final
answer effectively.

To develop this capability, the first critical step is to construct a training dataset that explicitly reflects
the need for such behavior. Specifically, we aim to provide a clear distinction between questions
that the model is likely to answer correctly using its existing knowledge and those for which it lacks
sufficient information and would benefit from a search.

To this end, we combine two complementary datasets—MuSiQue (Trivedi et al., 2022) and
MMLU (Hendrycks et al., 2021)—to form the training corpus. MuSiQue primarily consists of
multi-hop, fact-based questions that often go beyond the model’s pretraining knowledge, making
them ideal candidates for demonstrating the value of search. In contrast, MMLU includes a broad
range of academic and professional exam questions that are generally well-covered in existing training
corpora, and thus, are typically answerable without search.

By integrating these two datasets, we establish a balanced training distribution that includes both
“known” and “unknown” questions. This balanced composition enables us to design a reinforcement
learning framework where the model is rewarded differently based on context: it receives direct
positive feedback for answering known questions correctly without invoking search, while it is
incentivized to use search strategically in cases where its initial response is insufficient or incorrect.

This approach not only encourages the model to recognize its knowledge boundaries but also helps it
develop a decision-making process around when and how to invoke search. Over time, the model
learns to optimize for both answer quality and computational efficiency by selectively engaging the
search module only when necessary.

2.2 REWARD POLICY

We implement a carefully structured reward policy to teach the model effective search reasoning,
utilizing the Group Relative Policy Optimization (GRPO) framework for optimization.

Group Relative Policy Optimization (Shao et al., 2024). To effectively teach the model when and
how to utilize external tools such as search engines, we adopt a Group Relative Policy Optimization
(GRPO) framework. Instead of applying a uniform reward across all trajectories, GRPO considers the
relative quality of model outputs within the same query group. This encourages the model to produce
the best possible reasoning chain for a given input, even if the final answer is correct in multiple
cases.

Reward Modeling. Our reward function is designed to simultaneously encourage correct reasoning
without unnecessary tool invocation and incentivize effective search usage when required. Concretely,
the model is rewarded for: (1) correctly predicting the answer without relying on search when its
internal knowledge suffices, (2) using search judiciously when the question is beyond its knowledge
scope, and (3) adhering to a strict response format that includes <think>, <answer>, <search>,
<result> tags in proper order. We show the reward formula in Equation 1.

Specifically, we first extract all answers enclosed in the <answer> tag and evaluate their correctness
using an F1 score based on token-level overlap with the ground truth. If the first answer achieves a
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high F1 score (above a predefined threshold), but the model still invokes search or produces redundant
reasoning steps, it is penalized for unnecessary exploration. Otherwise, when the first answer is
incorrect, the model must engage in search and generate a second answer, which is then evaluated for
correctness. Invalid formatting or improper tag ordering results in zero reward.

R:f[l{Fl(al) >rAs=0At=1}Fi(a1) + 1{Fi(a1) <7 Au=1}Fi(a)]. (1)

where
fe€{0,1}, valid structure indicator,
s €{0,1}, search-invoked indicator,
t € {0,1}, single think/answer indicator,
u € {0,1}, valid search—result format indicator,
T €R, confidence threshold,
1{-} indicator function.

Rollout with Search. During rollout, the model generates its complete reasoning trajectory in a
structured template that includes optional search. The search invocation is treated as an intermediate
sub-action between two phases of reasoning. If a search is triggered, the model must produce a
<search> query, followed by the <result> retrieved from the external source, and finally update its
belief state before issuing the final <answer>. This design allows us to explicitly assess the impact of
search and isolate its contribution to the accuracy of the final output.

2.3 TRAINING TEMPLATE

To standardize the reasoning and search process, we define a consistent response format used
throughout training. Each model output follows the template:

<think> initial reasoning </think>

<answer> preliminary answer </answer>

<search> search query (if any) </search>

<result> retrieved result </result>

<think> updated reasoning based on retrieved info </think>
<answer> final answer </answer>

This structured format allows robust parsing and evaluation during reward computation. It also
supports modular supervision, enabling us to provide targeted feedback on both the reasoning quality
and the utility of search. Models are trained to optimize for both accuracy and minimal, justified
usage of external tools, promoting a balance between confidence and curiosity.

3 EXPERIMENTS
3.1 EXPERIMENTAL SETUP

Datasets. As we have stated in Section 2.1, to enable the model to learn when it knows the answer
and when it does not, we build the training dataset combining MuSiQue and MMLU. Specifically,
most of the questions in MuSiQue are unfamiliar to the model, and the use of retrieval-augmented
generation (RAG) (Lewis et al., 2020; Asai et al., 2024; Yoran et al., 2024) significantly improves
its ability to answer these questions. In contrast, the questions in MMLU are generally within the
model’s existing knowledge, making an external search unnecessary.

After training, we evaluate the model on MuSiQue (Trivedi et al., 2022) and HotpotQA (Yang et al.,
2018), where the questions are challenging for LLMs, as well as on MMLU (Hendrycks et al., 2021)
and GSM8k (Cobbe et al., 2021), which consists of logic math problems that typically do not require
search.
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Metrics. We consider three metrics: Exact Match(EM), LLM as a Judger(LJ), and Search Ratio(SR)
to measure the results of the trained model We compute the EM by measuring the percentage of
examples for which the model’s final answer exactly matches one of the ground-truth answers.
However, EM metric is too hard to measure the accuracy of the model answer due to the fact that
sometimes, the model’s answer is right but only a few words are different from the ground truth. In
this case, we also use LLMs to determine whether the answer is correct or not. We take advantage of
deepseek-671B AWQ (DeepSeek-Al, 2025) as a judge. Note that for datasets like MMLU or GSM8Kk,
there is no need to use LJ as the model can always answer the exact right number or choices from
the given options. Moreover, we also consider the SR as one of the metrics. We emphasize that in
different cases, the SR should be different. For datasets like MuSiQue and HotpotQA, a higher SR is
better as the questions are unknown for the models. For other datasets like MMLU and GSMS8K, the
lower SR is better due to the fact that these questions are all logical reasoning questions that do not
rely on external knowledge but the internal ability of the model.

Implementation. We implement our training framework based on ReSearch (Chen et al., 2025),
Verl (Sheng et al., 2025), and FlashRAG (Jin et al., 2024) Note that we train the model for only 200
steps because, in the reinforcement learning setup, this number of updates is already sufficient to
observe significant gains in performance. We retrieve the information from the wikil8-100w. We
take advantage of Qwen models (Yang et al., 2024) as our base models. We use 8 A100 and set the
batch size as 8.

3.2 MAIN RESULTS

Table 1: Performance on HotpotQA and MuSiQue.

Dataset Model EM L) SR
7B-Instruct
Naive RAG 18.01 47.51 88.52%
ReSearch 21.75 32.06 0.08%
HotpotQA SEM 35.84 61.67 97.54%
14B-Instruct
Naive RAG 35.11 59.55 87.66%
ReSearch 33.29 52.01 100.00%
SEM 40.42 58.43 98.77%
7B-Instruct
Naive RAG 7.19 26.69 90.57%
ReSearch 6.08 11.67 0.12%
MuSiQue SEM 15.59 36.41 97.35%
14B-Instruct
Naive RAG 13.52 30.74 82.33%
ReSearch 14.43 29.42 100.00%
SEM 20.56 32.28 97.10%

We present the performance results of our experiments in Table 1 and Table 2. It is important to note
that our ReSearch results differ from the original paper due to discrepancies in training datasets.

As demonstrated in the table, our proposed SEM consistently demonstrates superior performance
across all evaluated benchmarks. On the HotpotQA dataset, our Qwen2.5-7B-Instruct model trained
under SEM achieves an Exact Match (EM) score of 35.84, significantly outperforming the Naive RAG
approach, which attains an EM of only 18.01. This improvement indicates that our reinforcement
learning (RL) framework effectively teaches the model when and how to perform external searches.
Similar trends are observed on MuSiQue, where the EM score for our 7B-Instruct model (15.59)
markedly surpasses the Naive RAG’s 7.19, reinforcing the effectiveness of our search-optimized
training.

For logic-based datasets such as MMLU, our method also excels at guiding the model to recognize
when internal knowledge suffices, thereby avoiding unnecessary searches. Specifically, the search
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Table 2: Performance on MMLU and GSM8K.

Dataset Model EM SR
7B-Instruct
Naive RAG 12.48 47.98%
ReSearch 69.84 0.00%
MMLU SEM 70.88 1.77%
14B-Instruct
Naive RAG 70.49 11.74%
ReSearch 75.16 31.43%
SEM 75.62 0.11%
7B-Instruct
Naive RAG 12.48 61.56%
ReSearch 82.63 0.00%
GSMS8K SEM 71.79 14.63%
14B-Instruct
Naive RAG 83.93 14.71%
ReSearch 50.41 55.19%
SEM 79.37 0.76%

ratio for our Qwen2.5-7B-Instruct model on MMLU is impressively low at 1.77%, substantially
less than that of both Naive RAG (47.98%). Note that the Qwen2.5-7B-Instruct model trained with
ReSearch lacks the ability to perform search, resulting in a 0% SR. Remarkably, even without frequent
search invocations, our model achieves a robust EM score of 70.88, whereas the Naive RAG model
manages only 12.48. These results highlight the dual benefits of our proposed approach: enhancing
search decision-making capabilities and significantly awakening the model’s intrinsic reasoning and
teaching-following abilities.

Conversely, ReSearch exhibits relatively weaker performance under our experimental setup. This
degradation is primarily due to the composition of our training dataset, which makes models trained
with the ReSearch framework prone to gradient explosion. As a result, these models either excessively
rely on search or fail to utilize it effectively, ultimately leading to lower accuracy compared to our
method.

The GSMBK results further illustrate these dynamics. Note that the model is only trained on MMLU,
which is totally different with the GSM8k. However, the model trained under SEM can still achieve
great results without redundant search. For instance, Qwen2.5-7B-Instruct trained under SEM only
invoke 0.76% search during the all queries. Moreover, the thinking process can still make the model
maintain high accuracy on the math problems as Qwen-2.5-14B-Instruct can achieve 79.37% EM,
which is much higher than same model trained under ReSearch(50.41).

Overall, our results clearly indicate that the proposed SEM significantly enhances the model’s ability
to discern when external information retrieval is beneficial, substantially improves its reasoning
capabilities, and promotes adherence to structured response protocols.

3.3 TRAINING PROCESS

We present the training dynamics of our models in Figure 2 to illustrate the effectiveness of the pro-
posed framework. The plotted curves represent the average F1 scores computed over 100 evaluation
samples at every checkpoint, where an answer is considered correct if it achieves an F1 score of
1.0. As shown in the figure, SEM consistently outperforms the ReSearch baseline across both the
7B and 14B model sizes. Notably, the performance of our approach improves steadily over time,
exhibiting a smoother and more stable learning trajectory. In contrast, the ReSearch models suffer
from larger fluctuations and slower gains in F1 score, particularly in the 7B setting. The advantage of
our method becomes more pronounced in the 14B model, where it maintains a significantly higher F1
score throughout training. These results suggest that our framework not only accelerates convergence
but also enhances the model’s ability to generalize more reliably as training progresses.
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Figure 2: The performance of different models on different training steps.

Table 3: Case Studys for known Questions.

Questions

1+1=?

ReSearch

SEM

<think> This is a straightforward mathematical question. I will first check if
there is any need to search for information to solve this problem.</think><search>
search query: What is the basic principle of addition in mathematics?
</search><result>some result here</result><think> The information provided is
about the rule of sum in combinatorics, which is not directly related to the ques-
tion. However, the basic principle of addition is clearly stated in the arithmetic
section. Since the question is about 1+1, I can directly solve this using the basic
principle of addition.</think><search> search query: What is 1+1 in mathematics?
</search><result>some result here</result><think> The information provided is
about the concept of 1+1 in the context of infinite series and other mathematical
contexts, but the question is asking for the simplest form of 1+1. I can directly use
the basic principle of addition to solve this.</think><search> search query: What is
the result of 141 in basic arithmetic? </search><result>some result here</result>
<think> The information confirms that the simplest form of 1+1 in basic arithmetic
is 2. I can now provide the answer.</think><answer> \boxed {2} </answer>

<think>The question is asking for the sum of 1+1. This is a basic arithmetic
operation.</think> <answer>The answer is \boxed {2} .</answer>

3.4 CASE STUDY

To further highlight the effectiveness of the proposed framework, we present illustrative case studies
in Table 4, showcasing the reasoning behaviors of models trained under ReSearch and SEM. All
responses are generated under a unified prompting format that incorporates a system-defined reasoning
template involving <think>, <search>, <result>, and <answer> tags. This standardized
structure ensures a fair comparison of model behaviors across different reasoning scenarios.

The first case in Table 4 features a simple arithmetic question: “/+17=7". As this question lies well
within the model’s internal knowledge, an ideal agent should answer it directly without invoking
external search. The ReSearch model, however, redundantly queries multiple times, demonstrating
inefficient tool usage. In contrast, our model recognizes the simplicity of the problem and immediately
produces the correct answer without performing any unnecessary retrieval, showcasing a more
efficient and targeted reasoning process.
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Table 4: Case Studys for Unknown Questions.

Questions  Tyler Redenbach was selected 77th overall by the Phoenix Coyotes in an NHL draft
that was held in what city?

ReSearch  <think> To identify the NHL draft city in which Tyler Redenbach was selected, I will
first need to ascertain the specific draft year he was chosen. I will then use that infor-
mation to find the city where the draft was conducted.</think><search> search query:
When was Tyler Redenbach drafted by the Phoenix Coyotes? </search><result>some
result here</result><think> Now that I have the draft year, I can proceed to ascertain
the location of the draft ceremony. I will now search for the city that hosted the 2003
NHL Entry Draft.</think><search> search query: Where was the 2003 NHL Entry
Draft held? </search><result>some result here</result><think> Having found the
location of the 2003 NHL Entry Draft, I can now ascertain the city in which Tyler Re-
denbach was drafted by the Phoenix Coyotes.</think><search> search query: Where
was the 2003 NHL Entry Draft? </search><result>some result here</result><think>
Now that I have confirmed the location of the 2003 NHL Entry Draft, I can con-
clude that Tyler Redenbach was drafted in Nashville, Tennessee.</think> <answer>
\boxed {Nashville} </answer>

SEM <think>To answer this, I need to find information about the NHL draft where Tyler
Redenbach was selected 77th by the Phoenix Coyotes. I’ll start by finding details
about Tyler Redenbach and his draft information.</think> <answer> The inital
answer is \boxed {}. </answer><search>Wikipedia search query: Tyler Re-
denbach NHL draft</search><result>some result here</result><think>From the
information provided, we know Tyler Redenbach was drafted by the Phoenix
Coyotes in 2003. Now, I need to find the location of the 2003 NHL En-
try Draft.</think><search>Wikipedia search query: 2003 NHL Entry Draft lo-
cation</search><result>some result here</result><think>The 2003 NHL Entry
Draft, where Tyler Redenbach was selected, was held in Nashville, Tennessee.
</think><answer>The Phoenix Coyotes selected Tyler Redenbach 77th over-
all in the 2003 NHL Entry Draft, which was held in Nashville, Tennessee.
\boxed {Nashville, Tennessee}</answer>

The second example demonstrated in Table 4 involves a fact-based open-domain question: “Tyler
Redenbach was selected 77th overall by the Phoenix Coyotes in an NHL draft that was held in what
city?”. This query requires external factual knowledge beyond the model’s pretraining corpus. The
ReSearch model executes a multi-step search to first determine the draft year and then locate the
corresponding host city, ultimately yielding the correct answer. Our model exhibits similar multi-hop
reasoning but accomplishes the task with fewer and more focused search operations, demonstrating
improved retrieval efficiency and interpretability.

These examples collectively underscore two key advantages of our approach: (1) the ability to
avoid unnecessary retrieval for answerable questions, and (2) the capability to efficiently orchestrate
multi-hop retrieval when external information is required. Such dynamic control over tool invocation
is critical for enhancing both the interpretability and computational efficiency of tool-augmented
language models.

4 RELATED WORK

4.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) (Mnih et al., 2015; Wang et al., 2016; Thomas & Brunskill, 2017; Mnih
et al., 2016) has become a cornerstone in aligning large language models (LLMs) with human prefer-
ences and enhancing their reasoning capabilities. Proximal Policy Optimization(PPO) (Schulman
et al., 2017) is a widely adopted policy gradient method in RL that balances exploration and exploita-
tion by limiting the deviation from the current policy during updates. Direct Preference Optimization
(DPO) (Rafailov et al., 2023) offers a streamlined alternative to traditional RL approaches by directly
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optimizing the model’s parameters based on human preference data. Unlike methods that require
training a separate reward model, DPO simplifies the alignment process through a classification loss
that encourages the model to prefer responses aligned with human preferences.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) builds upon the foundations of PPO
by introducing a group-based comparison mechanism. Instead of evaluating individual responses,
GRPO assesses groups of outputs to derive a relative advantage, promoting more nuanced learning.
This method has shown promise in enhancing the reasoning abilities of LLMs, particularly in complex
tasks such as mathematical problem-solving (Zhang & Zuo, 2025).

Collectively, these reinforcement learning methodologies contribute significantly to the post-training
refinement of LLMs, ensuring that the models not only generate coherent text but also align closely
with human expectations and demonstrate improved reasoning skills.

4.2 LARGE LANGUAGE MODELS AS AGENTS

Framing LLMs as autonomous agents capable of planning and executing multi-step reasoning has
become an emerging paradigm (Luo et al., 2025; Zhao et al., 2023; Sumers et al., 2024; Jiabin Tang,
2025). Agent frameworks such as AutoGPT (Yang et al., 2023a) and LangChain (lan, 2023) demon-
strate how models can iteratively refine tasks, search information, and generate solutions. Recent
work (Chen et al., 2025; Feng et al., 2025; Zheng et al., 2025) emphasizes the importance of tool
selection and usage timing. However, existing systems often rely on heuristics or fixed prompting
strategies to manage tool invocation. In contrast, our method explicitly trains the model through RL
to learn optimal tool usage patterns, enhancing both interpretability and performance.

5 LIMITATION

In this paper, we proposed the SEM to help the LLMs better understand how to search. Despite the
demonstrated benefits of SEM, our work has serveral limitations that warrant further study:

Exclusive Focus on Search. We evaluate and train our framework solely on search-based tool
invocation, without exploring how the model might learn to call other types of tools (e.g., calculators,
knowledge graphs, code execution). As a result, the learned policy may not generalize to scenarios
requiring diverse or specialized tool interactions beyond simple information retrieval. However, as
one of the most important tools for agent, understanding how to search better is the current priority.

Fixed RL Algorithm Design. Our SEM framework is built upon Group Relative Policy Optimization
(GRPO) to govern search-invocation decisions. Nevertheless, the broader landscape of tool-enabled
language agents suggests that alternative reinforcement learning paradigms—such as hierarchical
policies for multi-tool selection, off-policy methods emphasizing sample efficiency, or meta-learning
approaches that adapt invocation strategies dynamically—could yield superior performance. Explor-
ing these more specialized algorithms may not only improve training efficiency but also enhance the
framework’s extensibility to diverse toolsets and real-world applications.

6 CONCLUSION

In this work, we proposed a novel post-training reinforcement learning framework, SEM, to optimize
search behavior in large language models. We first construct a balanced dataset that explicitly
distinguishes between known and unknown questions, and designing a reward function that penalizes
unnecessary search while encouraging effective retrieval.

Our experimental results demonstrate that we can significantly improve both the efficiency and
performance of tool-augmented models. Specifically, we train the model on the dataset combined by
MuSiQue and MMLU and then evaluate the model on HotpotQA, MuSiQue, MMLU, and GSM8k.
Our results demonstrate that SEM not only reduces redundant search operations but also enhances
answer accuracy. This work opens new directions for training intelligent and resource-efficient agents.
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