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Abstract
Large language models (LLMs) demonstrate sur-
prising capabilities, but we do not understand how
they are implemented. One hypothesis suggests
that these capabilities are primarily executed by
small subnetworks within the LLM, known as cir-
cuits. But how can we evaluate this hypothesis?
In this paper, we formalize a set of criteria that a
circuit is hypothesized to meet and develop a suite
of hypothesis tests to evaluate how well circuits
satisfy them. The criteria focus on the extent to
which the LLM’s behavior is preserved, the de-
gree of localization of this behavior, and whether
the circuit is minimal. We apply these tests to six
circuits described in the research literature. We
find that synthetic circuits – circuits that are hard-
coded in the model – align with the idealized
properties. Circuits discovered in Transformer
models satisfy the criteria to varying degrees.

1. Introduction
The field of mechanistic interpretability aims to explain the
inner workings of large language models (LLMs) through
reverse engineering. One promising direction is to identify
“circuits” that correspond to different tasks. Examples in-
clude circuits that perform context repetition (Olsson et al.,
2022), identify indirect objects (Wang et al., 2023), and
even complete docstrings (Heimersheim & Janiak, 2023).

Such research is motivated by the circuit hypothesis, which
posits that LLMs implement their capabilities via small sub-
networks within the model. If the circuit hypothesis holds,
it would be scientifically interesting and practically useful.
For example, it could lead to valuable insights about the
emergence of properties such as in-context learning (Olsson
et al., 2022) and grokking during training (Stander et al.,
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2023; Nanda et al., 2023b). Moreover, identifying these
circuits could aid in explaining model performance and
controlling model output, such as improving truthfulness.

In this work, we empirically study the circuit hypothesis
to assess its validity in practice. We begin by defining the
ideal properties of circuits, which we posit to be: 1. Mecha-
nism Preservation: The performance of an idealized circuit
should match that of the original model. 2. Mechanism
Localization: Removing the circuit should eliminate the
model’s ability to perform the associated task. 3. Minimal-
ity: A circuit should not contain any redundant edges.

We translate these properties into testable hypotheses. Some
of these hypotheses depend on the strict validity of the ide-
alized circuit hypothesis, while others are more flexible,
allowing us to quantify the extent to which discovered cir-
cuits align with the ideal properties.

We apply these tests to six circuits described in the literature
that each correspond to a different task: two synthetic,
hard-coded circuits and four discovered in Transformer
models. These circuits have also been used to benchmark
automatic circuit discovery algorithms (Conmy et al., 2023;
Syed et al., 2023).

We find that the synthetic circuits align well with the ide-
alized properties and our hypotheses while the discovered
circuits do not strictly adhere to the idealized properties.
Nevertheless, these circuits are far from being random sub-
networks within the model. Furthermore, the empirical
results indicate that these circuits can be significantly im-
proved, bringing them closer to idealized circuits.

Two surprising results from the empirical studies are as
follows: For three of four discovered circuits, 1. Knocking
down the circuit does not cause significantly more damage
than knocking down a random circuit. 2. They are not
minimal: for two of them, removing 20% of the edges had
little impact on their ability to approximate the model.

The contributions of this paper are: 1. A suite of formal and
testable hypotheses derived from the circuit hypothesis. 2.
A set of statistical procedures and software to perform each
test. 3. An empirical study of existing circuits and their
alignment to the circuit hypothesis.
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1.1. Related work

This research fits in the broader field of mechanistic inter-
pretability. We provide a brief overview of related work
here and a more comprehensive discussion in Appendix A.

Olah et al. (2020) introduced the concept of a circuit. Sub-
sequently, various circuits have been proposed, particularly
in vision models (Mu & Andreas, 2020; Cammarata et al.,
2021; Schubert et al., 2021) and language models (Olsson
et al., 2022; Wang et al., 2023; Hanna et al., 2023; Lieberum
et al., 2023). The literature has been especially effective
in explaining small Transformers that perform algorithmic
tasks (Nanda et al., 2023a; Heimersheim & Janiak, 2023;
Zhong et al., 2023; Quirke et al., 2023; Stander et al., 2023).

This work builds on the growing effort around evaluating
the quality of interpretability results (Doshi-Velez & Kim,
2017; Casper et al., 2023; Mills et al., 2023; Hase et al.,
2024; Jacovi & Goldberg, 2020; Geiger et al., 2021; Chan
et al., 2022; Wang et al., 2023; Schwettmann et al., 2023;
Lindner et al., 2024; Friedman et al., 2024; Variengien &
Winsor, 2023). It is closely related to the works of Wang
et al. (2023) and Conmy et al. (2023). Wang et al. (2023)
introduce three criteria – faithfulness, minimality, and com-
pleteness – to evaluate the Indirect Object Identification
circuit. Faithfulness serves as a metric, while minimality
and completeness involve searching the space of circuits.
Our idealized criteria are similar in spirit to Wang et al.
(2023), but the specific tests differ. A key distinction is our
adoption of a hypothesis testing framework, where none
of our tests require searching the space of circuits. Conmy
et al. (2023) develops an automatic circuit discovery algo-
rithm and assess the quality of circuits by measuring edge
classification quality against a set of benchmark circuits.

2. Mechanistic Interpretability and LLMs
In this section, we define the necessary ingredients for mech-
anistic interpretability in LLMs.1

2.1. LLMs as computation graphs

A Transformer-based LLM is a neural network that takes
in a sequence of input tokens and produces a sequence
of logits over possible output tokens. We define it as a
function M : X → O, where X = {(x1, . . . , xL)| xℓ ∈
V, L ∈ Z≥1} is the space of sequences of tokens, V is
the space of possible tokens, called the vocabulary, and
O = {(o1, . . . , oL)| oℓ ∈ R|V |, L ∈ Z≥1} is the space of
sequences of logits over the vocabulary.

The function M is computed by a sequence of smaller op-
erations that compose to form a computational graph. A

1For details about the Transformer architecture, see (Elhage
et al., 2021) for an excellent overview.

computational graph is a directed acyclic graph G = (V, E),
where V is the set of nodes and E is the set of edges. Each
node v ∈ V represents an operation with one or more inputs
and a single output. Each edge (u, v) ∈ E denotes that the
output of node u is used as the input to node v. We recur-
sively define the output of node v as av = v(ain

v ), where
ain
v = {au | u ∈ V, (u, v) ∈ E} are the inputs to v. We

denote the number of inputs to v as dv .

We can use different levels of granularity to define the nodes
of a computational graph, each leading to different types of
interpretability. Following Elhage et al. (2021), we define
the nodes of the computational graph of an LLM to be
attention heads and MLP layers. The edges correspond to
the residual connections between them. We also include
input nodes corresponding to the embeddings of the input
tokens and output nodes corresponding to the logits.

2.2. Tasks: measuring the performance of a model

To measure whether a particular model performs a specific
function, we define a task, τ , as a tuple τ = (D, s) of a
datasetD = {(xi, yi)}ni=1 and a score s : O×Y → R. The
datasetD contains pairs of inputs xi ∈ X and output yi ∈ Y .
The score maps a sequence of logits, such as the output of
the model M(xi), and the ground truth information yi to
a real number indicating the performance of the model’s
output on that particular example: a higher score indicates
better performance.

Example 1 (Greater-Than). An example task is the greater-
than operation (Hanna et al., 2023), where we evaluate
whether the model can perform this task as it would appear
in natural language. The dataset D contains inputs from
xi = “The noun lasted from the year XXYY to the year XX”
where noun is an event, e.g “war”, XX is a century, e.g. 16,
and YY is a specific year in the century. The score function
is the difference in assigned probabilities between the years
smaller than yi = YY and the years greater than or equal to
yi. The implied task is to predict the next token YY’ as any
year greater than YY so as to respect chronological order.

A circuit is a subgraph C = (VC , EC) of the computational
graph G. It includes the input and output nodes and a subset
of edges, EC , that connect the input to the output. We let
C denote the space of all circuits. Fig. 1 depicts one such
circuit in a simplified computational graph of a two-layer
attention-only transformer. Given a circuit, we define its
complement C̄ to be the subgraph of G that includes all
edges not in C and their corresponding nodes.

2.3. Circuits of an LLM

A circuit specifies a valid subgraph, but it is not sufficient to
specify a runnable model. Recall that a node v in the circuit
is a function with a collection of inputs au corresponding to

2



Submission and Formatting Instructions for ICML 2024

each (u, v) present in E . If the edge (u, v) is removed, then
what input au should be provided to node v?

One solution, called activation patching, is to replace all
inputs au with an alternative value a∗u, one for each edge
(u, v) ∈ E that is absent from the circuit.

There are various ways to choose a value for a∗u. Two com-
mon approaches are zero ablation, which sets a∗u to 0 (Ols-
son et al., 2022), and Symmetric Token Replacement (STR)
patching (Chan et al., 2022; Geiger et al., 2024; Zhang &
Nanda, 2024). STR sets a∗u differently for each input xi and
proceeds as: First, create a corrupted input xc

i , which should
be like xi but with key tokens changed to semantically sim-
ilar ones. For example, in the greater-than task with input
xi = “The war lasted from the year 1973 to the year 19”,
we might replace it with xc

i = “The war lasted from the
year 1901 to the year 19”. The meaning is preserved but the
≥ 73 constraint is removed. Then, run the model on xc

i and
cache all the activations a∗u. Finally, run the circuit on xi,
replacing the input au of v with the cached a∗u for all edges
(u, v) ∈ E\EC iteratively until reaching the output node.

We use the notation C(x) to denote the output of the circuit
C on the input x, where the ablation scheme is implicit.
When we compute the output of the complement of the
circuit, namely C̄(x), we say that we knock out the circuit
C from the model M .

2.4. Evaluation metric: faithfulness

Given a circuit C(x) and a task τ = (D, s), we can use the
score function to evaluate how well the circuit performs the
task. However, in mechanistic interpretability, the goal is
often to evaluate whether the circuit replicates the behavior
of the model, which is known as faithfulness.

We define a faithfulness metric, F : C × C × X × Y → R,
that maps two circuits and an example inD to a real number
measuring the similarity in behavior of these two circuits
with respect to this particular example. We then define the
faithfulness of circuit C to model M on task τ as

Fτ (M,C) := E(X,Y )∼D [F (M,C,X, Y )] . (1)

We call Fτ (M,C) the faithfulness score of circuit C. For
example, a faithfulness metric could be the lk norm between
the score of the model and the score of the circuit,

F (M,C, x, y) = |s(M(x), y)− s(C(x), y)|k,

with k ∈ {1, 2}. However, F can be more general and non-
symmetric, such as the KL divergence between the logits
of M and C (Conmy et al., 2023). Following convention, a
lower value for Fτ (M,C) means the circuit is more faithful
to the model.

Head 1 Head 2

Head 1 Head 2

Input sequence

Layer 1

Layer 2

Output sequence

 

Figure 1: Simplified computational graph of a two-layer
LLM with two attention heads (without MLP). Nodes in
each layer connect to all nodes in the next layer via residual
connections. A highlighted arbitrary circuit is shown in blue.
In a detailed graph, each incoming edge to an attention head
splits into three: query, key, and value.

3. Hypothesis Testing on Circuits
In this section, we develop three tests that formalize the
following idealized criteria for a circuit: 1. Mechanism
Preservation: The circuit should approximate the original
model’s performance on the task. 2. Mechanism Localiza-
tion: The circuit should include all information critical to
the task’s execution. 3. Minimality: The circuit should be
as small as possible.

In § 3.1, we discuss three idealized but stringent hypotheses
implied by these criteria and develop tests for each. Then,
in § 3.2, we develop two flexible tests for Mechanism Lo-
calization and Mechanism Preservation, allowing users to
design the null hypotheses and determine to what extent a
circuit aligns with the idealized properties.

Standard hypothesis testing has 5 components:

1. A variable of interest, Z∗, e.g., the faithfulness of the
candidate circuit.

2. A reference distribution PZ over other Z that we wish
to compare Z∗ to, along with n samples (zi)ni=1 from
it, e.g., the faithfulness of n randomly sampled circuits.

3. A null hypothesis H0, which relates Z∗ and PZ and
which we assume holds true. E.g., H0: “the candidate
circuit is less faithful than 90% of random circuits from
PZ .”

4. A real-valued statistic t((zi)
n
i=1) computed from the

n samples, with known distribution when H0 holds,
e.g, the number of times the candidate circuit is less
faithful than a random circuit is a binomial variable
with success probability 90% if H0 holds.
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5. A confidence level 1−α and a rejection region Rα ⊂ R
such that if H0 is true, then the test statistic falls in Rα

with probability less than α. If we observe that t does
fall in Rα, we conclude that H0 is false and we reject
H0. We will be correct 1− α of the time when H0 is
true.

Finally, defining a rejection region for each α, the p-value is
the smallest α such that t((zi)ni=1) ∈ Rα (Young & Smith,
2005). The smaller the p-value, the stronger the evidence
against H0.

To perform a hypothesis test, we specify the 5 components
above, obtain the samples z1, . . . , zn, compute the test statis-
tic t(z1, . . . , zn) with the associated p-value, and reject the
null hypothesis with confidence 1−α if t(z1, . . . zn) ∈ Rα.

3.1. Idealized tests

We develop three tests, Equivalence, Independence, and
Minimality, which are direct implications of the idealized
criteria. These tests are designed to be stringent: if a circuit
passes them, it provides strong evidence that the circuit
aligns with the idealized criteria.

We assume we have a model M , a task τ = (D, s) with a
score function s, and a faithfulness metric F . We are then
given a candidate circuit C∗ to evaluate.

Equivalence. Intuitively, if C∗ is a good approximation
of the original model M , then C∗ should perform as well
as M on any random task input. Hence, the difference in
task performance between M and C∗ should be indistin-
guishable from chance. We formalize this intuition with an
equivalence test: the circuit and the original model should
have the same chance of outperforming each other.

We write the difference in the task performance between
the candidate circuit and the original model on one task
datapoint (x, y) as ∆(x, y) = s(C∗(x); y) − s(M(x); y),
and let the null hypothesis be

H0 :

∣∣∣∣P(X,Y )∼D (∆ (X,Y ) > 0)− 1

2

∣∣∣∣ < ϵ, (2)

where ϵ > 0 specifies a tolerance level for the difference in
performance.

To test this hypothesis, we use a sign test, a non-parametric
test designed specifically for null hypotheses like H0. The
test statistic is the number of times C∗ and M outperform
each other. We provide a detailed description of the test in
Appendix B.1.

Since H0 is in the idealized direction, if we reject the null,
we claim with confidence 1− α,

Non-Equivalence: C∗ and M are unlikely to be equiv-
alent on random task data.

Independence. If a circuit is solely responsible for the
operations relevant to a task, then knocking it out would
render the complement circuit unable to perform the task.
An implication is that the performance of the complement
circuit is independent of the original model on the task.

To formalize this claim, we define the null hypothesis as

H0 : s(C∗(X);Y ) ⊥⊥ s(M(X);Y ), (3)

where the randomness is over X and Y .

To test this hypothesis, we use a permutation test. Specif-
ically, we measure the independence between the perfor-
mance of the complement circuit and the performance of the
original model by using the Hilbert Schmidt Independence
Criterion (HSIC) (Gretton et al., 2007), a nonparametric
measure of independence. We provide a formal definition
of HSIC and describe the test in Appendix B.3.

If the null is rejected, it implies that the complement circuit
and the original model’s performances are not independent.
We claim with confidence 1− α,

Non-Independence: Knocking out the candidate cir-
cuit does not remove all the information relevant to the
task that is present in the original model.

Minimality. For minimality, we ask whether the circuit
contains unnecessary edges, which are defined to be edges
which when removed do not significantly change the cir-
cuit’s performance.

Formally, we define the change induced by removing an
edge e ∈ EC from a circuit C as

δ(e, C) = E(x,y)∼D |s(C(x), y)− s(C−e(x), y)| , (4)

where C−e = (V, EC\{e}).

We are interested in knowing whether for some specific
edge e∗ ∈ EC the value δ(e∗, C∗) is significant. The prob-
lem now becomes how to define the reference distribution
against which to compare δ(e∗, C∗). Ideally, we would like
to form the distribution δ(e, C∗) induced by unnecessary
edges e. But we do not know which e in C∗ are unnecessary
(finding them is precisely our goal).

To address this problem, we augment C∗ to create “inflated”
circuits. An inflated circuit CI of C∗ is obtained by adding
a random path to C∗ that introduces at least one new edge.
Our assumption is that the randomly added path is unneces-
sary to the circuit performance, and so removing one of the
added edges and studying the change in performance will
provide our reference distribution.
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We define (CI , eI) ∼ RI such that CI is a random inflated
circuit obtained with the above procedure, and eI is an
edge sampled uniformly at random over the novel edges
ECI\EC∗ . We then compare δ(e∗, C∗), the change induced
by removing edge e∗ from C∗, against the distribution of the
random variable δ(eI , CI), the change induced by removing
what is assumed to be an irrelevant edge from an inflated
version of C∗. A graphical illustration of this procedure is
in Fig. 4.

We define the null hypothesis as

H0 : PCI ,eI∼RI (δ(e∗, C∗) > δ(eI , CI)) > q∗, (5)

where q∗ is a pre-specified quantile.

The null hypothesis states that removing the edge e∗ ∈ EC
induces a significant change in the circuit score compared
to removing the random edge in the inflated circuit. If we
reject H0, we have found an unnecessary edge. We use a
tail test in Algorithm 1 to compute the p-value.

If we perform the test on multiple different edges in the
circuit, we need to correct for multiple hypothesis testing.
To do so we use the Bonferroni correction, which is a con-
servative correction that controls the family-wise error rate
(Dunn, 1961). If we test m edges in the circuit, the corrected
significance level is α/m.

If we test against multiple edges and after Bonferroni correc-
tion there is at least one edge for which the null hypothesis
is rejected, then we claim with confidence 1− α,

Non-Minimality: The circuit has unnecessary edges.

3.2. Flexible tests

§ 3.1 presents stringent tests that align with the idealized
versions of circuits. Passing any of these tests is a notable
achievement for any circuit. Here, we consider two flexible
ways of testing mechanism preservation (sufficiency) and
mechanism location (partial necessity).

Instead of comparing the candidate circuit to the original
model, we compare C∗ against random circuits drawn from
a reference distribution. Different definitions of the refer-
ence distribution modulate the difficulty of the tests. We
demonstrate that by varying the definition of the reference
distribution, we can determine the extent to which the circuit
aligns with the idealized criteria.

Sufficiency. For the sufficiency test, we ask whether the
candidate circuit is particularly faithful to the original model,
compared to a random circuit from a reference distribution.

The variable of interest is the faithfulness of C∗ to M : Z∗ =
Fτ (M,C∗). We define the reference distribution PZ as
the distribution of Z = Fτ (M,Cr) induced by sampling

random circuits Cr from a chosen distributionR. The null
hypothesis is

H0 : PCr∼R(Fτ (M,C∗) < Fτ (M,Cr)) ≤ q∗, (6)

where q∗ is a pre-specified quantile.

The advantage of a null hypothesis like Eq. 6 is that we
can change the reference distributionR and quantile q∗ to
capture to what degree we test the circuit hypothesis. For
example, an easier (but important) version of the test is to
have the reference distribution be over all circuits of the
same size as C∗. This test will verify that the candidate
circuit is not a simple lucky draw from the distribution of
random circuits, ensuring that it is better than at least a
fraction q∗ of random circuits.

Moreover, we can modulate the difficulty and the implied
conclusions of the test by changing the size of the random
circuits relative to C∗ and/or the target quantile q∗. If our
distribution of random circuits produces a fraction η of
circuits that are supersets of C∗ (which we expect to be
comparable to C∗), we can set q∗ = 1− η, an upper bound
for the test’s stringency.

The test statistic for Eq. 6 is the proportion of times C∗

is more faithful than Cr
i for n circuits Cr

i sampled from
R, t(Cr

1 , . . . , C
r
n) =

∑n
i=1

1{Fτ (M,C∗)<Fτ (M,Cr
i )}

n . Under
H0, the test statistics follows a binomial distribution, and
we compute the associated p-value using a one-sided bi-
nomial test. This procedure is described in more detail in
Algorithm 1 of Appendix B.

If the p-value is less than the significance level α for a
quantile q∗, we claim with confidence 1− α,

Sufficiency: The probability that C∗ is more faithful
to M than Cr is at least q∗.

Partial necessity. If the candidate circuit is responsible
for solving a task in the model, then removing it will impair
the model’s ability to perform the task. However, this im-
pairment may not be so severe as to make the model entirely
independent of the complement circuit’s output as tested in
the independence test.

Instead, we define partial necessity: compared to removing
a random reference circuit, removing the candidate circuit
significantly reduces the model’s faithfulness. The null
hypothesis is

H0 : PCr∼R(C
∗ is worse to knock out than Cr) ≤ q∗, (7)

where q∗ ∈ (0, 1) is a user-chosen parameter and
where “C∗ is worse to knock out than Cr” is shorthand for
Fτ (M,C∗) > Fτ (M,Cr).

Similar to the sufficiency test, this hypothesis test is highly
flexible in its design. An easier version involves using a
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Test Tracr-P Tracr-R Induction IOI G-T DS

Equivalence ✓ ✓ × × × ×
Independence ✓ ✓ × × × ×

Minimality ✓ ✓ ✓ × × ×

Table 1: Hypothesis testing results for six circuits using the three idealized tests. A (✓) indicates the null hypothesis is
rejected, while a (×) indicates it is retained. The gray shaded boxes denote synthetic circuits, aligning with our hypothesized
behavior. For the equivalence test, ϵ = 0.1.

reference distribution over circuits from the complement
C∗ distribution. This allows us to determine whether the
edges in the candidate circuit are particularly important for
task performance compared to a random circuit. Another
approach is to define the reference distribution by sampling
from the original model M , enabling us to assess whether
the significance of a knockdown effect could have occurred
by chance.

The test statistic is the proportion of times that C∗ is less
faithful than Cr. Similar to the sufficiency test, we apply a
binomial test to get the p-value. If H0 is rejected, we claim
with confidence 1− α,

Partial necessity: The probability that knocking out
C∗ damages the faithfulness to M more than knocking
out a random reference circuit is at least q∗.

4. Empirical Studies
We apply hypothesis tests to six benchmark circuits from
the literature: two synthetic and four manually discovered.
The synthetic circuits align with the idealized properties,
validating our criteria. While the discovered circuits align
with the hypotheses to varying degrees, the tests help assess
their quality and analyze how well each circuit aligns with
the idealized criteria.

4.1. Experimental setup

We use the experiment configuration from ACDC (Conmy
et al., 2023) for all tasks and circuits and perform the ab-
lations using TransformerLens (Nanda & Bloom, 2022).
Below, we briefly describe each task, with detailed explana-
tions in Appendix D. We omit the greater-than (G-T) task as
it was detailed in § 2. Both IOI and greater-than use GPT-2
small, while the other tasks use various small Transformers.

Indirect Object Identification (IOI, Wang et al. 2023):
The goal is to predict the indirect object in a sentence
containing two entities. For example, given the sequence
“When Mary and John went for a walk, John gave an apple
to”, the task is to predict the token “ Mary”. The score
function is logit(“ Mary”)− logit(“ John”).

Induction (Olsson et al. 2022): The objective is to predict
B after a sequence of the form AB . . .A. For example, given
the sequence “Vernon Dursley and Petunia Durs” the goal
is to predict the token “ley” (Elhage et al., 2021). The score
function for this task is the log probability assigned to the
correct token.

Docstring (DS, Heimersheim & Janiak 2023): The ob-
jective is to predict the next variable name in a Python
docstring. The score function is the logit difference between
the correct answer and the most positive logit over the set
of alternative arguments.

Tracr (Lindner et al. 2024): For tracr-r, the goal is
to reverse an input sequence. For tracr-p, the goal is to
compute the proportion of x tokens in the input. The score
function is the ℓ2 distance between the correct and predicted
output. Both of these tasks have “ground truth” circuits,
as the Transformers are compiled RASP programs (Weiss
et al., 2021), hence we call them synthetic circuits.

Experiment details. To construct the reference distribu-
tionsR of random circuits for the different tests, we sample
paths in M (or C∗) from the input nodes (embeddings) to
the output node (logits) using a random walk. For the suf-
ficiency and partial necessity tests, we start from an empty
circuit and augment it with the sampled paths until it has
at least k edges, where k is a number we vary in our ex-
periments. For the minimality test, we inflate the circuit by
adding one randomly sampled path, and we then randomly
choose an edge in the added path to knock out. We draw
100 random circuits to form the reference distribution for
the sufficiency and partial necessity tests, and 200 random
edges for the minimality test. In all experiments, we use
Eq. 1 with ℓ2 norm as the faithfulness metric. We set q∗ to
be 0.9 and α to be 0.05.

4.2. Results

Below we report and analyze key findings across tests. Ad-
ditional results are reported in Appendix E.

Idealized tests. Table 1 presents the overall results of
the six circuits across the three idealized hypothesis tests.
The synthetic circuits (highlighted in grey) align with our
hypotheses, justifying the hypothesis tests. The discovered
circuits align with the idealized hypotheses to varying de-
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Figure 2: Left: The relative faithfulness of the candidate circuit compared to a random circuit from the reference distribution
of varying sizes (x-axis). Dotted vertical lines indicate the actual size of the circuits. Right: The probability that a random
circuit contains the canonical circuit.

grees. None of these circuits are equivalent or independent.
The minimality test reveals redundant edges in all circuits
except the Induction circuit. We report detailed test statistics
and the scores for knocking out each edge in the circuits in
Appendix E.

Sufficiency test. We apply the sufficiency test to study
the extent to which existing circuits align with the circuit
hypothesis. As noted in § 3.2, we can adjust the reference
distribution to vary the test’s stringency. Fig. 2 (left) il-
lustrates the relative faithfulness of the candidate circuits
compared to different reference circuit distributions.

The IOI and G-T circuits are significantly more faithful than
random circuits at 90% of the original model’s size, while
the DS and Induction circuits outperform random circuits at
40% size. These results suggest their faithfulness is not due
to random chance.

If the circuit hypothesis holds, we can expect the probability
a randomly sampled circuit is as faithful as the candidate
circuit to be equal to the probability the random circuit
contains the candidate circuit. In Fig. 2 (right), we illustrate
this probability under our sampling algorithm. We observe
that the curve on the left is similar to the inverse of the
right. Notably, while the Induction and DS circuits appear
similar in Fig. 2 (left), they differ in Fig. 2 (right). The
difference suggests that the Induction circuit is more closely
aligned with the idealized properties compared to the DS
circuit. However, these results follow the original paper’s
experimental setup. We found that reproducing the figure
with a different ablation scheme (Fig. 6) yields different
conclusions.

Partial necessity test. We now analyze the knockdown
effect of the candidate circuit. Similar to the sufficiency test,
we can define different reference distributions that reflect
different underlying hypotheses. Table 2 reports the results

of the hypothesis tests under two reference distributions.

We observe that when the reference circuit is drawn from
the complement C∗, the knockdown effect for the candidate
circuits is significant across tasks. This suggests that edges
in the candidate circuit play a more significant role in task
performance than edges in the complement circuit.

However, when compared against reference circuits drawn
from the model M , we find that, except for the Induction
circuit, knocking down the candidate circuit does not have a
more significant effect than knocking down a random circuit
of the same size. This indicates that the knockdown metric
alone cannot determine the quality of a circuit.

Reference circuit Induction IOI G-T DS

Cr ∼ C∗ ✓ ✓ ✓ ✓
Cr ∼M ✓ × × ×

Table 2: A (✓) indicates that knocking down C∗ is signif-
icantly worse than knocking down Cr, while (×) means
the converse. Cr is the same size as C∗ but draws from
different reference distribution.

One explanation is that all edges in the circuit are essential,
so knocking down any edge impairs the model’s task perfor-
mance. If a random circuit includes the candidate circuit’s
edges, the effect is similar. To investigate this, we build on
the minimality result.

Minimality. Recall from Table 1 that we found only the
synthetic circuits and the Induction circuit to be minimal.
All other circuits contained insignificant edges. In Fig. 3, we
gradually knock out more edges from the canonical circuit
and report the faithfulness of the modified circuit. For DS
and G-T, we can remove around 20% of the non-minimal
edges while retaining the same faithfulness. However, we
notice that the faithfulness of IOI does not vary monotoni-
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Figure 3: The faithfulness of the circuit as we gradually knock down more edges from the canonical circuit. Edges are
removed in order of their minimality score, starting with the least minimal. The dotted line shows the canonical circuit’s
faithfulness, and the solid line shows an empty circuit’s faithfulness. Removing a few minimal edges does not significantly
affect faithfulness.

cally as more edges are knocked out, revealing the complex
mechanisms of circuits (e.g., negative mover heads).

5. Discussion & Limitations
Do existing circuits align with the circuit hypothesis? We
develop a suite of idealized and flexible tests to empirically
study this question. The results suggest that while existing
circuits do not strictly adhere to the idealized hypotheses,
they are far from being random subnetworks.

Our tests successfully differentiated circuits by their align-
ment with the idealized properties, identifying the Induction
circuit (Conmy et al., 2023) as the most aligned. We also
demonstrated the limitations of existing evaluation criteria,
showing that the knockdown effect alone is insufficient to
determine circuit quality and that some benchmark circuits
are not minimal.

Our tests and empirical studies have several limitations.
The idealized tests are stringent, while the flexible tests are
sensitive to circuit size measurements and require careful
null hypothesis design. Furthermore, the empirical study
uses the original experimental setup, whereas existing work
and our ablation studies show that circuits are not robust to
changes in the experimental setup.

Despite these limitations, we believe the study provides an
overview of the extent to which existing circuits align with
the idealized properties. We also believe that the tests will
aid in developing new circuits, improving existing circuits,
and scientifically studying the circuit hypothesis.

6. Acknowledgements
C.S, N.B and D.B. were funded by NSF IIS-2127869, NSF
DMS-2311108, NSF/DoD PHY-2229929, ONR N00014-17-
1-2131, ONR N00014-15-1-2209, the Simons Foundation,
and Open Philanthropy. A.N. was supported by funding

from the Eric and Wendy Schmidt Center at the Broad Insti-
tute of MIT and Harvard, and the Africk Family Fund. The
authors thank Sebastian Salazar and Eli N. Weinstein for
comments on the manuscript and helpful discussion. They
also thank the contributors to the Automatic Circuit Dis-
covery codebase (Conmy et al., 2023) which underlies a
significant part of this paper’s code.

7. Author Contributions
C.S., N.B., A.N. and M.M. designed the hypothesis tests.
C.S., N.B., A.N., C.Z., A.G., A.J. and D.B. wrote the
manuscript. C.S., N.B., A.N., C.Z. and A.J. implemented
the package. A.G. provided code for ablations. C.S., A.N.,
N.B. and C.Z. conducted the experiments. D.B. and M.M.
supervised the project. C.S. initiated the project idea.

8



Submission and Formatting Instructions for ICML 2024

References
Cammarata, N., Goh, G., Carter, S., Voss, C., Schubert, L.,

and Olah, C. Curve Circuits. Distill, 6(1):e00024–006,
2021.

Casper, S., Bu, T., Li, Y., Li, J., Zhang, K., Hariharan, K.,
and Hadfield-Menell, D. Red Teaming Deep Neural Net-
works with Feature Synthesis Tools. Advances in Neural
Information Processing Systems, 36:80470–80516, 2023.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Green-
blatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris,
B., and Thomas, N. Causal Scrubbing: A Method for Rig-
orously Testing Interpretability Hypotheses. In Alignment
Forum, 2022.

Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards Automated Circuit
Discovery for Mechanistic Interpretability. Advances
in Neural Information Processing Systems, 36:16318–
16352, 2023.

Doshi-Velez, F. and Kim, B. Towards a Rigorous Science
of Interpretable Machine Learning. arXiv: stat.ML, 2017.
URL http://arxiv.org/abs/1702.08608v2.

Dunn, O. J. Multiple Comparisons among Means. Journal
of the American statistical association, 56(293):52–64,
1961.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T.,
Clark, J., Kaplan, J., McCandlish, S., and Olah, C.
A Mathematical Framework for Transformer Circuits,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

Friedman, D., Wettig, A., and Chen, D. Learning Trans-
former Programs. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal Abstrac-
tions of Neural Networks. Advances in Neural Informa-
tion Processing Systems, 34:9574–9586, 2021.

Geiger, A., Wu, Z., Potts, C., Icard, T., and Goodman, N.
Finding Alignments Between Interpretable Causal Vari-
ables and Distributed Neural Representations. In Causal
Learning and Reasoning, pp. 160–187. PMLR, 2024.

Gokaslan, A. and Cohen, V. OpenWebText Cor-
pus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B.,
and Smola, A. A Kernel Statistical Test of Independence.
Advances in Neural Information Processing Systems, 20,
2007.

Hanna, M., Liu, O., and Variengien, A. How Does GPT-
2 Compute Greater-Than. Interpreting Mathematical
Abilities in a Pre-Trained Language Model, 2:11, 2023.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A. Does
Localization Inform Editing? Surprising Differences in
Causality-Based Localization vs. Knowledge Editing in
Language Models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Heimersheim, S. and Janiak, J. A Circuit for
Python Docstrings in a 4-layer Attention-
Only Transformer. Alignment Forum, 2023.
URL https://www.alignmentforum.
org/posts/u6KXXmKFbXfWzoAXn/.
https://www.alignmentforum.
org/posts/u6KXXmKFbXfWzoAXn/
acircuit-for-python-docstrings\
-in-a-4-layer-attention-only.

Jacovi, A. and Goldberg, Y. Towards Faithfully Interpretable
NLP Systems: How Should We Define and Evaluate
Faithfulness? In Jurafsky, D., Chai, J., Schluter, N.,
and Tetreault, J. (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 4198–4205, Online, jul 2020. Association for Com-
putational Linguistics. doi: 10.18653/v1/2020.acl-main.
386. URL https://aclanthology.org/2020.
acl-main.386.

Lieberum, T., Rahtz, M., Kramár, J., Nanda, N., Irving,
G., Shah, R., and Mikulik, V. Does Circuit Analysis
Interpretability Scale? Evidence From Multiple Choice
Capabilities in Chinchilla. CoRR, 2023. URL http:
//arxiv.org/abs/2307.09458v3.

Linardatos, P., Papastefanopoulos, V., and Kotsiantis,
S. B. Explainable AI: A Review of Machine
Learning Interpretability Methods. Entropy, 23,
2020. URL https://api.semanticscholar.
org/CorpusID:229722844.

Lindner, D., Kramár, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled Transformers as
a Laboratory for Interpretability. Advances in Neural
Information Processing Systems, 36, 2024.

Mills, E., Su, S., Russell, S., and Emmons, S. ALMANACS:
A Simulatability Benchmark for Language Model Ex-
plainability. arXiv, 2023. URL http://arxiv.org/
abs/2312.12747v1.

9

http://arxiv.org/abs/1702.08608v2
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://aclanthology.org/2020.acl-main.386
https://aclanthology.org/2020.acl-main.386
http://arxiv.org/abs/2307.09458v3
http://arxiv.org/abs/2307.09458v3
https://api.semanticscholar.org/CorpusID:229722844
https://api.semanticscholar.org/CorpusID:229722844
http://arxiv.org/abs/2312.12747v1
http://arxiv.org/abs/2312.12747v1


Submission and Formatting Instructions for ICML 2024

Mu, J. and Andreas, J. Compositional Explanations of Neu-
rons. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 17153–17163,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
c74956ffb38ba48ed6ce977af6727275-Paper.
pdf.

Nanda, N. and Bloom, J. TransformerLens.
https://github.com/neelnanda-io/
TransformerLens, 2022.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress Measures for Grokking via Mechanistic
Interpretability. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability, 2023b. URL https://arxiv.org/
abs/2301.05217.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom In: An Introduction to Cir-
cuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A.,
et al. In-Context Learning and Induction Heads. arXiv
preprint arXiv:2209.11895, 2022.

Quirke, P. et al. Understanding Addition in Transformers.
arXiv preprint arXiv:2310.13121, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language Models are Unsupervised
Multitask Learners. OpenAI Blog, 1(8):9, 2019.

Schubert, L., Voss, C., Cammarata, N., Goh, G.,
and Olah, C. High-Low Frequency Detectors.
Distill, 2021. doi: 10.23915/distill.00024.005.
https://distill.pub/2020/circuits/frequency-edges.

Schwettmann, S., Shaham, T. R., Materzynska, J., Chowd-
hury, N., Li, S., Andreas, J., Bau, D., and Torralba,
A. FIND: A Function Description Benchmark for
Evaluating Interpretability Methods. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=mkSDXjX6EM.

Stander, D., Yu, Q., Fan, H., and Biderman, S. Grokking
Group Multiplication with Cosets. arXiv preprint
arXiv:2312.06581, 2023.

Syed, A., Rager, C., and Conmy, A. Attribution Patch-
ing Outperforms Automated Circuit Discovery. arXiv
preprint arXiv:2310.10348, 2023.

Variengien, A. and Winsor, E. Look Before You Leap: A
Universal Emergent Decomposition of Retrieval Tasks in
Language Models. arXiv, 2023. URL http://arxiv.
org/abs/2312.10091v1.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B.,
and Steinhardt, J. Interpretability in the Wild: a Circuit
for Indirect Object Identification in GPT-2 Small. In
International Conference on Learning Representations,
2023. URL https://api.semanticscholar.
org/CorpusID:260445038.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking Like
Transformers, 2021.

Young, G. A. and Smith, R. L. Hypothesis Testing, pp.
65–80. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 2005.

Zhang, F. and Nanda, N. Towards Best Practices of Activa-
tion Patching in Language Models: Metrics and Methods.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=Hf17y6u9BC.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The Clock
and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=S5wmbQc1We.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://openreview.net/forum?id=mkSDXjX6EM
https://openreview.net/forum?id=mkSDXjX6EM
http://arxiv.org/abs/2312.10091v1
http://arxiv.org/abs/2312.10091v1
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We


Submission and Formatting Instructions for ICML 2024

Appendices
A. Related Work
This work fits into the broader field of explainable AI (Linardatos et al., 2020), with a particular application to mechanistic
interpretability.

Mechanistic interpretability. Olah et al. (2020) introduced the notion of a circuit inside a neural network: overlapping
units within the network that compute features from other features and can theoretically be understood from the weights.
Since then, mechanistic interpretability has proposed many circuits, such as in vision models (Cammarata et al., 2021; Mu
& Andreas, 2020; Schubert et al., 2021) and language models (Olsson et al., 2022; Wang et al., 2023; Hanna et al., 2023;
Lieberum et al., 2023). The literature has been particularly successful in explaining Transformers that compute simple,
algorithmic tasks (Nanda et al., 2023a; Heimersheim & Janiak, 2023; Zhong et al., 2023; Quirke et al., 2023; Stander et al.,
2023).

Evaluating interpretability. Evaluating the quality of interpretability results is an open problem. Some researchers focus
on evaluating the faithfulness (Jacovi & Goldberg, 2020) of explanations: do they accurately represent the reasoning process
of the model? Chan et al. (2022); Geiger et al. (2021) introduced similar formalisms for measuring faithfulness based on
causality, with (Schwettmann et al., 2023; Lindner et al., 2024; Friedman et al., 2024; Variengien & Winsor, 2023) providing
datasets and methods to generate them.

Early on, Doshi-Velez & Kim (2017) distinguished between functional (without humans) and application-grounded
evaluation of interpretability methods, arguing that functional metrics are flawed proxies for how useful the interpretation is.
Several works (Casper et al., 2023; Mills et al., 2023) adopt this approach to evaluating interpretability.

Relation to IOI (Wang et al. (2023)). The approach proposed in this paper is closest to Wang et al. (2023), which presents
three criteria – faithfulness, minimality, and completeness – to evaluate the IOI circuit. Faithfulness is a metric, while
minimality and completeness involve searching over the space of circuits.

Our idealized criteria align with the spirit of Wang et al. (2023), but the specific tests differ. Wang et al. (2023) reported a
faithfulness score of 0.2 on the circuit, but the significance of this score is unclear without a reference point. Our sufficiency
test contextualizes whether the faithfulness score is significant by comparing it to different reference distributions.

Additionally, Wang et al. (2023) use two other criteria, completeness and minimality. Completeness relates to whether there
are parts of the circuit that are not included but may still play a role. They evaluate this by checking if the circuit behaves
similarly to the model under knockouts. Minimality checks whether, for a node v, there exists a subset K such that including
v but removing K significantly changes the score. Both tests require an exhaustive enumeration of circuits and don’t use any
reference distribution to establish significance, which is an important contribution of our work.

Relation to ACDC ((Conmy et al., 2023) Our work is also related to Conmy et al. (2023). The ACDC evaluation focuses
on the accuracy of edge classification within circuits. While they compare the circuits uncovered by the automated method
against circuits found in existing works, we evaluate the quality of the circuits presented in these existing works, i.e., what
they used as ground truth.

Additionally, the ACDC algorithm uses a threshold parameter τ to determine the significance of an edge’s relevance to the
task at hand. They treat this threshold as a parameter in their search algorithm, sweeping through various values. In contrast,
our minimality test offers a principled approach to establish a clear criterion for determining the value of the threshold.
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B. Statistical Tests
B.1. Equivalence Test

The null hypothesis for the equivalence test is defined as

H0 :

∣∣∣∣P (∆ (X,Y ) > 0)− 1

2

∣∣∣∣ < ϵ, (8)

where ϵ > 0 is a user-chosen tolerance parameter.

Given that 1 {∆(X,Y ) > 0} is Bernoulli-distributed under the null hypothesis, we use the test statistic

t =

∣∣∣∣∣ 1n ∑
i

1 {∆(xi, yi) > 0} − 1/2

∣∣∣∣∣ , (9)

and choose rejection regions of the form Rα = {t ≥ c(α)}, where c(α) is a yet-to-be defined function of α ensuring that
P(T ∈ Rα) ≤ α. Intuitively, c(α) increases (or remains constant) as α decreases. Moreover, because P(T ∈ {t ≥ C}) = 1
if C = 0, and P(T ∈ {t ≥ C})→ 0 as C →∞, we know it must be possible to construct at least one function c(α) so that
the regions Rα satisfy the requirements of a hypothesis test.

Let θ = P (∆ (X,Y ) > 0). By the definition of the hypothesis test and the null hypothesis, we require P(T ∈ Rα) ≤ α for
all θ ∈

[
1
2 − ϵ, 1

2 + ϵ
]
. However, notice that for a fixed rejection region Rα and any value θ′ ∈

[
1
2 − ϵ, 1

2 + ϵ
]
,

P(T ∈ Rα | θ = θ′) ≤ P
(
T ∈ Rα

∣∣∣∣ θ =
1

2
+ ϵ

)
(10)

Hence, if we have a set R = {t ≥ C}, where C is some constant, R is a valid rejection region for any α such that

α ≥ P
(
T ∈ R

∣∣∣∣ θ =
1

2
+ ϵ

)
. (11)

Now, construct a function c(α) such that P(T ∈ Rα) ≤ α, and ensure that c(αp) = tobs, where

αp = P
(
T ≥ tobs

∣∣∣∣ θ =
1

2
+ ϵ

)
, (12)

and c(α) > c(αp) for any α < αp. We can construct one such function, for example, by letting c(α) = tobs for α > αp,
which is admitted by Eq. 11, and by choosing valid values for any α < αp, which is feasible because P(T ≥ C)→ 0 as
C →∞. Under this setup, the p-value is αp. This follows from the fact that tobs ∈ Rαp = {t ≥ tobs}, but for any α < αp,
tobs ̸∈ Rα as c(α) > c(αp) = tobs.

Finally, we can compute the p-value analytically by using the Bernoulli distribution for 1{∆(xi, yi) > 0} with parameter
θ = 1/2 + ϵ,

αp =
∑
k∈[n]

| kn− 1
2 |≥tobs

(
n

k

)(
1

2
+ ϵ

)k (
1− 1

2
− ϵ

)n−k

. (13)

An important clarification is that we could have chosen the test statistic to be the estimated value of θ namely,∑
i 1{∆(xi, yi)}/n and change the rejection region. In the main text we choose to express it this way for clarity of

exposition.

B.2. Quantile Test

We provide the details of the quantile test used for testing sufficiency, partial necessity, and minimality in Algorithm 1.
We state it generally but assume that it would be instantiated for each of the above cases. Throughout, we assume we are
interested in a random quantity Z and want to compare it to a target value Z∗. We only use < and > for expository purposes.
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For sufficiency, the test corresponds to l(·) = Fτ (M, ·). For partial necessity, it corresponds to l(C) 7→ −Fτ (M,C).

Algorithm 1 Quantile Test
Input: Population distribution P ⋆

Z , target quantity Z∗, quantile q∗, number of random samples n, alternative hypothesis
direction: > or <, comparison direction: > or <, significance level α

Output: The p-value and test statistic

t← 0

for i = 1, . . . , n do
Z∗ ∼ P⋆

Z if comparison direction is < then
t← t+ 1 {Z∗ < Zi} /n ; // t will be the test statistic

else
t← t+ 1 {Z∗ > Zi} /n

p-value← Compute the p-value with a binomial test with t successes, n trials, probability of success q∗, and significance
level α using the alternative hypothesis direction

return p-value, t

B.3. Independence Test

We provide details for the independence test used for the partial necessity test. To measure the independence between
two variables, we use the Hilbert Schmidt Independence Criterion (HSIC) (Gretton et al., 2007). HSIC is a nonparametric
measure of independence between two random variables. It is based on the idea that if two random variables are independent,
then the cross-covariance between the two variables should be zero. It accounts for the nonlinear relationship between the
two variables by mapping them into a reproducing kernel Hilbert space (RKHS) and computing the cross-covariance in the
RKHS.

Definition B.1 (Hilbert-Schmidt Independence Criterion (HSIC)). Let K(x, y) = f(δ(x, y)/ρ) denote a kernel function
such as the RBF kernel. Let ρ be a positive parameter called the bandwidth. The Hilbert Schimit Independence Norm is
defined as the trace of the covariance between X and Y in the kernel space,

∥C(x, y)∥2F = tr[kTxykxy]. (14)

A higher HSIC value indicates a stronger relationship between the variables.

The permutation test used for the independence test is detailed in Algorithm 2.

Algorithm 2 Permutation Test
Input: Candidate circuit C∗, dataset D, score function s, bandwidth ρ, number of random samples B
Output: p-value

sC̄∗ ← [s(C∗(x1), y1), . . . , s(C∗(xn), yn)] ;
sM ← [s(M(x1), y1), . . . , s(M(xn), yn)];
tobs ← HSIC(sC̄∗ , sM , ρ);

t← 0;
for j = 1, . . . , B do

s
(i)
M ← permute(sM )

t(i) ← HSIC
(
sC̄∗ , s

(i)
M , ρ

)
t← t+ 1

{
t(i) > tobs

}
p-value← t

B ; // Approximate p-value
return p-value;
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C. Minimality
We give a graphical example of the minimality test in Fig. 4.

blocks.0.hook_resid_pre.[None]

blocks.2.hook_k_input.[0]

blocks.2.hook_v_input.[0]

blocks.0.hook_v_input.[5]

blocks.3.attn.hook_result.[7]

blocks.1.attn.hook_result.[4]

blocks.3.hook_q_input.[6]

blocks.3.hook_k_input.[6]

blocks.2.attn.hook_result.[0]

blocks.3.hook_k_input.[0]

blocks.0.attn.hook_result.[5]

blocks.3.attn.hook_result.[0]

blocks.3.hook_v_input.[0]

blocks.1.hook_v_input.[4]

blocks.1.hook_k_input.[2]

blocks.1.attn.hook_result.[2]

blocks.3.attn.hook_result.[6]

blocks.1.hook_q_input.[2]

blocks.3.hook_v_input.[6]

blocks.3.hook_resid_post.[None]

blocks.3.hook_q_input.[0]

blocks.2.hook_q_input.[0]

blocks.3.hook_q_input.[7]

Figure 4: Example of one step of the minimality test for the Docstring task: comparing knocking out a single edge of the
candidate circuit (orange edge) against comparing knocking out a random edge of a randomly inflated circuit (the randomly
added path is blue, the knocked out edge in the added path is red). Minimality tests whether knocking out the random red
edge is more significant than knocking out the orange candidate edge.
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D. Experiment Details
D.1. Task Description

Below, we provide an extended description of each task and how the experiments were performed.

Indirect Object Identification (IOI) (Wang et al., 2023). The objective in IOI is to predict the indirect object in a
sentence containing two subjects with an initial dependent clause followed by the main clause. For example, in the sentence
“When Mary and John went to store. John gave an apple to” the correct prediction is Mary. We use the dataset provided
by Wang et al. (2023) following the structure above. The score used is the logit difference between the correct subject
(Mary) and and the incorrect subject (John), and the distribution used to perform STR patching is one where the subjects are
replaced for different names, not in the sentence. For example, in the sentence above this could be: “Sarah and Jamie went
to the store. April gave an apple to.” The candidate circuit we evaluate is the one discovered by Wang et al. (2023) in GPT-2
(Radford et al., 2019).

Induction (Elhage et al., 2021). The objective for induction is to repeat the completion of a sequence of tokens that
previously appeared in the context. For example, in the sentence, “Vernon Dursley and Petunia Durs” the goal is to predict
“ley”. The score is the log probability assigned to the correct token. We use the dataset provided by Conmy et al. (2023)
which contains 40 sequences of 300 tokens from the validation split of OpenWebText Gokaslan & Cohen (2019) filtered to
include instances of induction. The circuit we use corresponds to the circuit discovered by Conmy et al. (2023) using zero
ablation on a 2-layer 8-head attention-only Transformer trained on OpenWebText. Consequently, we also use zero patching
for the experiments with this model.

Docstring (Heimersheim & Janiak, 2023). The objective for the Docstring task is to predict the next variable name
inside of a docstring. For example, in

def port(self, load, size, files, last):
"""oil column piece
:param load: crime population
:param size: unit dark
:param

the model should predict the completion files. We use the dataset provided by Heimersheim & Janiak (2023) following
the structure above. The STR dataset uses the same input but with the parameter names switched for different ones not in
the function. For example, the corrupted input corresponding to the example above replaces load by user and size
by context. Following Heimersheim & Janiak (2023), for the score we use the logit difference between the correct
answer and the most positive logit over the set of alternative arguments, including the ones used for the corrupted example.
The circuit we use corresponds to the one provided by Heimersheim & Janiak (2023) which is specified over a 4-layer
attention-only Transformer trained on natural language and Python code.

Greater-Than (Hanna et al., 2023) The greater-than task requires performing the greater operation as it appears in natural
language. For example, it asks that sentences such as “The demonstrations lasted from the year 1289 to the year 12”, are
completed with tokens representing two-digit numbers between “89”and “99”. Following Hanna et al. (2023), we use as the
score function the difference in probability between the two-digit tokens satisfying the relation and those that don’t. For
STR patching, we use a corrupted datapoint, which replaces the last two digits of the first year with “01”. In the example
above, this would imply changing “1289” to “1201”. The circuit we evaluate for this task is the GPT-2 subgraph provided
by Conmy et al. (2023) as a simplification to the original provided by Hanna et al. (2023).

Tracr (Lindner et al., 2024). Tracr is a compiler for RASP (Weiss et al., 2021), a simple language expressing
a computational model for Transformers. We use Tracr as by design it provides us with a “ground truth” circuit
which allows us to verify the performance of our method. We study two tasks. The first task tracr-r, consists of
reversing a small sequence of tokens. The second tasks tracr-p consists in computing at each position the proportion of
tokens corresponding to x that have been observed. The sequences <bos> 1 2 3 and <bos> x a c x respectively
correspond to possible input sequences for the tasks. The sequences <bos> 3 2 1 and <bos> 1.0 0.5 0.3 0.5
correspond to the desired outputs respectively. Following Conmy et al. (2023), the score used for both tasks is the sum of
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token-level ℓ2 distances between the desired and produced outputs. For the evaluation dataset we use all permutations of
the sequence 1 2 3 for tracr-r, and 50 random 4-character-long sequences consisting of characters in {x,a,c} for
tracr-p. We use zero ablation for both tasks.

D.2. Software

All experiments were conducted using an internal cluster with only CPUs. We built upon the ACDC codebase for graph
structure, which was not optimized for parallel processing. The computation time varies depending on circuit and model
sizes. Sampling and running 100 circuits takes approximately 10 minutes (Induction) to two hours (IOI), which is needed
for the sufficiency, partial necessity, and minimality tests. The equivalence and independence test only require a forward
pass on the circuit and the original model and take a few minutes to run.

Additionally, we are developing the circuitry package, a wrapper around the TransformerLens library that abstracts
away lower-level manipulations of hooks and activations. For a given model, the user specifies a circuit as a subset of nodes
and edges, selects an ablation strategy and dataset, and can then evaluate model performance with respect to the circuit. Our
package is implemented efficiently, capable of evaluating hundreds of circuits in a few minutes on a single A5000 GPU.
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E. Additional Results
E.1. Equivalence

The equivalence test evaluates whether the candidate circuit outperforms the original model at least half of the time. As
shown in Table 1, none of the natural circuits passed the equivalence test. Table 3 show the test statistics – the proportion of
inputs where the candidate circuit outperforms the original model – of all tasks. All circuits except IOI are much worse than
the original model at the task. This may be because circuits are only a small proportion of the original model. We omit the
Tracr-based tasks because their performance is identical to the original model by design (they are ground truth circuits).
Thus, in their case, although the null hypothesis is true, the sign test can’t be applied.

Tracr-P Tracr-R Induction IOI G-T DS

– – 0.02 0.24 0.05 0.08

Table 3: The proportion of times C∗ outperforms M on the task. Results for Tracr-based tasks are omitted as the
performance of the circuit is the same as the original model.

E.2. Independence

For the independence test, we consider retaining the null as passing the test. As shown in Table 1, none of the natural circuits
pass the independence test, but Tracr, the ground truth, circuit does. Table 4 reports the results.

G-T Induction IOI DS Tracr-P Tracr-R

HSIC 0.00011 0.00956 0.00142 0.00065 0.00000 0.00000
p-value 0.000 0.001 0.005 0.002 1.000 1.000

Table 4: The HSIC and p-value of the independence test.

E.3. Minimality

To produce the results in Table 1, we set q∗ = 0.9 and if there exist any edges deemed insignificant, we reject the null
hypothesis that the candidate circuit is minimal. We find that only the Induction and Tracr circuits pass the minimality test.

In Fig. 5, we plot the scores for knocking out each edge for each circuit. As the Tracr circuits are ground truth circuits, all
edges are significant relative to the reference distribution.

For the Induction circuit, all edges are also significant relative to the reference distribution. However, for the other circuits,
we find that a significant portion of the edges are insignificant. This is especially prevalent for the DS circuit, where less
than half of the edges are significantly different from the reference distribution. This suggests that other than the Induction
circuit, these circuits are not minimal. Unsurprisingly, for the IOI circuit, we see a few edges that can be removed with little
impact to performance, in agreement with Wang et al. (2023).

E.4. Ablation on the sufficiency test

We observe the circuits are significantly more faithful than random circuits in the original experiment setup. To assess the
robustness of the results, we change the ablation scheme. In the main paper, we followed the experimental setup from the
original paper that proposed the circuit. For the Induction and Tracr models, we used zero ablation, while for the other
models, we used STR. In Fig. 6, we use STR for Tracr and Induction, and zero ablation for the other circuits.
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Figure 5: The main figures display the change in task performance score induced by knocking out edge e, for every e in each
circuit. The changes in score are sorted from low to high along the x-axis. The right-adjacent vertical histograms show the
change in task performance scores of the 200 reference edges. The shaded region covers the individual edges with corrected
p-values that are below the significance threshold.

Figure 6: Circuits are not robust to change in ablation. The figure reports the test statistics for the candidate circuit under
different ablation setups. Consistent with existing work, we have found that these circuits are sensitive to the choice of
ablation method.
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F. Impact Statement
We present a suite of statistical tests to assess whether existing circuits align with the idealized version of circuits. When
utilized appropriately, these tests can help identify new circuits, improve existing circuits, and compare the quality across
circuits. Thus, we expect these tests to improve the quality of circuits reported in the mechanistic interpretability literature,
making them more aligned with the idealized criteria.

We anticipate that the overall effect of this work will be to accelerate progress in mechanistic interpretability and consequently
improve our understanding of how LLMs work. This should facilitate explaining and steering model behavior, and possibly
“debugging” learned models. At the same time, an improved understanding of model internals may enhance architectures
and accelerate capabilities. Additionally, it can open the door to more sophisticated attacks and defenses for various threat
models.

It is important to note that our methodology is based on a hypothesis testing framework. Similar to other hypothesis-based
tests, there is a potential for misuse or engagement in practices such as p-hacking by practitioners. Misapplication of these
tests can lead to misleading assurances of robustness that the circuits might not genuinely possess. Furthermore, we assume
a fixed experimental setup rather than considering generalization across different setups. The inferences we draw across
experimental setups can differ significantly.

If these tests are used to check mechanistic interpretability results for an application of AI, they may give users or developers
a misplaced sense of confidence in a faulty hypothesis about neural network internals. However, we believe that this is
already a danger with present results, and our work is an improvement in this regard.
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