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Abstract

In recent years, Generative Adversarial Networks (GANs) have seen significant advance-
ments, leading to their widespread adoption across various fields. The original GAN ar-
chitecture enables the generation of images without any specific control over the content,
making it an unconditional generation process. However, many practical applications re-
quire precise control over the generated output, which has led to the development of condi-
tional GANs (cGANs) that incorporate explicit conditioning to guide the generation process.
cGANs extend the original framework by incorporating additional information (conditions),
enabling the generation of samples that adhere to that specific criteria. Various conditioning
methods have been proposed, each differing in how they integrate the conditioning infor-
mation into both the generator and the discriminator networks. In this work, we review
the conditioning methods proposed for GANs, exploring the characteristics of each method
and highlighting their unique mechanisms and theoretical foundations. Furthermore, we
conduct a comparative analysis of these methods, evaluating their performance on various
image datasets. Through these analyses, we aim to provide insights into the strengths and
limitations of various conditioning techniques, guiding future research and application in
generative modeling.

1 Introduction

1.1 Generative Adversarial Networks: An overview

Generative Adversarial Networks (GANs) Goodfellow et al. (2014) are implicit generative model in which
the data distribution is learned by comparing real samples with generated ones. This approach leverages an
adversarial process between two neural networks: a generator, which produces synthetic data, and a discrim-
inator, which evaluates the data to distinguish between real and generated (fake) samples. The competition
between these networks drives both to improve, with the generator aiming to create increasingly realistic
data while the discriminator becomes better at identifying fakes. Since their introduction, GANs have in-
spired numerous extensions and enhancements. Notably, the Deep Convolutional GAN (DCGAN) Radford
et al. (2016), marked a significant advancement by employing convolutional layers. DCGAN demonstrated
the ability to generate high-quality images and contributed to the robustness of GAN training. To address
the inherent training difficulties and instability of GANs, different objectives were proposed Arjovsky et al.
(2017); Gulrajani et al. (2017); Mroueh et al. (2017a;b); Li et al. (2017), leading to more stable training and
ultimately producing higher quality outputs. Self-Attention GANs (SAGAN) Zhang et al. (2019) enhanced
GANs’ ability to capture global dependencies within images by integrating self-attention mechanisms Vaswani
et al. (2023). BigGAN Brock et al. (2019), scaled up the GAN architecture, achieving spectacular results on
the ImageNet dataset through large batch sizes and careful architectural choices, pushing the boundaries of
what GANs can achieve in terms of image quality and diversity. Furthermore, Karras et al. (2018) proposed
the Progressive Growing GAN (ProGAN), a method to train GANs starting with low-resolution images
and incrementally increasing the resolution as training progresses. This approach mitigated training insta-
bility and produced unprecedentedly high-resolution images. Additionally, StyleGAN Karras et al. (2019),
introduced a style-based generator that allows for fine-grained control over the generated image features,
setting new benchmarks in image synthesis. These foundational works have collectively expanded the ap-
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plication of GANs, including but not limited to image synthesis, data augmentation Motamed et al. (2021),
super-resolution Tian et al. (2022), and even creative domains such as art generation Shahriar (2022).

2 Conditional GANs

Controlling the generative process of images is crucial for many applications such as image editing Gauthier
(2015); Antipov et al. (2017); Perarnau et al. (2016); Gu et al. (2019), text-based image generation Reed
et al. (2016b); Hong et al. (2018); Zguimg et al. (2017); Shi et al. (2024), 3D scene manipulation Yao et al.
(2018), time series analysis Smith & Smith (2020), medical imaging Havaei et al. (2021); Dar et al. (2019);
Bourou et al. (2023) and audio generation Kong et al. (2020); Zeghidour et al. (2021); Défossez et al. (2022).
Although cGANs were initially mentioned as a straightforward extension of GANs Goodfellow et al. (2014),
they were first formally introduced in Mirza & Osindero (2014). Their approach introduced conditioning
by incorporating a class embedding variable, which was concatenated with the input data fed into both the
generator and the discriminator. The Auxiliary Classifier GAN (AC-GAN) Shu (2017) advanced this concept
by adding an auxiliary classifier to the discriminator, enabling it to distinguish between different classes of
images. While AC-GAN improved the quality of conditional generation, it tended to produce images that
were easy to classify Shu (2017). Moreover, as the number of classes increased, AC-GAN was prone to early
collapse during the training process Shu (2017); Han et al. (2020).

To address these issues, several subsequent works introduced significant improvements. In Miyato & Koyama
(2018) proposed to perform the conditioning using a projection-based discriminator, achieving remarkable
synthesis results, a principle later adopted by other cGAN architectures such as StyleGANs Karras et al.
(2019; 2020b; 2021) and BigGAN Brock et al. (2019). ContraGAN Kang & Park (2021) used contrastive
loss to better capture data-to-data relations, improving the conditioning process.

Despite the numerous advancements and variations in conditional GANs, no prior surveys have compre-
hensively discussed the different architectures used in conditional GANs. This work aims to fill this gap
by providing an extensive overview of the methods used to condition GANs, comparing their effectiveness
across different datasets, and evaluating their robustness and performance.

The adversarial training scheme for GANs Goodfellow et al. (2014) is described by the following loss function:

min
G

max
D

Ex∼p(x)[logD(x)] + Ez∼pz(z)[log (1 −D(G(z)))] (1)

Where G and D are, respectively, a parameterized generator and discriminator, p(x) is the real data distri-
bution, and pz(z) is a multivariate random distribution.

GANs can be made conditional by considering additional information such as class labels, text, image, or
other modalities. While conditioned, the GAN objective1 can be reformulated as:

min
G

max
D

Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log (1 −D(G(z|y)))] (2)

In this survey, we focus on works that use class labels for conditioning, although many of the techniques
discussed can be extended to other modalities. Conditioning GANs involves applying conditioning to both
the generator and the discriminator. To address this systematically, we have organized our work as follows:
In Section 2, we outline the strategies proposed for conditioning the discriminator. Next, in Section 3,
we describe the techniques suggested for conditioning the generator. Finally, we provide a comparison to
evaluate and contrast the effectiveness of the proposed conditional GAN approaches.

3 Conditional GAN: conditioning the discriminator

The discriminator in GANs plays a crucial role, by providing feedback on the quality of the generated data
samples to the generator. In the conditional setting, the discriminator should be provided with the class
label, the earliest cGANs frameworks fed the class label y to the discriminator by simply concatenating it
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with the feature vector Mirza & Osindero (2014). Variants of this method have proposed concatenating
the class label embedding with the feature vector at different depths in the network Kwak & Zhang (2016);
Zguimg et al. (2017); Saito et al. (2017); Dumoulin et al. (2017a); Perarnau et al. (2016); Denton et al.
(2015); Reed et al. (2016a).

Figure 1: Conditioning by label embedding concatenation at different levels of the discriminator, (a) was
proposed in Mirza & Osindero (2014) and (b) in Reed et al. (2016a)

Subsequent works introduced new techniques for injecting the class label information into the discriminator.
Depending on the discriminator conditioning method, we can group the cGAN discriminators into: auxiliary
classifier-based discriminators, projection-based discriminators and constrastive learning-based
discriminators. In the subsequent sections, we will delve into each method, outlining their respective
mechanisms, in Table 3, we summarize the different methods, their losses and their schematics.

3.1 Auxiliary-classifier based discriminators

Concatenating class label information with the input image features can achieve conditioning; however,
this approach is relatively simplistic and arbitrary, which may hinder GANs from accurately approximating
the true data distribution. In this section, we present the methods that condition the discriminator by
incorporating an auxiliary classifier.

3.1.1 Auxiliary classifier GAN (AC-GAN)

The development of conditional Generative Adversarial Networks (cGANs) advanced significantly with the
introduction of Auxiliary Classifier GANs (AC-GANs) Odena et al. (2017). This approach integrates an
auxiliary classifier into the GAN discriminator to predict the class label of the generated image. This design
shift, motivated by the potential for enhanced performance through multi-task learning, enables the AC-GAN
to generate higher quality and class-specific images. Unlike prior cGANs, where conditioning information is
directly fed to the discriminator via concatenation, AC-GAN employs a dual objective function. The first
part, LS (Eq. 3), focuses on the log-likelihood of correctly identifying real versus fake images, while the
second part, LC (Eq. 4), concentrates on accurately classifying these images into their respective classes:

LS = Ex∼p(x)[logD(x)] + Ez∼pz(z),y∼py(y)[log (1 −D(G(z, y)))] (3)

LC = −Ex∼p(x,y)[logC(x, y)] − Ez∼pz(z),y∼py(y)[log(C(G(z, y)), y)] (4)

Where C is the introduced auxiliary classifier, By combining LS and LC we obtain the AC-GAN loss:

min
G,C

max
D

LAC(G,D,C) =Ex∼px(x)[logD(x)] + Ez∼pz(z),y∼py(y)[log(1 −D(G(z, y)))]

− λcEx∼p(x,y)[logC(x, y)] − λcEz∼pz(z),y∼py(y)[log(C(G(z, y), y))]
(5)
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where λC is a hyperparameter.

Despite its advancements, AC-GAN suffers from a lack of diversity in the generated images, particularly
as the number of classes increases. This issue arises from the model’s tendency to generate images that are
easier for the auxiliary classifier to categorize. This bias was explored in Shu (2017), where AC-GAN was
described as the Lagrangian of a constrained optimization problem that rejects the sampling of points near
the classifier decision boundaries.

3.1.2 Twin Auxiliary Classifier GAN (TAC-GAN)

To address the limitations of AC-GAN, the Twin Auxiliary Classifier GAN (TAC-GAN) was pro-
posed by Gong et al. (2019), introducing an additional auxiliary classifier. In Gong et al. (2019), it was
shown that the absence of the negative conditional entropy term −Hq(y|x) in the objective function of AC-
GAN can lead to a degenerate solution that causes the generated images to be confined by the decision
boundaries of the auxiliary classifier. This behavior explains the low intra-class diversity observed in the
images synthesized by AC-GAN. To alleviate this issue, the authors proposed to add an additional classifier
to the AC-GAN that predicts the class of the generated images. This additional auxiliary classifier Cmi is
trained to compete with the generator, optimizing the following objective function:

min
G

max
Cmi

V (G,Cmi) = Ez∼pz(z),y∼py(y)[logCmi(G(z, y), y)] (6)

combining Eq. 6 with the original AC-GAN objective leads to the total loss of TAC-GAN that reads:

min
G,C

max
D,Cmi

LTAC(G,D,C,Cmi) = LAC(G,D,C) + λacV (G,Cmi) (7)

The authors established a connection between the conditional entropy term and the Jensen-Shannon Diver-
gence (JSD) among the conditional distributions {qx|y=1, . . . , qx|y=K}. Furthermore, they demonstrated that
TAC-GAN’s loss function minimizes the JSD between these conditional distributions. This indicates that
TAC-GAN effectively addresses the issue of the missing conditional entropy term. Additionally, the pro-
posed loss function proves to be beneficial in learning an unbiased distribution and generating more diverse
images.

3.1.3 Unbiased Auxiliary Classifier GAN (UAC-GAN)

Similar to Gong et al. (2019), Han et al. (2020) demonstrated that the lack of diversity observed in AC-
GAN is induced by the absence of −Hq(y|x) in the AC-GAN objective function. Furthermore, it was shown
that TAC-GAN can still converge to a degenerate solution. In addition to that, it was observed that using
an additional classifier can lead to an unstable training Kocaoglu et al. (2017); Han et al. (2020). Instead
of using an additional classifier to minimize −Hq(y|x), Han et al. (2020) proposed to estimate the mutual
information Iq(x; y) since:

Iq(x; y) = Hq(y) −Hq(y|x) = Hq(x) −Hq(x|y) (8)

To estimate Iq(x; y), they employed the Mutual Information Neural Estimator(MINE) Belghazi et al. (2021).
MINE is built on top of the Donsker and Varadhan bound Donsker & Varadhan (1975), IQ can be estimated
using the following equation:

IMINE
q (x, y) = max

T
VMINE(G,T ) (9)

where:
VMINE(G,T ) = Ez∼p(z),y∼p(y)[T (G(z, y), y)] − logEz∼p(z),y∼q(y) exp (T (G(z, y), y) (10)

T is a scalar-valued function that can be parameterized by a deep neural network. The final objective
function is given by:
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Table 1: learning objective for the generator under the optimal discriminator and classifier.

Method Learning Objective for the Generator
AC-GAN min

G
JS(px∥qx) + λ1KL(qx,y∥px,y)) −KL(qx∥px)) +Hq(y|x))

TAC-GAN min
G

JS(px∥qx)) + λ1KL(qx,y∥px,y)) −KL(qx∥px))
ADC-GAN min

G
JS(px∥qx) + λ1KL(qx,y∥px,y)

min
G,C

max
D,T

(G,D,C, T ) = LAC(G,D,C) + λmVMINE(G,T ) (11)

where λm is a hyperparameter.

By linking −Hq(y|x) to mutual information, Han et al. (2020) demonstrated an effective approach to ad-
dressing the lack of diversity in AC-GAN without requiring an additional classifier, which often causes
unstable training.

3.1.4 Auxiliary Discriminative Classifier GAN (ADC-GAN)

In another work, Hou et al. (2021) proposed Auxiliary Discriminative Classifier GAN (ADC-GAN) to
overcome the limitations of AC-GAN. They demonstrated that, for a fixed generator, the optimal classifier
of AC-GAN is agnostic to the density of the generated distribution q(x). Furthermore, they highlighted
that the generators in TAC-GAN and AC-GAN optimize contradictory learning objectives as shown in
Table 1.

To alleviate these shortcomings, ADC-GAN uses a classifier that is able to classify the real data and the
generated data separately. Using such a classifier Cd : X → Y+ ∪Y− (Y+ for real data and Y− for generated
data), the generator is encouraged to produce classifiable samples that look like the real ones. The objective
functions for the discriminator, the discriminative classifier and the generator are:

max
D,Cd

VAC(G,D) + λ(Ex,y∼px,y
[logCd(y+|x)] + Ex,y∼qx,y

[logCd(y−|x)])

min
G

VAC(G,D) − λ(Ex,y∼px,y [logCd(y+|x)] − Ex,y∼qx,y [logCd(y−|x)])
(12)

where:

Cd(y+|x) = exp(φ+(y)·ϕ(x))∑
ȳ

exp(φ+(ȳ)·ϕ(x))+
∑

ȳ
exp(φ−(ȳ)·ϕ(x))

and Cd(y−|x) = exp(φ−(y)·ϕ(x))∑
ȳ

exp(φ+(ȳ)·ϕ(x))+
∑

ȳ
exp(φ−(ȳ)·ϕ(x))

The function ϕ : X → Rd serves as a feature extractor, transforming input data X into a d-dimensional
feature space. This feature extractor is shared with the original discriminator, which is represented as
D = σ ◦ ψ ◦ ϕ. Here, ψ : Rd → R is a linear mapping, and σ : R → [0, 1] is a sigmoid function. Additionally,
φ+ : Y → Rd and φ− : Y → Rd are learnable embeddings capturing the label representations for real and
generated data, respectively and VAC is the the original loss for AC-GAN.

The authors of ADC-GAN proved that for a fixed generator, the optimal discriminative classifier is given as:
C∗
d(y+|x) = p(x,y)

p(x)+q(x) , C∗
d(y−|x) = q(x,y)

p(x)+q(x) which shows that the optimal discriminative classifier is aware
of the real and generated densities. Furthermore, they were able to discard the −KL(px|qx) term from the
objective of the generator as shown in Table 1 In addition, they demonstrated that ADC-GAN leads to a
more stable training and outperforms AC-GAN and TAC-GAN in terms of the quality of the generated
images.
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Figure 2: Auxiliary classifier based architectures: (a) AC-GAN, (b) TAC-GAN, (c) UAC-GAN, (d) ADC-
GAN

3.2 Projection-based discriminators

In the previous sections, conditioning the discriminator was achieved either by concatenating the class label
or by adding an auxiliary classifier. Where the former can method can be very naive and sub-optimal in
capturing the additional class label information, the latter can make the training more difficult and unstable.
In Miyato & Koyama (2018), a new method for conditioning the discriminator was introduced by computing
the inner product between the embedded conditional vector y and the feature vector.

The design introduced in Miyato & Koyama (2018) presents a novel method for cGANs by employing a
projection discriminator, it was proposed by considering the optimal solution for the discriminator’s loss
function, Miyato & Koyama (2018) demonstrated that under certain regularity assumptions, the discrimi-
nator’s function can be reparameterized as follows:

f(x, y; θ) = f1(x, y; θ) + f2(x; θ) = yTV ϕ(x; θΦ) + ψ(ϕ(x; θΦ); θΨ) (13)

where V is the embedding matrix of y, ϕ(., θΦ) is a vector output function of x, and ψ(., θΨ) is a scalar
function. The learned parameters θ = {V, θϕ, θψ} are trained to optimize the adversarial loss.

The projection discriminator approach for conditional Generative Adversarial Networks (cGANs), as pro-
posed in Miyato & Koyama (2018) offers notable improvements over traditional methods like concatenation.
This technique enhances inter-class diversity, producing more varied and realistic samples across different
classes, which is crucial in many applications. A significant advantage of this method is its avoidance of
additional classifiers, leading to a greater training stability. The effectiveness and versatility of this approach
are further evidenced by its adoption in various advanced GAN architectures, as seen in Brock et al. (2019);
Zhang et al. (2020); Zhao et al. (2020b); Wu et al. (2020).

BigGAN Brock et al. (2019), was among the pioneering GANs to employ discriminator projection techniques
for conditional generation. It brought significant enhancements to the scaling of GAN training, enabling the
generation of images with higher resolutions. A pivotal enhancement in BigGAN’s design is the integration of
orthogonal regularization, which contributed markedly to its improved performance. Furthermore, BigGAN
drew inspiration from the Self-Attention GAN Zhang et al. (2019), particularly its utilization of self-attention
blocks. These blocks aid both the discriminator and generator in more effectively capturing the global
structure of images. Additionally, BigGAN’s architecture facilitated the application of the truncation trick,
which allows for nuanced balancing of the fidelity-diversity trade-off in generated images.

Another line of work that adopted the projection discriminator is the StyleGAN Karras et al. (2019; 2020b;
2021). The StyleGAN family of models represents a significant advancement in the use of projection discrim-
inators. These models have achieved new state of the art results by incorporating innovative components
like the Mapping Network and AdaIN normalization Huang & Belongie (2017). Moreover, several tech-
niques were introduced to enhance the quality of image generation, even when dealing with limited size data
sets Huang & Belongie (2017); Zhao et al. (2020a).
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3.3 Contrastive learning based discriminators

Contrastive learning Chen et al. (2020); Jaiswal et al. (2021); Le-Khac et al. (2020) mainly aims to develop
deep, meaningful, and robust data representations. At its core, it involves training models to distinguish
between pairs of examples that are either similar or dissimilar. During the training phase, the model is
encouraged to draw closer the representations of similar items (’positive’ pairs) while distancing those of
dissimilar items (’negative’ pairs). This approach not only strengthens the model’s capacity to discern un-
derlying data structures and patterns but also enhances generalization across various tasks. The effectiveness
of contrastive learning is particularly evident in diverse domains such as computer vision He et al. (2021;
2020); Addepalli et al. (2022) and text processing Gunel et al. (2021); Chen et al. (2023); Aberdam et al.
(2020). More recently, its application has been extended to generative models, as explored in Kang & Park
(2021); Kang et al. (2021), demonstrating its versatility and growing importance in the field of machine
learning.

3.3.1 Contrastive learning GAN (ContraGAN)

ContraGAN Kang & Park (2021) is a cGAN that achieve conditioning using a contrastive learning strategy
by capturing the data-to-data relations. Indeed, it was suggested in Kang & Park (2021) that the con-
ditioning in AC-GAN and ProjGAN can only capture data-to-class relations of training examples while
neglecting the data-to-data relations. To alleviate this, Kang & Park (2021) have proposed the Conditional
Contrastive (2C) loss, a self-supervised learning objective that controls the distances between embedded
images depending on their respective labels.

The 2C loss can be seen as an adaptation of the NT-Xent loss Chen et al. (2020). Given a minibatch of train-
ing images X = {x1, . . . ,xm}, where x ∈ RW×H×3 and their corresponding labels y = {y1, . . . , ym}, an en-
coder S(x) ∈ Rk, a projection layer h : Rk → Sd that embeds onto a unit hypersphere, the NT-Xent loss con-
ducts random data augmentations T on the training data X, denoted as A = {x1, T (x1), . . . ,xm, T (xm)} =
{a1, . . . ,a2m}, the loss is given by:

ℓ(ai, aj ; t) = − log
(

exp
(
ℓ(ai)T ℓ(aj)/t

)∑2m
k=1 1k ̸=i exp (ℓ(ai)T ℓ(ak)/t)

)
(14)

where, t is the temperature that controls the attraction and repulsion forces.

In Kang & Park (2021) the discriminator network before the fully connected layer (Dϕ1) is considered as the
encoder network, an additional multi-layer perceptrons h is used as a projection layer. Instead of using data
augmentation, the authors used the embeddings of the class labels to capture the data-to-class relations, the
modified loss is given as follows:

ℓ(xi, yi; t) = − log
(

exp(l(xi)T e(yi)/t)
exp(l(xi)T e(yi)/t) +

∑m
k=1 1k ̸=i. exp(l(xi)T l(xk)/t)

)
(15)

In order to ensure that the negative samples having the same label as yi are not apart, a cosine similarity of
such samples is added to the numerator of Eq. 15 giving rise to the 2C loss:

l2C(xi, yi; t) = − log
(

exp(l(xi)T e(yi)/t) +
∑m
k=1 1yk=yi

· exp(l(xi)T l(xk)/t)
exp(l(xi)T e(yi)/t) +

∑m
k=1 1k ̸=i · exp(l(xi)T l(xk)/t)

)
(16)

where l(xi) is the embedding of the image xi and e(yi) the embedding of the class label yi.

Eq. 16 ensures that a reference sample xi is drawn closer to its corresponding class embedding e(yi) while
distancing it from other classes.

By minimizing this 2C loss, ContraGAN effectively reduces the distance between embeddings of images
with the same labels while increasing the distance between embeddings of images with different labels. This
dual consideration of data-to-data l(xi)T l(xk) and data-to-class l(xi)T e(yi) relations marks a significant
advancement over traditional methods.
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3.3.2 Rebooting Auxiliary Classifier GAN (ReACGAN)

The introduction of contrastive learning in conditioning GANs paved the way for addressing data-to-data
relations, a crucial aspect previously overlooked in previous work, particularly in classifier-based GANs like
ACGAN. Building on this foundation, Rebooting ACGAN (ReACGAN) Kang et al. (2021) introduces the
Data-to-Data Cross-Entropy loss (D2D-CE). This novel approach specifically targets the early training
collapse and the generation quality issues inherent in ACGAN. Kang et al. (2021) started by considering the
empirical cross-entropy loss used in ACGAN, which is given as follows:

LCE = − 1
N

N∑
i=1

log
(

exp(F (xi)Twyi
)∑c

j=1 exp(F (xi)Twj)

)
(17)

where F : X → Rd is feature extractor and a single fully connected layer classifier C : F → Rc which is
parameterized by W = [w1 · · ·wc] ∈ Rd×c, where c is the number of classes. Kang et al. (2021) found that
at the early training stage the average norm of ACGAN’s input features maps increases. Respectively, the
average norm of the gradients dramatically increases at the early training steps and decreases with the high
class probabilities of the classifier. In addition, it was observed that as the average norm of the gradients
decreases, the FID value of ACGAN does not decrease indicating the collapse of ACGAN.

Kang et al. (2021) found that normalizing the feature embeddings onto a unit hypersphere effectively solves
the ACGAN’s early-training collapse. Specifically, the authors of ReACGAN introduced a projection layer
P on the feature extractor F and they normalized both the feature embeddings P (F (xi))

∥P (F (xi))∥ (denoted as fi
and the weight vector wyi

∥wyi
∥ (denoted as vyi

)

In addition to the normalization, Kang et al. (2021) introduced a contrastive loss Data-to-Data Cross-
Entropy(D2D-CE) to better capture the data-to-data relations as in ContraGAN, furthermore they in-
troduced two margin values to the D2D-CE to guarantee inter-class separability and intra-class variations.
The contrastive D2D-CE loss reads:

LD2D−CE = − 1
N

N∑
i=1

log
(

exp([fTi vyi −mp]−/τ)
exp([fTi vyi

−mp]−/τ) +
∑
j∈N(i) exp([fTi fj −mn]+/τ)

)
(18)

where, τ is the temperature parameter, and N(i) denotes the set of indices for negative samples with labels
different from the reference label vyi in a batch. Margins mp and mn are used to manage similarity values for
easy positives and negatives, respectively. The terms [.]− and [.]+ correspond to the min(., 0) and max(., 0)
functions.

This contrastive loss function proved to be effective in overcoming the limitations of ACGAN, significantly
enhancing both class consistency and image diversity.

Figure 3: Contrastive learning based architectures. On the left: the discriminator architecture of Contra-
GAN. On the right: the Reboot AC-GAN architecture.
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Table 2: Some reprsentative cGAN discriminator’s architectures as an ECGAN approximation

Existing cGAN α λclf λc

ProjGAN 0 0 0
AC-GAN 0 > 0 0
ContraGAN 0 0 > 0

In contrast to the 2C loss, the D2D-CE objective does not hold false positives in the denominator, which
can cause unexpected repulsion forces. Furthermore, introducing the margins in D2D-CE loss can prevent
having large gradient that can be caused by pulling easy positive samples.

3.4 Towards a unified framework for conditioning the discriminator

As previously discussed, various methods have been introduced to condition the discriminator, either by
incorporating auxiliary classifiers or by employing alternative approaches. While the inclusion of a classi-
fier in ACGAN effectively achieved conditioning, alternative approaches have successfully conditioned the
discriminator without the need for a classifier. In Chen et al. (2021), showed that the use of classifiers can
benefit conditional generation. Furthermore, they introduced a unifying framework named Energy-based
Conditional Generative Adversarial Networks (ECGAN) which explains several cGAN variants. In
order to connect the classifier-based and the classifier-free approaches used equivalent formulations of the
joint probability p(x, y).

From a probabilistic perspective, a classifier can be seen as a function that approximates p(y|x), the probabil-
ity that x belongs to y. Similarly, a conditional discriminator can be viewed as a function that approximates
p(x|y), the probability that x is real given a class y, the joint probability is given as follows:

log p(x, y) = log p(x|y) + log p(y) = log(y|x) + log p(x) (19)

In Eq.19 we observe that the joint probability distribution log p(x, y) can be approached through two distinct
methods. The first method involves modeling a conditional discriminator p(x|y), while the second focuses
on a classifier p(y|x). By sharing the parameterization between these models, the training process becomes
mutually beneficial, allowing improvements in the conditional discriminator to enhance the classifier’s per-
formance, and vice versa.

3.4.1 Approaching the joint distribution from the conditional discriminator perspective

Similar to the energy based models LeCun et al. (2006), log p(x, y) was parameterized in Chen et al. (2021)
using a function fθ(x), where exp(fθ(x)[y]) ∝ p(x, y).

Therefore, the log-likelihood can be modeled as follows:

log pθ(x|y) = log
(

exp (fθ(x)[y])
Zy(θ)

)
= fθ(x)[y] − logZy(θ), (20)

Where Zy(θ) =
∫
x′ exp (fθ(x′)[y]) dx′

Optimizing Eq. 20 is intractable because of the partition function Zy(θ). By introducing the Fenchel duality
of the partition function Zy(θ) and a trainable generator qϕ(z, y), where z ∼ N (0, 1), Chen et al. (2021)
showed that the maximum likelihood estimation in Eq.20 is:

max
θ

min
ϕ

∑
y

Epd(x|y) [fθ(x)[y]] − Ep(z) [fθ(qϕ(z, y))[y]] −H(qϕ(·, y)) (21)

By discarding the entropy term, this equation has the form of the GAN.
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The discriminator loss in this case is given by:

Ld1(x, z, y; θ) = −fθ(x)[y] + fθ(qϕ(z))[y] (22)

3.4.2 Approaching the joint distribution from the classifier perspective

As depicted in Eq.19, log p(x, y) can also be approximated using log p(y|x) and log p(x). Using the energy
function introduced earlier fθ(x), log(pθ(y|x) can be expressed as:

pθ(y|x) = pθ(x, y)
pθ(x) = exp(fθ(x)[y])∑

y′ exp(fθ(x)[y′]) , (23)

Which can be written using a softmax as:

Lclf(x, y; θ) = − log (SOFTMAX (fθ(x)) [y]) (24)

Furthermore, Chen et al. (2021) showed that by setting hθ(x) = log
∑
y exp(fθ(x), maximizing the log-

likelihood of p(x) is equivalent to solving the following optimization problem.

max
θ

min
ϕ

Epd(x,y) [hθ(x)] − Ep(z) [hθ(qϕ(z, y))] −H(qϕ) (25)

Similar to Eq. 21, we can see that the Eq. 25 has the form of the traditional GAN. In this case, the equation
of the discriminator is given as:

Ld2(x, z, y; θ) = −hθ(x) + hθ(qϕ(z)) (26)

In Chen et al. (2021), two approaches were proposed to estimate the entropy terms in Eq. 21 and Eq. 25.
The first approach involves considering the entropy term to be zero, based on the fact that entropy is always
non-negative, the constant zero is a lower bound. The second approach involves estimating a variational
lower bound. The authors demonstrated that the 2C loss, introduced in ContraGAN, serves as a lower
bound in this context.

3.4.3 Unifying cGANs discriminators

To unify the classifier-based and classifier-free discriminators, Chen et al. (2021) proposed the ECGAN
discriminator with the following objective:

LD(x, z, y; θ) = Ld1(x, z, y; θ) + αLd2(x, z, y; θ) + λcL
real
C + λclfLclf(x, y; θ) (27)

where:

Ld1(x, z, y; θ) is designed for the conditional discriminator, adjusting the output specifically for class-
corresponding data pairs (x, y). Conversely, Ld2(x, z, y; θ) addresses the unconditional aspect, updating
outputs based on the realness of x, independent of the class. The classifier training component, Lclf(x, y; θ),
increases the output for the correct class y and decreases it for other classes, thus enhancing classification
accuracy. Lastly, the component LrealC which is the contrastive loss calculated on real samples, plays a crucial
role in refining latent embeddings, by pulling closer the embeddings of data with the same class. The detailed
derivation of this loss can be found in Chen et al. (2021).

A significant aspect of the ECGAN framework presented in this paper is its ability to unify various rep-
resentative variants of cGAN, including ACGAN, ProjGAN and ContraGAN. These variants are different
approximations within the unified ECGAN framework, as shown in Table 2, demonstrating the versatility
of ECGAN.
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Method Method Discriminator Loss Schematic

AC-GAN
min

C
max

D
LAC (GD,C) =Ex∼px(x)[logD(x)] + Ez∼pz(z),y∼py(y)[log(1 − D(G(z, y)))]

− λcEx∼p(x,y)[logC(x, y)] − λcEz∼pz(z),y∼py(y)[log(C(G(z, y), y))]

TAC-GAN minC maxD,Cmi LT AC(G,D,C,Cmi) = LAC (G,D,C) + λacV (G,Cmi)

ADC-GAN maxD,Cd
VAC (G,D) + λ(Ex,y∼px,y [logCd(y+|x)] + Ex,y∼qx,y [logCd(y−|x)])

UAC-GAN minC maxD,T (D,C, T ) = LAC (G,D,C) + λmVMINE(G, T )

ProJGAN maxD Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log (1 − D(G(z|y)))]

ContraGAN minD l2C(xi, yi; t) = − log

(
exp(l(xi)T e(yi)/t)+

∑m

k=1
1yk=yi

·exp(l(xi)T l(xk)/t)

exp(l(xi)T e(yi)/t)+
∑m

k=1
1k ̸=i·exp(l(xi)T l(xk)/t)

)

ReACGAN minD LD2D−CE = − 1
N

∑N

i=1
log

(
exp([fT

i
vyi

−mp]−/τ)

exp([fT
i

vyi
−mp]−/τ)+

∑
j∈N(i)

exp([fT
i

fj −mn]+/τ)

)

Table 3: A summary of different discriminator conditioning methods, the loss that the discriminators optimize
and their schematics
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4 Conditional GAN: conditioning the generator

To condition the generator, most approaches typically involve directly integrating the label with the gen-
erator, either through concatenation or by employing some normalization techniques such as conditional
batch normalization and adaptive instance normalization Odena et al. (2017); Gong et al. (2019);
Kang & Park (2021); Kang et al. (2021); Hou et al. (2021). These methods effectively incorporate label
information, enabling the generator to produce outputs that accurately reflect the desired attributes.

In this section, we explore the various normalization techniques used to condition the generator.

4.1 Batch Normalization: The Foundation

Batch Normalization (BN) Ioffe & Szegedy (2015), originally introduced to improve training stability and
convergence speed in deep learning, serves as a cornerstone for many generator conditioning methods. BN
standardizes feature maps across the entire batch, normalizing each channel by subtracting the mean and
dividing by the standard deviation. It then applies learnable affine transformations to scale and shift the
normalized outputs. Formally, given an input batch x ∈ RN×C×H×W , each batch normalization layer has
two learnable parameters, γbatch and βbatch which shift and scale the normalized input, respectively:

BN(x) = γbatch

(
x− µc
σc

)
+ βbatch (28)

where µc(x) = 1
NHW

∑N
n=1

∑H
h=1

∑W
w=1 xnchw and σc(x) =

√
1

NHW

∑N
n=1

∑H
h=1

∑W
w=1(xnchw − µc(x))2.

Instance Normalization (IN), proposed in Ulyanov et al. (2017) as an alternative to batch normalization,
was motivated by style transfer applications, it is computed as follows:

IN(x) = γinstance

(
x− µnc
σnc

)
+ βinstance (29)

where: µnc(x) = 1
HW

∑H
h=1

∑W
w=1 xnch andσnc(x) =

√
1

HW

∑H
h=1

∑W
w=1(xnchw − µnc(x))2

In instance normalization, the standard deviation (σnc(x)) and mean (µnc(x)) are computed for each indi-
vidual instance, whereas in batch normalization (BN), these statistics are computed across the entire batch.
In Ulyanov et al. (2017), it was observed that significant improvements could be achieved using instance
normalization.

4.2 Conditional Normalization Techniques

In Dumoulin et al. (2017b) Conditional Instance Normalization (CIN) was introduced to learn different
artistic styles with a single conditional network where it takes a content image and a given style to apply
and produces a pastiche corresponding to that style. CIN extends IN by making the scaling and shifting
parameters condition-dependent:

IN(x) = γsinstance

(
x− µnc
σnc

)
+ βsinstance (30)

where s ∈ {1, 2, . . . , S} is randomly chosen from a fixed set of conditions (styles). This was pivotal in learning
multiple styles within a single model, as demonstrated in style transfer applications

Similarly, conditional batch normalization was used to condition vision systems on text. For instance,
it was used in de Vries et al. (2017) as an efficient technique to modulate convolutional feature maps by text
embeddings. Conditional Batch Normalization (CBN) is an extension of the standard batch normalization
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technique. It introduces the ability to condition the normalization process on external information, such as
labels, embeddings, or other auxiliary inputs. By doing so, it allows the network to dynamically adjust its
internal feature representation in response to specific conditions.

4.3 Adaptive Instance Normalization

In Huang & Belongie (2017), Adaptive Instance Normalization (AdaIN) was introduced. AdaIN can
be seen as an extension of instance normalization, where the shift and the scale are not learnt but computed.
Given an input content image x and an input style image y the affine parameters are computed as follows:

AdaIN(x, y) = σinstance(y)
(
x− µinstance(x)
σinstance(x)

)
+ µinstance(y) (31)

By computing the the affine transformation, AdaIN aligns the channel-wise mean and variance of the in-
put image x to match those of the style image y. the authors showed that AdaIN lead to better style
transfer compared to the other methods. Furthermore, it was extensively used in the StyleGAN family of
models Karras et al. (2020b; 2021)

4.4 Feature-wise Linear Modulation

In Perez et al. (2017), the authors introduced a general purpose method for conditioning a neural network
on text embeddings called Feature-wise Linear Modulation (FILM). FILM learns functions f and h which
output γi, c and βi, c to modulate a neural network’s activation Fi, c, the feature-wise affine transformation
is given by:

FiLM(Fi,c) = γi,cFi,c + βi,c (32)

FiLM is computationally efficient as it only requires two parameters per modulated feature map and it does
not scale with the image resolution. In BigGAN, a strategy similar to FiLM Perez et al. (2017) was used to
learn the class embeddings.

Method Formula
Learnable pa-
rameters

Conditional Batch Normalization CBN(x) = γc
batch

(
x−µc

σc

)
+ βc

batch γcbatch, β
c
batch

Instance Batch Normalization CBN(x) = γc
instance

(
x−µc

σc

)
+ βc

inst γcinst, β
c
inst

Adaptive Instance Normalization AdaIN(x, y) = σinst(y)
(

x−µinst(x)
σinst(x)

)
+ µinst(y) None

Table 4: A summary of the the generator conditioning methods

In Table 4, we summarize the various normalization techniques used for conditioning the generator, high-
lighting the learnable parameters involved during training.

5 Experiments

In this section, we present a comparative analysis of various conditioning techniques across multiple datasets.
To ensure fairness and consistency, our evaluation leverages StudioGAN Kang et al. (2023), a PyTorch-
based library that provides comprehensive implementations of numerous GAN architectures and conditioning
strategies. The analysis was conducted on CIFAR-10 and a subset of ImageNet Deng et al. (2009). First,
we compared different cGAN models while maintaining their original architectures as described in their
respective works. Then, we selected the BigGAN architecture as a reference backbone and applied various
discriminator conditioning methods to it.
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Metric Advantages Disadvantages
FID - Correlates well with human judgment.

- Captures both fidelity and diversity.
- Sensitive to mode collapse.

- Requires a large number of samples for accurate
results.

Inception Score (IS) - Evaluates both diversity and quality of gener-
ated samples.

- Does not penalize mode collapse.
- Relies heavily on biases in the pretrained Incep-
tion network.

Kernel Inception Dis-
tance (KID)

- More robust than FID for small sample sizes.
- Unbiased and effective for small datasets.

- Computationally expensive for large datasets.

Density and Coverage - Separately quantifies fidelity (density) and di-
versity (coverage).

- Computationally expensive
- Requires a threshold for determining data man-
ifold overlap, which can be arbitrary.

Precision and Recall - Balances quality (precision) and diversity (re-
call).

- Less intuitive compared to FID.

Perceptual Path
Length (PPL)

- Measures latent space smoothness and consis-
tency.
- Highlights interpolation capabilities.

- Does not measure overall quality or diversity.

Table 5: Advantages and disadvantages of some evaluation metrics

5.1 GANs evaluation metrics

The evaluation of generative models has undergone significant transformation to address the diverse chal-
lenges posed by evolving architectures and datasets. Early metrics, such as Mean Squared Error (MSE)
and Log-Likelihood, were primarily used to assess models like Variational Autoencoders (VAEs) Kingma
& Welling (2019). While these metrics provided insights into reconstruction accuracy and probabilistic mod-
eling, they were limited in their ability to capture perceptual quality, structural coherence, and the diversity
of generated samples. These shortcomings highlighted the need for evaluation criteria that better align with
human perception. The introduction of GANs in 2014 catalyzed the development of new metrics tailored
to generative tasks. The Inception Score (IS) Barratt & Sharma (2018) was one of the first metrics de-
signed for GANs, measuring the realism and class diversity of generated images by leveraging a pre-trained
Inception network. However, IS was criticized for its inability to detect mode collapse effectively and its
reliance on class labels, which restricted its applicability to labeled datasets. This limitation paved the way
for the Frechet Inception Distance (FID) Heusel et al. (2018), which measures the distance between the
distributions of real and generated features in the latent space of an Inception network. FID quickly became
the gold standard due to its stronger correlation with human judgment of visual quality and its ability to
penalize both lack of diversity and poor realism.

Between 2018 and 2020, the landscape of generative model evaluation continued to evolve, introducing
advanced metrics to address specific challenges. Precision and Recall Sajjadi et al. (2018) for Distri-
butions were proposed to separately evaluate the quality (precision) and diversity (recall) of generated
samples, providing a more nuanced understanding of model performance. Kernel Inception Distance
(KID) Bińkowski et al. (2021) emerged as a robust alternative to FID, particularly for small datasets, due
to its unbiased estimation properties and reduced sensitivity to sample size.

To evaluate the smoothness and continuity of the latent space, metrics like the Perceptual Path Length
(PPL) were introduced Karras et al. (2020a). PPL measures the perceptual consistency of interpolations
in the latent space, which is crucial for applications requiring smooth transitions, such as style transfer and
morphing. Additionally, new metrics such as Coverage and Density Naeem et al. (2020) were developed
to measure the degree to which the real data distribution is captured by the generative model and the
concentration of generated samples within the real data distribution, respectively. These metrics provide
deeper insights into mode coverage and overfitting tendencies.

The evolution of these evaluation methods reflects the growing complexity and expectations of generative
models. Each metric addresses specific aspects of performance, in Table 5, we summarized the advantages
and the disadvantages of some metrics.

In our comparison, we relied on the following set of metrics. Our choice was motivated by the fact that they
are widely adopted and commonly used in numerous works to evaluate GANs.
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Inception Score (IS): The Inception Score (IS) Salimans et al. (2016); Barratt & Sharma (2018) is a metric
for evaluating the quality of images generated by GANs, leveraging an Inception model Szegedy et al. (2015)
pre-trained on the ImageNet dataset Deng et al. (2009). It quantifies the performance of GANs based on
two criteria: the diversity of the generated images across different classes and the confidence of each image’s
classification. The score is computed by using the Inception model to predict the class distribution for each
generated image, assessing both the individual image clarity through the sharpness of its predicted class
distribution and the overall diversity by comparing these distributions across all images.

IS(Xt) = exp
(

1
M

M∑
i=1

DKL (p(y|xi)∥p̂(y))
)

(33)

Where Xt = {x1, . . . , xM} is the image samples we target to evaluate.
Fréchet Inception Distance (FID): FID Heusel et al. (2018) is a metric used to evaluate the quality
of images generated by GANs. The FID score calculates the distance between the feature vectors of real
and generated images, extracted using an Inception model pre-trained on the ImageNet dataset. Specifi-
cally, it computes the Fréchet(also known as the Wasserstein-2 distance) between the multivariate Gaussian
distributions of the feature vectors of the real and generated images.

FID(Xs, Xt) = ∥µs − µt∥2
2 + Tr

(
Σs + Σt − 2(ΣsΣt)

1
2

)
(34)

where µ and Σ are the mean vector and covariance matrix of the features, and the subscripts s and t denote
the source and target, respectively.
Precision and Recall (PR): Precision and recall metrics serve to evaluate the quality and variety of images
produced by generative models, relying on comparisons between the distributions of real and generated
images. Precision measures the degree to which the generated images resemble the real data distribution,
indicating the accuracy of the images produced. In contrast, recall assesses how well the range of real images
is represented within the generated images’ distribution, reflecting the model’s ability to capture the diversity
of the real dataset. Precision and recall are defined as follows:

Precision := 1
M

M∑
j=1

1Yj∈Manifold(Xs) (35)

Recall := 1
N

N∑
i=1

1Xi∈Manifold(Xt) (36)

Where N and M are the number of real and fake samples, the manifolds are defined as:

Manifold(X1, . . . , XN ) :=
N⋃
i=1

B(Xi,NNDk(Xi)) (37)

where B(x, r) is the sphere in RD around x with radius r. NNDk(Xi) denotes the distance from Xi to the
kth nearest neighbour among {Xi}, excluding itself.

Density and Coverage (PR):

In Naeem et al. (2020), it was shown that the process of constructing manifolds using the nearest neighbor
function is sensitive to outlier samples, which frequently leads to an overestimated representation of the
distribution. To address this overestimation issue, they introduced the Density and Coverage metrics, which
correct the problem by incorporating sample counting. These metrics are mathematically defined as follows:

Density := 1
kM

M∑
j=1

N∑
i=1

1Yj∈B(Xi,NNDk(Xi)) (38)
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Method FID ↓ IS ↑ Coverage ↑ Density ↑ Recall ↑ Precision ↑

AC-GAN 33.31 ±1.8 6.82 ±0.79 0.39 ±0.04 0.57 ±0.02 0.21±0.06 0.63 ±0.01
ProjeGAN 32.14 ±1.87 7.08 ±0.42 0.39 ±0.021 0.57 ±0.032 0.26 ±0.04 0.63 ±0.02
TAC-GAN 19.32 ±2.58 6.36 ±0.06 0.60 ±0.04 0.79 ±0.01 0.40 ±0.01 0.70 ±0.02
BigGAN 5.44 ±0.12 9.63 ±0.08 0.87 ±0.003 0.99 ±0.01 0.62±0.002 0.74 ±0.001
ADC-GAN 5.06 ±0.19 9.95 ±0.06 0.86 ±0.01 0.89±0.01 0.66 ±0.01 0.71 ±0.01
ContraGAN 5.99±0.91 9.5 ±0.21 0.84 ±0.011 0.95 ±0.01 0.60 ±0.004 0.74 ±0.002
Reboot AC-GAN 5.65 ±0.18 9.61 ±0.09 0.85 ±0.004 0.97 ±0.01 0.59 ±0.002 0.75 ±0.01
StyleGAN2 4.87±0.18 8.1 ±0.02 0.86 ±0.01 0.82 ±0.01 0.68 ±0.01 0.7 ±0.00

Table 6: Best FID score achieved by cGANs architectures during 80000 training steps on the CIFAR 10
dataset

Method FID ↓ IS ↑ Coverage ↑ Density ↑ Recall ↑ Precision ↑

AC-GAN 117.52 ±4.58 9.29 ±0.80 0.04 ±0.01 0.15 ±0.02 0.03±0.05 0.15 ±0.034
ProjGAN 181 ±12.88 5.46 ±0.85 0.02 ±0.01 0.084 ±0.02 0.07 ±0.06 0.25 ±0.00
TAC-GAN 150.66 ±9.9 5.96 ±0.84 0.11 ±0.14 0.06 ±0.02 0.12 ±0.04 0.18 ±0.05
BigGAN 44.3 ±7.54 11.6 ±0.80 0.36 ±0.07 0.46 ±0.06 0.46 ±0.05 0.58 ±0.05
ADC-GAN 15.11 ±1.39 15.46 ±0.26 0.72 ±0.01 0.76 ±0.11 0.51 ±0.02 0.69 ±0.01
ContraGAN 22.95 ±3.27 12.89 ±0.44 0.49 ±0.04 0.75 ±0.03 0.32 ±0.03 0.73 ±0.02
Reboot AC-GAN 12.55 ±1.3 15.93 ±0.1 0.70 ±0.04 0.99 ±0.05 0.33 ±0.02 0.8 ±0.02
StyleGAN2 16.99 ±1.46 14.85 ±0.3 0.67 ±0.01 0.67 ±0.0173 0.52 ±0.01 0.68 ±0.00

Table 7: Best FID score achieved by cGANs architectures during 80000 training steps on the Carnivores
dataset

Coverage := 1
N

N∑
i=1

1∃j s.t. Yj∈B(Xi,NNDk(Xi)) (39)

Where k is for the k-nearest neighbourhoods.

5.2 Comparing performances of cGANs models

First, we evaluated the performance of eight representative cGAN architectures on the CIFAR-10 dataset.
Table 6 presents the scores achieved across three separate runs for each architecture, reported at 80,000
training steps.

In table 6, we observe that ACGAN, and ProjGAN exhibit nearly identical performance. Additionally,
these architectures show a tendency to collapse after approximately the first 10,000 training steps, as il-
lustrated in Fig. 4. For the other methods, their performance is relatively similar on this specific dataset,
despite belonging to different conditioning families (ADC-GAN, ContraGAN, and StyleGAN2).

Subsequently, in table 7, we evaluated these architectures on a subset of the ImageNet dataset (Carnivores),
which consists of larger images sized 128 × 128 pixels. We observe that ACGAN, TAC-GAN, and
ProjGAN struggle to accurately learn the distribution of the Carnivores dataset, as indicated by their high
FID values. Furthermore, these models tend to collapse earlier than they do on CIFAR-10, highlighting the
challenges they face in scaling to larger images.

In contrast, the other architectures demonstrated strong performance without collapsing. BigGAN achieved
a higher FID score, while ReACGAN slightly outperformed the other models. Furthermore, as illustrated in
fig 4, these architectures exhibit greater robustness against mode collapse.
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(a) CIFAR 10 (b) Carnivores dataset

Figure 4: FID scores vs. training steps for different cGAN architectures trained on CIFAR 10 and the
Carnivores dataset.

Method FID ↓ IS ↑ Coverage ↑ Density ↑ Recall ↑ Precision ↑

Big+AC 39.10 18.0 0.34 0.40 0.22 0.53
Big+Proj 32.75 18.03 0.45 0.46 0.43 0.55
Big+TAC 102.0 10.65 0.09 0.09 0.30 0.23
Big+ADC 41.65 17.44 0.314 0.39 0.22 0.52
Big+2C 43.3 16.43 0.36 0.48 0.31 0.60
Big+DED-CE 35.77 18.22 0.38 0.49 0.19 0.59

Table 8: Best FID score achieved by various discriminator conditioning methods using a unique backbone
on a subset of ImageNet.

Method FID ↓ IS ↑ Coverage ↑ Density ↑ Recall ↑ Precision ↑

Big+AC 5.51 9.86 0.85 0.94 0.66 0.74
Big+Proj 4.89 9.82 0.86 0.94 0.64 0.73
Big+TAC 7.01 9.80 0.82 0.83 0.66 0.71
Big+ADC 4.93 9.88 0.82 0.90 0.65 0.72
Big+2C 5.30 9.67 0.86 0.96 0.61 0.74
Big+DED-CE 4.79 9.79 0.87 0.99 0.61 0.75

Table 9: Best FID score achieved by various discriminator conditioning methods using a unique backbone
on a subset of CIFAR10.

Table 10: Comparison of discriminator conditioning methods on two datasets.

5.3 Comparing discriminator conditioning methods using a unified backbone

Previously, we compared different cGAN models using their original architectures. However, these cGANs
employ various backbones, making it difficult to determine whether their performance is driven by the
conditioning method or by other factors related to the backbone. To address this, we adapted the BigGAN
backbone to various discriminator conditioning techniques. In Table 9, we observe that when using a unique
backbone to condition the GANs on CIFAR10, all the methods converge well. Additionally, AC, Projection,
and TAC conditioning do not collapse, indicating that the mode collapse observed in Fig. 4 is likely due to the
backbones used in AC-GAN, ProjeGAN, and TAC-GAN, respectively, and not the conditioning techniques
themselves. Furthermore, we note that TAC conditioning achieves the highest FID score, while Projection
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(a) Training StyleGAN2 on AFHQ
conditionally and unconditionally

(b) Training StyleGAN2 on a subset of
ImagNet (vertebrates) with different number

of classes

Figure 5: Training StyleGAN2 on AFHQ and a subset of ImageNet (vertebrates) with and without condi-
tioning

(a) Training BigGAN2 on a subset of
ImageNet(random) conditionally and

unconditionally

(b) Training StyleGAN2 on a subset of
ImageNet(random) with different number of

classes

Figure 6: Training StyleGAN2 and BigGAN on a subset of ImageNet (random) with and without conditioning

GAN achieves the lowest. In Table 8, we see that using a unified backbone, conditioning the discriminator by
projection results in the best FID score among all methods. Additionally, the other methods tend to collapse
relatively early, which may be due to the additional components required by these methods, potentially
destabilizing the training. In contrast, Projection does not require any additional networks. Surprisingly,
when using TAC to condition the network, the GAN fails to achieve a good score. This suggests that TAC
may not be compatible with this backbone or that the training becomes more complex due to the twin
classifiers.

5.4 Conditional vs unconditional image generation

Can we achieve better image generation by providing the network with the class of each image? Intuitively,
conditioning the model on class labels can be viewed as providing it with additional information, which has
the potential to enhance the quality of the generated images. To investigate this, we trained two StyleGAN2
models using the AFHQ Karras et al. (2020b) dataset, which comprises three distinct classes. The first model
was trained without conditioning (unconditionally), while the second model was trained with conditioning,
where class labels were provided. The FID scores for both models are presented in Fig. 5. The results
indicate that the two curves are almost similar, suggesting that in this particular case, conditioning does not
significantly impact the quality of the generated images.

Given that the AFHQ dataset contains only three distinct classes, we created a specialized dataset derived
from ImageNet (we took the superclass vertebrates) to gain a deeper understanding of how varying the
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number of classes affects model performance. In this dataset, the total number of images (resized to 128x128)
was kept constant, while the number of classes was varied. Fig. 5 illustrates the FID score curves for each
training scenario. We began with unconditional training and incrementally increased the number of classes
(2, 4, 8, 16). Throughout these experiments, the same set of images was used in all training sessions, ensuring
that the model consistently learned from the same distribution.

We observe that when we train conditionally on all classes, the convergence rate is slightly faster. This
suggests that conditioning can accelerate the convergence process in GANs. To validate this observation,
we trained two models, StyleGAN2 and BigGAN, using a subset of 20 random classes from the ImageNet
dataset. In Fig. 6, we observe that in both cases, conditioning improves the convergence of the two models.
We repeated this experiment with three different subsets of 20 random classes, and the results consistently
show that conditional training is faster than unconditional training (the remaining figures are provided in
the Appendix). The effect of conditioning may become more pronounced when the number of classes is
larger and the classes are more diverse.

6 Conclusion

In this survey, we have explored various methods for conditioning Generative Adversarial Networks (GANs),
focusing on three primary families of techniques: Auxiliary-classifier based, Projection based, and Contrastive
learning based. Each of these approaches offers unique mechanisms to enhance the control and quality of
generated images, addressing different challenges inherent in GAN training.

Auxiliary-classifier based methods, such as AC-GAN and its variants, integrate additional classifiers to
improve class-specific image generation. These methods have demonstrated improvements in image quality
but often struggle with issues like mode collapse and reduced diversity as the number of classes increases.
Subsequent enhancements, like the Twin Auxiliary Classifier GAN (TAC-GAN), have sought to mitigate
these issues by refining loss functions and incorporating mutual information estimators.

Projection-based discriminators offer a novel approach by conditioning on the inner product between em-
bedded conditional vectors and feature vectors. This family of methods enhances training stability and
performance without requiring additional classifiers. Techniques in this category have proven effective in
maintaining inter-class diversity and generating high-fidelity images.

Contrastive learning based methods, exemplified by models like ContraGAN and ReACGAN, address the
limitations of earlier approaches by focusing on data-to-data relations. These techniques use contrastive
losses to maintain diversity and mitigate mode collapse.

Through a comparative analysis of datasets, including CIFAR-10 and a subset of the ImageNet dataset
(Carnivores), we found that enhancements to GANs significantly benefit conditioning methods. Notably,
contrastive learning-based architectures, projection-based techniques, and auxiliary classifier methods con-
sistently achieve low FID scores.

In conclusion, the advancements in GAN conditioning techniques have significantly enriched the capabilities
of generative models. The insights gained from this body of work are invaluable for guiding future research
and applications in generative modeling. By continuing to innovate and refine these methods, we can unlock
new potentials in GANs, paving the way for groundbreaking applications and more controlled, high-quality
image generation.
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