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Abstract
Continually learning new skills is important for
intelligent systems, yet standard deep learning
methods suffer from catastrophic forgetting of the
past. Recent works address this with weight reg-
ularisation. Functional regularisation, although
computationally expensive, is expected to per-
form better, but rarely does so in practice. In this
paper, we fix this issue by using a new functional-
regularisation approach that utilises a few mem-
orable past examples crucial to avoid forgetting.
By using a Gaussian Process formulation of deep
networks, our approach enables training in weight-
space while identifying both the memorable past
and a functional prior. Our method achieves state-
of-the-art performance on standard benchmarks
and opens a new direction for life-long learning
where regularisation and memory-based methods
are naturally combined.

1. Introduction
The ability to quickly adapt to changing environments is
an important quality of intelligent systems. For such quick
adaptation, it is important to be able to identify, memorise,
and recall useful past experiences when acquiring new ones.
Unfortunately, standard deep-learning methods lack such
qualities, and can quickly forget previously acquired skills
when learning new ones (Kirkpatrick et al., 2017). Such
catastrophic forgetting presents a big challenge for applica-
tions, such as robotics, where new tasks can appear during
training, and data from previous tasks might be unavailable
for retraining.

In recent years, many methods have been proposed to
address catastrophic forgetting in deep neural networks
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(DNNs). One popular approach is to keep network weights
close to the values obtained for the previous tasks/data (Kirk-
patrick et al., 2017; Nguyen et al., 2018; Zenke et al., 2017;
Ebrahimi et al., 2019; Serra et al., 2018). However, this may
not always ensure the quality of predictions on previous
tasks. Since the network outputs depend on the weights in a
complex way, such weight-regularisation may not be effec-
tive. A better approach is to use functional-regularisation,
where we directly regularise the network outputs (Benjamin
et al., 2018), but this is costly because it requires derivatives
of outputs at many input locations. Existing approaches re-
duce these costs by carefully selecting the locations, e.g.
by using a working memory (Benjamin et al., 2018) or
Gaussian-Process (GP) inducing points (Titsias et al., 2019),
but currently they do not consistently outperform existing
weight-regularisation methods.

To address this issue, we propose a new functional-
regularisation method called Functional Regularisation of
Memorable Past (FROMP). Our key idea is to regularise
the network outputs at a few memorable past examples that
are crucial to avoid forgetting. We use a GP formulation
of DNNs to obtain a weight-training method that exploits
correlations among memorable examples in the function
space (see Figure 1a). FROMP involves a slight modifi-
cation of Adam and a minor increase in the computation
cost. It achieves state-of-the-art performance on standard
benchmarks, and is consistently better than both the existing
weight-regularisation and functional-regularisation methods.
Our work in this paper focuses on avoiding forgetting, but
it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with
memory-based methods.

1.1. Related Works

Our goal is to consistently outperform weight-regularisation
which can be inadequate and brittle for continual learn-
ing (see Figure 5 and Appendix G for an example). The
proposed method performs better than existing weight-
regularisation approaches and further addresses many issues
with the existing functional-regularisation methods. Ar-
guably the work most closely related to ours is the GP-based
method of Titsias et al. (2019), but there are several key dif-
ferences. First, our kernel uses all the network weights (they
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1. (a) Our FROMP method consists of three main steps where we convert a DNN to GP using Khan et al. (2019), find memorable
examples, and train weights with functional regularisation of those examples. (b) Memorable past on MNIST – they are difficult to
classify and close to the boundary.

use just the last layer) which is important, especially in the
early stages of learning when all the weights are changing.
Second, our functional prior, although of a similar form as
Titsias et al. (2019), regularises the mean to be close to the
past mean, which is lacking in the regulariser of Titsias et al.
(2019) (see the discussion after Equation 7). Third, our
memorable past examples play a similar role as the inducing
inputs, but are much cheaper to obtain (Titsias et al. (2019)
requires solving a discrete optimisation problem), and have
an intuitive interpretation (see Figure 1b). Due to these dif-
ferences, our method outperforms the method of Titsias et al.
(2019), which, unlike ours, performs worse than the weight-
regularisation method of Swaroop et al. (2019). We also
obtain state-of-the-art performance on a larger split CIFAR
benchmark, a comparison which is missing in Titsias et al.
(2019). Finally, our method is also different from Benjamin
et al. (2018), which lacks a mechanism to automatically
weight past memory and estimate uncertainty.

Our method is based on a set of memorable past examples.
Many such memory-based approaches exist (Rebuffi et al.,
2017; Shin et al., 2017; Aljundi et al., 2019; Chaudhry
et al., 2019; Lopez-Paz & Ranzato, 2017; Chaudhry et al.,
2018). Compared to these approaches, an advantage of our
method is that the memory is obtained within the functional-
regularisation framework and does not require solving a
separate optimisation problem. The computation is also
straightforward, simply requiring a forward-pass through
the network followed by sorting (see Section 3.2).

2. Continual Learning with
Weight/Functional Regularisation

In deep learning, we minimise loss functions to estimate
network weights. For example, in supervised multi-class
classification problems, we are given a dataset D of N
input-output pairs with outputs yi , a one-hot encoded vec-
tor of K classes, and inputs xi , a vector of length D. Our
goal is to minimise a loss which takes the following form:
N ¯̀(w) + δR(w), where ¯̀(w) := 1

N

∑N
i=1 `(yi, fw(xi)) with

deep neural network fw(x) ∈ R
K and its weights w ∈ RP ,

`(y, f ) denotes a differentiable loss function (e.g., cross
entropy) between an output y and the network output f ,
R(w) is a regularisation function (usually an L2-regulariser
R(w) := w>w), and δ > 0 controls the regularisation
strength. Standard deep-learning approaches rely on an un-
biased stochastic gradient of the loss ¯̀. This usually requires
access to all the data examples for all classes throughout
training (Bottou, 2010). It is this unbiased, minibatch set-
ting where deep-learning excels and achieves state-of-the-art
performance.

In reality, we do not always have access to all the data at
once, and it is not possible to obtain unbiased stochastic
gradients. New classes may appear during training and old
classes may never be seen again. For such settings, vanilla
mini-batch stochastic-gradient methods lead to catastrophic
forgetting of past information (Kirkpatrick et al., 2017). Our
goal in this paper is to design methods that can avoid, or
minimise, such catastrophic forgetting. We focus on a par-
ticular setting where the classification task is divided into
several tasks, e.g., a task may consist of a classification prob-
lem over a subset of classes. We assume that the tasks arrive
sequentially one after the other. Once the learning is over,
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we may never see that task again. Such continual-learning
settings have been considered in other works (Kirkpatrick
et al., 2017; Nguyen et al., 2018; Zenke et al., 2017) with
the goal to avoid forgetting of previous tasks.

Recent methods have proposed weight-regularisation as
a way to combat catastrophic forgetting. The main idea
is to find the important weights for past tasks, and keep
new weights close to them. For example, when training
on the task t while given weights wt−1 trained on the past
tasks, we can minimise the following loss: N ¯̀

t (w) + δ(w −
wt−1)

>Ft−1(w −wt−1), where ¯̀
t (w) is the loss defined over

all data examples from task t and Ft−1 is a precondition-
ing matrix that favours the weights relevant to the past
tasks more than the rest. The Elastic-Weight Consolida-
tion (EWC) method (Kirkpatrick et al., 2017) and Ritter
et al. (2018), for example, use the Fisher information matrix
as the pre-conditioner, while variational continual learning
(VCL) (Nguyen et al., 2018) employs the precision matrix
of the variational approximation. To reduce complexity,
usually a diagonal (or block diagonal) matrix is used. Such
weight-space methods reduce forgetting but do not produce
satisfactory results.

The challenge in using weight-regularisation lies in the fact
that the exact values of the weights do not really matter due
to parametric symmetries (Benjamin et al., 2018; Bishop,
2006). Making current weights closer to the previous ones
may not always ensure that the predictions on the past tasks
also remain unchanged. Since the network outputs depend
on the weights in a complex way, it is difficult to ensure the
effectiveness of weight-regularisation. A better approach is
to directly regularise the outputs, because what matters is the
network output, not the values of the weights. For example,
we can use an L2-regulariser over the function values on
data examples from past tasks (e.g., see (Benjamin et al.,
2018)) :

min
w

N ¯̀
t (w) + δ

t−1∑
s=1

(f t ,s − f t−1,s)
>(f t ,s − f t−1,s), (1)

where f t ,s and f t−1,s are vectors of function values fw(xi)
and fwt−1 (xi) respectively for all i ∈ Ds with Ds being the
dataset for the task s. Rather than making the weights w
similar to wt−1, such functional-regularisation approaches
directly force the function values to be similar. Because of
this, we expect them to perform better. This is also expected
for a Bayesian approach, as posterior approximations in
the function-space might be better than those in the weight-
space.

Unfortunately, functional-regularisation is computationally
infeasible because it requires us to store all past data and
compute function values over them. This computational
issue is typically solved by using a subset of inputs. Ben-
jamin et al. (2018) employ a working memory (Lopez-Paz

& Ranzato, 2017; Rebuffi et al., 2017) while Titsias et al.
(2019) use the inducing point method based on a Gaussian
process framework. As discussed earlier, such approaches
do not consistently perform better than existing weight-
regularisation methods. This could be due to the methods
they use to build memory or enforce functional regulari-
sation. Our goal in this paper is to design a functional-
regularisation method that is consistently better than weight-
regularisation. We build upon the method of Khan et al.
(2019) to convert deep networks into Gaussian processes,
described next.

3. Functional-Regularisation of Memorable
Past (FROMP)

3.1. From Deep Networks to Functional Priors

Khan et al. (2019) propose an approach called DNN2GP to
convert deep networks to Gaussian processes (GPs). In step
A, we employ such GPs as functional priors to regularise
the next task. The DNN2GP approach is very similar to
the standard weight-space to function-space conversion for
linear basis-function models (Rasmussen & Williams, 2006).
For example, consider a linear regression model on a scalar
output yi = fw(xi) + εi with a function output fw(xi) :=
φ(xi)

>w using a feature map φ(x). Assume Gaussian noise
N(εi |0,Λ

−1) and a Gaussian prior N(w|0, δ−1IP) where IP
is the identity matrix of size P×P. It can then be shown that
the posterior distribution of this linear model, denoted by
N(w|wlin,Σlin), induces a GP posterior on function fw(x)
whose mean and covariance functions are given as follows
(see Appendix A.1 or Chapter 2 in Rasmussen & Williams
(2006)):

mlin(x) := fwlin (x), κlin(x,x
′) := φ(x)> Σlin φ(x

′), (2)

where wlin is simply the Maximum A Posteriori (MAP)
estimate of the linear model, and

Σ−1lin :=
∑
i

φ(xi)Λφ(xi)
> + δIP . (3)

DNN2GP computes a similar GP posterior but for a neu-
ral network whose posterior is approximated by a Gaus-
sian. Specifically, given a local minimum w∗ of the loss
N ¯̀(w)+ 1

2δw
>w for a scalar output fw(x), we can construct

a Gaussian posterior approximation. Following Khan et al.
(2019), we employ a variant of the Laplace approximation
with mean µ∗ = w∗ and covariance

Σ−1∗ =

N∑
i=1

Jw∗ (xi)
>
Λw∗ (xi,yi) Jw∗ (xi) + δIP, (4)

where Λw∗ (x,y) := ∇2ff`(y, f) is the scalar Hessian of the loss
function, and Jw∗ (x) := ∇wfw(x)> is the 1× P Jacobian; all
quantities evaluated at w = w∗. Essentially, this variant uses
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a Gauss-Newton approximation for the covariance instead of
the Hessian. Comparing Equations 3 and 4, we can interpret
Σ∗ as the covariance of a linear model with a feature map
Jw∗ (x)

> and noise precision Λw∗ (x, y). Using this similarity,
Khan et al. (2019) derive a GP posterior approximation for
neural networks. They show this for a generic loss function
(see App. B2 in their paper), e.g., for a regression loss, the
mean and covariance functions of the GP posterior take the
following form:

mw∗ (x) := fw∗ (x), κw∗ (x,x
′) := Jw∗ (x)Σ∗ Jw∗ (x

′)>. (5)

This is equivalent to Equation 2 if we set the feature map
φ(x) ≡ Jw∗ (x)

>. A similar equation holds for other loss
functions such as those used for binary and multiclass clas-
sification; see Appendix A.2 for details. We denote such
GP posteriors by GP

(
mw∗ (x), κw∗ (x,x

′)
)
, and use them as

a functional prior to regularise the next task.

The above result holds at a minimiser w∗, but can be ex-
tended to a sequence of weights obtained during optimisa-
tion (Khan et al., 2019). For example, for Gaussian varia-
tional approximations q(w), we can obtain GP posteriors
by replacing w∗ by w ∼ q(w) in Equation 5. We denote
such GPs by GP (mw(x), κw(x,x

′)). The result also applies
to variants of Newton’s method, RMSprop, and Adam (see
Appendix A.3). The GP posteriors obtained are related to
the Neural Tangent Kernel (NTK) (Jacot et al., 2018). The
prior distribution to obtain the posterior in Equation 5 cor-
responds to the NTK at finite width. A slightly different
kernel is obtained when a variational approximation is used.
Unlike the method of Titsias et al. (2019), the kernel above
uses all the network weights, and uses the Jacobians instead
of using the functions themselves.

3.2. Identifying Memorable past

To reduce the computation cost of functional regularisa-
tion, we identify a few memorable past examples. To do so,
we exploit a property of linear models. Consider a linear
model where different noise precision Λi is assigned to each
pair {xi, yi}. For MAP estimation, the examples with high
value of Λi contribute more, as is clear from the objective:
wMAP = arg maxw

∑N
i=1 Λi(yi − φ(xi)

>w)2 + δw>w. The
noise precision Λi can therefore be interpreted as the rel-
evance of the data example i. Such relevant examples are
crucial to ensure that the solution stays at wMAP or close to it.
These ideas are widely used in the theory of leverage-score
sampling (Alaoui & Mahoney, 2015; Ma et al., 2015) to
identify the most influential examples. Computation using
such methods is infeasible since they require inverting a
large matrix. Titsias et al. (2019) use an approximation by
inverting smaller matrices, but they require solving a dis-
crete optimisation problem to select examples. We propose
a method which is not only cheap and effective, but also
yields intuitive results.

We use the linear model corresponding to the GP posterior
from Section 3.1. The linear model assigns different noise
precision to each data example. See Equations 3 and 4
where the quantity Λw∗ (xi, yi) plays the same role as the
noise precision Λ. Therefore, Λw∗ (xi, yi) can be used as a
relevance measure, and a simple approach to pick influen-
tial examples is to sort it ∀i and pick the top few examples.
We refer to such a set of examples as the memorable past
examples. An example is shown in Figure 1b where our
approach picks many examples that are difficult to classify.
The memorable past can be intuitively thought of as ex-
amples close to the decision boundary. An advantage of
using this approach is that Λw∗ (xi, yi) is extremely cheap
to compute. It is simply the second derivative of the loss,
which can be obtained with a forward pass to get `(yi, ŷi),
followed by double differentiation with respect to ŷi . After
training on every task, we select a few memorable examples
in Dt , denoting the set of such examples byMt .

3.3. Training in weight-space with a functional prior

We will now describe the final step for weight-training with
functional-regularisation. We use the Bayesian formulation
of continual learning and replace the prior distribution in
weight space by a functional prior. Given a loss of the
form N ¯̀

t (w) + R(w), a Bayesian formulation in weight-
space employs a regulariser that uses the previous posterior,
i.e., R(w) ≡ − log p(w|D1:t−1). Computing the exact pos-
terior, or a tempered version of it, would in theory avoid
catastrophic forgetting, but that is expensive and we must
use approximations. For example, Nguyen et al. (2018)
use the variational approximation from the previous task
p(w|D1:t−1) ≈ qt−1(w) = N(w|µ,Σ) as the weight regu-
lariser. Our goal is to replace the weight regulariser by a
functional regulariser obtained by using the GP posteriors
described in Section 3.1.

We use functional regularisation defined over memorable
examples. Denote by f the vector of function values de-
fined at all memorable pastMs in all tasks s < t. Denot-
ing a sample from q(w) by w, we can obtain a GP poste-
rior over f by using Equation 5. We denote it by q̃w(f ) =
N(f |mt (w),Kt (w)), where mt (w) and Kt (w) respectively
denote the mean vector and kernel matrix obtained by evalu-
ating GP

(
mwt (x), κwt (x,x

′)
)

at the memorable past exam-
ples. Similarly, denoting a sample from qt−1(w) by wt−1,
we can obtain another GP posterior, which we call the func-
tional prior, denoted by q̃wt−1 (f ) = N(f |mt−1,Kt−1). Using
these two GPs, we can replace the weight regulariser used
by Nguyen et al. (2018) by a functional regulariser equal to
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the expectation of the functional prior:

min
q(w)

Eq(w)
[
(N/τ) ¯̀t (w) + log q(w)

]
− Eq(w) [log qt−1(w)]︸                  ︷︷                  ︸
≈Eq̃w (f )[log q̃wt−1 (f )]

,

(6)

where the last term is the weight regulariser, and τ > 0 is a
tempering parameter. Fortunately, the functional regulariser
has a closed-form expression:

Eq̃w (f)
[
log q̃wt−1 (f )

]
= − 1

2

[
Tr(K−1t−1Kt (w))+

(mt (w) −mt−1)
>K−1t−1(mt (w) −mt−1)

]
+ const.

(7)

This term depends on µ and Σ through the sample w ∼ q(w).
The regulariser is an approximation for reasons discussed in
Appendix D. Our regulariser has a similar form1 to Titsias
et al. (2019), but our regulariser forces the mean mt (w) to
be close to mt−1, which is missing in their regulariser.

Optimising µ and Σ in Equation 6 with this functional prior
can be very expensive for large networks. We make five
approximations to reduce the cost, discussed in detail in Ap-
pendix B. First, for the functional prior, we use the mean of
qt−1(w), instead of a sample wt−1, which corresponds to us-
ing the GP posterior of Equation 5. Second, for Equation 7,
we ignore the derivative with respect to Kt (w) and only use
mt (w), which assumes that the Jacobians do not change sig-
nificantly. Third, instead of using the full Kt−1, we factorise
it across tasks, i.e., let it be a block-diagonal matrix with
Kt−1,s,∀s as the diagonal. This makes the cost of inver-
sion linear in the number of tasks. Fourth, following Khan
et al. (2019), we propose to use a deterministic optimiser
for Equation 6, which corresponds to setting w = µ. Finally,
we use a diagonal Σ, which corresponds to a mean-field
approximation, reducing the cost of inversion. As shown in
Appendix B, the resulting algorithm finds the minimum w
of the following:

N ¯̀
t (w)+

1
2τ

t−1∑
s=1

[
mt ,s(w) −mt−1,s

]>
K−1t−1,s

[
mt ,s(w) −mt−1,s

]
,

(8)

where mt ,s is the sub-vector of mt corresponding to the task
s. The above is an computationally-cheap approximation
of Equation 6 and forces the network to produce similar
outputs at memorable past examples. The objective is an
improved version of Equation 1 (Benjamin et al., 2018).
For regression, the mean mt ,s in Equation 8 is equal to

1Their regulariser is Eq(ut−1)[log pw(ut−1)] =
− 1

2 {Tr[K(w)−1Σt−1] + µ>t−1K(w)
−1µt−1}, where

pw(ut−1) = N(0,K(w)) with the kernel evaluated at inducing
inputs ut−1 and q(ut−1) = N(µt−1,Σt−1).

Algorithm 1 FROMP for binary classification on task t
given qt−1(w) := N(µt−1,diag(vt−1)), and memorable pasts
M1:t−1. Additional computations on top of Adam are high-
lighted in red.
Function FROMP(Dt, µt−1,vt−1,M1:t−1):

Get mt−1,s,K
−1
t−1,s,∀ tasks s < t (Equation 10)

Initialise w← µt−1

while not converged do
Randomly sample {xi, yi} ∈ Dt

g← N ∇w`(yi, fw(xi))
g f ← g FR (w,mt−1,K

−1
t−1,M1:t−1)

Adam update with gradient g + τg f

end
µt ← w and compute vt (Equation 9)
Mt← memorable past(Dt,w)
return µt,vt,Mt

Function g FR(wt,mt−1,K
−1
t−1,M1:t−1):

Initialise g f ← 0

for task s = 1,2, ..., t − 1 do
Compute mt ,s (Equation 10)
hi ← Λwt (xi) Jwt (xi)

>,∀xi ∈ Ms

Form matrix H with hi as columns
g f ← g f +HK−1t−1,s(mt ,s −mt−1,s)

end
return g f

Function memorable past(Dt,wt):
Calculate Λwt (xi), ∀xi ∈ Dt .
return M examples with highest Λwt (xi).

the vector f t ,s used in Equation 1. Our functional regu-
lariser additionally includes a kernel matrix Kt−1,s to take
care of the uncertainty and weighting of past tasks’ memo-
rable examples. Due to a full kernel matrix, the functional
regulariser exploits the correlations between memorable
past examples. This is in contrast with a weight-space ap-
proach, where modelling correlations is infeasible since Σ
is extremely large. In our case, training is cheap since the
objective in Equation 8 can be optimised using Adam. Our
approach therefore provides a cheap weight-space training
method while exploiting correlations in function-space. Due
to these properties, we expect our method to perform better.
We can expect further improvements by relaxing these as-
sumptions (see Appendix B), e.g., we can use a full kernel
matrix, use a variational approximation, or employ a block-
diagonal covariance matrix. We leave such comparisons as
future work since they require sophisticated implementation
to scale.

3.4. The final algorithm and computational complexity

The resulting algorithm, FROMP, is shown in Algorithm 1
for binary classification (extension to multiclass classifica-
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tion is in Appendix C). For binary classification, we assume
a sigmoid σ( fw(x)) function and cross-entropy loss. As
shown in Appendix A.2, the Jacobian (of size 1 × P) and
noise precision (a scalar) are as follows: Jw(x) = ∇w fw(x)>

and Λw(x) = σ ( fw(x)) [1 − σ ( fw(x))]. To compute the
mean and kernel, we need the diagonal of the covariance,
which we denote by v. This can be obtained using Equa-
tion 4 but with the sum over D1:t . The update below com-
putes this recursively:

1

vt
=

[ 1

vt−1
+

∑
i∈D t

diag
(
Jwt (xi)

>
Λwt (xi)Jwt (xi)

) ]
, (9)

where ‘/’ denote element-wise division and diag(A) is the
diagonal of A. Using this in an expression similar to Equa-
tion 5, we can compute the mean and kernel matrix (see
Appendix A.2 for details):

mt ,s[i] = σ
(
fwt (xi)

)
,

Kt ,s[i, j] = Λwt (xi)
[
Jwt (xi)Diag (vt ) Jwt (xj)

>
]
Λwt (xj) ,

(10)

over all memorable examples xi,xj , where Diag(a) denotes
a diagonal matrix with a as the diagonal. Using these expres-
sions, we can write the gradient of Equation 8 at wt . Since
we ignore the gradient with respect to Kt , we get a simple ex-
pression with an additional term added to the gradient of the
loss: N∇wt

¯̀
t (wt )+ τ

∑t−1
s=1(∇wtmt ,s)K

−1
t−1,s(mt ,s −mt−1,s)

where ∇wtmt ,s[i] = ∇wt

[
σ

(
fwt (xi)

) ]
= Λwt (xi)Jwt (xi)

>.
This term is computed in subroutine g FR in Algorithm 1.

The additional computations on top of Adam are highlighted
in red in Algorithm 1. Every iteration requires functional
gradients (in g FR) whose cost is dominated by the compu-
tation of Jw(xi) at all xi ∈ Ms,∀s < t. Assuming the size
of the memorable past is M per task, this adds an additional
O(MPt) computation, where P is the number of parameters
and t is the task number. This increases only linearly with
the size of the memorable past. We need two additional
computations but they are required only once per task. First,
inversion of Ks,∀s < t, which has cost O(M3t). This is
linear in number of tasks and is feasible when M is not too
large. Second, computation of vt in Equation 9 requires a
full pass through the dataset Dt , with cost O(NP) where
N is the dataset size. This cost can be reduced by estimat-
ing vt using a minibatch of data (as is common for EWC
(Kirkpatrick et al., 2017)).

4. Experiments
To identify the benefits of the functional prior (step A) and
memorable past (step B), we compare FROMP to three
variants: (1) FROMP-L2 where we replace the kernel in
Equation 5 by the identity matrix, similar to Equation 1,
(2) FRORP where memorable examples selected randomly

(“R” stands for random), (3) FRORP-L2 which is same as
FRORP, but the kernel in Equation 5 is replace by the iden-
tity matrix. We present comparisons on four benchmarks:
a toy dataset, permuted MNIST, Split MNIST, and Split
CIFAR (a split version of CIFAR-10 & CIFAR-100). Re-
sults for the toy dataset are summarised in Figure 4 and
Appendix G, where we also visually show the brittleness of
weight-space methods. In all experiments, we use the Adam
optimiser (Kingma & Ba, 2015). Details on hyperparameter
settings are in Appendix F.

4.1. Permuted and Split MNIST

Permuted MNIST consists of a series of tasks, with each
applying a fixed permutation of pixels to the entire MNIST
dataset. Similarly to previous work (Kirkpatrick et al., 2017;
Zenke et al., 2017; Nguyen et al., 2018; Titsias et al., 2019),
we use a fully connected single-head network with two
hidden layers, each consisting of 100 hidden units. We
train for 10 tasks. The number of memorable examples is
set in the range 10–200. We also test on the Split MNIST
benchmark (Zenke et al., 2017), which consists of five
binary classification tasks built from MNIST: 0/1, 2/3, 4/5,
6/7, and 8/9. Following the settings of previous work, we
use a fully connected multi-head network with two hidden
layers, each with 256 hidden units. We select 40 memorable
points per task. We also run FROMP on a smaller network
architecture (Swaroop et al., 2019), obtaining (99.2± 0.1)%
(see Appendix F.2).

The final average accuracy is shown in Figure 2a
where FROMP achieves better performance than weight-
regularisation methods (EWC, VCL, SI) as well as a
function-regularisation method called FRCL recently pro-
posed by Titsias et al. (2019). FROMP also improves over
FRORP-L2 and FROMP-L2, demonstrating the effective-
ness of the kernel. The improvement compared to FRORP
is not significant. However, as shown in Figure 3c, we do
see an improvement when the number of memorable exam-
ples are small (compare FRORP vs FROMP). We believe
this is because a random memorable past already achieves
a performance close to the highest achievable performance,
and we see no further improvement by choosing the exam-
ples carefully. For few memorable examples, we do see
an advantage of FROMP over FRORP. Finally, Figure 1b
shows the most and least memorable examples chosen by
sorting Λw(x, y). The most memorable examples appear
to be more difficult to classify than the least memorable
examples, which suggests that they may lie closer to the
decision boundary.

4.2. Split CIFAR

Split CIFAR is a more difficult benchmark than the MNIST
benchmarks, and consists of 6 tasks. The first task is the
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Method Permuted Split
DLP (Smola et al., 2003) 82% 61.2%
EWC (Kirkpatrick et al., 2017) 84% 63.1%
SI (Zenke et al., 2017) 86% 98.9%
Improved VCL (Swaroop et al., 2019) 93 ± 1% 98.4 ± 0.4%

+ random Coreset 94.6 ± 0.3% 98.2 ± 0.4%
FRCL-RND (Titsias et al., 2019) 94.2 ± 0.1% 97.1 ± 0.7%
FRCL-TR (Titsias et al., 2019) 94.3 ± 0.2% 97.8 ± 0.7%
FRORP-L2 87.9 ± 0.7% 98.5 ± 0.2%
FROMP-L2 94.6 ± 0.1% 98.7 ± 0.1%
FRORP 94.6 ± 0.1% 99.0 ± 0.1%
FROMP 94.9 ± 0.1% 99.0 ± 0.1%

(a) MNIST comparisons: for Permuted, we use 200 examples as memo-
rable/coreset/inducing points. For Split, we use 40.

(b) Most (left) vs least (right) memorable

Figure 2. (a) On MNIST, FROMP obtains better accuracy than weight-regularisation (EWC, SI, VCL) and functional-regularisation
(FRCL). Note that FRCL does not outperform ‘Improved VCL + random coreset’ while FROMP does. Errors are reported over 5 runs.
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Figure 3. Fig. (a) shows that FROMP outperforms weight-regularisation methods (see Appendix F.3 for numerical values). ‘Tx’ means
Task x. Figs. (b) and (c) show average accuracy with respect to the number of memorable examples. A careful selection of memorable
examples in FROMP gives better results than random examples in FRORP, especially when the memory size is small. For CIFAR, the
kernel in FROMP improves performance over FROMP-L2, which does not use a kernel.

full CIFAR-10 dataset, followed by 5 tasks, each consisting
of 10 consecutive classes from CIFAR-100. We use the
same model architecture as Zenke et al. (2017): a multi-
head CNN with 4 convolutional layers, then 2 dense layers
with dropout. The number of memorable examples is set in
the range 10–200, and we again run each method 5 times.
We compare to two additional baselines. The first baseline
consists of networks trained on each task separately. Such
training cannot profit from forward/backward transfer from
other tasks, and sets a lower limit for our performance as
we want to do better than this limit. The second baseline is
where we train all tasks jointly, which would yield perhaps
the best results and we would like to match this upper limit.

The results are summarised in Figure 3a, where we see that
FROMP is close to the upper limit and outperforms other

methods. The weight-regularisation methods EWC and SI
do not perform well on the later tasks while VCL forgets
earlier tasks. Poor performance of VCL is most likely due
to the difficulty of using Bayes By Backprop (Blundell et al.,
2015) on CNNs2 (Osawa et al., 2019; Shridhar et al., 2019).
FROMP performs consistently better across all tasks (except
the first task where it is close to the best). It also improves
over the lower limit (‘separate tasks’) by a large margin.
In fact, on tasks 4-6, FROMP matches the performance to
the network trained jointly on all tasks, which implies that
it completely avoids catastrophic forgetting on them. The
overall performance is also the best (see the ‘Avg’ column).

2Previous results by Nguyen et al. (2018) and Swaroop et al.
(2019) were obtained using multi-layer perceptrons.
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Figure 3b shows the performance with respect to the number
of memorable past examples. Similar to Figure 3c, care-
fully selecting memorable examples and using the kernel
improves the performance, especially when the number of
memorable examples is small. For example, with 10 such
memorable examples, a careful selection increases the aver-
age accuracy from 62% to 69% (see FROMP vs FRORP).
The kernel increases the accuracy from 65% to 69% (see
FROMP vs FROMP-L2). Figure 2b shows a few images
with most and least memorable past examples where we
again see that the most memorable might be more difficult
to classify.

Finally, we analyse the forward and backward transfer ob-
tained by FROMP. Forward transfer means the accuracy on
the current tasks increases as number of past tasks increases,
while backward transfer means the accuracy on the previous
tasks increases as more tasks are observed. As discussed
in Appendix E, we find that, for split CIFAR, FROMP’s
forward transfer is much better than VCL and EWC, while
its backward transfer is comparable to EWC. We define
a forward transfer metric as the average improvement in
accuracy on a new task over a model trained only on that
task (see Appendix E for an expression). A higher value
is better and quantifies the performance gain by observing
past tasks. FROMP achieves 6.1 ± 0.7, a much higher value
compared to 0.17 ± 0.9 obtained with EWC and 1.8 ± 3.1
with VCL+coresets. For backward transfer, we used the
BWT metric defined in Lopez-Paz & Ranzato (2017) which
roughly captures the difference in accuracy obtained when
a task is first trained and its accuracy after the final task.
Again, higher is better and quantifies the gain obtained with
the future tasks. Here, FROMP has a score of −2.6 ± 0.9,
which is comparable to EWC’s score of −2.3±1.4 but better
than VCL+coresets which obtains −9.2 ± 1.8.

5. Discussion
We propose FROMP, a functional-regularisation approach
for continual learning while avoiding catastrophic forget-
ting. FROMP uses a Gaussian Process formulation of neural
networks to convert weight-space distributions into function-
space. With this formulation, we proposed ways to identify
relevant memorable past examples, and functionally reg-
ularise the training of neural network weights. FROMP
achieves state-of-the-art performance across benchmarks.
This paper presents the first steps in a new direction and
there are several future investigations of interest. Would
using VI instead of a Laplace approximation result in bet-
ter accuracy? What are some ways to choose memorable
examples? Is there a common principle behind them? Do
we obtain improvements when we relax some assumptions?
And what kind of improvements? Will this approach work
at very large scales? These are some of the questions that

we hope to investigate in the future. Our hope is that our
method opens a new direction for principled methods to
combine regularisation and memory-based methods.
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A. Deep Networks to Functional Priors with DNN2GP
A.1. GP posteriors from the Minimiser of Linear Model

The posterior distribution of a linear model induces a GP posterior as shown by Rasmussen & Williams (2006). We discuss
this in detail now for the following linear model discussed in Section 3.1:

yi = fw(xi) + εi, where fw(xi) := φ(xi)
>w, εi ∼ N(εi |0,Λ

−1), and w ∼ N(w|0, δ−1IP) (11)

with a feature map φ(x). Rasmussen & Williams (2006) show that the predictive distribution for a test input x takes the
following form (see Equation 2.11 in their book):

p( f (x)|x,D) = N( f (x) |Λφ(x)>A−1Φy, φ(x)>A−1φ(x)), where A :=
∑
i

φ(xi)Λφ(xi)
> + δIP . (12)

where D is set of training points {yi,xi} for i, and Φ is a matrix with φ(xi) as columns.

Rasmussen & Williams (2006) derive the above predictive distribution by using the weight-space posterior N(w|wlin,Σlin)

with the mean and covariance defined as below:

wlin := ΛA−1Φy, Σlin := A−1. (13)

The mean wlin is also the minimiser of the least-squares loss and A is the hessian at that solution.

Rasmussen & Williams (2006) show that the predictive distribution in Equation 12 corresponds to a GP posterior with the
following mean and covariance functions:

mlin(x) = Λφ(x)
>A−1Φy = φ(x)>wlin = fwlin (x), (14)

κlin(x,x
′) := φ(x)> Σlin φ(x

′), (15)

This is the result shown in Equation 2 in Section 3.1. We can also write the predictive distribution of the observation
y = f (x) + ε where ε ∼ N(0,Λ−1) as follows:

p(y |x,D) = N(y | fwlin (x)︸  ︷︷  ︸
mlin(x)

, φ(x)>Σlinφ(x)︸            ︷︷            ︸
κlin(x,x)

+Λ−1), where Σ−1lin :=
∑
i

φ(xi)Λφ(xi)
> + δIP . (16)

We will make use of Equations 14 to 16 to write the mean and covariance function of the posterior approximation for neural
networks, as shown in the next section.

A.2. GP Posteriors from the Minimiser of Neural Networks

Khan et al. (2019) derive GP predictive distributions for the minimisers of a variety of loss functions in Appendix B of their
paper. We describe these below along with the resulting GP posteriors. Throughout, we denote a minimiser of the loss by
w∗.

A regression loss: For a regression loss function `(y, f ) := 1
2Λ(y − f )2, they derive the following expression for the

predictive distribution for the observations y (see Equation 44, Appendix B.2 in their paper):

p̂(y |x,D) := N(y | fw∗ (x), Jw∗ (x)Σ∗Jw∗ (x)
> + Λ−1), where Σ−1∗ :=

∑
i

Jw∗ (xi)
>
Λ Jw∗ (xi) + δIP . (17)

We use p̂(y |x,D) since this predictive distribution is not exact and is obtained using a type of Laplace approximation.
Comparing this to Equation 16, we can write the mean and covariance functions in a similar fashion as Equations 14 and 15:

mw∗ (x) := fw∗ (x), κw∗ (x,x
′) := Jw∗ (x)Σ∗ Jw∗ (x

′)>. (18)

This is the result shown in Equation 5 in Section 3.1.
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A binary classification loss: A similar expression is available for binary classification with y ∈ {0,1}, considering the loss
`(y, f ) := −y logσ( f ) − (1− y) log(1−σ( f )) = −y f + log(1+ e f ) where σ( f ) := 1/(1+ e− f ) is the sigmoid function. See
Equation 48, Appendix B.2 in Khan et al. (2019). The predictive distribution is given as follows:

p̂(y |x,D) := N(y | σ( fw∗ (x)), Λw∗ (x) Jw∗ (x)Σ∗ Jw∗ (x)
>
Λw∗ (x) + Λw∗ (x)), (19)

where Σ−1∗ :=
∑
i

Jw∗ (xi)
>
Λw∗ (xi) Jw∗ (xi) + δIP . (20)

where Λw∗ (x) := σ
(
fw∗ (x)

) [
1 − σ

(
fw∗ (x)

) ]
. The predictive distribution does not respect the fact that y is binary and

treats it like a Gaussian. This makes it comparable to Equation 16. Comparing the two, we can conclude that the above
corresponds to the predictive posterior distribution of a GP regression model with y = f (x) + ε where ε ∼ N(0,Λw∗ (x))
with the mean and covariance function as shown below:

mw∗ (x) := σ( fw∗ (x)), κw∗ (x,x
′) := Λw∗ (x) Jw∗ (x)Σ∗ Jw∗ (x

′)>Λw∗ (x). (21)

This is the result used in Equation 10 in Section 3.4 for binary classification. A difference here is that the mean function is
passed through the sigmoid function and the covariance function has Λw∗ (x) multiplied on the both sides. These changes
appear because of the nonlinearity in the loss function introduced due to the sigmoid link function.

A multiclass classification loss: The above result straightforwardly extends to the multiclass classification case by using
multinomial-logit likelihood (or softmax function). For this the loss can be written as follows:

`(y, f ) = −y>S(f ) + log

(
1 +

K−1∑
k=1

e fk

)
, where k’th element of S(f ) is given by

e fj

1 +
∑K−1

k=1 e fk
(22)

where the number of categories is equal to K , y is a one-hot-encoding vector of size K − 1, f is K − 1 length output of the
neural network, and S(f ) is the softmax operation which maps a K − 1 length real vector to a K − 1 dimensional vector
with entries in the open interval (0,1). The encoding in K − 1 length vectors ignores the last category which then ensures
identifiability (Train, 2009). In a similar fashion to the binary case, the predictive distribution of the K − 1 length output y
for an input x can be written as follows:

p̂(y|x,D) := N(y | S(fw∗ (x)), Λw∗ (x) Jw∗ (x)Σ∗ Jw∗ (x)
>Λw∗ (x)

> + Λw∗ (x)),

where Σ−1∗ :=
∑
i

Jw∗ (xi)
> Λw∗ (xi) Jw∗ (xi) + δIP . (23)

where Λw∗ (x) := S
(
fw∗ (x)

) [
1 − S

(
fw∗ (x)

) ]> is a (K − 1) × (K − 1) matrix and Jw∗ (x) is the (K − 1) × P Jacobian matrix.
The mean function in this case is a K − 1 length matrix and the covariance function is a square matrix of size K − 1. Their
expressions are shown below:

mw∗ (x) := S(fw∗ (x)), Kw∗ (x,x
′) := Λw∗ (x) Jw∗ (x)Σ∗ Jw∗ (x

′)>Λw∗ (x
′). (24)

General case: The results above hold for a generic loss function derived from a generalised linear model (GLM) with an
invertible function h(f ), e.g., `(y, f ) := − log p(y|h(f )). For example, for a Bernoulli distribution, the link function h( f ) is
equal to σ. In the GLM literature, h−1 is known as the link function. Given such a loss, the only quantity that changes in the
above calculations is Λw∗ (x,y) := ∇2f f `(y, f ), which is the second derivative of the loss with respect to f , and might depend
both on x and y.

A.3. GP Posterior from the Iterations of a Neural-Network Optimiser

The results of the previous section hold only at a minimiser w∗. Khan et al. (2019) generalise this to iterations of optimisers.
They did this for a variational inference algorithm and also for its deterministic version that resembles RMSprop. We now
describe these two versions. We will only consider binary classification using the setup described in the previous section.
The results can be easily generalised to multiclass classification.

GP posterior from iterations of a variational inference algorithm: Given a Gaussian variational approximation
qj(w) := N(w|µ j,Σ j) at iteration j, Khan et al. (2019) used a natural-gradient variational inference algorithm called the
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variational-online Newton (VON) method (Khan et al., 2018). Given a qj(w), the algorithm proceeds by first sampling
w j ∼ qj(w), and then updating the variational distribution. Surprisingly, the procedure used to derive a GP predictive
distribution for the minimiser generalises to this update too. An expression for the predictive distribution is given below:

p̂j+1(y |x,D) := N(y | σ( fwj (x)), Λwj (x) Jwj (x)Σ j Jwj (x)
>
Λwj (x) + Λwj (x)

−1), (25)

where Σ−1j+1 := (1 − βj)Σ
−1
j + βj

[∑
i

Jwj (xi)
>
Λwj (xi) Jwj (xi) + δIP

]
, (26)

µ j+1 := µ j − βjΣ j+1

[
N∇w ¯̀(w j) + δµ j

]
. (27)

where ¯̀(w) := 1
N

∑N
i=1 `(yi, fw(xi)). The predictive distribution takes the same form as before, but now the covariance and

mean are updated according to the VON updates. The VON updates are essential to ensure the validity of the GP posterior,
however, as Khan et al. (2019) discuss, the RMSprop/Adam have similar update which enable us to apply the above results
even when running such algorithms. We describe this next.

GP posterior from iterations of RMSprop/Adam: Khan et al. (2019) propose a deterministic version of the above update
where w j is not sampled from qj(w) rather is set to be equal to µ j , i.e., w j = µ j . This gives rise to the following update:

Σ−1j+1 ← (1 − βj)Σ
−1
j + βj

[∑
i

Jwj (xi)
>
Λwj (xi) Jwj (xi) + δIP

]
, (28)

w j+1 ← w j − βjΣ j+1

[
N∇w ¯̀(w j) + δw j

]
, (29)

with the variational approximation defined as qj(w) := N(w|w j,Σ j). The form of the predictive distribution remains the
same as Equation 25.

As discussed in Khan et al. (2018), the above algorithm can be made similar to RMSprop by using a diagonal covariance.
By reparameterising the diagonal of Σ−1 as s+ δ1 where s is an unknown vector, we can rewrite the updates to update µ and
s. This can then be written in a form similar to RMSprop as shown below:

sj+1 ← (1 − βj)sj + βj

[∑
i

Λwj (xi)
[
Jwj (xi) ◦ Jwj (xi)

]> ]
(30)

w j+1 ← w j − βt
1

sj+1 + δ1
◦

[
N∇w ¯̀(wt ) + δw j

]
, (31)

where ◦ defines element-wise product of two vectors, and the diagonal of Σ−1j+1 is equal to (sj+1 + δ1). This algorithm differs
from RMSprop in two ways. First, the scale vector sj is updated using the sum of the square of the Jacobians instead of the
square of the mini-batch gradients. Second, there is no square-root in the preconditioner for the gradient in the second line.
This algorithm is the diagonal version of the Online Generalised Gauss-Newton (OGGN) algorithm discussed in Khan et al.
(2019).

In practice, we ignore these two differences and employ the RMSprop/Adam update instead. As a consequence the variance
estimates might not be very good during the iteration, even though the fixed-point of the algorithm is not changed (Khan
et al., 2018). This is the price we pay for the convenience of using RMSprop/Adam. We correct the approximation after
convergence of the algorithm by recomputing the diagonal of the covariance according to Equation 30. Denoting the
converged solution by w∗, we compute the diagonal v∗ of the covariance Σ∗ as shown below:

v∗ = 1/
[
δ1 +

N∑
i=1

Λw∗ (xi)
[
Jw∗ (xi) ◦ Jw∗ (xi)

]> ]
, (32)

B. Detailed Derivation of FROMP Algorithm
In this section, we provide further details on Section 3.3.

L(q(w)) := Eq(w)

[
N
τ

¯̀
t (w) + log q(w)

]
− Eq̃wt (f)

[
log q̃wt−1 (f )

]
, where wt ∼ q(w) and wt−1 ∼ qt−1(w) (33)
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Optimising this objective requires us to obtain the GP posterior q̃wt (f ). This can be easily done applying the DNN2GP result
from Equation 25 to this loss function. The VON update for the objective above takes the following form:

Σ−1 ← (1 − β)Σ−1 + β

[∑
i

Jwt (xi)
>
Λwt (xi) Jwt (xi) − ∇ΣEq̃wt (f)

[
log q̃wt−1 (f )

] ]
, (34)

µ ← µ − βΣ

[
N
τ
∇w ¯̀

t (wt ) − ∇µEq̃wt (f)
[
log q̃wt−1 (f )

] ]
. (35)

where ¯̀
t (w) := 1

N

∑
i∈D t

`(yi, fw(xi)) and we have ignored the iteration subscript to simplify notation.

Using the µ and Σ obtained with this iteration, we can define the following GP predictive posterior at a sample wt ∼ q(w):

p̂t (y |x,D) := N(y | σ( fwt (x)), Λwt (x) Jwt (x)Σ Jwt (x)
>
Λwt (x) + Λwt (x)

−1), (36)

Comparing this to Equation 25, we can write the mean and covariance function as follows:

mwt (x) := σ( fwt (x)), κwt (x,x
′) := Λwt (x) Jwt (x)Σ Jwt (x

′)>Λwt (x). (37)

The mean vector obtained by concatenating mwt (x) at all x ∈ M is denoted by mt . Similarly, the covariance matrix Kt is
defined as the matrix with i j’th entry as κwt (xi,xj). The corresponding mean and covariance obtained from samples from
qt−1(w) are denoted by mt−1 and Kt−1.

Given these quantities, the functional regularisation term has an analytical expression given as follows:

Eq̃wt (f)
[
log q̃wt−1 (f )

]
= − 1

2

[
Tr(K−1t−1Kt ) + (mt −mt−1)

>K−1t−1(mt −mt−1)
]
+ c, (38)

Our goal is to obtain the derivative of this term with respect to µ and Σ. Both mt and Kt are functions of µ and Σ through
the sample wt = µ + Σ1/2ε where ε ∼ N(0, I). Therefore, we can compute these derivative using the chain rule.

We note that the resulting algorithm is costly for large problems, and propose five approximations to reduce the computation
cost, as described below.

Approximation 1: Instead of sampling wt−1, we set wt−1 = µt−1 which is the mean of the posterior approximation qt−1(w)
until task t − 1. Therefore, we replace Eq̃wt (f)

[
log q̃wt−1 (f )

]
by Eq̃wt (f)

[
log q̃µt−1 (f )

]
. This affects the mean mt−1 and Kt−1

in Equation 38.

Approximation 2: When computing the derivation of the functional regulariser, we will ignore the derivative with respect
to Kt and only consider mt . Therefore, the derivatives needed for the update in Equations 34 and 35 can be approximated as
follows:

∇µEq̃wt (f)
[
log q̃wt−1 (f )

]
≈ −

[
∇µmt

]
K−1t−1(mt −mt−1), (39)

∇ΣEq̃wt (f)
[
log q̃wt−1 (f )

]
≈ − [∇Σmt ]K

−1
t−1(mt −mt−1), (40)

This avoids having to calculate complex derivatives (e.g., derivatives of Jacobians).

Approximation 3: Instead of using the full Kt−1, we factorise it across tasks, i.e., we approximate it by a block-diagonal
matrix containing the kernel matrix Kt−1,s for all past tasks s as the diagonal. This makes the cost of inversion linear in the
number of tasks.

Approximation 4: Similarly to Equations 28 and 29, we use a deterministic version of the VON update by setting wt = µ,
which corresponds to setting the random noise ε to zero in wt = µ + Σ1/2ε . This approximation simplifies the gradient
computation in Equations 39 and 40, since now the gradient with respect to Σ is zero. For example, in the binary classification
case, mµ(x) := σ( fµ(x)), which does not depend on Σ. The gradient of mt with respect to µ is given as follows using the
chain rule (here mt ,s is the sub-vector of mt corresponding to the task s).

∇µmt ,s[i] = ∇µ
[
σ

(
fµ(xi)

) ]
= Λµ(xi) Jµ(xi)

>, where xi ∈ Ms, (41)
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and where the second equality holds for canonical link functions. With these simplifications, we can write the VON update
as follows:

Σ−1 ← (1 − β)Σ−1 + β

[∑
i

Jµ(xi)
>
Λµ(xi) Jµ(xi)

]
, (42)

µ ← µ − βΣ

[
N
τ
∇µ ¯̀

t (µ) +
t−1∑
s=1

[
∇µmt ,s

]
K−1t−1,s(mt ,s −mt−1,s)

]
. (43)

Approximation 5: Similarly to Equations 30 and 31, our final approximation is to use a diagonal covariance Σ and replace
the above update by an RMSprop-like update where we denote µ by w:

s−1 ← (1 − β)s + β

[∑
i

Λw(xi) [Jw(xi) ◦ Jw(xi)]
>

]
, (44)

w← w − β
1

s + δ1
◦

[
N
τ
∇w ¯̀

t (w) +
t−1∑
s=1

[
∇wmt ,s

]
K−1t−1,s(mt ,s −mt−1,s)

]
, (45)

where we have added a regulariser δ to s in the second line to avoid dividing by zero. Previously (Khan et al., 2018), this
regulariser was the prior precision. Ideally, when using a functional prior, we would replace this by another term. However,
this term was ignored by making Approximation 4, and we use δ instead. The final Gaussian approximation is obtained with
the mean equal to w and covariance is equal to a diagonal matrix with 1/(s + δ1) as its diagonal.

It is easy to see that the solutions found by this algorithm is the fixed point of this objective:

min
w

N ¯̀
t (w) + τ

t−1∑
s=1

(mt ,s −mt−1,s)
>K−1t−1,s(mt ,s −mt−1,s), (46)

Ultimately, this is an approximation of the objective given in Equation 33, and is computationally cheaper to optimise.

We follow the recommendations of Khan et al. (2019) and use RMSprop/Adam instead of Equations 28 and 29. This
algorithm still optimises the objective given in Equation 46, but the estimate of the covariance is not accurate. We correct the
approximation after convergence of the algorithm by recomputing the diagonal of the covariance according to Equation 44.
Denoting the converged solution by w∗, we compute the diagonal v∗ of the covariance Σ∗ as shown below:

v∗ = 1/
[
δ1 +

N∑
i=1

Λw∗ (xi)
[
Jw∗ (xi) ◦ Jw∗ (xi)

]> ]
, (47)

C. Multiclass setting
When there are more than two classes per task, we need to use multiclass versions of the equations presented so far. We still
make the same approximations as described in Appendix B.

Reducing Complexity in the Multiclass setting: We could use the full multiclass version of the GP predictive (Equa-
tion 23), but this is expensive. To keep computational complexity low, we employ an individual GP over each of the K
classes seen in a previous task, and treat the GPs as independent.

We have K separate GPs. Let y(k) be the k-th item of y. Then the predictive distribution over each y(k) for an input x is:

p̂(y(k) |x,D) := N(y(k) | S(fw∗ (x))
(k), Λw∗ (x)

(k) Jw∗ (x)Σ∗ Jw∗ (x)
>Λw∗ (x)

(k)> + Λw∗ (x)
(k ,k)), (48)

where S(fw∗ (x))
(k) is the k-th output of the softmax function, Λw∗ (x)

(k) is the k-th row of the Hessian matrix and Λw∗ (x)
(k ,k)

is the k, k-th element of the Hessian matrix. The Jacobians Jw∗ (x) are now of size K × P. Note that we have allowed S and
Λw∗ (x) to be of size K instead of K − 1. This is because we are treating the K GPs separately.

The kernel matrix Kt−1 is now a block diagonal matrix for each previous task’s classes. This allows us to only compute
inverses of each block diagonal (size M × M), repeated for each class in each past task (K(t − 1) times), where M is the



Continual Deep Learning by Functional Regularisation of Memorable Past

number of memorable past examples in each task. This changes computational complexity to be linear in the number of
classes per task, K , compared to Section 3.4 (which has analysis for binary classification for each task).

When choosing a memorable past (the subset of points to regularise function values over) for the logistic regression case, we
can simply sort the Λw∗ (xi)’s for all {xi} ∈ Dt and pick the largest, as explained in Section 3.2. In the multiclass case, these
are now K × K matrices Λw∗ (xi). We instead sort by Tr(Λw∗ (xi)) to select the memorable past examples.

FROMP for multiclass classification: The solutions found by the multiclass algorithm is the fixed point of this objective
(compare with Equation 46):

min
w

N ¯̀
t (w) + τ

t−1∑
s=1

∑
k∈Cs

(mt ,s,k −mt−1,s,k)
>K−1t−1,s,k(mt ,s,k −mt−1,s,k), (49)

where we define Cs as the set of classes k seen in previous task s, mt ,s,k is the vector of mwt (x) for class k evaluated at
the memorable points {xi} ∈ Ms , mt−1,s,k is the vector of mwt−1 (x) for class k, and Kt−1,s,k is the kernel matrix from the
previous task just for class k, always evaluated over just the memorable points from previous task s. By decomposing the last
term over individual outputs and over the memorable past from each task, we have reduced the computational complexity
per update.

D. Functional prior approximation
We discuss why replacing weight space integral by a function space integral, as done below, results in an approximation:

Eq(w)[log qt−1(w)] ≈ Eq̃wt (f)
[
log q̃wt−1 (f )

]
,

A change of variable in many cases results in an equality, e.g., for f = Xw with a matrix X and given any function h(f ), we
can express the weight space integral as the function space integral:∫

h(Xw)N(w|µ,Σ)dw =
∫

h(f )N(f |Xµ,XΣX>)df . (50)

Unfortunately, log qt−1(w) can not always be written as a function of f := Jwtw. Therefore, the change of variable does not
result in an equality. For our purpose, as long as the approximations provide a reasonable surrogate for optimisation, the
approximation is not expected to cause issues.

E. Further details on continual learning metrics reported
We report a backward transfer metric and a forward transfer metric on Split CIFAR (higher is better for both). The backward
transfer metric is exactly as defined in Lopez-Paz & Ranzato (2017). The forward transfer metric is a measure of how well
the method uses previously seen knowledge to improve classification accuracy on newly seen tasks. Let there be a total of T
tasks. Let Ri, j be the classification accuracy of the model on task tj after training on task ti . Let Rind

i be the classification
accuracy of an independent model trained only on task i. Then,

Backward Transfer, BWT =
1

T − 1

T−1∑
i=1

RT ,i − Ri,i,

Forward Transfer, FWT =
1

T − 1

T∑
i=2

Ri,i − Rind
i .

FROMP achieves 6.1±0.7, a much higher value compared to 0.17±0.9 obtained with EWC and 1.8±3.1 with VCL+coresets.
For backward transfer, we used the BWT metric defined in (Lopez-Paz & Ranzato, 2017) which roughly captures the
difference in accuracy obtained when a task is first trained and its accuracy after the final task. Again, higher is better and
quantifies the gain obtained with the future tasks. Here, FROMP has a score of −2.6 ± 0.9, which is comparable to EWC’s
score of −2.3 ± 1.4 but better than VCL+coresets which obtains −9.2 ± 1.8.
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Table 1. Summary of metrics on Split CIFAR. FROMP outperforms the baselines EWC and VCL+coresets. All methods are run five
times, with mean and standard deviation reported.

Method Final average accuracy Forward transfer Backward transfer
EWC 71.6 ± 0.9% 0.17 ± 0.9 −2.3 ± 1.4
VCL+coresets 67.4 ± 1.4% 1.8 ± 3.1 −9.2 ± 1.8
FROMP 76.2 ± 0.4% 6.1 ± 0.7 −2.6 ± 0.9

F. Further details on image experiments
F.1. Permuted MNIST

We use the Adam optimiser (Kingma & Ba, 2015) with Adam learning rate set to 0.001 and parameter β1 = 0.99, and also
employ gradient clipping. The minibatch size is 128, and we learn each task for 10 epochs. We use τ = N for all algorithms:
FROMP, FRORP, FROMP-L2 and FRORP-L2. We use a fully connected single-head network with two hidden layers, each
consisting of 100 hidden units with ReLU activation functions. We report performance after 10 tasks.

F.2. Split MNIST

We use the Adam optimiser (Kingma & Ba, 2015) with Adam learning rate set to 0.0001 and parameter β1 = 0.99, and also
employ gradient clipping. The minibatch size is 128, and we learn each task for 15 epochs. We find good settings of τ to
be τ = N for FROMP and FRORP, and τ = 0.1N for FROMP-L2 and FRORP-L2. We use a fully connected multi-head
network with two hidden layers, each with 256 hidden units and ReLU activation functions.

Smaller network architecture from Swaroop et al. (2019). Swaroop et al. (2019) use a smaller network than the network
we use for the results in Figure 2a. They train VCL on a single-hidden layer network with 100 hidden units (and ReLU
activation functions). To ensure faithful comparison, we reran FROMP (with 40 memorable points per task) on this smaller
network, obtaining a mean and standard deviation over 5 runs of (99.2 ± 0.1)%. This is an improvement from Figure 2a,
which uses a larger network. We believe this is due to the pruning effect described in Swaroop et al. (2019).

Sensitivity to the value of τ. We tested FROMP and FROMP-L2 with different values of the hyperparameter τ. We found
that τ can change by an order of magnitude without significantly affecting final average accuracy. Larger changes in τ led to
greater than 0.1% loss in accuracy.

F.3. Split CIFAR

We use the Adam optimiser (Kingma & Ba, 2015) with Adam learning rate set to 0.001 and parameter β1 = 0.99, and also
employ gradient clipping. The minibatch size is 256, and we learn each task for 80 epochs. We find good settings of τ to be
τ = 10N for FROMP and FRORP, and τ = 20N for FROMP-L2 and FRORP-L2.

Numerical results on Split CIFAR. We run all methods 5 times and report the mean and standard error. For baselines, we
train from scratch on each task and jointly on all tasks achieving (73.6 ± 0.4)% and (78.1 ± 0.3)%, respectively. The final
average validation accuracy of FROMP is (76.2 ± 0.4)%, FROMP-L2 is (74.6 ± 0.4)%, SI is (73.5 ± 0.5)% (result from
Zenke et al. (2017)), EWC is (71.6 ± 0.9)%, VCL + random coreset is (67.4 ± 1.4)%.

F.4. Fewer memorable past examples

When we have fewer memorable past examples (for Figures 3b and 3c), we increase τ to compensate for the fewer
datapoints. For example, for permuted MNIST, when we have 40 memorable past examples per task (instead of 200), we
use τ = (200/40)N = 5N (instead of τ = N for 200 memorable past points).

G. Toy data experiments
In this section, we use a 2D binary classification toy dataset with a small multi-layer perceptron to (i) demonstrate the
brittleness and inconsistent behaviour of weight-regularisation, (ii) test FROMP’s performance on different toy datasets of
varying difficulty. As shown in Figure 4 in Appendix G, we find that weight-regularisation methods like VCL (+coresets)
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(i) After Task 1

Class 0 datapoint

Class 0 memorable

Class 1 datapoint

Class 1 memorable

(ii) After Task 2 (iii) After Task 5

Figure 4. This figure demonstrates our approach on a toy dataset. Figure (i) shows the result of training on the first task where memorable
past examples are shown with big markers. These points usually are the ones that support the decision boundary. Figure (ii) shows the
result after training on the second task where we see that the new network outputs are forced to give the same prediction on memorable
past examples as the previous network. The new decision boundary classifies both task 1 and 2 well. Figure (iii) shows the result after
training on five tasks, along with the memorable-past of each task. With our method, the performance over past tasks is maintained.

perform much worse than functional-regularisation, with lower accuracy, higher variance over random seeds, and visually
bad decision boundaries.

The toy dataset we use is shown in Figure 4, along with how FROMP does well. In Appendix G.1, we show weight-space
regularisation’s inconsistent behaviour on this dataset, with results and visualisations. In Appendix G.2, we show that
FROMP performs consistently across many variations of the dataset. Finally, hyperparameters for our experiments are
presented in Appendix G.3. For all these experiments, we use a 2-hidden layer single-head MLP with 20 hidden units in
each layer.

G.1. Weight-space regularisation’s inconsistent behaviour

Table 2. Train accuracy of FROMP, VCL (no coresets), VCL+coresets and batch-trained Adam (an upper bound on performance) on a toy
2D binary classification dataset, with mean and standard deviations over 5 runs for VCL and batch Adam, and 10 runs for FROMP. ‘VCL’
is without coresets. VCL-RP and FRORP have the same (random) coreset selections. VCL-MP is provided with ‘ideal’ coreset points as
chosen by an independent run of FROMP. VCL (no coreset) does very poorly, forgetting previous tasks. VCL+coresets is brittle with high
standard deviations, while FROMP is stable.

FROMP FRORP VCL-RP VCL-MP VCL Batch Adam
99.6 ± 0.2% 98.5 ± 0.6% 92 ± 10% 85 ± 14% 68 ± 8% 99.70 ± 0.03%

Table 2 summarises the performance (measured by train accuracy) of FROMP and VCL+coresets on a toy dataset similar to
that in Figure 4. FROMP is very consistent, while VCL (with coresets) is extremely brittle: it can perform well sometimes
(1 run out of 5), but usually does not (4 runs out of 5). This is regardless of the coreset points chosen for VCL. Note
that coresets are chosen independently of training in VCL. Without coresets, VCL forgets many past tasks, with very low
performance.

For VCL-MP, the coreset is chosen as the memorable past from an independent run of FROMP, with datapoints all on the
task boundary. This selection of coreset is intuitively better than a random coreset selection. The results we show here are
not specific to coreset selection. Any coreset selection (whether random or otherwise) all show the same inconsistency when
VCL is trained with them. We provide visualisations of the brittleness of VCL in Figure 5.

G.2. Dataset variations

Figures 6 to 10 visualise the different dataset variations presented in Table 3. We pick the middle performing FROMP run
(out of 5) and batch Adam run to show.

G.3. VCL and FROMP hyperparameter settings for toy datasets

FROMP. We optimised the number of epochs, Adam learning rate, and batch size. We optimised by running different
hyperparameter settings for 5 runs on the toy dataset in Figure 4, and picking the settings with largest mean train accuracy.
We found the best settings were: number of epochs=50, batch size=20, learning rate=0.01. The hyperparameters were then
fixed across all toy data experimental runs, including across dataset variations (number of epochs was appropriately scaled
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Figure 5. Three runs of VCL-MP on toy 2D data. These are the middle performing 3 runs out of 5 runs with different random seeds.
VCL’s inconsistent behaviour is clear.

Table 3. Train accuracy of FROMP and batch-trained Adam (upper bound on performance) on variations of a toy 2D binary classification
dataset, with mean and standard deviations over 10 runs (3 runs for Adam). FROMP performs well across variations. VCL (with coresets)
performs significantly worse even on the original dataset (92 ± 10%). See Appendix G.2 for further experiments and for visualisations.

Dataset variation FROMP Batch Adam
Original dataset 99.6 ± 0.2% 99.7 ± 0.0%
10x less data (400 per task) 99.9 ± 0.0% 99.7 ± 0.2%
10x more data (40000 per task) 96.9 ± 3.0% 99.7 ± 0.0%
Introduced 6th task 97.8 ± 3.3% 99.6 ± 0.1%
Increased std dev of each class distribution 96.0 ± 2.4% 96.9 ± 0.4%
2 tasks have overlapping data 90.1 ± 0.8% 91.1 ± 0.3%

by 10 if dataset size was scaled by 10).

VCL+coresets. We optimised the number of epochs, the number of coreset epochs (because VCL+coresets trains on
non-coreset data first, then on coreset data just before test-time: see Nguyen et al. (2018)), learning rate (we use Adam to
optimise the means and standard deviations of each parameter), batch size, and prior variance. We optimised by running
various settings for 5 runs and picking the settings with largest mean train accuracy. We found the best settings were: number
of epochs=200, number of coreset epochs=200, a standard normal prior (variance=1), batch size=40, learning rate=0.01.
VCL is slow to run (an order of magnitude longer) compared to the other methods (FROMP and batch Adam).
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Figure 6. FROMP (middle performing of 5 runs) and batch Adam on a dataset 10x smaller (400 points per task).

Figure 7. FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset 10x larger (40,000 points per task).

Figure 8. FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with a new, easy, 6th task.
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Figure 9. FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with increased standard deviations of each
class’ points, making classification tougher.

Figure 10. FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with 2 tasks having overlapping data, which is
not separable.


