
Urban Driver: Learning to Drive from Real-world
Demonstrations Using Policy Gradients

Oliver Scheel, Luca Bergamini, Maciej Wołczyk, Błażej Osiński, Peter Ondruska
Woven Planet, Level 5

{firstname.lastname}@woven-planet.global

Abstract: In this work we are the first to present an offline policy gradient method
for learning imitative policies for complex urban driving from a large corpus of
real-world demonstrations. This is achieved by building a differentiable data-
driven simulator on top of perception outputs and high-fidelity HD maps of the
area. It allows us to synthesize new driving experiences from existing demon-
strations using mid-level representations. Using this simulator we then train a
policy network in closed-loop employing policy gradients. We train our proposed
method on 100 hours of expert demonstrations on urban roads and show that it
learns complex driving policies that generalize well and can perform a variety
of driving maneuvers. We demonstrate this in simulation as well as deploy our
model to self-driving vehicles in the real-world. Our method outperforms previ-
ously demonstrated state-of-the-art for urban driving scenarios – all this without
the need for complex state perturbations or collecting additional on-policy data
during training. We make code and data publicly available.

Keywords: Self-driving, Learning from Demonstrations, Planning, Simulation

Driving policySimulator

state

action

SDV deploymentCollected driving logs Pereception

Closed-loop training

Figure 1: Overview of the proposed closed-loop training method for learning driving policies. We
leverage large amounts of expert demonstrations and mid-to-mid representations to build a differen-
tiable simulator supporting fast policy learning. With this simulator, we can effectively unroll model
policies, and thus train the model closed-loop using a policy gradient method.

1 Introduction

Self-driving has the potential to revolutionize transportation and is a major field of AI applications.
Even though already in 1990 there were prototypes capable of driving on highways [1], technology
is still not widespread, especially in the context of urban driving. In the past decade, the availability
of large datasets and high-capacity neural networks has enabled significant progress in perception
[2, 3] and the vehicles’ ability to understand their surrounding environment. Self-driving decision
making, however, has seen very little benefit from machine learning or large datasets. State-of-
the-art planning systems used in industry [4] still heavily rely on trajectory optimisation techniques
with expert-defined cost functions. These cost functions capture desirable properties of the future
vehicle path. However, engineering these cost functions scales poorly with the complexity of driving
situations and the long tail of rare events.

Due to this, learning a driving policy directly from expert demonstrations is appealing, since perfor-
mance scales to new domains by adding data rather than via additional human engineering effort.
5th Conference on Robot Learning (CoRL 2021), London, UK.



In this paper we focus specifically on learning rich driving policies for urban driving from large
amounts of real-world collected data. Unlike highway driving [5], urban driving requires perform-
ing a variety of maneuvers and interactions with, e.g., traffic lights, other cars and pedestrians.

Recently, rich mid-level representations powered by large-scale datasets [6, 7], HD-maps and high-
performance perception systems enabled capturing nuances of urban driving. This led to new meth-
ods achieving high performance for motion prediction [8, 9]. Furthermore, [10] demonstrated that
leveraging these representations and behavioral cloning with state perturbations leads to learning
robust driving policies. While promising, difficulty of this approach lies in engineering the pertur-
bation noise mechanism required to avoid covariate shift between training and testing distribution.

Inspired by this approach, we present the first results on offline learning of imitating driving policies
using mid-level representations, a closed-loop simulator and a policy gradient method. This formu-
lation has several benefits: it can successfully learn high-complexity maneuvers without the need for
perturbations, implicitly avoid the problem of covariate shift, and directly optimize imitation as well
as auxiliary costs. The proposed simulator is constructed directly from the collected logs of real-
world demonstrations and HD maps of the area, and can synthesize new realistic driving episodes
from past experiences (see Figure 1 for an overview of our method). Furthermore, for training on
large datasets reducing the computational complexity is paramount. We leverage vectorized repre-
sentations and show how this allows for computing policy gradients quickly using backpropagation
through time. We demonstrate how these choices lead to superior performance of our method over
the existing state-of-the-art in imitation learning for real-world self-driving planning in urban areas.

Our contributions are four-fold:

• The first demonstration of policy gradient learning of imitative driving policies for complex
urban driving from a large corpus of real-world demonstrations. We leverage a closed-
loop simulator and rich, mid-level vectorized representations to learn policies capable of
performing a variety of maneuvers.

• A new differentiable simulator that enables efficient closed-loop simulation of realistic
driving experiences based on past demonstrations, and quickly compute policy gradients
by backpropagation through time, allowing fast learning.

• A comprehensive qualitative and quantitative evaluation of the method and its performance
compared to existing state-of-the-art. We show that our approach, trained purely in simula-
tion can control a real-world self-driving vehicle, outperforms other methods, generalizes
well and can effectively optimize both imitation and auxiliary costs.

• Source code and data are made available to the public1.

2 Related Work

In this section we summarize different approaches for solving self-driving vehicle (SDV) decision-
making in both academia and industry. In particular, we focus on both optimisation-based and
ML-based systems. Furthermore, we discuss the role of representations and datasets as enablers in
recent years, to tackle progressively more complex Autonomous Driving (AD) scenarios.

Trajectory-based optimization is still a dominant approach used in industry for both highway and
urban-driving scenarios. It relies on manually defined costs and reward functions that describe good
driving behavior. Such cost can then be optimized using a set of classical optimization techniques
(A* [11], RRTs [12], POMDP with solver [13], or dynamic programming [14]). Appealing prop-
erties of these approaches are their interpretability and functional guarantees, which are important
for AD safety. These methods, however, are very difficult to scale. They rely on human engineer-
ing rather than on data to specify functionality. This becomes especially apparent when tackling
complex urban driving scenarios, which we address in this work.

Reinforcement learning (RL) [15] removes some complexity of human engineering by providing
a reward (cost) signal and uses ML to learn an optimal policy to maximize it. Directly providing
the reward through real-time disengagements [16], however, is impractical due to a low sample-
efficiency of RL and the involved risks. Therefore, most approaches [17] rely on constructing a

1Code and video available at https://planning.l5kit.org.

2



simulator and explicitly encoding and optimising a reward signal [18]. A limiting factor of these
approaches is that the simulator often is hand-engineered [19, 20], limiting its ability to capture
long-tail real-world scenarios. Recent examples of sim-to-real policy transfer (e.g. [21], [22], [23])
were not focused on evaluating scenarios typical to urban driving, in particular interacting with
other agents. In our work, we construct the simulator directly from real-world logs through mid-
level representations. This allows training in a variety of real-world scenarios with other agents
present, while employing efficient policy-gradient learning.

Imitation learning (IL) and Inverse Reinforcement Learning (IRL) [24, 25] are more scalable
ML approaches that leverage expert demonstrations. Instead of learning from negative events, aim
is to directly copy expert behavior or recover the underlying expert costs. Simple behavioral cloning
was applied already back in 1989 [26] on rural roads, more recently by [27] on highways and [28]
in urban driving. Naive behavioral cloning, however, suffers from covariate shift [24]. This issue
has been successfully tackled for highway lane-following scenarios by reframing the problem as
classification task [29] or employing a simple simulator [5], constructed from highway cameras. We
take inspiration from these approaches but focus on the significantly more complex task of urban
driving. Theoretically, our work is motivated by [30], as we employ a similar principle of generating
synthetic corrections to simulate querying an expert. Due to this, identical proven guarantees hold
for our method, namely the ideal linear regret bound, mitigating the problem of covariate shift.
Adversarial Imitation Learning comprises another important field [31, 32, 33], but, to the best of our
knowledge, has seen little application to autonomous driving and no actual SDV deployment yet.

Neural Motion Planners are another approach used for autonomous driving. In [34] raw sensory
input and HD-maps are used to estimate cost volumes of the goodness of possible future SDV
positions. Based on these cost volumes, trajectories can be sampled and the lowest-cost one is
selected to be executed. This was further improved in [35], where the dependency on HD-maps was
dropped. To the best of our knowledge, these promising methods have not yet been demonstrated to
drive a car in the real-world though.

Mid-representations and the availability of large-scale real-world AD datasets [6, 7] have been
major enablers in recent years for tackling complex urban scenarios. Instead of learning policies
directly from sensor data, the input of the model comprises the output of the perception system as
well as an HD map of the area. This representation compactly captures the nuance of urban scenarios
and allows large-scale training on hundreds or thousands of hours of real driving situations. This
led to new state-of-the-art solutions for motion forecasting [8, 9]. Moreover, [10] demonstrated that
using mid-representations, large-scale datasets and simple behavioral cloning with perturbations
[36] can scale and learn robust planning policies. The difficulty of this approach, however, is in
engineering the noise model to overcome the covariate shift problem. In our work we are inspired by
this approach, but attempt to learn robust policies using policy gradient optimisation [37] featuring
unrolling and evaluating the policy during training. This implicitly avoids the problem of covariate
shift and leads to superior results. This approach is, however, more computationally expensive and
requires a simulator. To solve this, we show how a fast and powerful simulator can be constructed
directly from real-world logs enabling scalability of this approach.

Data-driven simulation. A realistic simulator is useful for both training and validation of ML
models. However, many current simulators (e.g. [19, 38]) depend on heuristics for vehicle control
and do not capture the diversity of real world behaviours. Data-driven simulators are designed
to alleviate this problem. [23] created a photo-realistic simulator for training an end-to-end RL
policy. [5] simulated a bird’s-eye view of dense traffic on a highway. Finally, two recent works
[39, 40] developed data-driven simulators and showed their usefulness for training and validating
ML planners. In this work we show that a simpler, differentiable simulator based on replaying logs
is effective for training.

3 Differentiable Traffic Simulator from Real-world Driving Data

In this section we describe a differentiable simulator S that approximates new driving experiences
based on an experience τ̄ collected in the real world. This simulator is used during policy learning
for the closed-loop evaluation of the current policy’s performance and computing the policy gradient.
As shown in Section 5, differentiability is an important building block for achieving good results,
especially when employing auxiliary costs.

3



Real-world log

Simulator Simulator

S₂ S₃

S₁ S₂ S₃

S₁

Figure 2: Differentiable simulator from observed real-world logs: based on a ground truth log (top
row), we unroll a new trajectory corresponding to different SDV actions (e.g. given by a planner) in
the simulator approximating the vectorized world representation (bottom row)

We represent the real-world experience τ̄ as a sequence of state observations s̄t around the vehicle
over time:

τ̄ = {s̄1, s̄2, ..., s̄T }. (1)

We use a vectorized representation based on [8], in which each state observation s̄t consists of a
collection of static and dynamic elements e1

t , e
2
t , ..., e

K
t around the vehicle pose p̄t ∈ SE2, with

SE2 denoting the special Euclidean group. Static elements include traffic lanes, stop signs and
pedestrian crossings. These elements are extracted from the underlying HD semantic map of the
area using the localisation system. The dynamic elements include traffic lights status and traffic
participants (other cars, buses, pedestrians and cyclists). These are detected in real-time using the
on-board perception system. Each element ejt includes a pose qjt ∈ SE2 relative to the SDV pose
pt, as well as additional features, such as the element type, time of observation, and other optional
attributes, e.g. the color of associated traffic lights, recent history of moving vehicles, etc. The full
details of this representation are provided in Appendix C.

Goal of the simulation is to iteratively generate a sequence of state observations τ =
{s1, s2, . . . , sT } that corresponds to a different sequence of driver actions a1, a2, ..., aN in the sce-
nario. This is done by first computing the corresponding SDV trajectory p1, p2, ..., pN and then
locally transforming states s̄1, s̄2, . . . , s̄N .

Updated poses of the SDV are determined by a kinematic model pt+1 = f(pt, at), which is assumed
to be differentiable. The state observation st is then obtained by computing the new position qjt for
each state element ejt using a transformation along the differences of the original and updated pose:

qjt = q̄jt (pt − p̄t). (2)

See Figure 2 for an illustrative example. It is worth noting that this approximation is effective if the
distance between the original and generated SDV pose is not too large.

We denote performing these steps in sequence with the step-by-step simulation transition function
st+1 = S(st, at). Moreover, since both Equation (2) and vehicle dynamics f are fully differentiable,
we can compute gradients with respect to both the state (Ss) and action (Sa). This is critical for the
efficient computation of policy gradients using backpropagation through time as described in the
next section.

4 Imitation Learning Using a Differentiable Simulator

In this part, we detail how we use the simulator S described in the previous section to learn a
deterministic policy π to drive a car using closed-loop policy learning.

We frame the imitation learning problem as minimisation of the L1 pose distance L(st, at) =
‖p̄t − pt‖1 between the expert and learner on a sequence of collected real-world demonstrations
τ̄1, τ̄2, ..., τ̄N ∼ πE . Note that with a slight abuse of notation we use the poses p̄t, pt here to refer
to 3D vectors (x, y, θ), instead of roto-translation matrices in SE2 – yielding the common L1 norm

4



Policy sampling Policy gradient update

Expert trajectory

Policy trajectory

Figure 3: One iteration of policy gradient update. Given a real-world expert trajectory τ̄ we sample
a policy state st by unrolling the policy π for T steps. We then compute optimal policy update by
backpropagation through time.

and loss. This can be expressed as a discounted cumulative expected loss [41] on the set of collected
expert scenarios:

J(π) = Eτ̄∼πE
Eτ∼π

∑
t

γtL(st, at). (3)

Optimising this objective pushes the trajectory taken by the learned policy as close as possible to the
one of the expert, as well as limiting the trajectory to the region where the approximation given by
the simulator is effective. In Appendix B we further extend this to include auxiliary cost functions
with the aim of optimising additional objectives.

We can use any policy optimisation method [42, 43] to optimize Equation (3). However, given that
the transition S(st, at) is differentiable, we can exploit it for a more effective training that does
not require a separate estimation of a value function. As shown in [31, 37, 44], this results into an
order of magnitude more efficient training. The optimisation process consists of repeatedly sampling
pairs of expert and policy trajectories τ̄i, τi and computing the policy gradient Jθ for these samples
to minimize Equation (3). We describe both steps in detail in the following subsections.

4.1 Sampling from a Policy Distribution π

Algorithm 1: Imitation learning from expert
demonstrations
Input: Expert policy samples

τ̄1, τ̄2, ..., τ̄N ∼ πE
Output: Learned policy π
π = random ;
for τ̄ ∼ πE do

for t = 1 to T do
at = π(st);
st+1 = S(st, at);

end
JT+1
s = 0;
JT+1
θ = 0;

for t = T downto K do
J ts = Ls+Laπs+γJ t+1

θ (Ss+Saπs);
J tθ = Laπθ + γ(J t+1

s Saπθ + J t+1
θ );

end
π = gradient_update(π, JKθ );

end

In this subsection we detail sampling pairs of
expert (τ̄ ) and corresponding policy trajectory
(τ ) drawn from policy π.

Sampling expert trajectories τ̄ consists of sim-
ply sampling from the collected dataset of ex-
pert demonstrations. To generate the policy
sample τ we acquire an expert state s̄1 ∈ τ̄ ,
and then unroll the current policy π for T steps
using the simulator S.

This naive method, however, introduces bias,
as the initial state of the trajectory is always
drawn from the expert πE and not from the
policy distribution π. As shown in Appendix
B, this results in the under-performance of the
method. To remove this bias we discard the first
K timesteps from both trajectories and use only
the remaining T −K timesteps to estimate the
policy gradient Jθ as described next (see Figure
3 for a visualization).

5



4.2 Computing Policy Gradient Jθ

Here we describe the computation of the policy gradient Jθ around the rollout trajectory τ =
s1, a1, s2, a2, . . . , sT , aT given by the current policy. This gradient can be computed for determin-
istic policies π using backpropagation through time leveraging the differentiability of the simulator
S. Note that we denote partial differentiation with subscripts, i.e. gx , ∂g(x, . . .)/∂(x). We follow
the formulation in [37] and express the gradient by a pair of recursive formulas:

J ts = Ls + Laπs + γJ t+1
θ (Ss + Saπs), (4)

J tθ = Laπθ + γ(J t+1
s Saπθ + J t+1

θ ). (5)

The resulting algorithm is outlined in Algorithm 1 and illustrated in Figure 3. It can be implemented
simply as one forward pass of length T and one backward pass of length T −K. To compute the
policy gradient we use equations (4) and (5) recursively from t = T to t = K and use it to update
policy parameters θ.

5 Experiments

In this section we evaluate our proposed method and benchmark it against existing state-of-the-art
systems. In particular, we are interested in: its ability to learn robust policies dealing with various
situations observed in the real world; its ability to tailor performance using auxiliary costs; the
sensitivity of key hyper-parameters; and the impact on performance with increasing amounts of
training data. Additional results can be found in the appendix and the accompanied video.

5.1 Dataset

For training and testing our models we use the Lyft Motion Prediction Dataset [6]. This dataset
was recorded by a fleet of Autonomous Vehicles and contains samples of real-world driving on a
complex, urban route in Palo Alto, California. The dataset captures various real-world situations,
such as driving in multi-lane traffic, taking turns, interactions with vehicles at intersections, etc. Data
was preprocessed by a perception system, yielding the precise position of nearby vehicles, cyclists
and pedestrians over time. In addition, a high-definition map provides locations of lane markings,
crosswalks and traffic lights. All models are trained on a 100h subset, and tested on 25h. The
training dataset is identical to the publicly available one, whereas for the sake of execution speed for
testing we use a random, but fixed, subset of the listed test dataset, which is roughly 1

4 in size.

5.2 Baselines

We compare our proposed algorithm against three state-of-the-art baselines:

• Naive Behavioral Cloning (BC): we implement standard behavioral cloning using our vec-
torized backbone architecture. We do not use the SDV’s history as an input to the model to
avoid causal confusion (compare [10]).

• Behavioral Cloning + Perturbations (BC-perturb): we re-implement a vectorized version
of ChauffeurNet [10] using our backbone network. As in the original paper, we add noise
in the form of perturbations during training, but do not employ any auxiliary losses. We
test two versions: without the SDV’s history, and using the SDV’s history equipped with
history dropout.

• Multi-step Prediction (MS Prediction): we apply the meta-learning framework proposed
in [30] to train our vectorized network. We observe that a version of this algorithm can
conveniently be expressed within our framework; we obtain it by explicitly detaching gra-
dients between steps (i.e. ignoring the full differentiability of our simulation environment).
Differently from the original work [30], we do not save past unrolls as new dataset samples
over time.

5.3 Implementation

Inspired by [8, 45], we use a graph neural network for parametrizing our policy. It combines a
PointNet-like architecture for local inputs processing followed by an attention mechanism for global

6



Configuration Collisions Imitation
Model SDV history Front Side Rear Off-road L2 Comfort I1K
BC 79 ± 23 395 ± 170 997 ± 74 1618 ± 459 1.57 ± 0.27 93K ± 3K 3,091 ± 601
BC-perturb 16 ± 2 56 ± 6 411 ± 146 82 ± 11 0.74 ± 0.01 203K ± 6K 567 ± 128
BC-perturb 14 ± 4 73 ± 7 678 ± 11 77 ± 6 0.77 ± 0.01 636K ± 22K 843 ± 6
MS Prediction 18 ± 6 55 ± 4 125 ± 14 141 ± 31 0.46 ± 0.02 595K ± 49K 341 ± 39

Ours 15 ± 7 46 ± 5 101 ± 13 97 ± 6 0.42 ± 0.00 637K ± 41K 260 ± 9
Table 1: Normalized metrics for all baselines and our method – reporting mean and standard de-
viation for each as obtained from 3 runs. For all, lower is better. Our method overall yields best
performance and lowest I1K.

reasoning. In contrast to [8], we use points instead of vectors. Given the set of points correspond-
ing to each input element, we employ 3 PointNet layers to calculate a 128-dimensional feature
descriptor. Subsequently, a single layer of scaled dot-product attention performs global feature ag-
gregation, yielding the predicted trajectory. We found K = 20 and T = 32 to work well, i.e. we
use 20 timesteps for the initial sampling and effectively predict 12 trajectory steps. γ is set to 0.8.
In total, our model contains around 3.5 million trainable parameters, and training takes 30h on 32
Tesla V100 GPUs. For more details we refer to Appendix C.

For the vehicle kinematics model f we use an unconstrained model pt+1 = pt + at with at ∈ SE2.
This allows for a fair comparisons with the baselines as both BC-perturb and MS Prediction assume
the possibility of arbitrary pose corrections. Other kinematics models, such as unicycle or bicycle
models, could be used with our method as well.

All baseline methods share the same network backbone as ours, with model specific differences as
described above – and BC and BC-perturb predicting a full T-step trajectory with a single forward,
while MS Prediction and ours are calling the model T times. To ensure a fair comparison, also for
MS Prediction we use our proposed sampling procedure, i.e. use the first K steps for sampling only.
We train all models for 61 epochs with a learning rate of 10−4, and drop it to 10−5 after 54 epochs.
We note that we achieve best results for our proposed method by disabling dropout, and hypothesize
this is related to similar issues observed for RNNs [46].

We refer the reader to Appendix B for ablations on the influence on data and sampling.

5.4 Metrics

We implement the metrics describe below to evaluate the planning performance. These capture
key imitation performance, safety and comfort. In particular, we report the following, which are
normalized – if applicable – per 1000 miles driven by the respective planner:

• L2: L2 distance to the underlying expert position in the driving log in meters.

• Off-road events: we report a failure if the planner deviates more than 2m laterally from
the reference trajectory – this captures events such as running off-road and into opposing
traffic.

• Collisions: collisions of the SDV with any other agent, broken down into front, side and
rear collisions w.r.t. the SDV.

• Comfort: we monitor the absolute value of acceleration, and raise a failure should this
exceed 3 m/s2.

• I1K: we accumulate safety-critical failures (collisions and off-road events) into one key
metric for ease of comparison, namely Interventions per 1000 Miles (I1K).

5.5 Imitation Results

We evaluate our method and all the baselines by unrolling the policy on 3600 sequences of 25
seconds length from the test set and measure the above metrics.

Table 1 reports performance when all methods are trained to optimize the imitation loss alone.
Behavioral cloning yields a high number of trajectory errors and collisions. This is expected, as this
approach is known to suffer from the issue of covariate shift [24]. Including perturbation during
training dramatically improves performance as it forces the method to learn how to recover from

7



drifting. We further observe that MS Prediction yields comparable results for many categories,
while yielding less rear collisions. We attribute this to the further reduction of covariate shift when
compared to the previous methods: the training distribution is generated on-policy instead of being
synthesized by adding noise. Finally, our method yields best results overall. It is worth noting
that all models share a high number of comfort failures, due to the fact that they are all trained for
imitation performance alone, which does not optimize for comfort, but only positional accuracy of
the driven vehicle – which we address in the appendix.

5.6 In-car Testing

In addition to above stated simulation results, we further deployed our planner on SDVs in the real.
For this, a Ford Fusion equipped with 7 camera, 3 LiDAR and 11 Radar sensors was employed.
The sensor setup thus equals the one used for data collection, and during road-testing our perception
and data-processing stack is run in real-time to generate the desired scene representation on the
fly. For this, vehicles are equipped with 8 Nvidia 2080 TIs. Experiments were conducted on a
private test track, including other traffic participants and reproducing challenging driving scenarios.
Furthermore, this track was never shown to the network before, and thus offers valuable insights into
generalization performance. Figure 5 shows our model successfully crossing a signaled intersection,
for more results we refer to the appendix and our supplementary video.

6 Conclusion

In this work we have introduced a method for learning an autonomous driving policy in an urban
setting, using closed-loop training, mid-level representations with a data-driven simulator and a large
corpus of real world demonstrations. We show this yields good generalization and performance for
complex, urban driving. In particular, it can control a real-world self-driving vehicle, yielding better
driving performance than other state-of-the-art ML methods.

We believe this approach can be further extended towards production-grade real-world driving re-
quirements of L4 and L5 systems – in particular, for improving performance in novel or rarely seen
scenarios and to increase sample efficiency, allowing further scaling to millions of hours of driving.

Figure 4: Qualitative results of our method controlling the SDV. Every row depicts two scenes,
images are 2s apart. The SDV is drawn in red, other agents in blue and crosswalks in yellow. Traffic
lights colors are projected onto the affected lanes. Best view on a screen.

Figure 5: Front-camera footage of our planner stopping for a red light, and subsequently crossing
the intersection when the signal turns green (images from left to right, recorded several seconds
apart).

8



Acknowledgments

We would like to thank everyone at Level 5 working on data-driven planning, in particular Sergey
Zagoruyko, Yawei Ye, Moritz Niendorf, Jasper Friedrichs, Li Huang, Qiangui Huang, Jared Wood,
Yilun Chen, Ana Ferreira, Matt Vitelli, Christian Perone, Hugo Grimmett, Parth Kothari, Stefano
Pini, Valentin Irimia and Ashesh Jain. Further we would like to thank Alex Ozark, Bernard Barcela,
Alex Oh, Ervin Vugdalic, Kimlyn Huynh and Faraz Abdul Shaikh for deploying our planner to
SDVs in the real.

References
[1] E. D. Dickmanns. Dynamic vision for perception and control of motion. 2010.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

[3] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[4] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and Q. Kong. Baidu
apollo em motion planner. ArXiv, 2018.

[5] M. Henaff, A. Canziani, and Y. LeCun. Model-predictive policy learning with uncertainty
regularization for driving in dense traffic. ArXiv, 2019.

[6] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska.
One thousand and one hours: Self-driving motion prediction dataset. Conference on Robot
Learning (CoRL), 2020.

[7] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, P. C. De Wang, S. Lucey,
D. Ramanan, and J. Hays. Argoverse: 3d tracking and forecasting with rich maps supplemen-
tary material. Int. Conf. on Computer Vision and Pattern Recognition (CVPR).

[8] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding
hd maps and agent dynamics from vectorized representation. In Int. Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020.

[9] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. 2020.

[10] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. 12 2018.

[11] J. Ziegler, M. Werling, and J. Schroder. Navigating car-like robots in unstructured environ-
ments using an obstacle sensitive cost function. In Intelligent Vehicles Symposium, 2008.

[12] J. J. K. Jr. and S. M. Lavalle. Rrt-connect: An efficient approach to single-query path planning.
In Int. Conf. on Robotics and Automation, 2000.

[13] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, and D. Rus. Intention-aware
motion planning. In E. Frazzoli, T. Lozano-Perez, N. Roy, and D. Rus, editors, Algorithmic
Foundations of Robotics X, 2013.

[14] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,
T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski,
J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun. Junior: The Stanford Entry in the Urban
Challenge. 2009.

[15] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[16] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and
A. Shah. Learning to drive in a day. In Int. Conf. on Robotics and Automation (ICRA), 2019.

9



[17] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez.
Deep reinforcement learning for autonomous driving: A survey. Transactions on Intelligent
Transportation Systems, 2021.

[18] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning
for autonomous driving. ArXiv, 2016.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In 1st Annual Conference on Robot Learning, 2017.

[20] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wießner. Microscopic traffic simulation using sumo. In Int.
Conf. on Intelligent Transportation Systems (ITSC), 2018.

[21] Y. You, X. Pan, Z. Wang, and C. Lu. Virtual to real reinforcement learning for autonomous
driving. 2017.

[22] B. Osiński, A. Jakubowski, P. Zięcina, P. Miłoś, C. Galias, S. Homoceanu, and H. Michalewski.
Simulation-based reinforcement learning for real-world autonomous driving. In Int. Conf. on
Robotics and Automation (ICRA), 2020.

[23] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and D. Rus.
Learning robust control policies for end-to-end autonomous driving from data-driven simula-
tion. Robotics and Automation Letters, 2020.

[24] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Fourteenth Int. Conf. on Artificial Intelligence and Statistics,
2011.

[25] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In National Conference on Artificial Intelligence, 2008.

[26] D. A. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. 1989.

[27] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel, M. Monfort,
U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for self-driving
cars. ArXiv, 2016.

[28] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur, S. Micklethwaite,
N. Griffiths, A. Shah, and A. Kendall. Urban driving with conditional imitation learning. In
Int. Conf. on Robotics and Automation (ICRA), 2020.

[29] M. Bojarski, C. Chen, J. Daw, A. Değirmenci, J. Deri, B. Firner, B. Flepp, S. Gogri, J. Hong,
L. Jackel, et al. The nvidia pilotnet experiments. arXiv preprint arXiv:2010.08776, 2020.

[30] A. Venkatraman, M. Hebert, and J. Bagnell. Improving multi-step prediction of learned time
series models. In AAAI, 2015.

[31] N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation
learning. In Int. Conf. on Machine Learning, 2017.

[32] J. Ho and S. Ermon. Generative adversarial imitation learning. arXiv preprint
arXiv:1606.03476, 2016.

[33] R. P. Bhattacharyya, B. Wulfe, D. J. Phillips, A. Kuefler, J. Morton, R. Senanayake, and
M. J. Kochenderfer. Modeling human driving behavior through generative adversarial imi-
tation learning. ArXiv, 2020.

[34] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end interpretable
neural motion planner. Int. Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[35] S. Casas, A. Sadat, and R. Urtasun. Mp3: A unified model to map, perceive, predict and plan.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14403–14412, 2021.

10



[36] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In 1st Annual Conference on Robot Learning, 2017.

[37] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. Learning continuous control
policies by stochastic value gradients. In Advances in Neural Information Processing Systems,
2015.

[38] E. Leurent. An environment for autonomous driving decision-making, 2018.

[39] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osinski, H. Grimmett, and
P. Ondruska. Simnet: Learning reactive self-driving simulations from real-world observations.
Int. Conf. on Robotics and Automation, 2021.

[40] S. Suo, S. Regalado, S. Casas, and R. Urtasun. Trafficsim: Learning to simulate realistic
multi-agent behaviors. 2021.

[41] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, 2000.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[43] V. Konda and J. Tsitsiklis. Actor-critic algorithms. In SIAM Journal on Control and Optimiza-
tion, 2000.

[44] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply AggreVaTeD:
Differentiable imitation learning for sequential prediction. In Int. Conf. on Machine Learning.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Sys-
tems, 2017.

[46] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. 2014.

11


	Introduction
	Related Work
	Differentiable Traffic Simulator from Real-world Driving Data
	Imitation Learning Using a Differentiable Simulator
	Sampling from a Policy Distribution 
	Computing Policy Gradient J

	Experiments
	Dataset
	Baselines
	Implementation
	Metrics
	Imitation Results
	In-car Testing

	Conclusion

