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ABSTRACT

Transfer attacks optimize on a surrogate and deploy to a black-box target. While
iterative optimization attacks in this paradigm are limited by their per-input cost
limits efficiency and scalability due to multistep gradient updates for each input,
generative attacks alleviate these by producing adversarial examples in a single
forward pass at test time. However, current generative attacks still adhere to op-
timizing surrogate losses (e.g., feature divergence) and overlook the generator’s
internal dynamics, underexploring how the generator’s internal representations
shape transferable perturbations. To address this, we enforce semantic consistency
by aligning the early generator’s intermediate features to an exponential moving
average (EMA) teacher, stabilizing object-aligned representations and improving
black-box transfer without inference-time overhead. To ground the mechanism, we
quantify semantic stability as the standard deviation of foreground IoU between
cluster-derived activation masks and foreground masks across generator blocks,
and observe reduced semantic drift under our method. For more reliable evaluation,
we also introduce Accidental Correction Rate (ACR) to separate inadvertent correc-
tions from intended misclassifications, complementing the inherent blind spots in
traditional Attack Success Rate (ASR), Fooling Rate (FR), and Accuracy metrics.
Across architectures, domains, and tasks, our approach can be seamlessly integrated
into existing generative attacks with consistent improvements in black-box transfer,
while maintaining test-time efficiency.'

1 INTRODUCTION

Deep neural networks have driven advances in computer vision, natural language processing, and
medical diagnosis by learning rich hierarchical representations. At the same time, they remain vulner-
able to small human-imperceptible perturbations known as adversarial examples (AE) Szegedy et al.
(2013), which can induce confident misclassification and raise safety concerns in real deployments.
The risk is amplified in black-box settings, where an attacker has no access to the parameters or
architecture of a model. In these scenarios, transfer-based attacks craft perturbations on a surrogate
and deploy them against unseen targets, enabling a single perturbation strategy to threaten diverse
safety-critical systems such as self-driving and biometrics.

Early white-box iterative attacks (for example, FGSM and its multistep variants Zhang et al. (2021);
Dong et al. (2018); Xie et al. (2019); Dong et al. (2019)) rely on direct gradient access. Transfer-based
attacks extend this idea by seeking perturbations that generalize across models, often using iterative
optimization in the white-box regime Madry et al. (2017); Carlini et al. (2019); Zhang et al. (2021).
While effective, they require per-example iterative optimization, whereas generative attacks amortize
this cost by producing perturbations in a single forward pass.

Generative transfer attacks train a feedforward perturbation generator against a surrogate and then
produce adversarial noise with one forward pass at the test time Xiao et al. (2018); Wang et al.
(2018); Baluja & Fischer (2017; 2018); Poursaeed et al. (2018); Naseer et al. (2019); Nakka &
Salzmann (2021); Zhang et al. (2022); Aich et al. (2022); Yang et al. (2024a;b); Nakka & Alahi
(2025). This design yields fast inference and strong scalability. However, current generative attacks
are centered around optimizing the surrogate-level objectives and treat the generator merely as a
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tool to generate adversarial examples given the adversarial objective, overlooking the progressive
AE synthesis process in which perturbations are incrementally formed block by block within the
generator. This oversight leaves potential for improving transferability, as the intermediate blocks of
the generator are where semantic structure, such as the contour of the object and the coarse shape, is
preserved or degraded during synthesis Zhang et al. (2022). As a result, perturbations may disperse
onto object-irrelevant regions that are relatively less victim model-agnostic, weakening adversarial
transferability. This critically raises the following questions:

QL. At what stage of perturbation synthesis do semantic cues deteriorate?
Q2. Which generator blocks most influence transferability?

To investigate the perturbation synthesis in detail, we partition the six intermediate blocks in the
generator into three split blocks—early, mid, and late—and find that the early blocks better preserve
object-aligned structure than later ones. We substantiate this claim with a diagnostic analysis of the
stability of object-aligned perturbation semantics within the generator intermediate blocks As in
Fig. 1, lower cross-block variability, and thus higher consistency of object semantics, is associated
with higher transferability of AEs.

Guided by this observation, we propose a semantically consistent generative attack (SCGA) that
explicitly targets semantic consistency during perturbation synthesis within the generator. Concretely,
we use a Mean Teacher pathway in which an Exponential Moving Average (EMA)-updated teacher
provides temporally smoothed reference features, and a self-feature consistency loss aligns the
student’s early generator block activations with these references while keeping the adversarial
objective on the surrogate features unchanged, as shown in Fig. 2. This guidance operates only during
training without additional test-time cost, and integrates with existing generative attacks.

Finally, we broaden the evaluation beyond misclassification-based metrics (ASR, FR) and a correction-
based metric (Accuracy) to include our proposed Accidental Correction Rate (ACR). For reliable
evaluations, ACR complements these conventional metrics by identifying cases that are inherently
likely to be overlooked, such as unintended corrections of initially wrong benign predictions. In a
comprehensive evaluation setting, we demonstrate that the internal dynamics within the generator
play a critical role in enhancing adversarial transferability between domains, models, and even tasks.
We summarize our main contributions as follows:

* Generator—internal evidence for perturbation semantics. To investigate perturbation semantics
within the generator, we partition the generator into early/mid/late blocks and quantify object-
aligned semantics per block. Our analysis reveals that methods with lower variability in the
foreground IoU across the intermediate blocks exhibit higher adversarial transfer. (§2.2)

* Generator-level semantic consistency guidance. By enforcing training-only semantic consistency
at the generator’s early intermediates, we achieve improved adversarial transfer while keeping the
adversarial objective on the surrogate unchanged. The guidance can be seamlessly integrated into
existing generative attacks without altering the test pipeline at no additional inference cost. (§3)

* Comprehensive evaluation with an added reliability measure. We conduct a comprehensive
transferability evaluation spanning classification (CLS) across architectures, domains, and dense
prediction tasks (SS, OD). We also complement conventional Accuracy, ASR, and FR metrics by
introducing a novel ACR metric to assess the attack reliability, measured by inadvertent corrections
from intended misclassifications. (§4.2).

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARIES

Given a pre-trained victim model F*(-) evaluated on a test distribution Dy, the objective is to
synthesize human-imperceptible perturbations that transfer across models, domains, and tasks, using
only a source domain Dy, and its pre-trained models as substitutes. Generative attack framework
employs a generator Gg(-) that maps a benign input z to an unconstrained adversarial candidate 7%,
followed by a projector P(-) that enforces the £o.-budget, i.e., || P(*Y) —x||o < €. Training of Gp(-)

is supervised in white-box fashion by a surrogate model F*(-) trained on Dy, enabling gradient-
based updates via backpropagation. The adversarial loss leverages surrogate logits or intermediate
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features of F°(-), e.g. at layer k, to capture model-shared characteristics known to enhance black-box
transferability Naseer et al. (2019); Nakka & Salzmann (2021); Zhang et al. (2022); Aich et al. (2022);
Yang et al. (2024a;b). Formally, Gy () is optimized to generate AEs that maximize evaluation metrics
against victim models F*(-) and/or relative to ground-truth labels y with:

Metric(m, Tadv, F (), y), with || Zads — Z]|eo <, (See §4.2 for metric details.) (1)

where € denotes the maximum perturbation budget that guarantees a minimal change in x. Here,
Metric refers to ASR, FR, Acc., and ACR for classification (CLS); mloU and mAP50 for semantic
segmentation (SS) and object detection (OD), respectively.

2.2 PERTURBATION SEMANTICS IN GENERATOR-INTERNAL DYNAMICS
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Figure 1: Our observation on the semantic variability within the perturbation generator. (a) Generator intermediate
feature maps for each block partition, (b) predicted masks from intermediate feature clusters on ImageNet-S Gao
et al. (2022) from the baseline Zhang et al. (2022), and (c) quantified variability in foreground IoU.

We observe that intermediate features progressively lose semantic recognizability across residual
blocks. Figure 1 shows that early maps preserve object contours, while mid and late maps blur them.
Using k-means clustering to separate the foreground and background, we also find that stronger
attacks preserve the coarse shape earlier and more consistently in stages. To better quantify how much
semantic information is retained throughout the intermediates, we define semantic variability as the
cross-block standard deviation of foreground IoU between clustered activation masks and foreground
masks along perturbation trajectories, where advanced attacks achieve lower variability, suggesting
more stable overlap with foreground. These findings are consistent with the well-established premise
that the majority of noise being synthesized in the intermediate stage Zhang et al. (2022); Naseer et al.
(2019); Nakka & Salzmann (2021); Zhang et al. (2022); Aich et al. (2022); Yang et al. (2024a;b).
Based on this evidence, we apply a lightweight EMA teacher to early blocks, leaving inference
unchanged, so that later blocks concentrate perturbations on salient regions and black-box transfer
improves. Further analysis is provided in Supp. §D.

Crucially, these findings motivate our design to enforce semantic consistency in the intermediate
stages of the generator, using an EMA teacher applied in the early blocks to curb semantic drift while
leaving the inference path unchanged. By anchoring perturbations to early semantically consistent
features, the later blocks naturally concentrate the generated perturbations around the salient object
regions, thus improving black-box transfer between models while maintaining the internal semantics.

3 SEMANTICALLY CONSISTENT GENERATIVE ATTACK

Our semantically consistent generative attack, as described in Alg. 1, augments a standard generative
adversarial attack with two key components: a Mean Teacher-based feature smoothing and a self-
feature consistency loss that enforces semantic preservation across the intermediate layers of the
generator. We base our approach on the baseline work BIA Zhang et al. (2022) as all subsequent
works GAMA Aich et al. (2022), FACL Yang et al. (2024a), PDCL Yang et al. (2024b) base their
losses on its feature similarity-based adversarial loss, and thus it is adequate to serve as a solid
baseline. See Supp. §C for our distinctions.

Role of Mean Teacher. The Mean Teacher (MT) framework Tarvainen & Valpola (2017); Deng
et al. (2021); Li et al. (2022); Zhao et al. (2022); Cao et al. (2023); Ddobler et al. (2023) has
consistently demonstrated robustness in tasks characterized by significant domain shifts between
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Figure 2: Overview of our proposed SCGA framework. Given a benign input image, a perturbation generator
produces an adversarial output under the supervision of a Mean Teacher (MT) structure. The student and teacher
share the generator architecture, with the teacher updated via EMA. Semantic consistency is enforced by aligning
their intermediate features, selectively applied to the early blocks to effectively preserve structural information
from the benign input across the residual blocks. The adversarial example is then evaluated against victim models
according to the four evaluation metrics. This MT-based design further promotes semantic alignment, combining
consistency and integrity, thereby enhancing adversarial transferability across diverse victims.

training and testing. Its core mechanism of updating the teacher’s parameters with EMA of the
student’s parameters provides a form of temporal ensemble that naturally suppresses instance-specific
noise. Intuitively, this EMA update smooths out high-frequency perturbation artifacts, enriching
the semantic consistency and stability of the teacher’s intermediate feature maps. As a result, these
smoothed features serve as a reliable reference for the student, helping to preserve object contours
and shapes throughout adversarial synthesis. To integrate MT, we maintain two generators: a student
Gy(-) that is trained via gradient descent, and a feacher Gy (-). We set these mean teacher features as
a reference for our self-feature consistency matching. We update ', per training step ¢, as follows:

0t <~ nb;_, + (1—n)6, 2)

where 7 € [0, 1] is a smoothing coefficient hyperparameter.

Self-feature consistency. Object-salient intermediate representations have been shown to be critical
for adversarial transfer in black-box settings Wu et al. (2020); Byun et al. (2022); Kim et al. (2022);
Zhang et al. (2022), and recent work has explored manipulating input or surrogate-level features to
this end Huang et al. (2019); Li et al. (2023); Nakka & Alahi (2025). In our generative framework,
however, a naive generator progressively loses semantic integrity in its intermediate layers (Fig. 1),
scattering perturbations away from object-salient regions. To preserve these crucial object cues, we
introduce a self-feature consistency mechanism grounded in the MT paradigm Grill et al. (2020);
Caron et al. (2021); Lee et al. (2023). Concretely, we treat the EMA teacher as the source of temporally
smoothed, semantically rich features. At each training iteration, we extract early block activations
from both the student and the teacher and enforce semantic consistency via a hinge-based feature
consistency loss as follows:

L early

=)
Leons. = Weons. - [T_ 57} : 3)
; lgtllz g1l 1+

where []4+ = max(0,-) and 7 is the similarity threshold. This loss anchors the student’s edges
and shape prior to the smoothed semantics of the teacher, ensuring that subsequent perturbations
focus on object-centric regions. Weons. € RIZ! denotes the softmax output of a learnable parameter
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Algorithm 1: Pseudo-code of SCGA

Data: Training dataset Dy

Input: Generator Gy (-), a surrogate model trained on source data F°(-), projector P(-), perturbation
budget €

Output: Optimized teacher perturbation generator Gy (+)

Initialize generators:

student Gy (-) < random init., teacher Gy (-) < Go(-)

repeat

Randomly sample a mini-batch x; from Dy,

Acquire student generator intermediate features:

Acquire teacher generator intermediate features: g+ G (i)

Generate unbounded adversarial examples from student generator intermediate features:
Y G5 (gs)

Bound (project) #2%

xidv

8i < Go (wi)

using P within the perturbation budget such that ||P(32®) — z;||cc < € to obtain

Forward pass x; and 24" through the surrogate model, F*(-) at layer k, to acquire ff*"&", f2d"

v

Compute loss using ffemg", v g ol L = Lagv + Acons. * Leons. // Eq.5
Update student generator parameters via backpropagation
EMA update teacher weights with student weights: 00 // Eq. 2

until Gy (-) converges

for intermediate block-wise loss weighting. When combined with the adversarial objective, these
semantically consistent perturbations that are highly transferable and tightly aligned with the core
structure of the image. For fair comparisons with state-of-the-art methods, we adopt adversarial loss
in the surrogate feature space as practiced in the baseline, e.g. BIA Zhang et al. (2022):

Eadv = COS(fk(LL'), ]_-k(xadv))7

where cos(:, -) denotes cosine similarity.

“

Final loss objective. Putting the proposed and baseline losses together on the MT framework, we
formulate the final loss objective with Acpns. as a weight term for Loy, as follows:

L= Ladv + )\cons. : Lcons.- (5)

4 EXPERIMENTS

We refer to Supp. §E.3 for training implementations and computational complexity. For evaluation
(Supp. §E.1-2), we conduct cross-setting tests under two black-box protocols. In the cross-model
setting, perturbations are crafted on surrogate models trained with the same data distribution (i.e.,
ImageNet-1K Russakovsky et al. (2015)) and then tested on unseen target model architectures. In the
cross-domain/task settings, adversarial examples are to generalize across domain/task shifts without
access to any target-distribution samples.

4.1 LIMITATIONS IN EXISTING EVALUATION PROTOCOL

Although developing an effective at-
tack mechanism is crucial, it must
be validated by fair and comprehen-
sive evaluations. The current evalu-
ation protocols adopted by previous
works GAP Poursaeed et al. (2018),
CDA Naseer et al. (2019), LTP Nakka
& Salzmann (2021), BIA Zhang
et al. (2022), GAMA Aich et al.
(2022), FACL Yang et al. (2024a),

Table 1: Examples of real-world impacts on predictions
with different evaluation metrics and attack reliability concerns.

Real-world examples:

Scenario#  GT Label Benign pred.  Adv. pred. Impact Captured by

1 cat cat v catv Correct — Correct Acc. only

2 cat cat v dog X Correct — Incorrect ASR, FR

3 van truck X bus X Incorrect —+ Other incorrect FR only
elagic pelagi

4 cormorant albatross X cormorant ¢ Incorrect — Correct ACR, FR. Acc.

Reliable attack example:

Cross-Setting GT Label  Benign pred. Intended Attack Unreliable Attack

F-22 F-22 F-18 F-22
ImageNet — FGVC Aircraft Raptor Raptor X Hornet X Raptor v/

PDCL Yang et al. (2024b) exhibit three key limitations. (L1) Most studies report only one pri-
mary metric (either ASR, FR, or Acc.), offering only a one-dimensional view of attack robustness
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and neglecting other aspects such as unintended corrections in predictions. (L2) Data sets and sample
sizes are often arbitrarily or limited to a single scale, preventing a fair comparison between attacks
and undermining statistical significance. (L3) Evaluations in previous work commonly target a narrow
set of victim architectures (e.g., mostly CNN-based), lacking the diversity of modern model families,
including vision transformers (ViT) and state-space models (SSM), and thus overstating robustness.
Although conventional work frames the success of attacks as fooling the target classifier, we contend
that evaluation facets should be expanded for a reliable assessment of attacks.

To address these shortcomings, we introduce, in §4.2 (L1), Accidental Correction Rate (ACR)
as a complementary metric that captures the proportion of AEs that inadvertently restore correct
predictions, enriching the evaluation of attack efficacy alongside conventional measures (i.e. ASR,
FR, Acc.) as demonstrated with practical examples in Table 1. ACR measures a nuanced model
behavior often missed by ASR and FR, which is crucial for a complete understanding of robustness
in safety-critical systems where any unreliable response to perturbation may pose a risk. We also
evaluate AEs on the entire validation set in §4.3 (L2, L3), instead of arbitrary subsets, and cover a
wide range of victim models for the classification task. We provide further details in Supp. §D.

4.2 EVALUATION METRICS

We tested the effectiveness and transferability of adversarial attacks across model architectures and
domain shifts using four key metrics. For notational convenience here, let f(x) denote the predicted
label for input z, f(x + §) the prediction after applying adversarial perturbation d, and y the ground-
truth label. The evaluation set is indicated by D, with C = {& € D | f(z) = y} representing
correctly classified samples, and Z = {z € D | f(x) # y} denoting misclassified samples under
clean inference. We formally define our evaluation metrics (%) as follows:

Ace. = {z €D | f(z+0) =y}l /D], ASR =z eC| f(z) =y A flz+0)#y}| /IC],
FR =[{z e D] f(z)# f(x+0)} /D], ACR :I{IGIIf(x)#yAf(w+5):y}|/(|61)|,

where Top-1 Accuracy Zhang et al. (2022); Yang et al. (2024a;b) measures the overall proportion of
correctly classified samples under clean or adversarial conditions. It serves as a global performance
indicator to assess degraded performance after the attack, orthogonal to FR, ASR, and ACR. Attack
Success Rate (ASR) Poursaeed et al. (2018); Naseer et al. (2019) is a subset of FR, which measures
the proportion of samples originally correctly classified that are misclassified by adversarial attack.
It directly reflects the targeted misclassification. Fooling Rate (FR) Nakka & Salzmann (2021);
Nakka & Alahi (2025) quantifies the proportion of adversarial examples that cause a change in the
model’s prediction, regardless of correctness. It reflects how often the attack disrupts the original
decision and is used as a transferability measure. ACR, also a subset of FR, is a novel metric that
quantifies how often misclassified samples are “accidentally” corrected by adversarial perturbations.
This unintended side effect provides insight into the nuanced model uncertainty and behavior at the
decision boundaries. For SS and OD, we use the standard mIoU and mAPS50 metrics, respectively.

4.3 EXPERIMENTAL RESULTS

We demonstrate enhanced cross-model attacks in Table 2, wherein augmenting each baseline genera-
tive attack with our method yields consistent improvements across various architectures. Although
these results confirm the orthogonality and efficacy of our framework, we observe that CLIP-based
approaches with objectives similar to ours, e.g. PDCL Yang et al. (2024b), yield only marginal
improvements when combined with our method. We conjecture that optimizing for divergence in
CLIP’s high-dimensional semantic embedding space may override or dilute the local structural
consistency enforced by our early block semantic consistency, thus attenuating incremental gains
from preserving fine-grained object contours and textures (see Supp §B for detailed explanation).

Table 3 presents the black-box cross-domain transferability results. In both cross-domain and task,
the transferability enhancements become more pronounced. Incorporating MT smoothing and early
block consistency steadily enhances the attack performance across unseen domains, architectures,
and tasks, demonstrating the broad applicability beyond the source data distribution and task.

With measurable gains in attack accuracy, we visually verify whether our method actually induces the
generator to pay more attention to the object-salient regions in Fig. 3. Through Grad-CAM Selvaraju
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Table 2: Quantitative cross-model transferability results. We report the improvements (A %p) of our method
relative to each baseline, with better results marked in a darker color. ‘Avg.’ corresponds to black-box average.

Cross-model CNN Transformer Mixer Mamba
Method ~ Metric @ b © @ @@ O @ O O G ® O m m © e @ O & O W
Benign  Acc. (%) 74.60 77.33 74.22 75.74 76.19 77.95 66.50 55.91 79.12 81.49 75.42 80.67 79.28 81.19 80.48 79.10 57.91 69.90 66.53 66.53 73.21 73.77

Acc. (a%p) + -15.93 -8.39 -12.93 -12.70 -8.41 -11.21 -5.09 -6.48 -10.17 -35.91 -19.74 -0.12 -0.14 +0.72 +0.03 +0.06 +0.09 +0.53 +0.73 +0.06 +0.29 -6.89

Avg.

CDA ASR (a%p) + +20.13 +10.35 +16.52 +15.96 +10.37 +13.75 +6.92 +10.35 +12.19 +42.13 +24.37 +0.09 +0.10 -0.95 -0.05 -0.05 -0.23 -0.67 -1.04 -0.13 -0.51 +8.55
w/ Ours FR (a%p) + +17.39 +9.29 +14.24 +13.80 +8.96 +11.91 +5.87 +7.86 +11.49 +38.92 +21.57 +0.09 +0.03 -0.99 -0.05 -0.15 -0.37 -0.74 -0.94 -0.20 -0.60 +7.49
ACR (2%p) . -3.58 -1.72 -2.59 -2.52 -2.19 -225 -145 -1.58 -2.52 -7.04 -4.57 -0.24 -0.31 -0.28 -0.05 +0.12 -0.12 +0.20 +0.08 -0.11 -0.29 -1.57

Acc. (a%p) + -8.71 -9.52 -8.45 -10.24 -4.62 -10.00 -5.59 -9.60 -9.57 -5.57 -593 -1.23 -1.77 -7.17 -1.74 -3.57 -5.86 -5.87 -9.05 -3.13 -5.93 -6.34

LTP ASR (a%p) + +11.11 +11.92 +10.87 +12.92 +5.90 +12.27 +8.04 +15.83 +11.89 +6.55 +7.50 +1.66 +2.37 +8.63 +2.38 +4.71 +9.70 +8.22 +13.03 +4.44 +7.97 +8.47
w/ Ours FR (a%p)+ +9.53 +10.58 +9.35 +11.30 +5.32 +10.70 +6.93 +12.25 +11.65 +6.15 +6.54 +2.19 +2.82 +8.71 +2.79 +5.10 +8.95 +7.63 +11.10 +3.87 +7.27 +7.65
ACR (a%p). -1.65 -1.31 -1.48 -1.85 -0.53 -2.01 -0.72 -1.71 -0.76 -1.01 -0.77 +0.52+0.53 -0.79 +0.91 +0.84 -0.56 -0.44 -1.04 -0.53 -0.36 -0.70

Acc. (a%p) v -2.23 -1.99 -129 +0.01 -3.72 -1.59 -3.29 -2.85 -039 +3.12 -0.63 -0.80 -0.32 -0.78 -0.56 -1.18 -1.08 -1.48 -0.45 -0.38 +0.03 -1.04
BIA ASR (a%p)+ +2.83 +2.46 +1.64 -0.05 +4.55 +1.96 +4.68 +4.80 +0.56 -3.32 +1.21 +0.9240.33 +0.89 +0.59 +1.40 +1.91 +2.05 +0.88 +0.56 +0.03 +1.47
w/ Ours FR (a%p)+ +2.57 +2.28 +1.48 -0.06 +4.20 +1.73 +3.78 +3.69 +0.56 -3.10 +0.69 +1.01 +0.44 +1.00 +0.57 +1.44 +1.62 +1.82 +0.81 +0.35 +0.04 +1.28

ACR (2%p) . -0.45 -0.36 -0.28 -0.09 -1.09 -0.27 -0.53 -0.38 +0.24 +0.33 -0.37 -0.33 -0.27 -0.29 -0.45 -0.30 +0.06 -0.12 +0.40 -0.03 +0.19 -0.21

Acc. (1%p) + -2.54 -2.46 -2.65 -2.15 -249 -2.19 -0.24 -0.17 -097 -249 -2.94 +0.07+0.03 -0.24 -0.01 -0.15 -0.51 +0.07 -0.48 -0.59 -0.41 -1.12
GAMA ASR (a%p) + +3.22 +3.14 +3.40 +2.82 +3.14 +2.73 +0.34 +0.30 +1.22 +2.92 +3.67 -0.04 -0.05 +0.30 +0.13 +0.12 +0.89 -0.17 +0.83 +0.75 +0.52 +1.44
w/Ours ER (a%p) 1 +2.81 +2.87 4291 +2.56 +2.76 +2.53 +0.24 +0.21 +1.20 +2.67 +3.23 +0.05 +0.03 +0.27 +0.20 +0.05 +0.73 -0.21 +0.73 +0.59 +0.44 +1.28

ACR (2%p) . -0.58 -0.14 -0.51 -0.08 -0.43 -0.31 -0.03 0.00 -0.02 -049 -0.56 +0.21 -0.01 -0.02 +0.53 -0.27 +0.02 -0.16 +0.20 -0.29 -0.09 -0.14

Acc. (a%p) v +0.10 -0.59 -335 -1.97 -492 -0.60 -3.29 -0.69 -2.01 -191 -2.64 +0.11-0.33 +0.21 -0.51 +0.56 -0.18 -0.50 +0.45 -0.30 -0.17 -1.07
FACL ASR (a%p)+ -0.20 +0.74 +4.30 +2.46 +6.15 +0.75 +4.68 +1.25 +2.40 +2.23 +3.15 -0.10 +0.41 -0.24 40.53 -0.69 +0.14 +0.68 -0.72 +0.34 +0.15 +1.35
w/Ours R (a%p)+ -0.20 +0.64 +3.75 +2.27 +537 +0.74 +3.97 +0.96 +2.24 +2.05 +2.78 -0.02 +0.47 -0.19 +0.47 -0.67 +0.08 +0.72 -0.64 +0.25 +0.14 +1.20

ACR (2%p) + -0.23 -0.09 -0.61 -0.46 -097 -0.08 -0.54 0.00 -0.52 -0.41 -0.96 +0.16-0.02 +0.05 -0.46 +0.09 -0.23 -0.09 -0.09 -0.24 -0.24 -0.28

Acc. (a%p) . +0.55 -029 +1.01 -040 -0.31 -098 -1.13 -0.06 -1.09 -0.72 +0.79 -0.07 +0.06 -0.11 +0.18 -0.14 +0.06 +0.52 +0.09 +0.37 +0.11 -0.07
PDCL ASR (a%p)+ -0.73 +0.31 -1.26 +0.56 +0.46 +1.19 +1.64 +0.07 +1.30 +0.83 -0.96 +0.08 -0.14 +0.04 -0.19 40.05 -0.12 -0.64 -0.06 -0.43 -0.09 +0.09
w/ Ours FR (a%p)+ -0.68 +0.27 -1.08 +0.36 +0.45 +1.09 +1.42 +0.13 +1.23 +0.81 -0.88 +0.22 -0.10 +0.09 -0.03 +0.09 -0.22 -0.44 +0.05 -0.33 -0.10 +0.11

ACR (3%p) L +0.03 -0.18 +029 +0.09 +0.18 -022 -0.12 -0.05 -033 -022 +0.21 -0.06 -0.23 -042 +0.08 -0.47 0.04 +0.22 +0.15 +0.27+0.16 -0.03

Table 3: Quantitative cross-domain/task transferability results. We report the average improvement (A %p)
with ours added from each baseline for each domain. Better results in green boldface.

Cross-domain Cross-task

CUB-200-2011 Stanford Cars FGVC Aircraft Avg. | SemSeg (SS) Avg. ObjDet (OD) Avg.
Acc. mloU mAP50

Method \ Metric Acc | ASRT FRT ACR | Acc | ASRT FRT ACR | Acc| ASRT FRT ACR | |DeepLabV3+ SegFormer iFas&er R-CNNDETR +
Benign 86.91 93.56 . 92.07 x w9085 76.21 71.89  74.05 61.01 6236  61.69
CDA 67.73 21.48 14.16 26.66 77.68 21.88 1538 24.07 64.42 27.51 14.55 31.13 69.94 25.63 20.16 2290 32.78 2629 29.54
w/ Ours (A%p) -16.92+21.48+20.63 -3.94 -5.86 +2.38 +2.35 -0.24 -22.58+27.74+26.44 -6.00 -15.12| -0.47 +0.10 -0.18 -0.80 -0.61  -0.71
LTP 4874 4532 8775 4931 5798 39.02 13.03 40.85 43.01 54.I15 835 56.48 4991 23.71 2697 2534 29.39 2241 2590
w/ Ours (A%p) -10.43+11.72+10.87 -0.90 -10.62+10.98 +10.68 -2.16 -6.41 +6.66 +6.35 -1.41 -9.15 -1.44 -0.29 -0.86 -2.54 -0.23  -1.39
- X 5 . .89 37. 396 38! K 3 X 54.06 5T. 23389 2560 2475 2843 2T.0T 2472
w/ Ours (A%p) -0.02 +0.08 +0.09 +0.49 -6.89 +6.89 +6.70 -2.00 -4.98 +5.25 +4.89 -1.24 -3.96 -1.84 -0.85 -1.35 -0.09 -0.29  -0.20
A E 5 .67 54 5 B ¥ B X E 3 . 23.67 2595 248 28.0 20.7T 2436
w/ Ours (A%p) -2.41 +2.59 +2.30 -0.67 -2.33 +2.24 +2.10 -0.60 -2.68 +3.06 +2.87 +0.14 -2.47 -0.43 -1.58 -1.01 -0.41 +0.08 -0.16
FACL . 3 7. . . . . 7 . . 73 . .05 2375 26.40 25.08 27.94 2091 2443
w/ Ours (A%p) +3.12 -3.79 -3.58 +0.70 -7.26 +2.34 +4.72 -4.49 -2.68 +0.60 +0.66 -0.24 -2.27 -0.37 -1.39 -0.88 -0.30 -0.62 -0.46
PDCL 4236 5232 7.48 55.93 5041 4685 1231 4846 3896 5823 6.86 60.34 4391 24.42 26.05 2524 28.48 2138 2493
w/ Ours (A%p) -0.46 +0.61 +0.66 +0.40 -0.71 +0.75 +0.69 -0.32 -1.38 +1.52 +1.42 +0.14 -0.85 -1.91 -0.17 -1.04 -0.82 -0.65 -0.73

et al. (2017) comparisons against the baseline, ours either reinforces confusion or flips the correctly
attending regions (similar to those of benign). Across unseen tasks, we also observe fewer pixels
and instances with the correct classifications. We attribute this cross-task generalization to our label-
agnostic training pipeline and further validate that our method can be integrated with alternative
generator architectures beyond ResNet in Supp. §B.

Against robust training (i.e. adversarially trained Table 4: Superior attack success with our method
IncV3 Kurakin et al. (2018),ViT Dosovitskiy against robustly trained models including Adversari-
et al. (2021), ConvNeXt Singh et al. (2023), and  ally trained (AT) models and robust input pre-processing
input pre-processing JPEG Guo et al. (2017) methods. Better averaged results in green boldface.

BDR Xu et al (201 8)’ R&P Xle et al (2018)) Method Metric Adv.IncV3 Adv.ViT Adv.ConvNeXt JPEG BDR R&P Avg.

. . Benign  Acc. (%)) 7633 4882 5844 74.68 74.6876.5868.26
teChnlqueS, our methods demonstrate superior Acc. (%) 6854  45.04 53.88 63.49 47.8244.78 54.03
. . Baseli ASR (%) 1 1495 1172 1026 20.24 40.7644.5923775

attacks compared to the baseline as shown in Ta-  Znune wral 022) TR <£7())TT 2402 2548 1940 28.09 48.0651.6032.78
ble 4, reinforcing our hypothesis that enforcing ACR (%) 1530 496 346 114511301056 951
. . . Acc. (%) | 6192 4533 5362 60.83 44.0739.0151.80
semantic consistency in early generator blocks wous ASR(WT 1575 1195 1065  2374453751632652
AR FR(%)1 2483 2531 1960 31.61 522257.8635.28

not only boosts transferability in standard black- ACR@%) ] 1523 457 338 11481029 908 9.01

box settings but also produces perturbations ca-

pable of further enhancing attacks against defense mechanisms. By anchoring structural cues in
the early stages, our self-feature consistency loss yields more potent and robust attacks against
adversarially trained models and input pre-processing defenses alike.
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®

Baseline

Coupe 2012

Figure 3: Qualitative results. Our semantically consistent generative attack successfully guides the generator to
focus perturbations particularly on the semantically salient regions, effectively fooling the victim classifier. () (a)
benign input image, (b) generated perturbation (normalized for visual purposes only), (c) unbounded adversarial
image, and (d) bounded adversarial image across CUB-200-2011 Wah et al. (2011), Stanford Cars Krause et al.
(2013), FGVC Aircraft Maji et al. (2013), and ImageNet-1K Russakovsky et al. (2015). The label on top (green)
and bottom (orange) denotes the correct label and prediction after the attack, respectively. 2): We highlight that
our method induces Grad-CAM Selvaraju et al. (2017) to focus on drastically different regions in our adversarial
examples compared to both the benign image and the adversarial examples crafted by the baseline Zhang
et al. (2022). Moreover, our approach noticeably spreads and reduces the high activation regions observed in
the benign and baseline cases, enhancing the transferability of our adversarial perturbations. (3): Cross-task
prediction results (SS on top, OD on bottom). Our approach further disrupts the victim models by triggering
higher false positive rates and wrong class label predictions. See Supp. §C.4 for additional visualizations.

Interplay with the baselines. The pattern of gains across baselines in Table 3 is largely determined
by the level at which each method probes the surrogate (logits, frequency domain, or intermediate
features). By enforcing early-block semantic anchoring, our generator produces locally structured,
object-aware perturbations. These perturbations move energy away from degenerate high-frequency
noise and toward low- and mid-frequency components that align with objects and boundaries. This
structural regularization couples most strongly with CNN-centric objectives. When combined with
CDA, whose relativistic loss is defined directly on CNN logits, and with frequency- or CNN-prior-
based baselines such as FACL and PDCL, our semantics-enhanced perturbations yield the largest
improvements on CNN victims. ViT victims, whose global attention patterns and feature geometry
differ more from the CNN surrogate, tend to show smaller or more localized changes.

In contrast, mid-layer feature-based at-
tacks such as LTP, BIA, and GAMA
rely on intermediate surrogate features
that transfer more readily across archi-
tectures. These methods benefit more

Table 5: Ablation study on the targeted generator interme-
diate block and the proposed components. Our self-feature
consistency strategy on the early intermediate block outperforms
matching other block features (a), and the generator trained with
all of our components together performs best (b).

uniformly. Our generator-side semantics 4 = |faav vV Vv vV
. g 2 = o5 g < |PT X X ¥V V X
act as a complementary regularizer that & £:F £ 3 MT VvV vV X X X
sharpens feature-space separability on Task Metric | Leons. VX ¥V X X
: . — Acc. (%) )| 44.134576457951.13  44.1348.2345.1146.4945.17
both CNN and ViT targets, with broadly 5 CLs ASR () 1| 44.024185418741.67  44.023337428041.024255
positive or neutral effects. On image £ FR (%) 1| 50.6648.7148.7548.57 50.66 44.08 49.47 46.99 49.38
classification, the additional gains when ACR (%) }| 832 859 866 8.60 832 871 843 868 853
B . . Acc. (%) | 47.10509549.0351.13  47.1048.4649.5751.6351.07
=}
comb1.n1ng' with PDCL are modest. This B Lg ASR (%) 1)(2) 49.0244.91 47.0244.72 (b) 49.0247.6046.35 44.17 44.96
behavior is consistent with a satura- S U PR [ 51664767497547.50  5166503049.1047.0247.76
tion reglme in Wthh the strong CLIP- ACR (%) | 9.66 10.36 10.57 10.36 9.66 9.99 9.89 10.7310.58
- . 4SS mioU| | 234024.1022.822392  23.4023.9624.83 23.73 24.75
s ive alr in s r- 3
space objective already induces power- & mAP50 | | 24.52245324.6924.52  24.5224.7324.5524.4124.72

ful global semantic shifts and dominates
the joint gradient. Even in this setting, our anchor still rebalances the perturbation spectrum. For
localization-oriented downstream tasks such as detection and segmentation, the same local structural
consistency produces noticeably larger cross-task improvements. This behavior suggests that Ours
refines the global CLIP-driven semantic direction rather than competing with it.

Ablation studies. We conducted ablation studies on the intermediate block and our proposed
components in Table 5. Across all cross-settings, we observe the highest gains with self-feature
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consistency applied to the early block compared to those at other and all locations, insinuating the
early block matching triggers generator features to place stricter constraint such that perturbations are
progressively focused on or around the object.

We also observe performance gains with each component: L,gy, MT, and Loy, Wherein our consis-
tency of self-features on the intermediate features of the generator serves to widen the transferability
gap even further. We attribute this improvement to explicit semantic alignment in the early blocks
which complements the effect of implicit smoothing with MT. We also compare against the plain
student-copy teacher, as indicated by plain teacher (PT), with and without L q,s., which under-
performs our MT configuration. These results validate our hypothesis that anchoring perturbation
synthesis on the early intermediate blocks consistently preserves the object semantics the most, and
thus guides later blocks to concentrate noise on object-centric regions, maximizing transferability.

4.4 GENERATOR INTERMEDIATE BLOCK-LEVEL ANALYSIS

resblock3 resblockd resblocks

Input blockl block2

Basenne . .

upsampl1 upsampl2 blockf

vs. w/ Ours

Figure 4: Visualization of generator intermediate block-level differences with the baseline Zhang et al. (2022):
raw feature differences on bottom, and thresholded on top (normalized for illustration purposes only). With our
generator-internal semantic consistency mechanism, we progressively guide adversarial perturbation to focus on
the salient object regions initially and gradually disperse to surrounding background regions. See Supp. Fig.S10
for other baseline comparisons.

Feature difference. Following Zhang et al. (2022); Yang et al. (2024a) but generalizing the
procedure to all generator layers as follows, for each layer I:

I,pooled __ gl,pooled
. l,pooled _ [ pooled\ __ 17 ours Shaseli > Tdiff, ,pooled
lef(gbdschnc? gogrs ) - {0 else aseiine with g( GO( )
b b

we visualized generator block-wise feature difference maps between each baseline with and without
our method. At each block, we computed the difference by applying cross-channel average pooling
to the activation tensor and then thresholding the resulting map to qualitatively emphasize the added
perturbations. As shown in Fig. 4, the thresholded mask (row 1) and the raw feature difference
map (row 2) jointly illustrate that, specifically within the targeted resblocks layers in our design,
the adversarial signal concentrates on object-salient regions extracted by the preceding downsam-
pling stages. Gradually into the later blocks, the generator learns to craft perturbation not only on
object-salient regions but also regions closer to the background, generating more transferable noise.
Compared to each baseline alone, our approach more strongly induces perturbations to better align
with the semantic characteristics primarily in the intermediate residual blocks.

Spectral energy comparisons. To validate the Table 6: Spectral energy by band (Baseline—w/ Ours).

early-block semantic anchoring hypothesis, we Band Early Mid Late

conducted a frequency-domain energy analysis  CDA Low (1) 0.82—0.91 0.75-0.97 0.77-0.96
of intermediate feature activations in Table 6, ex- W/ Ous High()) 0.18-0.09 025-0.03 0.23-0.04
ploiting the link between spectral content and vi-  LTP Low (1) 073072 0.78-0.79  0.95-0.75
sual structure: low-frequency (LF) components "/ 0us High() 027028 0225021 0.05-50.25

; BIA Low (1) 0.56—0.56 0.53—0.54 0.53-0.58
encode coarse shapes and layouts, whereas h%gh —w/Ours  High(}) 044—044 047045 047042
frequencies (HF) capture fine texture. By tracking

the normalized low-band energy in every block A5, onl) G ad b o
before and after our method, we obtained a quan-

titati fh ¢ 1 h block FACL Low (1) 0.57—0.73 0.52-0.61 0.54—0.59
Ifative measure of how strongly €ach blOCK pre- .y 0urs  High (1) 0.43—0.27 048039  0.46-0.45
serves the coarse structure. Anchormg on the egrly PDCL Low (D) 0545062 0515059 0585059
blocks, rather than mid or late, consistently raises ~ _w/ Ours High () 046038 049041 0.42—-0.41
low-frequency energy and suppresses superfluous
high-frequency noise downstream, confirming that our method targeting semantic consistency in
the early intermediates more effectively propagates the same semantic scaffold through later blocks,
yielding higher adversarial transferability.
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The pattern reveals how anchoring affects generator’s frequency bias. For band-wise relatively
balanced models such as GAMA, the early-block anchor sharply increases low-frequency energy
(0.57 — 0.79 1), giving later blocks a clearer structural blueprint. When a baseline already over-
emphasizes low frequencies, as in LTP whose late-block LF reaches 0.95, our method lowers that
value to 0.75 |, restoring HF detail. This spectral analysis thus reveals that anchoring on the early
intermediate features results in perturbations that remain coarse semantic structures aligned and intact
within the generator, thereby enhancing transfer effectively across unseen domains and architectures.

Hyperparameter sensitivity. We vary the EMA coefficient (1) and the consistency weight A¢ons.
and report the cross-setting transfer performance in Table 7. We observe a trade-off between optimiz-
ing classification and cross-task scores for both hyperparameters, as no single combination uniformly
outperforms the rest. However, maintaining relatively high values for both tends to yield better perfor-
mance, indicating that each module sufficiently contributes to the overall self-consistency mechanism.
Based on this observation, we select Acons. = 0.7 and 7 = 0.999 as our default configuration, which
provides the best overall balance across all cross-setting scenarios.

We define the “early”, “mid”, and “late” stages of the generator intermediates by grouping two
consecutive residual blocks based on the observation that perturbations undergo the most noticeable
qualitative changes over every two blocks. As illustrated in Fig. 2, the first two blocks (rows (a)—(b))
still closely track the benign image: coarse object shape, foreground—background separation, and
large-scale texture are clearly preserved. The next two blocks (rows (c)—(d)) begin to introduce
more pronounced distortions and fine-grained variations, while the final two blocks (rows (e)—(f))
predominantly add high-frequency details and noise-like patterns that are no longer easily interpretable
as object-level structure. This makes the first two blocks a natural choice for enforcing semantic
consistency: they are structurally well-formed and dominantly encode benign scene semantics, before
most of the perturbation mass emerges in later stages.

Applying the temporal self-consistency Table 7: Hyperparameter (Acons, 77) Sensitivity and early-
loss only to block 1 or only to block 2 block selection. (Domain (Acc.), Model (Acc.), SS (mIoU),
yields some benefits, but using both early OD (mAP50)).

blocks jointly provides a better balance Acons 0.1 0.3 0.5 0.7 0.9
across domains, models, and tasks. This Domain 40.55 48.29 48.49 47.10 50.08
pattern aligns with our intuition: anchor- %21(26(155) g‘gg 3;“22 gg'gg 3‘3"13 gg'gg
ing both early blocks preserves coarse se- Task (OD) 23.96 24.36 2478 24.52 24.19
mantics at the onset of perturbation gen- —; 09 095 098 099 0995 )
eration, which in turn biases later blocks Domain 48.72 5047 5117 4797 48.09 47.10
. . Model 45.04 45.56 45.84 44.79 44.70 44.13
to place perturbations along near-object re-  Task(ss) 2480 2392 2423 2339 2434 2340
. . . . . Task (OD) 24.83 24.51 24.73 24.26 24.48 24.52
gions rather than injecting unconstrained
noise. As a consequence, the resulting per- Block ! 2 1&2
turbations align more closely with shared, Domain 49.13 49.88 47.10
object-level structure across architectures Model 47.62 48.82 Gealld
d datasets, thereby enhancing model- Task (83) 378 27 TP
and da » thereby g Task (OD) 24.47 24.15 24.52
and data-agnostic black-box transfer. See
Supp.§E for ablations of other components.
(a) Cross-Domain (b) Cross-Model
b Cross-Model o
1 CDA 9.50
5 CONCLUSION O
B GAMA
In this paper, we introduce a semantically con- et @l
sistent generative attack leveraging the Mean g v .
Teacher and early-block semantic consistency to & | crossoomain o v |,. M.
preserve the object semantics during perturba- — *| = %' Cer.y pes
tiop genergtion, thus guiding it towards object- : ity "o Ve “
salient regions to markedly improve black-box . 2o V \
transferability as in Fig. 5. With comprehensive P T R e e e e L

evaluations across various models, domains, and ASR (%) 1 ASR (%) 1

tasks, we demonstrate object salient regions play Figure 5: Our semantically consistent generative attack

a crucial role within the generator. See Supp. effective}y exploits the generator intermedjgtes to craft
S . adversarial examples to enhance transferability from the
§E.6 for limitations and impact.

baselines (® — V) across domains (a) and models (b).
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