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ABSTRACT

Many types of data are generated at least partly by discrete causes that are sparsely
active. To model such data, we here investigate a deep generative model in the
form of a variational autoencoder (VAE) which can learn a sparse, binary code for
its latents. Because of the latents’ discrete nature, standard VAE training is not
possible. The goal of previous approaches has therefore been to amend (i.e., typi-
cally anneal) discrete priors in order to train discrete VAEs analogously to conven-
tional ones. Here, we divert much more strongly from conventional VAE training:
We ask if it is also possible to keep the discrete nature of the latents fully intact
by applying a direct, discrete optimization for the encoding model. In doing so,
we (1) sidestep standard VAE mechanisms such as sampling approximation, repa-
rameterization trick and amortization, and (2) observe a much sparser encoding
compared to autoencoders that use annealed discrete latents. Direct optimization
of VAEs is enabled by an evolutionary algorithm in conjunction with truncated
posteriors as variational distributions, i.e. by a combination of methods which is
here for the first time applied to a deep model. We first show how the discrete vari-
ational method (A) ties into gradient ascent for network weights, and how it (B)
uses the decoder network to select binary latent states for training. Sparse codes
have prominently been applied to image patches, where latents encode edge-like
structure. For our VAEs, we maintain this prototypical application domain and ob-
serve the emergence of much sparser codes compared to more conventional VAEs.
To allow for a broad comparison to other approaches, the emerging encoding was
evaluated on denoising and inpainting tasks, which are canonical benchmarks for
image patch models. For datasets with many, large images of single objects (Ima-
geNet, CIFAR etc) deep generative models with dense codes seem preferable. For
image patches, however, we observed advantages of sparse codes that give rise to
state-of-the-art performance in ‘zero-shot’ denoising and inpainting benchmarks.
Sparse codes can consequently make VAEs competitive on tasks where they have
previously been outperformed by non-generative approaches.

1 INTRODUCTION & RELATED WORK

Objects or edges in images are either present or absent, which suggests the use of discrete latents for
their representation. There are also typically only few objects per image (of all possible objects) or
only few edges in any given image patch (of all possible edges), which suggests a sparse code (e.g.
Olshausen & Field, 1996; Titsias & Lázaro-Gredilla, 2011; Goodfellow et al., 2013; Sheikh et al.,
2014). In order to model such and similar data, we study a novel, direct optimization approach
for variational autoencoders (VAEs), which can learn a sparse, discrete encoding. VAEs (Kingma
& Welling, 2014; Rezende et al., 2014) in their many different variations, have successfully been
applied to a large number of tasks including semi-supervised learning (e.g. Maaløe et al., 2016),
anomaly detection (e.g. Kiran et al., 2018), sentence interpolation (Bowman et al., 2016) or music
interpolation (Roberts et al., 2018) to name a few. The success of VAEs, in these tasks, rests on
a series of methods that enable the derivation of scalable training algorithms to optimize VAE pa-
rameters. These methods were originally developed for Gaussian priors; to account for VAEs with
discrete latents, novel methodology had to be introduced (we elaborate below and later in App. A).

The training objective of VAEs is derived from a likelihood objective, i.e., we seek model parameters
Θ of a VAE that maximize the data log-likelihood, L(Θ) =

∑
n log

(
pΘ(~x (n))

)
, where we denote
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by ~x(1:N) a set of N observed data points, and where pΘ(~x) denotes the modeled data distribution.
Like conventional autoencoders (e.g., Bengio et al., 2007), VAEs use a deep neural network (DNN)
to generate (or decode) observables ~x from a latent code ~z. Unlike conventional autoencoders, how-
ever, the generation of data ~x is not deterministic but it takes the form of a probabilistic generative
model. For VAEs with binary latents, we here consider the following generative model:

pΘ(~z) = Bern(~z;~π) =
∏
h

(
πzhh (1− πh)(1−zh)

)
, pΘ(~x |~z) = N

(
~x; ~µ(~z;W ), σ2I

)
, (1)

with ~z ∈ {0, 1}H being a binary code parameterized by priors ~π, ~x ∈ RD, and the non-linear
function ~µ(~z;W ) being a DNN that outputs the mean of the Gaussian distribution. pΘ(~x |~z) is
commonly referred to as decoder. The set of model parameters is Θ = {~π,W, σ2}, where W
incorporates DNN weights and biases. We assume homoscedasticity of the Gaussian distribution,
but note that there is no obstacle to generalizing the model by inserting a DNN non-linearity that
outputs a correlation matrix. Similarly, the algorithm could easily be generalized to different noise
distributions should the task at hand call for it. For the purpose of this work, however, we will focus
on the elementary VAEs given by Eqn. (1).

For conventional and discrete VAEs, essentially all optimization approaches seek to approximately
maximize the log-likelihood using the following series of methods (we elaborate in App. A):

(A) Instead of the log-likelihood, a variational lower-bound (a.k.a. ELBO) is optimized.
(B) VAE posteriors are approximated by an encoding model, i.e. by a specific distribution (usu-

ally Gaussian) parameterized by one or more DNNs.
(C) The variational parameters of the encoder are optimized using gradient ascent on the lower

bound, where the gradient is evaluated based on sampling and the reparameterization trick
to obtain sufficiently low-variance and yet efficiently computable estimates.

(D) Using samples from the encoder, the parameters of the decoder are optimized using gradient
ascent on the variational lower bound.

Optimization procedures for VAEs with discrete latents follow the same steps (Points A to D). How-
ever, discrete or binary latents pose substantial further obstacles for learning, mainly due to the fact
that backpropagation through discrete variables is generally not possible or biased (Rolfe, 2016;
Bengio et al., 2013). Key elements of gradient estimators commonly applied for discrete latent
VAEs include, e.g., reparameterizations of continuous approximations to discrete latents (Jang et al.,
2016) or score function based reformulations yielding a surrogate loss (Schulman et al., 2015, also
see Related Work and App. B.6). While accomplishing, in different senses, the goal of maintaining
standard VAE training as developed for continuous latents (i.e., learning procedures and/or learn-
ing objectives that allow for gradient-based learning of the encoder and decoder DNNs), gradient
estimation methods apply significant amounts of methodology additional to the learning methods
conventionally applied for VAE optimization. These additional methods (compare Fig. 7), their ac-
companying design decisions and used hyper-parameters (e.g. parameters for annealing to ‘soften’
discrete distributions) do increase the complexity of the system that has to be optimized. Further-
more, the additional methods usually impact the learned representations. For instance, softening of
discrete distributions, e.g. by using ‘Gumbel-softmax’ (Jang et al., 2016) or ‘tanh’ approximations
(Fajtl et al., 2020) seems to favor dense codes. While dense codes (as also used by conventional
VAEs and GANs) can result in competitive performance for a subset of the above discussed tasks,
other recent contributions point out advantages of sparse codes, e.g., in terms of disentanglement
(Tonolini et al., 2020) or robustness (Sulam et al., 2020; Paiton et al., 2020).

In order to avoid adding methods for discrete latents to those already in place of standard VAEs,
it may be reasonable to investigate more direct optimization procedures that do not require, e.g., a
softening of discrete distributions or other mechanisms. Such a direct approach is challenging, how-
ever, because once DNNs are used to define the encoding model (as commonly done), we require
methodologies for discrete latents to estimate gradients for the encoder (as done via sampling and
reparameterization; see Points C and D). A direct optimization procedure, as we investigate here,
consequently has to change VAE training substantially. For the data model (1), we will maintain the
variational setting (Point A) and a decoding model with DNNs as non-linearity. However, we will
not use an encoder model parameterized by DNNs (Point B). Instead, the variational bound will be
increased w.r.t. an implicitly defined encoder model which allows for an efficient discrete optimiza-
tion. The procedure does not require gradients to be computed for the encoder such that discrete
latents are addressed without the use of reparameterization trick and sampling approximations.
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Related Work. In order to maintain the general VAE framework for encoder optimization in the
case of discrete latents, different groups have suggested different possible solutions: work by Rolfe
(2016), for instance, extends VAEs with discrete latents by auxiliary continuous latents such that gra-
dients can still be computed. Work on the concrete distribution (Maddison et al., 2016) or Gumbel-
softmax distribution (Jang et al., 2016) proposes newly defined continuous distributions that contain
discrete distributions as limit cases. Work by Lorberbom et al. (2019) merges the Gumbel-Max
reparameterization with the use of direct loss minimization for gradient estimation, enabling effi-
cient training on structured latent spaces (for further improved Gumbel-softmax versions also see
Kool et al., 2020; Potapczynski et al., 2020; Paulus et al., 2021). Furthermore, work, e.g., by van den
Oord et al. (2017), and Roy et al. (2018) combines VAEs with a vector quantization (VQ) stage in
the latent layer. Latents become discrete through quantization but gradients for learning are adapted
from latent values before they are processed by the VQ stage. Similarly, Tomczak & Welling (2018)
use what they call (learnable) pseudo-inputs which determine a mixture distribution as prior, and the
ELBO then contains an additional regularization for consistency between prior and average poste-
rior. Tonolini et al. (2020) extend this work and introduce an additional DNN classifier. The classifier
selects pseudo-inputs and the classifier weights are learned instead of the pseudo-inputs themselves.
Using their approach, Tonolini et al. (2020) also argue for the benefits not only of discrete latents
but of a sparse encoding in the latent layer in general. Fajtl et al. (2020) base their approach on
a deterministic autoencoder and use a tanh-approximation of binary latents and a projections to
spheres in order to treat binary latents. Targeting not only discrete VAE optimization but more gen-
eral approaches such as probabilistic programming or general stochastic automatic differentiation,
Bingham et al. (2019); van Krieken et al. (2021) apply gradient estimators for discrete random vari-
ables which optimize surrogate losses (Schulman et al., 2015) derived based on the score function
(Foerster et al., 2018) or other methods (van Krieken et al., 2021). For the derivation of efficient,
unbiased any-order derivatives, techniques for variance reduction of estimators are identified as key
components. van Krieken et al. (2021) mention exponential scaling behavior which, however, can
be addressed using efficient parallelized computations. Furthermore related are methodologies for
gradient estimation for unknown (‘black-box’) functions of discrete or continuous random variables
as studied by (Grathwohl et al., 2018), who optimize neural network-based surrogate losses.

In terms of numerical evaluation, the above discussed approaches demonstrate the benefits of the
respective new methodology on very different experiments. For instance, van den Oord et al. (2017)
focus on image, video and speech generation capabilities of their approach, and report concrete
values e.g. for phoneme classification for their evaluation. Roy et al. (2018) show improved image
generation capabilities, e.g., on CIFAR and report accuracy scores for machine translation similar
to autoregressive baselines. Tomczak & Welling (2018) show competitive likelihood results in the
unsupervised permutation invariant setting for many data sets; and Fajtl et al. (2020) evaluate their
approach based on accuracy/sensitivity tradeoffs among other comparisons. Tonolini et al. (2020)
focus on the competitive capabilities of their VAEs to learn meaningful (disentangled) features;
and Lorberbom et al. (2019) focus on the benefits of structured priors. Numerical evaluations of
their VAEs and different numbers of categoric latents show better performance of their direct loss
minimization than Gumbel-softmax VAEs, and the same applies for comparisons in terms of semi-
supervised learning. Similarly to Tonolini et al. (2020), disentanglement results for the relatively
large CelebA dataset are also shown by Lorberbom et al. (2019). For this and many other datasets,
large DNNs are required while the latent layers are often kept relatively small.

2 DIRECT VARIATIONAL OPTIMIZATION

Let us consider the variational lower bound of the likelihood. If we denote by q(n)
Φ (~z) the variational

distributions with parameters Φ = (Φ(1), . . . ,Φ(N)), then the lower bound is:

F(Φ,Θ) =
∑
nEq

(n)
Φ

[
log
(
pΘ(~x (n) |~z) pΘ(~z)

)]
−
∑
nEq

(n)
Φ

[
log
(
q

(n)
Φ (~z)

)]
, (2)

where we sum over all data points ~x(1), . . . , ~x(N), and where E
q
(n)
Φ

[
h(~z)

]
denotes the expectation

value of a function h(~z) w.r.t. distribution q(n)
Φ (~z). The general challenge for the maximization of

F(Φ,Θ) is the optimization of the encoding model q(n)
Φ . VAEs with discrete latents add to this

challenge the problem of taking gradients w.r.t. discrete latents. Seeking to avoid such derivatives,
we, for our purposes, do not use a DNN for the encoding model. Consequently, we need to define an
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alternative encoding model q(n)
Φ , which has to remain sufficiently efficient. Considering prior work

on generative models with discrete latents, variational distributions based on truncated posteriors
offer themselves as such an alternative (Lücke & Sahani, 2008). Truncated posterior approxima-
tions have been shown to be functionally competitive (e.g. Sheikh et al., 2014; Hughes & Sudderth,
2016), and they are also able to efficiently train large-scale models with hundreds or thousands of
latents (e.g. Sheikh & Lücke, 2016; Forster & Lücke, 2018). In all these previous applications,
optimization of truncated variational distributions relied on expectation maximization and closed-
form or pseudo-closed form M-steps for shallow models. In the context of discrete latent VAEs, the
important question arising is if or how the optimization of truncated variational distributions for the
encoding model can be performed jointly with gradient-based optimization of the decoding model
(which uses a DNN).

Optimization of the Encoding Model. Encoder optimization is usually based on a reformulation
of the variational bound (2) given by:

F(Φ,Θ) =
∑
nEq

(n)
Φ

[
log
(
pΘ(~x (n) |~z)

)]
−
∑
nDKL

[
q

(n)
Φ (~z); pΘ(~z)

]
. (3)

For discrete latent VAEs, the variational distributions in (3) are commonly replaced by an amortized
encoding model qΦ(~z) with a DNN-based parameterization. When expectations w.r.t. qΦ(~z) are ap-
proximated (as usual) via sampling, the encoder optimization requires gradient estimation methods
for discrete random variables (cf. Related Work and App. B.6). In contrast, our proposed approach
uses truncated posteriors as variational distributions and hence deviates substantially from the afore-
mentioned standard approach. Given a data point ~x (n), a truncated posterior is simply the posterior
itself truncated to a subset Φ

(n)

of the latent space, i.e., for ~z ∈ Φ
(n)

applies:

q
(n)
Φ (~z) :=

pΘ(~z | ~x (n))∑
~z ′∈Φ

(n)

pΘ(~z ′ | ~x (n))
=

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n)

pΘ(~x (n) |~z ′) pΘ(~z ′)
(4)

while q(n)
Φ (~z) = 0 for ~z 6∈ Φ

(n)

. The subsets Φ = {Φ(n)}Nn=1 are the variational parameters. Cen-
trally for this work, truncated posteriors allow for a specific alternative reformulation of the bound.
The reformulation recombines the entropy term of the original form (2) with the first expectation
value into a single term, and is given by (see Lücke & Forster, 2019; Lücke, 2019, for details):

F(Φ,Θ) =
∑
n

log
( ∑
~z∈Φ

(n)

pΘ(~x (n) |~z) pΘ(~z)
)
. (5)

Thanks to the simplified form of the bound, the variational parameters Φ
(n)

of the encoding model
can now be sought using direct discrete optimization procedures. More concretely, because of the
specific form (5), pairwise comparisons of joint probabilities are sufficient to maximize the lower
bound: if we update the set Φ

(n)

for a given ~x (n) by replacing a state ~z old ∈ Φ
(n)

with a state
~z new 6∈ Φ

(n)

, then F(Φ,Θ) increases if and only if:

log
(
pΘ(~x (n), ~z new)

)
> log

(
pΘ(~x (n), ~z old)

)
. (6)

To obtain intuition for the pairwise comparison, consider its form when inserting the binary VAE (1)
into the left- and right-hand sides. Eliding terms that do not depend on ~z we obtain:˜log pΘ(~x, ~z) = −‖~x− ~µ(~z,W )‖2 − 2σ2

∑
h π̃h zh (7)

where π̃h = log
(
(1 − πh)/πh

)
. The expression assumes an even more familiar form if we restrict

ourselves for a moment to sparse priors with πh =π < 1
2 , i.e., π̃h = π̃ > 0. Criterion (6) then becomes:

‖~x (n) − ~µ(~z new,W )‖2 + 2σ2π̃ |~z new| < ‖~x (n) − ~µ(~z old,W )‖2 + 2σ2π̃ |~z old| , (8)

where |~z | =
∑H
h=1 zh. Such functions are routinely encountered in sparse coding or compressive

sensing (Eldar & Kutyniok, 2012): for each set Φ
(n)

we seek those states ~z that are reconstructing
~x (n) well while being sparse (~z with few non-zero bits). For VAEs, ~µ(~z,W ) is a DNN and as such
much more flexible in matching the distribution of observables ~x than can be expected from linear
mappings. Furthermore, criteria like (8) usually emerge for maximum a-posteriori (MAP) training
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Figure 1: The optimization process of the
variational parameters Φ(n) using evolution-
ary search. A. Some states are selected as
parents. B. Each child undergoes mutation.
C. Children are merged with the original
population and the least fit are discarded.

in sparse coding (Olshausen & Field, 1996). In contrast to MAP, however, we here seek a population
of states ~z in Φ

(n)

for each data point. It is a consequence of the reformulated lower bound (5) that
it remains optimal to evaluate joint probabilities (as for MAP) although the constructed population
of states Φ

(n)

can capture (unlike MAP training) a rich posterior structure.

Evolutionary Search. But how can new states ~z new that optimize Φ
(n)

be found efficiently in high-
dimensional latent spaces? Random search and search by sampling has recently been explored for
elementary generative models (Lücke et al., 2018). Here we will follow another recent suggestion
(Guiraud et al., 2018) and make use of a search based on evolutionary algorithms (EAs). In this
setting we interpret sets Φ

(n)

as populations of binary genomes ~z and base the fitness function on
Eqn. (7). Concretely, using Φ

(n)

as initial parent pool, we apply the following genetic operators in
sequence to suggest new states to update the Φ

(n)

based on Eq. 6 (see Fig. 1 for an illustration
and App. A.1 for further details): firstly, parent selection stochastically picks states from the parent
pool. Each of these states undergoes mutation: one or more bits are flipped to further increase
offspring diversity. Crossover could also be employed to increase offspring diversity. We repeat
the procedure using the children generated this way as the parent pool, giving birth to multiple
generations of candidate states. Finally, we update Φ

(n)

by substituting individuals with low fitness
with candidates with higher fitness. The whole procedure can be seen as an evolutionary algorithm
with perfect memory or very strong elitism (individuals with higher fitness never drop out of the
gene pool). Note that the improvement of the variational lower bound depends on generating as
many as possible different children with high fitness over the course of training.

We point out that the EAs optimize each Φ
(n)

independently, which allows for distributed execution
s.t. the technique can be efficiently applied to large datasets in conjunction with stochastic or batch
gradient descent on the model parameters Θ. The approach is, at the same time, memory intensive,
i.e. all sets Φ

(n)

need to be kept in memory (see App. A for details).

Optimization of the Decoding Model. Using the previously described encoding model q(n)
Φ (~z),

we can compute the gradient of (2) w.r.t. the decoder weights W which results in (see App. A for
more details):

~∇WF(Φ,Θ) = − 1
2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2 (9)

The right-hand-side has salient similarities to standard gradient ascent for VAE decoders. Especially
the familiar gradient of the mean squared error (MSE) shows that, e.g., standard automatic differ-
entiation tools can be applied. However, the decisive difference are the weighting factors q(n)

Φ (~z).
Considering (4), in order to compute the weighting factors we require all ~z ∈ Φ

(n)

to be passed
through the decoder DNN. As all states of Φ

(n)

anyway have to be passed through the decoder for
the MSE term of (9), the overall computational complexity is not higher than an estimation of the
gradient with samples instead of states in Φ

(n)

(but we use many states per Φ
(n)

, compare Tab. 1).

To complete the decoder optimization, update equations for variance σ2 and prior parameters ~π can
be computed in closed-form (compare, e.g., Shelton et al., 2011) and are given by

σ2,new = 1
DN

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ‖~x (n) − ~µ(~z,W )‖2 and ~πnew = 1

N

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~z . (10)

The full training procedure for binary VAEs is summarized in Algorithm 1. We refer to the bi-
nary VAE trained with this procedure as Truncated Variational Autoencoder (TVAE) because of the
applied truncated posteriors.
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Algorithm 1 Training Truncated Variational Autoencoders
Initialize model parameters Θ = {W,~π, σ2}
Initialize each Φ

(n)

with S distinct latent states
repeat

for all batches in dataset do
for sample n in batch do

Φnew = Φ
(n)

for all generations do
Φnew = mutation (selection (Φnew))

Φ
(n)

= Φ
(n)

∪ Φnew

end for
Truncate Φ

(n)

to S fittest elements based on (7)
end for
Use Adam to update W using (9)

end for
Use (10) to update ~π, σ2

until parameters Θ have sufficiently converged

Figure 2: Graphical Representation of
the Model Architecture Used in Nu-
merical Experiments.

3 NUMERICAL EXPERIMENTS

TVAE can flexibly learn prior parameters π1, . . . , πH , and if low values for the πh are obtained
(which will be the case) the code is sparse. The prototypical application domain to study sparse
codes is image patch data (Olshausen & Field, 1996; Goodfellow et al., 2012). We consequently
use such data to investigate sparsity, scalability and efficiency on benchmarks. In App. B.7, we
furthermore report results for a benchmark with audio data. For all numerical experiments, we
employ fully connected DNNs ~µ(~z;W ) for the decoder as illustrated in Fig. 2; the exact network
architectures and activations used are listed in Tab. 1. The DNN parameters are optimized based on
(9) using mini-batches and the Adam optimizer (details in App. B.1)

Sparsity and scalability. After first verifying that the procedure can recover generating parameters
using ground-truth data (see App. B.2), we used N = 100, 000 whitened image patches of 16× 16
pixels (van Hateren & van der Schaaf, 1998). We then applied TVAE with different settings. First,
we used a model with H = 300 and a linear decoder; and, second, a TVAE with H = 300 and
a deep decoder with architecture (300-300-256), see App. B.3 for details. Regarding sparsity, we
observed for linear and non-linear TVAEs a sparse encoding. For the linear TVAE we observed on
average 20.3 latents active across data points (i.e.,

∑
h πh /H = 20.3 / 300), and for the non-linear

TVAE we observed on average 28.5 latents to be active (
∑
h πh /H = 28.5 / 300). We observed

sparse codes also when we changed parameter initialization, used other DNNs and when changing
latent dimensions. Furthermore, we observed efficient scalability to large latent spaces (we went
up to H = 1000) as long as decoder DNNs were of small to intermediate size. Compared to
linear decoders, the main additional computational cost is given by passing the latent states of Φ

(n)

through the decoder DNN. instead of just through a linear mapping. The sets of states (i.e., the
bitvectors in Φ

(n)

) could be kept small, at size S = |Φ(n) | = 64, such that N × (|Φ(n) | + |Φ(n)

new|)
states had to be evaluated for each epoch. This compares to N ×M states that would be used for
standard VAE training (given M samples are drawn per data point). Differently to standard VAE
training the sets Φ

(n)

have to be remembered across iterations. For very large datasets, the additional
O(N×|Φ(n) |×H) memory demand can be distributed over compute nodes, however.

Denoising and inpainting. The experiments above show a notable difference in scalability char-
acteristics compared to other (including discrete) VAEs. Using a non-amortized approaches means
that memory and computational load more strongly increase with data points than for amortized
training. Above, we processed 100, 000 data points which is still feasible for DNNs of inter-
mediate size. Large decoder DNNs increase the computational load significantly, however, as
N × (|Φ(n) | + |Φ(n)

new|) latent states have to be passed through the decoder. Furthermore, larger
DNNs require more data points to not overfit which further increases computational load of our N -
dependent method. Tasks such as disentanglement of features using high-dimensional input data,
large DNNs, and small latent spaces (see introduction) are, therefore, not a regime where the here
studied approach can be applied efficiently. However, for tasks with relatively few data for which an
as effective as possible optimization is required, advantages of direct optimization can be expected.
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A Original

Noisy (σ=50)B

C Denoised

D Controlled conditions

E Different optimized hyperparameters

Figure 3: Denoising results for House. D compares
PSNRs (in dB) obtained with different ‘zero-shot’ mod-
els using a fixed patch size and number of latents (see text
for details). E lists PSNRs for different algorithms with
different optimized hyper-parameters. The top category
only requires the noisy image. The middle requires addi-
tional information such as noise level (KSVD, WNNM,
BM3D) or additional noisy images with matched noise
level (n2v†). The bottom three algorithms use large clean
datasets. C depicts the denoised image obtained with
TVAE for σ = 50 in the best run (PSNR=30.03 dB).

For image patches, sparse codes are often preferred to dense encoding. A canonical benchmark to
evaluate image patch models is ‘zero-shot’ denoising, which recently became popular also because
conventional DNN denoising is not offering good solutions. ‘Zero-shot’ means that only the noisy
image is used for training. If no clean data is available, variations of feed-forward DNNs have
been suggested whose training objectives have been altered to enable training on single (or few)
noisy images (e.g. Lehtinen et al., 2018; Krull et al., 2019b). However, deep generative models are
(we would argue) more natural candidates to train on noisy data as their learning objective can be
used directly. If few data is available for ‘zero-shot’ learning, large and very deep DNNs cannot
be used. Shocher et al. (2018), for instance, also argue that smaller DNNs are sufficient for the
‘zero-shot’ setting. The task is consequently natural and well suited to evaluate direct optimization,
and it has the very significant additional benefit of allowing for a comparison to a large range of
other approaches that have recently been suggested. Most notably, we can compare to other VAEs
(Jang et al., 2016; Park et al., 2019a), to sparse coding, to large feed-forward DNNs (Zhu et al.,
2019; Dong et al., 2019), and to DNNs dedicated to learning from noisy data (Lehtinen et al., 2018;
Krull et al., 2019b). Furthermore, we evaluate our approach on image inpainting. Like denoising,
inpainting allows for comparison to other reported results on standard benchmarks. Additionally,
inpainting highlights another advantage of the direct optimization approach we study: as no encoder
DNNs are used, missing data can naturally and directly be treated probabilistically (see below).

The one denoising benchmark that offers the broadest possible comparison to other methods is the
‘house’ image (Fig. 3 A). Standard benchmark settings for ‘house’ make use of additive Gaussian
white noise with standard deviations σ ∈ {15, 25, 50}. First, consider the comparison in Fig. 3 D
where all models used the same patch size of D = 8 × 8 pixels and H = 64 latent variables
(App. B.4 for details). Fig. 3 D lists the different approaches in terms of the standard measure of peak
signal-to-noise ratio (PSNR). Values for MTMKL (Titsias & Lázaro-Gredilla, 2011), GSC (Sheikh
et al., 2014) and S5C (Sheikh & Lücke, 2016) were taken from the respective original publications
(which all established new state-of-the-art results when first published). As can be observed, TVAE
significantly improves performance for high noise levels. The approach is able to learn the best
data representation for denoising and represents the state-of-the-art in this controlled setting (i.e.,
fixed D and H). The decoder DNN of TVAE provides the decisive performance advantage: TVAE
significantly improves performance compared to linear Binary Sparse Coding (var-BSC, Henniges
et al., 2010; Shelton et al., 2011), confirming that the high lower bounds of TVAE on natural images
translate into improved performance on a concrete benchmark. For σ = 25 and σ = 50, TVAE also
significantly improves on MTMKL, GSC, and S5C. These three approaches are based on a spike-
and-slab sparse coding model (also compare Goodfellow et al., 2012). Despite the less flexible
Bernoulli prior, the decoder DNN of TVAE provides the highest PSNR values for high noise levels.

To extend the comparison, we next considered the denoising task without controlling for equal
conditions. Concretely, we allowed for any approach that performs denoising on the benchmark
including approaches that are trained on large image datasets and/or use different patch sizes (in-
cluding multi-scale and whole image processing). Note that different approaches may employ very
different sets of hyper-parameters that can be optimized for denoising performance: for sparse cod-
ing approaches, hyper-parameters include patch and dictionary sizes; for DNN approaches they
include all network and training scheme hyper-parameters. By allowing for comparison in this less
controlled setting, we can include a number of recent approaches including large DNNs trained
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Figure 4: Comparison of data representations learned by denoising image patches (cf. App. B.6).

on clean data and training schemes specifically targeted to noisy training data. Fig. 3 E shows the
denoising performance for the three noise levels we investigated, with results for other algorithms
taken from their corresponding original publications unless specified otherwise. For WNNM and
EPLL we cite values from Zhang et al. (2017). The results reported for noise2void (n2v, Krull et al.,
2019b), Gumbel-softmax VAE (GSVAE; Jang et al., 2016), VLAE (Park et al., 2019a), we produced
ourselves by applying publicly available source code (see App. B.4).

Note that the best performing approaches in Fig. 3 E were trained on noiseless data: EPLL (Zoran
& Weiss, 2011), BDGAN (Zhu et al., 2019) and DPDNN (Dong et al., 2019) all make use of clean
training data (typically hundreds of thousands of data points or more). For denoising, EPLL also
requires the ground-truth noise level of the test image. Ground-truth noise level information is also
required by KSVD (Elad & Aharon, 2006) and WNNM (Gu et al., 2014). As noisy data is very
frequently occurring, lifting the requirement of clean data has been of considerable recent interest
with, e.g., approaches like noise2noise (n2n Lehtinen et al., 2018) and noise2void having received
considerable attention. The n2n approach can achieve denoising performance on noisy training
data which is almost as high as the performance of a given DNN when trained on clean data. It
would thus outperform all approaches in Fig. 3 E except for the bottom three. However, n2n requires
different noise realizations of the very same underlying image. The noise2void approach aims to
remove this unrealistic, artificial assumption. Considering Fig. 3 E, PSNR values of TVAE were
consistently higher than those of n2v even if n2v was trained on external data with matched-noise
level (n2v† in Fig. 3 E). Performance of TVAE is 0.2dB lower than BM3D for σ = 25 and 0.6dB
higher for σ = 50, which makes it, for larger noise levels, the state-of-the-art on this benchmark in
the ‘zero-shot’ setting (i.e., the setting n2n and n2v aim to address).

Besides measuring PSNRs, we investigated the generative representation that TVAE used for de-
noising. For TVAE, training and data reconstruction is performed based on patches taken from the
noisy image, and reconstructed image patches are finally combined to generate the denoised image
(see App. B.4 for details). Based on such image patches, TVAE learns a sparse encoding which, in
terms of lower bounds, shows to be very competitive compared to other generative models (com-
pare Fig. 4). For the House denoising benchmark (Fig. 3 E), the sparsity, i.e., the average number of
active latents

∑
h πh /H was 5.98 / 64 (σ = 15), 4.47 / 64 (σ = 25), 1.65 / 512 (σ = 50).

Finally, TVAE can be applied to ‘zero-shot’ inpainting tasks using a procedure similar to the one
employed for denoising. For TVAE, the treatment of missing data is directly available. Missing
pixel values are simply treated as such using the probabilistic description of the model. Concretely,
when evaluating log-joint probabilities of a data-point during training, missing values are treated
as unknown observables (App. B.5). In contrast, amortized approaches will have to specify how
the deterministic encoder DNNs should treat missing values. Fig. 5 compares PSNRs obtained with
TVAE to other methods: the left table shows results for ‘House’, where we separate BPFA and
TVAE, which are permutation-invariant approaches, from DIP and Papyan et al. (2017), which are
not permutation-invariant. Fig. 5 (right) shows results for ‘Castle‘, where we separate ‘zero-shot’ ap-
proaches (top section) from non-‘zero-shot’ approaches (bottom section; PLE refers to the approach
from Yu et al. (2012), IRCNN refers to Chaudhury & Roy (2017)). Fig. 5 (right) shows the result
of ‘zero-shot’ inpainting on ‘Castle’ with 50% missing pixels (more details in App. B.5). As can be
observed, TVAE is state-of-the-art for ‘House’ and for the larger ‘Castle’ with 50% missing pixels.
But if non-permutation invariant DNNs with specific, large U-nets are used (DIP for ‘House’), or if
models are trained on clean data, then higher PSNR values are achieved.
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Figure 5: Inpainting results for House (50% missing pixels) and Castle (50% and 80% missing).
Highest PSNR in the ‘zero-shot’ setting (top rows) marked bold; overall highest PSNRs are bold
and underlined. PLE requires the noise level as additional information; IRCNN requires external
clean training images; Papyan et al. and DIP are not permutation invariant. The rightmost image
depicts TVAE’s inpainting result for Castle (50% missing; sparsity

∑
h πh /H was 10.56 / 512).

4 DISCUSSION

We investigated VAEs with binary priors able to learn sparse latent codes. We were in general inter-
ested in how such codes can efficiently be learned, and what advantages (and disadvantages) can be
observed. Compared to all previous VAEs with discrete latents, the approach we followed differs the
most substantially from conventional VAE learning. While all other VAEs maintain amortization and
reparameterization as key elements, the TVAE approach instead uses a direct discrete optimization
of binary latent vectors. A conceptual advantage of the approach is its concise formulation (compare
Fig. 7) with fewer algorithmic elements, fewer hyperparameters and fewer model parameters (e.g.,
no parameters of encoder DNNs). Functional advantages of the approach are its avoidance of an
amortization gap, its ability to learn sparse codes, and its generality (it does not use a specific pos-
terior model, and can be applied to other noise models, for instance). However, the disadvantage of
a non-amortized approach is a lower computational efficiency: we optimize variational parameters
for each data point which is more costly. Conventional amortized approaches (for discrete or con-
tinuous VAEs) are consequently preferable if one seeks to optimize large, intricate DNNs on large
data sets. There are, however, alternatives such as transformers (which can use >150M parameters)
or diffusion nets, which both are considered to perform more strongly than VAEs for large-scale
settings and density modeling (Child et al., 2019; Kingma et al., 2021, for recent comparisons).

When no sufficiently large datasets are available, models incorporating large DNNs can not be op-
timized. In such cases, we observe sparse codes obtained by direct discrete optimization to be
advantageous. For image patch modeling, TVAE with intermediately large decoder DNNs outper-
formed Gumbel-softmax VAEs (GSVAE) as well as, e.g., a recent continuous VAE baseline (VLAE;
Park et al., 2019a, Figs. 3,4). The competitive performance is presumably due to the approach not
being subject to an amortization gap, due to it avoiding factored variational distributions, and more
generally due to the emerging sparse codes being well suited to model image patches. In com-
parison, the additional methods to treat discrete latents in GSVAE seem to result in dense codes
with significantly lower performance than TVAE. Performance of VLAE is much more competitive.
While VLAE uses a vanilla non-sparse (i.e. Gaussian) prior, its continuous encoding is presumably
a reason why its dense codes result in higher ELBO values than GSVAE (but in lower values than
TVAE). Dense codes are notably not necessarily disadvantages for image data. For datasets with
many images of single objects like CIFAR, the dense code of GSVAE and also of VLAE is similar
or better in terms of ELBO values than TVAE (Fig. 15). The suitability of sparse vs. dense codes
consequently seems to highly depend on the data, and here we confirm the suitability of sparse codes
for image patches. Based on the high ELBO values of TVAE for patches (Figs. 4,12), we observed
TVAE to result in state-of-the-art performance on the recently popular task of ‘zero-shot’ denoising
(also see Fig. 16 for benchmarking results with audio data). Likewise, the approach is competitive
for ‘zero-shot’ inpainting. Inpainting highlights another advantage of direct optimization: in con-
trast to other (continuous or discrete) VAEs, it is not required to additionally specify how missing
data shall be treated by an encoder DNN (see App. B.5).

Our conclusion is consequently that direct discrete optimization can, depending on the task, serve
as an alternative for training discrete VAEs. In a sense, the approach can be considered more brute-
force than conventional amortized training: direct optimization is slower but at scales at which it
can be applied more effective. To our knowledge, the approach is also the first training method for
discrete VAEs not using gradient optimization of encoder models, and in general the first which
makes discrete VAEs competitive, e.g., for ‘zero-shot’ denoising and inpainting.
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Jörg Lücke, Zhenwen Dai, and Georgios Exarchakis. Truncated Variational Sampling for “Black
Box” Optimization of Generative Models. In LVA/ICA, pp. 467–478, 2018.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep gen-
erative models. In ICML 2016, 2016.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image Restoration Using Very Deep Convolutional
Encoder-Decoder Networks with Symmetric Skip Connections. In NIPS, pp. 2802–2810, 2016.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV,
volume 2, pp. 416–423, 2001.

Michael Michelashvili and Lior Wolf. Speech Denoising by Accumulating Per-Frequency Modeling
Fluctuations. arXiv preprint arXiv:1904.07612, 2020.

Vivek Sivaraman Narayanaswamy, Jayaraman J. Thiagarajan, and Andreas Spanias. On the Design
of Deep Priors for Unsupervised Audio Restoration GitHub repository, 2021a. URL https:
//github.com/vivsivaraman/designaudiopriors. Accessed: 2021-10-27.

Vivek Sivaraman Narayanaswamy, Jayaraman J. Thiagarajan, and Andreas Spanias. On the Design
of Deep Priors for Unsupervised Audio Restoration. In Proc. Interspeech 2021, pp. 2167–2171,
2021b. doi: 10.21437/Interspeech.2021-1890.

Fernando M. F. Nogueira. Bayesian optimization package. github.com/fmfn/
BayesianOptimization, 2019.

B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381:607–9, 1996.

12

https://github.com/juglab/n2v
https://github.com/juglab/n2v
https://github.com/vivsivaraman/designaudiopriors
https://github.com/vivsivaraman/designaudiopriors
github.com/fmfn/BayesianOptimization
github.com/fmfn/BayesianOptimization


Under review as a conference paper at ICLR 2022

Dylan M Paiton, Charles G Frye, Sheng Y Lundquist, Joel D Bowen, Ryan Zarcone, and Bruno A
Olshausen. Selectivity and robustness of sparse coding networks. Journal of Vision, 20(12):
10–10, 2020.

Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad. Convolutional dictionary learn-
ing via local processing. In ICCV, pp. 5296–5304, 2017.

Yookoon Park, Chris Kim, and Gunhee Kim. Variational Laplace autoencoders. In Proc. ICML, pp.
5032–5041, 2019a.

Yookoon Park, Chris Dongjoo Kim, and Gunhee Kim. Variational Laplace Autoencoders GitHub
repository, 2019b. URL https://github.com/yookoon/VLAE. Accessed: 2021-08-14.

Max B Paulus, Chris J Maddison, and Andreas Krause. Rao-Blackwellizing the Straight-Through
Gumbel-Softmax Gradient Estimator. In International Conference on Learning Representations,
2021.

Andres Potapczynski, Gabriel Loaiza-Ganem, and John P Cunningham. Invertible Gaussian Repa-
rameterization: Revisiting the Gumbel-Softmax. In Advances in Neural Information Processing
Systems, volume 33, pp. 12311–12321, 2020.

Mangal Prakash, Alexander Krull, and Florian Jug. Fully unsupervised diversity denoising with
convolutional variational autoencoders. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=agHLCOBM5jP.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. ICML proceedings, 2014.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hierarchical latent
vector model for learning long-term structure in music, 2018.

Jason Tyler Rolfe. Discrete variational autoencoders. arXiv preprint arXiv:1609.02200, 2016.

Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on
vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient Estimation Using
Stochastic Computation Graphs. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2, pp. 3528–3536, 2015.
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Supplementary Material

A DETAILS OF ENCODER AND DECODER OPTIMIZATION

Figure 6: Generic and general VAE decoding model (left), VAE model with standard continuous
latents (center), and the VAE model with binary latents (right) of Eqn. (1) (right).

See Fig. 6 for a graphical comparison between the decoding models of a vanilla VAE and the binary
VAE considered here (1). Fig. 7 graphically illustrates different steps to optimize standard VAEs,
and additional steps suggested by different contributions in order to optimize discrete VAEs.

For the optimization of the binary VAE (1), consider the original form of the lower bound, Eqn. (2).
When taking derivatives of F(Φ,Θ) w.r.t. Θ we can ignore the entropy term1. For the binary VAE
model of Eqn. (1) the gradient of the lower bound w.r.t.W is then given by:

~∇WF(Φ,Θ) =
∑
n

~∇WEq(n)
Φ

[
log
(
pΘ(~x (n) |~z) pΘ(~z)

)]
=
∑
n

~∇WEq(n)
Φ

[
log
(
pΘ(~x (n) |~z)

)]
=
∑
n

~∇WEq(n)
Φ

[
log
(
N (~x (n); ~µ(~z,W ), σ2I

)]
= − 1

2σ2

∑
n

~∇W
∑
~z∈Φ

(n)

q
(n)
Φ (~z) ‖~x (n) − ~µ(~z,W )‖2

= − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2, (11)

where, by using (4) and (1), the weighting factors q(n)
Φ (~z) are given by:

q
(n)
Φ (~z) =

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n) pΘ(~x (n) |~z ′) pΘ(~z ′)

=
exp

(
− 1

2σ2 ‖~x (n) − ~µ(~z,W )‖2 − ~̃π T~z
)∑

~z ′∈Φ
(n)

exp
(
− 1

2σ2 ‖~x (n) − ~µ(~z ′,W )‖2 − ~̃π T~z ′
) (12)

for all ~z ∈ Φ
(n)

, where π̃h = log
(

1−πh

πh

)
. Note that the q(n)

Φ (~z) are evaluated at the current values
of the parameters Θ, they are therefore treated as constant, e.g., for the gradient w.r.t. W .

It may be interesting to compare the gradient estimate (11) to the gradient estimate of conventional
VAE training. For this consider a standard encoder given by an amortized variational distribution

1For our choice of variational distributions, it is not trivial that the entropy term actually can be ignored
because the encoding model qΦ(~z; ~x) in (4) is defined in terms of the decoding model and its parameters. For
truncated distributions, however, it can be shown that the entropy term can still be ignored (Lücke, 2019).
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which we shall denote by q̃(n)
Φ (~z). The distribution q̃(n)

Φ (~z) could be a Gaussian whose mean and
variance are set by passing data point ~x (n) through encoder DNNs. For discrete VAEs, q̃(n)

Φ (~z) can
be thought of as an analog discrete distribution. If we now take gradients of (3) w.r.t.W and estimate
using samples from q̃

(n)
Φ (~z), we obtain the familiar form:

~∇WF(Φ,Θ) =
∑
n

~∇WEq̃(n)
Φ

[
log
(
pΘ(~x (n) |~z) pΘ(~z)

)]
=
∑
n

~∇WEq̃(n)
Φ

[
log
(
N (~x (n); ~µ(~z,W ), σ2I

)]
≈ − 1

2σ2

∑
n

1

M

M∑
m=1

~∇W ‖~x (n) − ~µ(~z(m),W )‖2

where ~z(m) ∼ q̃(n)
Φ (~z). We can slightly rewrite this expression to obtain:

~∇WF(Φ,Θ) ≈ − 1

2σ2

∑
n

∑
~z∼q̃(n)

Φ

( 1

M

)
~∇W ‖~x (n) − ~µ(~z,W )‖2 , (13)

If we now compare with the gradient using the truncated approximation q(n)
Φ (~z),

~∇WF(Φ,Θ) = − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2 , (14)

one can discuss analogous roles played by the subsets Φ
(n)

(the variational parameters of q(n)
Φ (~z))

and by a standard encoder q̃(n)
Φ . The states in a subset Φ

(n)

are used to estimate the gradient similar
to the samples from a standard encoder q̃(n)

Φ (~z). The size of Φ
(n)

can consequently be thought of as
analog to the number of samples used in a conventional estimation of the gradient. Standard VAE
training estimates the gradient by weighting all samples equally (with (1/M)) and the gradient di-
rection is approximated using sufficiently many samples drawn from the current q̃(n)

Φ (~z). In contrast,
truncated gradient estimation uses the states in Φ

(n)

, and the gradient is computed using a weighted
summation with weights q(n)

Φ (~z). These weights are computed by passing the states ~z through the
decoder network. The gradient is then, notably, not a stochastic estimation but exact: gradient ascent
is guaranteed (for small steps) to always monotonically increase the variational lower bound.

Computational Complexity. To add to the discussion of computational complexity of TVAE com-
pared to standard VAE training, consider again Eqns. 13 and 14. If as many samplesM are used, per
data point, as there are states in each Φ

(n)

, then both sums have the same number of summands. The
evaluation of the gradients of the mean square error (MSE) is consequently precisely the same for
both approaches. The additional weighting factors q(n)

Φ (~z) have to be computed for TVAE. However,
the weighting factors just represent a small overhead because the evaluation of the decoder DNN for
the states in Φ

(n)

is a computation that can be reused from the updates of Φ
(n)

.

The main computational differences are in the updates of Φ
(n)

compared to the update of encoder
DNNs for conventional VAEs. Once the parameters Θ = (W,σ2, ~π) are updated using (14), new
states for Φ

(n)

have to be sought based on criterion (7). In practice and for each n, we generate
M ′ new states according to the applied evolutionary procedure. To select the best states we have
to pass all these M ′ new states through the decoder DNN to evaluate (7). Furthermore, we have
to pass all M states already in Φ

(n)

through the DNN to re-evaluate (7) because the parameters Θ
have changed. In summary, we do require O(N × (M + M ′)) passes through the decoder DNN.
Selecting theM best states from the (M+M ′) states does not add complexity as this can be done in
O(M +M ′) for each n (Blum et al., 1973). The EA does add to the computational load but parent
selection and mutation only add a constant offset for each of the considered states.

For comparison with standard VAEs, if we useM samples of an encoder q̃(n)
Φ (~z), we requireO(M×

N) passes through the decoder DNN to update the parameters Θ according to (13). For the encoder
update, one requires N × M̃ passes through encoder and decoder DNN to estimate the gradient
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Figure 7: Typical collection of methods used to optimize the encoding model of VAEs. Left: Meth-
ods of the standard procedure to optimize VAEs. Middle: Examples of additional methods applied
to maintain the standard VAE procedure also for VAEs with discrete latent variables. Right: Alter-
native direct discrete optimization of VAE encoding models.

w.r.t. the encoder weights (if we draw M̃ samples for each data point from a conventional encoder
distribution q̃(n)

Φ (~z). The additional overhead to actually draw the samples is usually negligible.

Hence, the computational complexity of TVAE training is comparable if M ≈M ′ ≈ M̃ . However,
conventional VAE training is amortized, i.e., the update of encoder weights uses information from all
data points n. In contrast, TVAE training is not amortized, i.e., the Φ

(n)

are updated per data point.
The advantage of amortization is that in practice, weights of a conventional encoder can converge
faster or (alternatively) less samples M̃ are required. Considering the observed runtimes, more
efficient conventional VAE training can presumably in large parts attributed to faster convergence
using amortization. Furthermore, the used number of samples M for conventional VAE training is
usually smaller than best working sizes of Φ

(n)

(we used, e.g., |Φ(n) | ∈ [20, 200] for denoising,
see Tab. 1); and the required storage of Φ

(n)

results in overhead computations. On the other hand,
amortization also has disadvantages (e.g. Kim et al., 2018; Cremer et al., 2018). The competitive
performance for denoising may consequently be attributed at least in part to TVAE not being subject
to an amortization gap.

A.1 EVOLUTIONARY ALGORITHMS

We base the fitness function on the joint pΘ(~x, ~z) that follows from (1). Concretely we employ the
reformulation (7), which allows for robust computation, and we use an offset (constant w.r.t. ~z) to
ensure that fitness values are strictly non-negative. We investigated different selection operators: (i) a
uniform random selection procedure that is independent of the parents’ fitness, and (ii) a procedure
in which parents are selected with a probability proportional to their fitness. After selection, the
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children states of a new generation are manipulated through mutation (and possibly crossover). The
mutation operator flips one bit per child; the index of the bit to flip is uniformly randomized. To
apply crossover, children states are paired in any possible way, and the tails of the states in each pair
are swapped; the single crossover point is uniformly randomized.

In our large scale numerical experiments, we used fitness-proportional parent selection in combi-
nation with uniformly random bitflips, as we found this operator combination to efficiently and
effectively suggest new states ~z new for the optimization of the subsets Φ

(n)

based on criterion (8)
(cf. Fig. 11). We refer to this evolutionary operator design as fitparents-randflips; other operator
designs we considered are termed accordingly (i.e., randparents-cross-randflips, for instance, indi-
cates uniformly random parent selection, application of crossover and uniformly random bitflips;
compare Fig. 11). Hyperparameters of the evolutionary algorithms are Np (denoting the number of
parental states selected per generation; Np ≤ |Φ

(n) |), Nc (denoting the number of children evolved
per parent), andNg (denoting the number of generations evolved). When crossover is employed, the
total number of new states evolved per data point per epoch is given by Np(Np− 1)Ng , otherwise it
is NpNcNg . The concrete hyperparameters used in the numerical experiments are listed in Tab. 1.

B DETAILS ON THE NUMERICAL EXPERIMENTS

B.1 HYPERPARAMETERS

For all numerical experiments, DNN training using (9) was performed with mini-batches, the Adam
optimizer (Kingma & Ba, 2014) and decaying or cyclical learning rate scheduling (Smith, 2017).
Xavier/Glorot initialization (Glorot & Bengio, 2010) was used for the DNN weights, while biases
were always zero-initialized. Parameters ~π and σ2 were updated via Eqn. (10). ~π was initialized
to 1

H . σ2 was initialized to 0.01 with the exception of the Barbara, CIFAR-10 and Audio datasets
(Figs. 4, 15 and 16) for which we initialized σ2 with the data variance. The Φ

(n)

were initialized
by drawing ~z from a Bernoulli distribution with p(zh = 1) = 1

H . Hyperparameter optimization
was conducted manually, and for the more complex datasets, it also made use of black box Bayesian
optimization based on Gaussian Processes (Nogueira, 2019) and BOHB (Falkner et al., 2018) us-
ing the hpbandster framework (Biedenkapp & Hutter, 2018). Tab. 1 provides an overview of the
hyperparameters used in each of the reported experiments.

B.2 VERIFICATION EXPERIMENTS

We first evaluated TVAE training on artificial datasets with known ground-truth parameters and log-
likelihood, in order to verify the correct functioning of the algorithm and to investigate possible
local optima effects. The dataset consisted of 500 4x4 images generated by linear superposition of
vertical and horizontal bars (compare, e.g. Földiák, 1990; Hoyer, 2003; Guiraud et al., 2018), with
a small amount of Gaussian noise. The DNN’s input and middle layers had 8 units each. The Φ(n)

variational sets consisted of 64 hidden states each. Fig. 8 shows the evolution of the run that achieved
the highest ELBO value out of ten. All parameters were correctly recovered, and the ELBO value
was consistent with actual ground-truth log-likelihood.

Such an elementary test, however, can also be solved by linear models. In order to demonstrate
that TVAEs can solve non-linear problems, taking advantage of the neural network non-linearity
embedded in the generative model, we introduced correlations between pairs of bars: the bars com-
binations shown in the first two data points from the left in Fig. 9 were discouraged from appearing
together. Again we selected the run with highest peak ELBO value out of ten. The model correctly
learns that certain combinations of bars are much more unlikely than others, and correctly estimates
their likelihood.

Fig. 10 offers some more insight into the correlated bars test experiment described. The left section
of the figure shows the generative parameters for the dataset used: W0 is the 8x8 weight matrix of the
top-to-middle layer: this makes it so that the activation of the first latent variable inhibits activation
of the second, and activation of the last latent variable inhibits activation of the last. Concretely,
this results in a dataset where these specific bars combinations are discouraged from appearing. The
weightsW1, visualized as 8 4x4 matrices, generate the actual bars. σ2 was set to 0.01 and the dataset
contained an average of two superimposing bars per data point (πh = 2/8 for each h). The middle
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Table 1: Hyperparameters used in the numerical experiments. The architecture of the decoding DNN
is listed as H0-H1-. . . -D with H0 and D indicating the number of Bernoulli latents and Gaussian
observables respectively, and H1-. . . denoting the number of hidden layer units. By default, we
used ReLU activations in the hidden layers and a linear output layer. For Barbara and CIFAR-10,
we used LeakyReLU instead of ReLU; for CIFAR-10, we additionally used a Sigmoid in the output
layer. Min and max l.r. denote lower and upper learning rate boundaries and are, together with
Epochs/Cycle, hyperparameters of the cyclical learning rate scheduler (cf. Smith, 2017). |Φ(n)|
denotes the number of distinct latents per data point (referred to as S in Alg. 1). † and ‡ refer to the
parameters used for σ ∈ {15, 25} and σ = 50 in Fig. 3E, respectively.

Decoding Model Encoding Model

H0-H1-. . . -D Min l.r. Max l.r. Epochs/Cycle Batch Size |Φ(n)| EA

Bars (Fig. 8) 8-8-16 0.0001 0.05 20 32 64 fit-randflip (Np = 3, Nc = 2, Ng = 1)
Bars (Figs. 9, 10) 8-8-16 0.0001 0.1 50 32 2H0 exact E-step

Bars (Fig. 11) 6-8-9 0.0001 0.05 20 32 32 random sampling (Nnew = 20, p(zh = 1) = 1
H0

)
Bars (Fig. 11) 6-8-9 0.0001 0.05 20 32 32 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 11) 6-8-9 0.0001 0.05 20 32 32 rand-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 11) 6-8-9 0.0001 0.05 20 32 32 fit-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 11) 6-8-9 0.0001 0.05 20 32 32 rand-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 11) 8-8-16 0.0001 0.05 20 32 64 random sampling (Nnew = 20, p(zh = 1) = 1

H0
)

Bars (Fig. 11) 8-8-16 0.0001 0.05 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 11) 8-8-16 0.0001 0.05 20 32 64 rand-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 11) 8-8-16 0.0001 0.05 20 32 64 fit-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 11) 8-8-16 0.0001 0.05 20 32 64 rand-cross-randflip (Np = 5, Ng = 1)

van Hateren (Fig. 12) 300-300-256 0.0001 0.001 10 32 100 fit-randflip (Np = 8, Nc = 7, Ng = 2)
House (Fig. 3D,E†) 64-64-64 0.0001 0.01 20 32 200 fit-randflip (Np = 10, Nc = 9, Ng = 4)
House (Fig. 3E‡) 512-512-144 0.0001 0.05 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Barbara (Fig. 4) 50-500-500-64 0.0001 0.001 160 512 100 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Barbara (Fig. 4) 256-256-512-64 0.0001 0.001 160 512 100 fit-randflip (Np = 5, Nc = 4, Ng = 1)

House 50 (Fig. 5) 512-512-144 0.0001 0.01 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Castle 50 (Fig. 5) 512-512-25 0.0001 0.00125 20 32 32 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Castle 80 (Fig. 5) 512-512-144 0.0001 0.001 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)

CIFAR-10 (Fig. 15) 32-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Fig. 15) 50-500-500-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Fig. 15) 1024-256-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Fig. 15) 1024-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)

Audio (Fig. 16) 200-512-400 0.0001 0.001 160 512 20 fit-randflip (Np = 15, Nc = 1, Ng = 1)

Figure 8: TVAE Training on Simple Bars Data:
Noiseless Output of the TVAE’s DNN for the
8 Possible One-hot Input Vectors Over Several
Training Epochs. Generating parameters are in
the last row.

Figure 9: Correlated Bars Test. The plot shows
the ratio between inferred and ground-truth log-
likelihoods log pΘ(~x) of data points with inter-
esting bar combinations. The inferred values are
reported below the data points themselves.
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section of the figure shows the ELBO values (averages over all batches for each epoch) as training
progresses. The cyclic learning rate schedule is responsible for the oscillatory behavior. The right
section shows some example data points together with samples from the trained TVAE model that
reached the highest ELBO value out of the ten runs.

Figure 10: Generative Parameters for the Correlated Bars Test (left); ELBO Values over Epochs for
10 runs (center); Example Datapoints and Samples from the Generative Model (right).

Using bars test data generated with a linear model (no correlations between pairs of bars) as de-
scribed above, Fig. 11 depicts reliabilities of different evolutionary operator designs (also compare
App. A.1).

B.3 SCALABILITY EXPERIMENTS

The N = 100, 000 image patches of size D = 16 × 16 for the scalability experiments were ex-
tracted from a standard image database (van Hateren & van der Schaaf, 1998) and pre-processed as
in Guiraud et al. (2018). The most elementary VAEs use a linear mapping for the decoder ~µ(~z,W ).
While being a natural baseline, such VAEs have also played a role in understanding important prop-
erties of VAE learning (e.g. Dai et al., 2018; Lucas et al., 2019). For standard Gaussian latents,
a linear VAE can be shown to recover probabilistic PCA solutions. For Bernoulli latents, we can
recover binary sparse coding (Haft et al., 2004; Shelton et al., 2011) in case of linear decoders.
We therefore began our analysis (using H = 300 latents) with a linear VAE. After 100 epochs the
weights of the linear mapping were used to initialize the bottom layer of a deeper decoder network
with three layers of 300, 300 and 16×16 = 256 units, respectively. The weights of the deeper layers
were simply initialized to the identity matrix. Furthermore, prior and variance were optimized. The
setup just described guarantees a common starting point for linear and non-linear VAEs such that
the difference provided by deeper decoder DNNs can be highlighted. Fig. 12 shows the variational
bounds during learning of the linear VAE compared to the non-linear VAE for a typical experiment.
The non-linear VAE can be observed to quickly and significantly optimize the lower bound beyond
a linear VAE. In proceeding experiments (when we are not concerned with comparisons to linear
VAEs) we simply optimized the weights of the non-linear TVAE directly as we did not observe an
advantage in first optimizing a linear VAE.

Regarding scalability, we observed a similar efficiency of non-linear TVAE compared to linear mod-
els as described in the main text. To further investigate scalability, we went to TVAEs with up to
H=1000 latent variables (while using 100 units in the DNN middle layer). TVAE training time
remained in line with the theoretical linear scaling with H while the variational bound further in-
creased.

B.4 IMAGE DENOISING

Data Estimator. Given a trained TVAE with parameters Θ, we estimated the value of a pixel in a
single patch as xest

d = EpΘ(xd|~x)

[
xd
]
. When using pΘ(xd | ~x) =

∑
{~z} pΘ(xd | ~z)pΘ(~z | ~x) we

obtain:
xest
d = EpΘ(~z|~x)

[
EpΘ(xd|~z)

[
xd
]]

= EpΘ(~z|~x)

[
µd(~z)

]
. (15)

The expectation value on the right-hand-side of Eqn. (15) is then approximated based on the encod-
ing parameters Φ

(n)

using truncated posteriors. Finally, we took a weighted average of the estimates
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Figure 11: Reliability of different evolutionary operator combinations (cf. App. A.1) on bars test
(see App. B.2 for details). Reliability is quantified in terms of the normalized difference between
the lower bound at the last training epoch and the log-likelihood computed using the ground-truth
generating parameters. For the strategy labeled as ‘random’, we randomly sampled states from a
Bernoulli distribution with p(zh = 1) = 1

H .

linear binary VAE
TVAE starting from linear mapping

Figure 12: ELBO Gain of TVAE Compared to Linear VAE with Binary Latents (on 16× 16 image
patches).
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of a pixel value in different patches (see, e.g., Burger et al., 2012) in order to generate the pixel
values of the full denoised image.

Performance Comparison Under Controlled Conditions. To evaluate the performance on standard
denoising benchmarks, we first compared TVAE to related probabilistic sparse coding approaches
such as MTMKL, GSC and var-BSC (Fig. 3 D). MTMKL and GSC use the data model of spike-
and-slab sparse coding and for training mean-field and truncated posterior approximations with pre-
selection are used, respectively. Compared to MTMKL and GSC, var-BSC uses a less complex data
model and a training scheme also based on evolutionary optimization (Guiraud et al., 2018). The
denoising performance observed in the scenario with controlled conditions (Fig. 3 D) shows that for
high noise level (σ = 50), var-BSC achieves higher PSNR values than MTMKL and GSC although
the method uses a simpler data model. This observation demonstrates the effectiveness of the evolu-
tionary training method used by var-BSC. However, PSNR values for TVAE are significantly higher
due to the higher flexibility in modeling the data distribution provided by the used DNN.

Performance Comparison Under Uncontrolled Conditions. In a second step, Fig. 3 E compared
the performance of TVAE with respect to different denoising approaches including deterministic
sparse coding (KSVD), a mixture model approach (EPLL), a non-local image processing method
(WNNM) and state-of-the-art denoising methods based on deep neural networks (BDGAN and
DPDNN). These approaches can be distinguished, e.g., by the amount of employed training data
and by the requirement for clean data. TVAE as well as MTMKL, GSC and var-BSC do not re-
quire clean images for training. Furthermore, all these approaches can be trained if only the single
noisy image is available (‘zero-shot’ learning; compare, e.g., Shocher et al., 2018; Imamura et al.,
2019). Instead, EPLL, BDGAN and DPDNN use clean training data (typically tens or hundreds of
thousands of data points are collected for training).

Approaches such as noise2noise (n2n Lehtinen et al., 2018) and noise2void (n2v Krull et al., 2019b)
occupy a middle ground: they can be trained on noisy data but they typically require much larger
amounts of data than, e.g., TVAE or MTMKL. In the original n2v publication, for instance, 400
(noisy) 180 × 180 BSD (Martin et al., 2001) images were used to create a training dataset (this
procedure also involved data augmentation; compare Krull et al. 2019b). For our comparison with
results of Fig. 3 E, we used the standard, publicly available code for n2v (Krull et al., 2019a) to-
gether with the default training set (σ = 25) employed in the original n2v publication (specifically,
we followed the ‘denoising2D BSD68’ example from the corresponding GitHub repository). We
then applied the trained n2v network to denoise the ‘house’ image with σ = 25. The resulting
PSNR value was 32.10dB which is 0.76dB lower than the PSNR value for BM3D (32.86dB). The
difference is consistent with an on average 0.88dB lower performance of n2v compared to BM3D
on the BSD68 test set (see Krull et al., 2019b). The same network can also be used to denoise an
image with lower or higher noise level. The n2v network trained on σ = 25 does, for instance, re-
sult in PSNR values of 32.93dB for the ‘house’ image with σ = 15 and in 20.96dB for the ‘house’
image with σ = 50 (see n2v† in Tab. 2). Especially for high noise levels performance can be much
improved, however, if the n2v network is trained using images with the same noise level as the test
image. In order to do so, we followed the procedure described in the n2v publication while adapting
the noise level of σ = 15 in one case and σ = 50 for the other case (as described above, we used the
‘denoising2D BSD68’ example as reference implementation). Trained on a dataset with matched
noise, we then denoised the ‘house’ image with σ = 15 in the one, and σ = 50 in the other case
(results listed as n2v‡ in Tab. 2). The PSNR values obtained for ‘house’ in this matched-noise-level
scenario are much higher compared to the scenario with unmatched noise level (e.g., for σ = 50 the
PSNR improvement is approximately 8 dB). The much lower performance for mismatched noise for
n2v is in this respect consistent with observations for standard DNN denoising for which training
with the ground-truth noise level has been pointed out as important for performance (Chaudhury &
Roy, 2017; Zhang et al., 2018).

The n2v approach can avoid having to know the exact noise level, e.g., if it is trained on just the single
noisy image. In a last experiment, we hence investigated this ‘zero-shot’ denoising feature of n2v
and applied the algorithm to denoise the ‘house’ image while using the same noisy image for training
that we seek to denoise (again, our implementation was based on the n2v ‘denoising2D BSD68’
example, see above). The obtained PSNR values are listed as n2v∗ in Tab. 2.

From Tab. 2 it can be observed, that for all considered training settings of n2v and all noise levels,
PSNR values of TVAE are consistently higher than those of n2v even if n2v is trained on external
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Table 2: Denoising Performance of n2v in PSNR (dB) for the ‘House’ Image. For comparison, we
additionally list the performance of TVAE (numbers copied from Fig. 3 E). PSNR values for n2v?
are obtained by training only on the noisy image (i.e., in the same setting as used for MTMKL, GSC,
var-BSC and TVAE in Fig. 3 E). More training data improves performance for n2v. PSNR values
for n2v† show performance if additional training data in the form of noisy images with AWG noise
σ = 25 is used. Further improvements (especially for high noise) are obtained if the n2v network
is trained on training data with a noise level that matches the noise of the test set (see n2v‡). For
instance, we used for n2v‡ training data with σ = 50 to denoise the ‘house’ with σ = 50. PSNR
values were computed using the model in its state at the training epoch with smallest validation loss;
for n2v?, we performed three independent runs of the algorithm and here report the results of the
best run (in terms of validation loss). See text for further details.

σ=15 σ=25 σ=50

n2v? 32.22 29.69 24.89
n2v† 32.93 32.10 20.96
n2v‡ 33.91 32.10 28.94

TVAE 34.27 ± .02 32.65 ± .06 29.98 ± .05

data with matched-noise level. Additional parameter tuning may improve performance of n2v∗ to
a certain extent but PSNRs are in general much lower than n2v‡. While we followed for n2v‡ the
standard hyperparameter setting of the original paper/code publication of n2v (Krull et al., 2019b;a),
we cannot exclude further improvements with parameter fine tuning for the ‘house’ benchmark.
However, we remark that the difference of n2v‡ and BM3D for the ‘house’ benchmark is on the
very same range as the differences between n2v and BM3D as reported on the BSD data set in the
original n2v publication. The stronger performing BM3D is according to denoising performance the
preferable comparison and as such included in Fig. 3 E. In terms of efficiency, the n2v approach is
in general (once trained) faster than BM3D as well as TVAE, however.

PSNR values of noise2noise (n2n) are usually very closely aligned with PSNR values achievable by
feed-forward DNNs. More concretely, n2n uses, for instance, a RED30 network (Mao et al., 2016)
which achieves 31.07 dB PSNR on the BSD300 data set if trained on clean data. If directly trained
on noisy data, RED30 achieves 31.06 dB (Lehtinen et al., 2018). n2n is thus strongly performing
in terms of PSNR. The caveat of n2n compared to n2v is, however, that the noisy data n2n uses is
rather artificial. The pairs of images n2n is trained on consist of two different noise realization of
the same underlying clean image. For real data, such a setting is only approximately occurring at
most, which has motivated the n2v approach.

Like n2v, BDGAN and DPDNN are optimized for specific noise levels (specific standard deviations
are used to generate the noisy training examples). EPLL is trained exclusively on clean image
patches; for denoising, the algorithm requires the ground-truth noise level of the test image as input
parameter. Ground-truth noise level information is also required by KSVD and WNNM.

Like all approaches in the top category of Fig. 3 E, TVAE does not require ground-truth noise level
information, nor clean images, nor large amounts of training data. For the ‘zero-shot’ setting, TVAE
is consequently the best performing system on the ‘house’ benchmark. Such a high performance is
notably achieved using a basic DNN and relatively small patch sizes of D = 8 × 8 (for σ = 15
and σ = 25) or D = 12 × 12 (for σ = 50). All feed-forward DNNs for denoising use much
larger patches (e.g., n2v use 64 × 64). That a competitive denoising performance can be achieved
for small patches, in general, argues in favor for VAE approaches to denoising. Indeed, TVAE
even comes close to state-of-the-art approaches (BDGAN and DPDNN) that use very intricate DNN
architectures and large amounts of clean training data. We believe that such results underline the
potential of the here investigated approach although the novelty of the approach is the focus rather
than extensive benchmarking.

Comparison to Deep Generative Models. While denoising is, in general, well suited for deep
generative models, performance for standard image denoising is not as common as such results for
standard DNNs (which may also be related to efficiency aspects). Exceptions include the recent
BDGAN (Zhu et al., 2019) and the very recent DivNoising (Prakash et al., 2021) and NN+X (Zheng
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et al., 2021) approach. Regarding VAEs, we here compared TVAE to GSVAE (Jang et al., 2016)
and VLAE (Park et al., 2019a) using publicly available source code of these models (Jang (2016)
and Park et al. (2019b), respectively). For GSVAE, we implemented continuous latents, i.e. we
used a Gaussian distribution over the observables (rather than a Bernoulli as implemented in the
public source code). For both GSVAE and VLAE, we used the same hyperparameters as in the
respective publicly available implementations. To apply both models for denoising, we used the
same patch-based processing as employed for TVAE (compare Data Estimator paragraph above).
The PSNRs listed in Fig. 3 were obtained using patch sizes of 12 × 12 and 8 × 8 for GSVAE and
VLAE, respectively, and they were measured at the training epoch with the highest lower bound.

Computational Demand. An important limitation of TVAE is its computational demand. For our
experiments on the ‘house’ image with noise level σ = 50 in Fig. 3 E we used N = 60025 patches
of D = 12 × 12 pixels, which amounts to all possible non-overlapping square patches of that size
that can be extracted from the image. For training and denoising we used a TVAE with H = 512

latent variables, sizes of |Φ(n) | = 64, and 512 units in the DNN middle layer of the decoder. TVAE
training required 49 seconds per training epoch when executing on a single NVIDIA Titan Xp GPU
and 2.5 GB of GPU memory. We ran for 500 epochs which required between seven and eight
hours on the single GPU. We did not observe significant changes in variational bound values or in
denoising performance after 500 epochs in any of the experiments we conducted for Fig. 3. Runtime
complexity increased linear with the number of data points N , with the dimensionality of the data
D, with the number of the latents H , and with the size of the DNN used. Runtimes also increased
approximately proportional w.r.t. the size of Φ

(n)

. Empirically we observed a sub-linear scaling
with |Φ(n) | presumably because of significant overhead computations: for example, increasing from
|Φ(n) | = 64 to |Φ(n) | = 128 (while keeping all other parameters as above) computational time
increases from 49 seconds per training epoch to 75 seconds.

For noise levels σ = 15 and σ = 25 in Fig. 3 E we used smaller patch sizes (D = 8 × 8) and
fewer stochastic latents (H = 64) but larger Φ

(n)

(i.e., |Φ(n) | = 200). In general, if the patch size
D is increased, more structure has to be captured. This can be done either by increasing the size
of the stochastic latents H or by using larger DNNs. Both, in turn, requires more training data in
order to estimate the increased number of parameters. In the current setup, the sizes of D which
are currently feasible are comparably small. The denoising performance based on small patches is,
however, notably very high.

For comparison, n2v uses up to D = 64 × 64 and also all other feed-forward DNN approaches
use significantly larger patch sizes than TVAE (and the other approaches in category 1). Still, n2v
can be trained efficiently on large patches requiring approximately 19 hours on a NVIDIA Tesla
K80 GPU for training on approximately 3k noisy images of shape 180x180 and seconds for the
denoising of one 256x256 image. The higher computational demand of TVAE is also the reason
why averaging across databases with many images (such as BSD68) or applications to large single
images quickly becomes infeasible. As a novel approach, TVAE is, however, far from being fully
optimized algorithmically compared to large feed-forward approaches, and there is certainly further
potential to improve training efficiency.

Tab. 3, furthermore, systematically compares runtimes of GSVAE, VLAE and TVAE for the Bar-
bara denoising benchmark from Fig. 4.

B.5 ZERO-SHOT INPAINTING

Similarly to the use of TVAE for denoising (see B.4), a single image with missing pixels (Fig. 13,
center) is divided into square patches to form the training set; during training, missing pixels can be
treated as observables with unknown values when evaluating log-joint probabilities of a data-point,
which provides a grounded way to treat missing data. To estimate likely values of missing pixels,
we again use the estimator from (15) and only consider the observed entries of a data point when
evaluating posterior probabilities:

xest
d = EpΘ(~z|~x obs)

[
µd(~z)

]
. (16)

As for denoising (compare Eqn. 15), the expectation value can be approximated using truncated
posteriors with encoding parameters Φ

(n)

. Complete data points with ‘inpainted’ pixels can then
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Table 3: Runtimes required by GSVAE, VLAE and TVAE to reach the lower bounds and PSNRs
reported in Fig. 4B. † Total runtime of VLAE consists of 5.1 hrs for parameter optimization and
1.8hrs for importance sampling. The PyTorch implementations of the models were executed on a
single NVIDIA Tesla V100 NV-Link 32GB HBM2 on a server with Intel Xeon 4214 12-core 2.20
GHz CPUs.

GSVAE VLAE TVAE

50-500-500-64 256-256-512-64 50-500-500-64 50-500-500-64 256-256-512-64

epoch total epoch total epoch total epoch total epoch total

10s 0.01hrs 11s 0.03hrs 46s 6.9†hrs 213s 9.5hrs 234s 10.4hrs

Figure 13: Inpainting of the ‘House‘ Image with TVAE.

be used for DNN backpropagation to optimize the decoder. The inpainting procedure consequently
directly derives from the standard probabilistic treatment of missing values. In contrast, amortized
approaches will have to specify how an encoder network should treat missing values because encoder
DNNs expect real values for all pixels as input.

When evaluating TVAE on standard inpainting benchmarks, we observe competitive performance
compared to other approaches. Fig. 5 shows a comparison of inpainting performance (in terms of
PSNR) with previous state-of-the-art systems that like TVAE do not require large, clean training data
nor information, e.g., on the noise level. As can be observed, TVAE outperforms approaches such
as BPFA (Zhou et al., 2012) or Papyan et al. (2017) in most settings. TVAE performance is lower
than for DIP (Ulyanov et al., 2018). TVAE, like BPFA and Papyan et al. (2017), is a permutation-
invariant approach, however. That is, the TVAE model itself does not leverage information about
the 2D nature of images. In contrast, DIP results rely on a large dedicated DNN with LeakyReLU
as activation functions, a U-net / hourglass architecture with skip connections, and convolutional
units with reflection padding (see supplement of Ulyanov et al. (2018)). The convolutional stages do
explicitly assume the 2D image structure. We also remark that DIP uses in total 2 million parameters
compared to about 0.5 million parameters of the standard multi-layer perceptron used in TVAE.
Furthermore, and as a consequence of its more intricate architecture, DIP uses many more tunable
hyper-parameters.

In the case of the ‘House’ image, training lasted 500 epochs taking around 60 seconds/epoch on a
single NVIDIA Titan Xp GPU.

Tab. 1 lists the hyper-parameters used for these experiments.

B.6 FURTHER COMPARISON TO MODELS WITH GRADIENT-BASED ENCODER OPTIMIZATION

Fig. 4 provides a comparison of the generative representations used by TVAE, GSVAE (Jang et al.,
2016) and VLAE (Park et al., 2019a) for denoising D = 8 × 8 patches of the noisy Barbara image
(additive white Gaussian noise with σ = 25; compare Sec. 3 and App. B.4). We applied the models
using different decoder architectures including 50 − 500 − 500 − D and 256 − 256 − 512 − D
(denoted are the numbers of network units counted from decoder input layer (value referred to as
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Figure 14: Inpainting of the ‘Castle‘ Image with TVAE. Left Original image. Center Training
image (top, 50% missing pixels, bottom, 80% missing pixels). Right Inpainting result with TVAE
(top, 50% missing pixels, bottom, 80% missing pixels).

H), to decoder hidden layers, to decoder output layer (value referred to as D); for GSVAE we
used H = 5 × 10 and H = 32 × 8 categorical latents). We observed the GSVAE and VLAE
implementations to yield significantly better results when applying the algorithms after normalizing
the image patches to the interval [0, 1]; to maintain comparability, we applied the same procedure
for TVAE.

To investigate differences in the learned representation, we computed (i) the sparsity of the encoding
(
∑
h πh /H; i.e. the average number of active latents per data point), (ii) the best lower bound

across training epochs (both depicted in Fig. 4B), and (iii) the decoder output for singleton input
(H-dimensional vector containing a single ’1’ entry and ’0’ entries otherwise; results visualized in
Fig. 4C). For VLAE, Fig. 4B lists an importance sampling-based log-likelihood estimate instead of a
lower bound value. The results depicted in Fig. 4A and C were obtained using the 50−500−500−D
decoder, and panel C illustrates a random selection of ten singleton means. As can be observed
from Fig. 4, TVAE learns comparably very sparse encodings with generative fields capturing distinct
patterns of the underlying image. Such encoding shows to result in comparably very high lower
bounds which, in turn, result in comparably very high denoising PSNRs.

As another example of a commonly used image patch dataset, we applied TVAE to CIFAR-10 and
investigated the learned data encoding, also comparing with GSVAE and VLAE (Fig. 15). While
patches from the Barbara image (considered above) contain comparably little, elementary structure,
CIFAR-10 images depict entire objects (cars, animals, etc.) and thus contain significantly more
complex structure. Similarly to the Barbara benchmark, TVAE learns a sparse encoding on CIFAR-
10 images; the performance in terms of lower bounds is, however, less competitive compared to
GSVAE and VLAE (when controlling for comparable decoder network architectures).
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A  Log-likelihood estimates

B  Sparsity

C  Samples (top) and TVAE reconstructions (bottom)

Figure 15: Log-likelihood estimates and sparsity obtained for CIFAR-10. For comparison, we
considered Gumbel-softmax VAE (GSVAE; Jang et al., 2016)) and VLAE (Park et al., 2019a).
For VLAE, we cite the values reported in the original publication (these correspond importance
sampling-based log-likelihood estimates). Values for GSVAE, we computed ourselves using pub-
licly available source code (Jang, 2016) together with the default parameter settings. For GSVAE
and TVAE, the values listed in panel A denote lower bounds. The values in panel B depict sparsity
measured in terms of average number of active latents per data point (

∑
h πh /H). The columns in

panel A, B refer to different decoder architectures: 1024-256-512, for instance, denotes H = 1024
latents in the decoder input layer and two hidden layers with 256 and 512 hidden units, respectively.
The decoder output layer was the same in all conditions (D = 32 × 32 × 3). Panel C depicts
reconstructed data points obtained with TVAE for the 1024-512 setting.
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(σ=0.1)
LJ Speech exampleA B G

C D E F

Figure 16: Results for ‘Zero-Shot’ Audio Denoising. Panel A depicts the dB-scaled amplitude
spectrogram of an example from the LJ-Speech dataset. Panel B was obtained after adding Gaussian
noise (σ = 0.1). Panels C-F show the denoising results of GA (Lu & Loizou, 2008), MMSE-STSA
(Ephraim & Malah, 1984), DCDAP (Narayanaswamy et al., 2021b) and TVAE. Panel G reports SNR
and PESQ improvements averaged over five examples per dataset (the improvement is computed by
comparing the denoised waveform with the target waveform; see App. B.7 for details).

B.7 ZERO-SHOT AUDIO DENOISING

Learning-based ‘zero-shot’ data enhancement is subject of current research not only in the con-
text of image but also audio processing (e.g., Zhang et al., 2020; Narayanaswamy et al., 2021b;
Michelashvili & Wolf, 2020). Narayanaswamy et al. (2021b), for instance, discuss applications of
U-Net-based networks with dilated convolutions to the task of unsupervised Gaussian audio denois-
ing. To address the question of the extent to which the strong ‘zero-shot’ denoising performance
of TVAE on visual data (Figs. 3, 4) carries over to audio data, we applied TVAE to the benchmark
considered in Sec. 4.1 and Tab. 1 in Narayanaswamy et al. (2021b). Concretely, we followed the
experimental design described in Narayanaswamy et al. (2021b) and used the following datasets:
LJ-Speech (Ito & Johnson, 2021), SC09 Spoken Numbers (Warden, 2018; Donahue et al., 2018; we
used the version made available by Bhalley, 2018), and Bach Performances (Donahue et al., 2018).
From each of these three datasets, we randomly selected five examples after resampling the audio
files to 16 kHz. Regarding the number of examples per dataset, our procedure slightly diverts from
the one used by Narayanaswamy et al. (2021b) who collected 50 examples per dataset. The reason
for limiting our evaluation to only five samples lies in avoiding long runtimes of TVAE (compare
App. A and B.4). For the LJ-Speech and Bach Performances datasets, we randomly selected ex-
cerpts of two seconds duration; for SC09, each example had a duration of one second. To each of
the in total 15 collected snippets, we added Gaussian noise using σ = 0.1. We then normalized
the noisy waveforms to fill the range [-1, 1]. Narayanaswamy et al. (2021b) do not report to have
used such normalization; for TVAE, we observed data normalization to be beneficial as it helped
to avoid numerical instabilities related to very small variances learned due to very small waveform
amplitudes. Finally, we applied TVAE to the noisy waveform after extracting overlapping chunks of
D = 400 samples (similarly to the overlapping patches extracted from noisy images, cf. App. B.4).

For the evaluation, we used two standard baselines, namely a Geometric Approach (GA; Lu &
Loizou, 2008) and the Minimum-Mean Square Error Short-Time Spectral Amplitude estimator
(MMSE-STSA; Ephraim & Malah, 1984) together with the noise power spectral density estimator of
Gerkmann & Hendriks (2012). Furthermore, we compared to the approach of Narayanaswamy et al.
(2021b) which we refer to as DCDAP (as an abbreviation for ‘Deep Audio Prior with dilated convo-
lutions ’). We applied the publicly available source code of DCDAP (Narayanaswamy et al., 2021a)
together with the default parameter settings; as ‘dilation type’, we chose the option ‘exponential’.
For the LJ-Speech and the SC09 datasets, we quantified performance in terms of Signal-to-Noise
Ratio (SNR) and Perceptual Evaluation of Speech Quality (PESQ); for the non-speech dataset (Bach
Performances), we measured only SNRs. For all three benchmark datasets considered, TVAE can
improve the performance of all compared methods in terms of both SNR and PESQ improvement
(Fig. 16).
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