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Abstract

Recent improvements in generative AI made synthesizing fake images easy; as they can be
used to cause harm, it is crucial to develop accurate techniques to identify them. This paper
introduces "Locally Aware Deepfake Detection Algorithm" (LaDeDa), that accepts a single
9 × 9 image patch and outputs its deepfake score. The image deepfake score is the pooled
score of its patches. With merely patch-level information, LaDeDa significantly improves
over the state-of-the-art, achieving around 99% mAP on current benchmarks. Owing to
the patch-level structure of LaDeDa, we hypothesize that the generation artifacts can be
detected by a simple model. We therefore distill LaDeDa into Tiny-LaDeDa, a highly efficient
model consisting of only 4 convolutional layers. Remarkably, Tiny-LaDeDa has 375× fewer
FLOPs and is 10,000× more parameter-efficient than LaDeDa, allowing it to run efficiently
on edge devices with a minor decrease in accuracy. These almost-perfect scores raise the
question: is the task of deepfake detection close to being solved? Perhaps surprisingly,
our investigation reveals that current training protocols prevent methods from generalizing
to real-world deepfakes extracted from social media. To address this issue, we introduce
WildRF, a new deepfake detection dataset curated from several popular social networks. Our
method achieves the top performance of 93.7% mAP on WildRF, however the large gap from
perfect accuracy shows that reliable real-world deepfake detection is still unsolved.

1 Introduction

Figure 1: Performance vs. efficiency trade-off.
Baselines comparison of average precision performance
on real-world data as a function of floating-point oper-
ations per second (FLOPs) at inference time.

Deepfake images are a leading source of disinforma-
tion with government and private agencies recogniz-
ing them as a grave threat to society (National Se-
curity Agency, 2023; World Economic Forum, 2024).
Recent improvements in generative models, such
as DALL-E (Ramesh et al., 2021), StableDiffusion
(Rombach et al., 2022), and Midjourney (mid, 2022),
significantly lowered the bar of creating fake images.
Malicious parties are exploiting this technology to
spread false information, damage reputations, and
violate privacy online. Recent studies (Chai et al.,
2020; Isola et al., 2017; Geirhos et al., 2018) showed
that although deepfakes are semantically similar to
real images, they have subtle, low-level artifacts that
are easier to discriminate. This suggests that detec-
tion methods may gain from focusing on low-level
image features.

We therefore introduce LaDeDa, a patch-based classifier that leverages local image features to detect deepfakes
effectively. LaDeDa’s algorithm: i) splits an image into multiple patches ii) predicts a patch-level deepfake
score iii) pools the scores of all image patches, resulting in the image-level deepfake score. To allow LaDeDa
to work on small image patches, we use a variant of ResNet50 (He et al., 2016) that replaces some of the
3 × 3 convolutions by 1 × 1 convolutions. In particular, the best version of LaDeDa uses a receptive field of
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9 × 9, which we find is an effective size for deepfake 1 image detection. This encourages the classifier to focus
on local artifacts rather than global semantics. Using only patch-level information, LaDeDa significantly
improves over the state-of-the-art (SoTA), achieving around 99% mAP on the most popular benchmarks.

Since LaDeDa focuses on small patches, we postulate that a very simple model may be sufficient for detecting
deepfake artifacts. To test this hypothesis, we design Tiny-LaDeDa, a highly efficient model consisting of only
4 convolutional layers. We train Tiny-LaDeDa by performing logit-based distillation (Hinton et al., 2015)
using the patch-level deepfake scores predicted by LaDeDa (i.e., the teacher). Remarkably, Tiny-LaDeDa
demonstrates superior computational efficiency compared to other SoTA methods (see Fig. 1), allowing
efficient deepfake detection on edge devices with a minor decrease in accuracy.

With LaDeDa and Tiny-LaDeDa achieving an almost perfect score on current standard benchmarks, we
ask whether deepfake detection is close to being solved. Arguably, the most popular source for spreading
deepfakes is social media; we therefore test the performance of recent SoTA methods on deepfakes taken from
social platforms. Perhaps surprisingly, we found that when using the current standard training protocols,
SoTA methods (including ours) fail. Standard protocols attempt to simulate a real-world generalization, by
training a detector using a single generative model (typically ProGAN (Karras et al., 2017)), and evaluate it
across other generative models. However, the commonly used datasets in this simulation exhibit preprocessing
discrepancies (e.g., real images are in lossy JPEG format while fake images simulated directly from a generator
and saved in lossless PNG format), making the protocol less applicable for practical scenarios.

The failure in generalization to in-the-wild deepfakes persists even for methods that use post-processing
augmentations that should make them robust to distribution shifts. To address these simulation imperfections,
we introduce WildRF, a new deepfake detection dataset curated from popular social networks (Reddit,
X (Twitter) and Facebook). WildRF serves as a comprehensive and realistic dataset that captures the
diversity and complexities inherent online, which includes varying resolutions, formats, compressions, editing
transformations, and generation techniques.

We validate the effectiveness of WildRF by retraining current SoTA methods on it. Our method achieves
the top performance of 93.7% mAP on WildRF. Notably, it generalizes across social media platforms (e.g.,
training on Reddit images and evaluating on Facebook images) and is robust to JPEG artifacts, despite not
using post-processing augmentations during training. The evaluation on WildRF shows that there is still
a large gap from perfect real-world deepfake detection and highlights the importance of using a real-world
benchmark.

To summarize, our main contributions are:

1. Introducing LaDeDa, a state-of-the-art patch-based deepfake detector for the real-world.

2. Distilling LaDeDa into Tiny-LaDeDa, a fast and compact, yet accurate student model for deepfake
detection on edge devices.

3. Introducing the WildRF benchmark, extending deepfake evaluation to real-world settings, which are
currently lacking in popular simulated datasets.

2 Related work

Deepfake detection aims to classify whether a given image was captured by a camera ("real") or generated via
a generative model ("fake"). Two main paradigms exist to tackle this challenge.

Deepfake detection by supervised learning. These methods mostly focus on the architectural designs
and discriminative features for discerning real and fake images. Wang et al. (2020) proposed using ResNet50
as a deepfake classifier, trained on real and fake images from one GAN method, and evaluate the performance
on other GAN methods. PatchFor Chai et al. (2020) extends this idea, by learning a network that takes in a
patch and outputs a deepfake score. While our method uses patches, similarly to PatchFor, we use knowledge

1In this paper, we use the term "deepfake" as in previous works, but mainly refer to AI-generated content.
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Figure 2: (a) LaDeDa Training. By limiting its receptive field to q × q pixels, LaDeDa yields a deepfake
score for each q × q patch. The image-level deepfake score is the global pooling of the patches scores. We use
binary cross entropy loss between the image label and its deepfake score. (b) Tiny-LaDeDa Distillation.
Pre-trained LaDeDa (teacher) transfers patch-level deepfake score knowledge to train Tiny-LaDeDa (student).

distillation to estimate patch-level labels while PatchFor simply copies the image-level labels. Ojha et al.
(2023) leverages the pre-trained feature space of CLIP (Radford et al., 2021), by performing linear probing
on CLIP’s image representations. Reiss et al. (2023) introduced the concept of "fact checking" for detecting
deepfakes, while being training-free and relying solely on off-the-shelf features.

Artifact-based detection methods These methods leverage inductive biases in the image preprocessing
stage to discriminate between real and fake images. Marra et al. (2019) revealed that GAN-based methods
leave fingerprints in their generated images, which can be extracted using noise residuals from denoising
filters. DIRE (Wang et al., 2023) focused on diffusion-based methods, measuring the error between an input
image and its reconstruction, using a pre-trained diffusion model. Tan et al. (2023) introduced the NPR
(Neighboring Pixel Relationships) image representation, aiming to capture the local interdependence among
image pixels caused by the upsampling layers in CNN-based generators.

Relation to PatchFor (Chai et al., 2020). Both LaDeDa and PatchFor are patch-level methods that use
deepfake detection datasets that only provide image-level labels. PatchFor labels each patch based on its
image label with equal weights i.e., all patches from real images as equally real, and all patches from fake
images as equally fake. Using a cross-entropy loss for each patch, PatchFor attempts to correctly classify all
patches. However, not all patches are equally discriminative or needed for the overall image classification.
Using an image BCE loss, LaDeDa has the extra flexibility of adaptive importance to different patches,
putting emphasis on the patches that are more discriminative. Additionally, LaDeDa’s patch scores can serve
as soft labels for distillation (see Sec. ?? for the impact of our labeling strategy).

3 Method

LaDeDa: Locally Aware Deepfake Detection Algorithm Our core premise is that it is possible to
discriminate between real and fake images with high accuracy based on low-level, localized features. This
assumption is based on vast supporting literature (Chai et al., 2020; Isola et al., 2017; Geirhos et al., 2018;
Frank et al., 2020; Mayer & Stamm, 2020; Zhong et al., 2023). We therefore introduce LaDeDa (denoted by
ϕ), a model that maps patches pi into a deepfake score ϕ(pi), where higher values represent fake patches and
lower values real ones. Average pooling the patch-wise scores of all image patches results in the image-level
deepfake score:

S(I) = 1
N

N∑
i=1

ϕ(pi) (1)
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where I denotes the suspected image and p1, p2..pN its patches.

LaDeDa is a variant of ResNet50 He et al. (2016) (similar to BagNet Brendel & Bethge (2019)), but replaces
most of the 3 × 3 convolutions by 1 × 1 ones, limiting the receptive field to q × q pixels (we use 9 × 9).
The small receptive field forces LaDeDa to focus on local artifacts rather then global semantics, which we
hypothesize is a good inductive bias for deepfake detection.

Specifically, for each image patch of size q × q, LaDeDa infers a 2048-dimensional feature representation using
multiple stacked ResNet blocks. The network applies a linear layer on the final patch-based representation,
resulting in a per-patch score. The image-level score is the global pooling of the per-patch scores. Finally, we
apply a sigmoid activation on top of the image-level score resulting in the predicted likelihood that the image
is fake. We optimize the network parameters using the binary cross entropy loss:

L = −
∑
f∈F

log(σ(S(f))) −
∑
r∈R

log(1 − σ(S(r))). (2)

where R and F denote the real and fake image datasets respectively, S denotes the network output (deepfake
score) given an image, and σ is the sigmoid function. See Fig. 2a for LaDeDa illustration.

While our default choice is to pool the patch-level scores using global average pooling, it is also possible (and
sometimes desirable) to use other pooling operations. For instance, using max pooling effectively classifies
the image based on the most fake patch. Using average pooling, results in classifying the image based on the
collective characteristics of all patches. These patch-based deepfake scores can yield an interpretable way to
visualize the patches that contribute the most for LaDeDa classification decision (see Sec. 6). Additionally,
the linearity of the average pooling operation, makes the architecture distillation-friendly, as we will elaborate
on in Sec. 3.

Unlike many previous approaches that rely on prior knowledge from large-scale datasets (e.g., ImageNet
(Deng et al., 2009)), LaDeDa randomly initializes its parameters and does not require pre-training. For
further details on the LaDeDa’s architecture, see App. A.2.

Tiny-LaDeDa Since LaDeDa operates on small patches, we hypothesize that a very simple model will
suffice for detecting deepfakes . To this end, we propose Tiny-LaDeDa, a highly efficient model, obtained by
distilling LaDeDa. As LaDeDa (i.e., the teacher) outputs patch-wise deekfake scores, we can train a simpler
model (i.e., the student) to mimic the teacher’s knowledge; aiming for similar performance, while being much
more compact. Specifically, we leverage logit-based distillation (Hinton et al., 2015), which aims to transfer
the knowledge encoded in the logit outputs (deepfake scores) of the teacher model to the student model.

To train Tiny-LaDeDa, we use a trained LaDeDa model to generate a distillation training set comprising
of samples in the form of (pi, ϕ(pi)) for each patch pi of each of LaDeDa’s training images. We then train
Tiny-LaDeDa to predict a patch-wise logit (deepfake score), using the MSE loss between the student’s
prediction and the teacher’s output (see Fig. 2b). In logit-based distillation, the student is not limited by
the teacher’s architecture. Consequently, Tiny-LaDeDa uses only 4 convolutional layers with 8 channels
each, yielding a model 4 orders of magnitude smaller than the teacher. Similarly to LaDeDa, at inference
time, Tiny-LaDeDa outputs an image deepfake score, by pooling per-patch deepfake scores. See App. A.2
for further details on the Tiny-LaDeDa architecture. In Sec. 2 we elaborate on the differences between our
method and PatchFor (Chai et al., 2020).

4 Is the task of deepfake detection close to being solved?

When training and evaluating LaDeDa using commonly used deepfake detection benchmarks (Ojha et al.,
2023; Wang et al., 2020), it achieves a near perfect score of 98.9% mAP, significantly outperforming the
current SoTA (Tab. 1). This naturally raises the question: is the task of deepfake detection virtually solved?
Essentially, deepfake detection methods must be effective in real-world scenarios. As a sanity check, we
evaluated them on a small sample of 50 images (25 real, 25 fake) taken from popular social networks (for a
more comprehensive evaluation, see Sec. 5.1). Surprisingly, performance was near random, suggesting that
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Table 2: Baseline performance - simulated protocol. All methods are trained on ForenSynth’s train
set (ProGAN), and evaluated on 16 generative models: (top) ForenSynth’s test set (Wang et al., 2020), and
(bottom) UFD’s test set (Ojha et al., 2023).

Method ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfakes Mean
ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 100 100 73.4 98.5 68.4 98.0 59.0 88.2 80.7 96.8 80.9 95.4 79.3 98.1 51.1 66.3 74.1 92.7
PatchFor (Chai et al., 2020) 99.6 99.9 93.9 99.2 94.5 99.6 74.4 89.6 85.3 93.5 76.3 90.4 64.7 92.4 89.2 92.8 84.7 94.6
CLIP (Ojha et al., 2023) 99.8 100 84.9 97.6 75.0 97.9 95.1 99.3 98.3 99.8 95.7 99.4 99.5 100 68.6 81.8 89.6 97.0
NPR (Tan et al., 2023) 99.8 100 96.3 99.8 97.3 100 87.5 94.5 95.0 99.5 99.7 100 86.6 88.8 77.42 86.2 92.5 96.1
LaDeDa(Ours) 100 100 100 100 100 100 90.1 96.5 98.9 99.8 93.7 99.7 91.0 99.2 68.1 95.6 92.7 98.9
Tiny-LaDeDa(Ours) 98.2 100 99.1 100 98.8 100 86.8 94.8 79.5 95.9 96.9 99.8 84.9 91.4 85.9 98.0 91.3 97.5

Method DALLE Glide_100_10 Glide_100_27 Glide_50_27 Guided LDM_100 LDM_200 LDM_200_cfg Mean
ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 52.5 66.8 54.2 73.7 53.3 72.5 55.6 77.7 52.3 68.4 51.3 66.6 51.1 66.5 51.4 67.3 52.3 68.4
PatchFor (Chai et al., 2020) 89.4 95.5 92.4 97.4 88.7 94.7 90.1 95.6 72.7 83.7 92.7 97.6 98.3 99.9 96.9 97.8 90.2 95.2
CLIP (Ojha et al., 2023) 87.5 97.7 78.0 95.5 78.6 95.8 79.2 96.0 70.0 88.3 95.2 99.3 94.5 99.4 74.2 93.2 82.2 95.7
NPR (Tan et al., 2023) 94.5 99.5 98.2 99.8 97.8 99.7 98.2 99.8 75.8 81.0 99.3 99.9 99.1 99.9 99.0 99.8 95.2 97.4
LaDeDa(Ours) 93.5 99.8 99.0 100 99.3 100 99.0 100 81.0 91.1 99.8 100 99.7 100 99.7 100 96.3 98.8
Tiny-LaDeDa(Ours) 80.2 98.4 98.5 99.9 98.8 99.9 98.9 100 76.2 87.8 99.4 100 99.3 100 99.1 99.9 93.8 98.2

the current evaluation protocol does not correlate with in-the-wild performance. We therefore reexamine the
current evaluation protocols and suggest an alternative.

Table 1: Baseline performance on current
(simulated) protocol. mean average preci-
sion on 16 generative models from conventional
benchmarks.

Method mAP
CNNDet (Wang et al., 2020) 80.6
PatchFor (Chai et al., 2020) 94.9
CLIP (Ojha et al., 2023) 96.3
NPR (Tan et al., 2023) 96.7
LaDeDa(Ours) 98.9

Current: simulated deepfake detection protocol.
Most current methods follow a two-stage evaluation protocol.
i) training a deepfake classifier using a set of "real" images and
a set of "fake" images generated by a single generative model
(typically ProGAN). ii) Evaluating the classifier on a set of
real images and a set of generative models, most of which
were not used for training. Many detection methods also
use post-processing augmentations (e.g., JPEG compression,
blur) during training to simulate unknown transformations
an image may undergo before being encountered in-the-wild,
potentially improving generalization. We refer to this as a
simulated protocol.

The simulated protocol is suboptimal. Common datasets used in the simulated protocol comprise
real images sourced from standard datasets (e.g., LSUN (Yu et al., 2015), ImageNet (Deng et al., 2009)) in
JPEG format (lossy compression), whereas the fake images are generated and saved in PNG format (lossless
compression). Training a classifier on such datasets can introduce bias towards differences in compression,
leading to inflated perceptions of generalization performance when evaluated on test sets with similar biases
(see Sec. 5.1). Moreover, simulating real-world artifacts through augmentations may fail to capture the full
diversity of corruptions encountered in practice (see Sec. 5.1). In App. A.4.1 we provide further details on
the commonly used datasets.

WildRF: Aligning deepfake evaluation with the real-world. We propose to improve deepfake
evaluation and align it with the real-world by introducing WildRF, a realistic benchmark consisting of images
sourced from popular social platforms. Specifically, we manually collected real images using keywords and
hashtags associated with authentic, non-manipulated content (e.g., #photography, #nature, #nofilter,
#streetphotography), and fake images using content related to AI-generated or manipulated visuals (e.g.,
#deepfake, #AIart, #midjourney, #stablediffusion, #dalle, #aigenerated). Our protocol is to train on
one platform (e.g., Reddit) and test the detector on real and fake images from other unseen platforms (e.g.,
Twitter and Facebook). We denote this protocol as social. As both train and test data contain the type of
variations seen in-the-wild, WildRF is a faithful proxy of real-world performance. See Fig. 3 for a WildRF
overview.
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Reddit

Facebook

X (Twitter)

Platform Type Years #Images

Reddit Real 2017-22 2150
Fake 2022 2150

X (Twitter) Real 2021-24 340
Fake 2021-24 340

Facebook Real 2021-24 160
Fake 2021-24 160

Figure 3: WildRF Overview. A realistic benchmark consisting of images sourced from popular social
platforms: Reddit, X (Twitter) and Facebook. WildRF contains high variability in a range of attributes
including image resolutions, formats, semantic content, and transformations encountered in-the-wild.

Table 3: Poor generalization to real-world data. We show performance of SoTA methods trained on
ForenSynth’s train set (ProGAN ) and evaluated on WildRF. It shows that training on the standard dataset,
instead of in-the-wild deepfakes, generalizes poorly to in-the-wild images.

Method Reddit Twitter Facebook Mean
ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 51.2 49.7 50.3 50.2 50.0 43.4 50.5 47.8
PatchFor (Chai et al., 2020) 63.9 74.0 47.8 51.3 68.2 75.3 60.0 66.9
CLIP (Ojha et al., 2023) 60.2 66.9 56.8 63.0 49.1 44.4 55.4 58.1
NPR (Tan et al., 2023) 65.1 69.4 51.7 52.5 77.8 86.3 64.8 69.4
LaDeDa(Ours) 74.7 81.8 59.9 67.8 70.3 90.1 68.3 79.9
Tiny-LaDeDa(Ours) 72.3 77.8 59.6 64.8 70.9 86.4 67.3 76.3

5 Experiments

We compare to SoTA baselines e.g., PatchFor (Chai et al., 2020), CNNDet (Wang et al., 2020), CLIP (Ojha
et al., 2023) and NPR (Tan et al., 2023) using the standard metrics for evaluation: classification accuracy
(ACC) (threshold = 0.5), and average precision (AP).

5.1 LaDeDa performance under the current (simulated) protocol

We begin by comparing LaDeDa to the baselines using the current (simulated) protocol. For training, we use
the standard train set of the ForenSynth dataset (Wang et al., 2020), which contains real images from LSUN
(Yu et al., 2015), and fake images from ProGAN. For evaluation, we use 16 different generative models taken
from the test sets of ForenSynth (Wang et al., 2020) and UFD (Ojha et al., 2023). The results in Tab. 2
demonstrate that LaDeDa and Tiny-LaDeDa outperformed the other baselines in terms of mAP (98.9%,
97.5% respectively), and LaDeDa also outperformed the baselines in terms of mean ACC (92.7%). For more
details on the ForenSynth and UFD datasets, see App. A.4.1.

Poor generalization to real-world data. While methods trained on ProGAN achieve high performance
on detecting deepfakes created by a large set of other image generators, they do not perform well when tested
on real-world data. Specifically, we evaluate the baselines using our WildRF dataset (Sec. 4). The results in
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Table 4: JPEG compression bias. Detectors train under the simulated protocol demonstrate lower
performance when JPEG-compressing the test fake images. 100 JPEG quality = no compression, and 70
JPEG quality = lowest quality.

Dataset Quality
CNNDet

(Wang et al., 2020)
CLIP

(Ojha et al., 2023)
NPR

(Tan et al., 2023)
LaDeDa
(Ours)

ACC AP ACC AP ACC AP ACC AP

StyleGAN JPEG 100 83.3 96.2 88.0 98.5 97.6 99.8 100 100
StyleGAN JPEG 90 50.1 83.4 66.5 90.3 50.1 43.0 52.9 68.1
StyleGAN JPEG 80 50.0 71.3 56.8 84.6 49.9 38.0 50.3 54.5
StyleGAN JPEG 70 50.0 46.4 53.9 79.3 49.9 36.8 50.0 44.7

Tab. 3 show much lower performance than the test set of the simulated protocol. This gap highlights the
limitations of the simulated protocol in estimating real-world performance.

JPEG compression bias. Many methods report their results on the simulated protocol (which is biased, see
Sec. 4), with two detector variants: i) training with post-processing augmentations (e.g., JPEG compression,
blur), and ii) training without these augmentations. We claim that the later variant, can be biased towards
compression artifacts. To demonstrate this, we retrained the CNNDet and CLIP baselines on ForenSynth
without JPEG and blur training augmentations. For NPR, we used its official released checkpoint that does
not include augmentations. We then evaluated these detectors on 3000 StyleGAN images (1500 real, 1500
fake) from ForenSynth’s test set, where we JPEG-compressed only the fake images. This setup allows us
to examine whether compressing fake images impacts their classification as real ones. As shown in Tab. 4,
the detectors’ ability to correctly classify fake images decreases as a function of the compression rate, even
at a relatively low compression quality of 90. Although the augmentation variants attempt to improve
generalization by simulating the unknown transformations an image may undergo, in practice, the simulation
is suboptimal (see Tab. 3).

5.2 Real-world deepfake detection

LaDeDa performance under our (social) protocol. We retrained and evaluate all methods using our
proposed WildRF dataset. The train set comprises (1200 real, 1200 fake) images from Reddit, and the test
set comprises (750 real, 750 fake) different images from Reddit, (340 real, 340 fake) images from X (Twitter),
and (160 real, 160 fake) images from Facebook. The results in Tab. 5 show that training on real data is much
more accurate than on simulated data.

JPEG compression robustness. Fig. 4a shows that LaDeDa is robust to a range of JPEG compression
rates. Note that training our method on WildRF made it JPEG-robust without using post-processing
augmentations during training.

Blur perturbation robustness. As per common protocol, we blur the images with a Gaussian filter
of varying σ values. Fig. 4b, shows that LaDeDa is generally robust to blur perturbations, even without
training with such augmentations. Training LaDeDa with such augmentations, like other methods do, improve
robustness further. Note that high noise values (e.g., σ > 1) result in a blurry image, making manipulation
more noticeable than what an attacker would typically use.

5.3 Real-time deepfake detection

Some practical scenarios require deepfake detection to not only be accurate, but also computationally efficient
for real-time inference at scale and on edge devices. Fast inference will only get more important as deepfake
content continues to rapidly spread across online platforms. Here, we evaluate computational efficiency
in terms of floating-point operations per second (FLOPs) and network latency (seconds). FLOPs are a
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(a) (b)

Figure 4: (a) JPEG robustness. We show LaDeDa average precision (AP) performance on facebook test
set, as a function of JPEG compression quality from 100 (no compression) to 30 (high compression). (b)
Noise perturbation robustness. LaDeDa shows robustness to blur perturbations, even without training
with such augmentations. Training with Gaussian blur augmentations further improves robustness, even for
images with σ > 1, which are more blurred than typical attacker manipulations.

Table 5: Baseline performance - social protocol. All methods are trained on WildRF train set (Reddit),
and tested on WildRF test set. The results show a remarkable improvement compared to those achieved
when trained using the simulated protocol.

Method Reddit Twitter Facebook Mean
ACC AP ACC AP ACC AP ACC AP

CNNDet (Wang et al., 2020) 75.4 86.8 71.4 84.1 70.6 83.5 72.5 85.0
PatchFor (Chai et al., 2020) 87.8 94.3 81.6 91.4 77.1 90.3 82.2 91.9
CLIP (Ojha et al., 2023) 80.8 94.2 78.1 93.1 78.4 90.6 79.1 92.5
NPR (Tan et al., 2023) 89.8 95.7 79.5 90.3 76.6 88.9 81.9 91.6
LaDeDa(Ours) 91.8 96.0 83.3 92.8 81.9 92.6 85.7 93.7
Tiny-LaDeDa(Ours) 84.5 92.4 82.3 91.7 80.7 90.4 82.5 91.6

hardware-independent measure of computational complexity, quantifying the total number of floating-point
operations (addition, subtraction, multiplication or division) required for a single forward pass of a given
model. Network latency measures the time it takes the model to process an input (e.g., an image) and output
its prediction. Clearly, real-time deepfake detection needs low FLOPs and low latency. We simulate a low
resource environment, similar to a mid-range smartphone with a single CPU core, and 4GB RAM. Tab. 6
shows that Tiny-LaDeDa with only a mild degradation in performance compared to LaDeDa, is 375× faster
and 10,000× more parameter efficient.

6 Discussion and limitations

Interpretability. Since LaDeDa maps each q × q patch into a deepfake score, we can create a heatmap
visualizing the most discriminative patches. In Fig. 5a, we show two such heatmaps of fake images, where
areas with notable intensity changes tend to get high deepfake scores. Delving into the most fake patches
(maximal deepfake scores), reveals that fake image patches appear smoother than those from real images
(Fig. 5b). This aligns with studies (Durall et al., 2020; Corvi et al., 2023; Zhong et al., 2023) showing that
generative models leave artifacts in high-frequency components due to the upsampling operation, making it
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Table 6: Real-time deepfake detection. We show number of FLOPs, Parameters and Latency baselines
comparison. In (red), we show the number relative to Tiny-LaDeDa, which demonstrates highly computational
efficiency.

Method #FLOPs #Parameters Latency
CNNDet (Wang et al., 2020) 5.40B(×95) 23.51M(×18k) 0.75 sec(×37.5)
PatchFor (Chai et al., 2020) 1.68B(×30) 0.191M(×150) 0.21 sec(×10.5)
CLIP(Ojha et al., 2023) 51.89B(×920) 202.05M(×15k) 9.37 sec(×470)
NPR (Tan et al., 2023) 2.29B(×40) 1.44M(×1.1k) 0.35 sec(×17.5)
LaDeDa(Ours) 21.23B(×375) 13.64M(×10k) 2.87 sec(×144)
Tiny-LaDeDa(Ours) 0.0566B 0.00129M 0.02 sec

Original Image Deepfake Scores Heatmap

(a)

Real Maximal PatchesFake Maximal Patches

(b)

Figure 5: (a) Deepfake score visualization. High deepfake score in red, and low deepfake score in blue.
(b) Maximal deepfake scores. We show the most fake patches (i.e., patches with highest deepfake score)
in fake and real images. It appears that the most fake patches are smoother in fake images, compared to the
most fake patches in real images.

difficult to synthesize realistic textures regions, thus smooth patches potentially smoother in fake images, and
less smooth in real images, where a natural camera noise can appear.

Size of WildRF. WildRF’s size is relatively small, with around 5000 images. Despite its size, WildRF
serves as a valuable starting point for evaluating deepfake detection in real-world settings. Using it for
evaluation has revealed that current simulated protocols hinder detectors from generalizing to deepfakes
encountered on social media. While WildRF inevitably contains some biases, we expect these biases to
reflect those encountered in-the-wild. To further examine WildRF’s potential, we conducted a scaling law
experiment, where we trained LaDeDa on subsets of increasing proportion (20%, 40%, 60%, 80% and 100%) of
WildRF’s training set and evaluated each instance performance on WildRF’s test set. In SM we show that
performance increases as a function of subset size. Importantly, the metrics have not saturated, indicating a
room for improvement with larger dataset. While ideally, a larger and more comprehensive dataset would be
beneficial, expanding WildRF is left for future work.
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Figure 6: Image preprocessing. We show LaDeDa’s
performance using different image preprocessing as
inductive bias.

Figure 7: Patch-size ablation. We show
LaDeD’s performance using varying patch sizes.

Table 7: Pooling operator ablation. LaDeDa performance on the test sets of ForenSynth, UFD and
WildRF, when using average pooling or max pooling to get image-level score from the patch-level scores.

Method Pooling
Test set

ForenSynth (Wang et al., 2020) UFD (Ojha et al., 2023) WildRF
ACC AP ACC AP ACC AP

LaDeDa Max 90.1 99.1 88.9 97.0 84.9 92.4
LaDeDa Average 92.7 98.9 96.3 98.8 85.7 93.7

Generalization to near and far deepfakes. When trained on a social network, our method and the
baselines, generalize well to the other platforms. However, when trained on ProGAN/WildRF datasets the
methods do not generalize well to the opposite dataset (WildRF/Simulated). To ensure that a single model
can succeed on both protocols, we trained LaDeDa on a combination of 4000 ProGAN train images and
WildRF train set, achieving comparable results to train and evaluate separately on each protocol.

7 Conclusion

We propose LaDeDa, a patch-based classifier that effectively detects deepfakes by leveraging local artifacts,
and Tiny-LaDeDa, an efficient distilled version. Despite their high accuracy on current simulated benchmarks,
we found that existing methods struggle to generalize to real-world deepfakes found on social media. To
address this, we introduced WildRF, a new in-the-wild dataset curated from social networks, capturing
practical challenges. While our method achieves top performance on WildRF, the considerable gap from
perfect accuracy highlights that reliable real-world deepfake detection remains unsolved. We hope WildRF
will drive future research into developing robust techniques against online disinformation that generalize to
the real-world.
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A Appendix

A.1 Additional experiments

A.1.1 Local is all you need?

While LaDeDa achieves SoTA performance by focusing on local artifacts, we ask if global features provide
complementary information.
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Ensemble with CLIP (Ojha et al., 2023) We linearly ensemble LaDeDa with the CLIP baseline, which
trains a linear classifier on top of the semantic CLIP features. The resulting score is:

S(I) = LaDeDa(I) + α × CLIPs(I)

Where I is an input image. The results in Fig. 8a show an increase of ≥ 3% mAP on WildRF, when using
the combined score, highlighting that semantic features are also useful for detecting deepfakes.

Patches ensemble We trained 7 variants of LaDeDa with (5, 9, 17, 33, 65, 129, 257) patch sizes. To
examine their importance, we set the weighted sum of the variants score as the image score. Equal weights
(i.e., 1

7 weight for each variant score) achieved 94.6% mAP on WildRF. Optimizing the weights on a validation
set achieved 95.4% mAP, with smaller patches receiving higher weights. We further jointly trained 4 LaDeDa
variants (9, 17, 129 and 257 patch size), as well as optimized their weighted sum, yielded a 96.1% mAP, with
smaller patches again contribute more. Tab 8 shows that 9 × 9 patch-size LaDeDa achieves best AP of all
patches, showing the effectiveness of small receptive fields. Still, there is benefit in using both high and low
resolutions.

Table 8: Patches ensemble. Performance of LaDeDa with different patch sizes.

Patch Size 5 9 17 33 65 129 257
AP 92.3 93.7 91.8 92.6 91.2 90.3 88.9

A.2 Architecture details

LaDeDa architecture. The LaDeDa architecture is almost identical to the ResNet50 architecture, except
for a few changes in the convolutional layers kernel sizes, strides parameters, and the final fully connected layer.
We describe the architecture used for 9 × 9 patch-size receptive field. LaDeDa follows the standard ResNet50
design with four main residual blocks (layer1, layer2, layer3, layer4) consisting of bottleneck residual units.
The first convolutional layer has a kernel size of 1x1 and 64 output channels, followed by a 3x3 convolution
with the same number of channels. The residual blocks employ bottleneck units with 1x1 convolutions for
dimensionality reduction and expansion. The downsampling operation is a 1 × 1 convolution with stride 2.
The number of channels increases from 64 in layer1 to 256, 512, 1024, and 2048 in subsequent layers. Layer1
consists of 3 parallel bottleneck units, layer2 has 4 parallel units, layer3 contains 6 parallel units, and layer4
has 3 parallel units. Layer2 is the last layers that uses a kernel size of 3 (the layers after uses a kernel size of
1), thus limiting the receptive field of the topmost convolutional layer. After layer4, a global average pooling
operation is applied, followed by a fully connected layer with a single output neuron and a sigmoid activation
function, for binary classification.

Tiny-LaDeDa architecture. The Tiny-LaDeDa architecture is a compact version of LaDeDa, designed
for efficient performance with a reduced parameter count, using only 4 convolutional layers with 8 channels
each. The architecture includes the following convolutional layers:

• 1 × 1 convolution (3 input channels, 8 output channels)

• 3 × 3 convolution (8 input channels, 8 output channels)

• 1 × 1 convolution (8 input channels, 8 output channels)

• 3 × 3 convolution (8 input channels, 8 output channels)

Tiny-LaDeDa results in a 5 × 5 receptive field. The final fully connected layer maps the 8 features to a single
output, which is passed through a sigmoid activation function for binary classification. This streamlined
architecture is lightweight and computationally efficient, making it suitable for real-time deepfake detection.
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(a) (b)

Figure 8: (a) Local and global deepfake scores. We show average precision (AP) performance on WildRF,
when ensemble LaDeDa deepfake scores with CLIP (Ojha et al., 2023) deepfake scores. (b) Scaling law.
LaDeDa was trained on incrementally larger subsets of WildRF’s training set and tested on WildRF’s teset
set. Performance increased with subset size, indicating room for improvement with a larger dataset.

A.3 Implementation details

Training LaDeDa. To train LaDeDa, we use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9,
β2 = 0.999, batch size 32 and initial learning rate of 2 × 10−4. Learning rate is dropped by 10× if after 5
epochs the validation accuracy does not increase by 0.1%, which is the same stopping criteria of (Wang et al.,
2020; Ojha et al., 2023). During training, to have a uniform size, all images are resized to 256 × 256 resolution,
and then randomly cropped to native size of 224 × 224 resolution. Note that we do not use post-processing
augmentations (JPEG compression and Gaussian blur) as popular works (Wang et al., 2020; Ojha et al.,
2023) do. During validation and test time, we directly resize the image to 256 × 256 resolution. As for the
other baselines, we train them according to their official code repository. To train LaDeDa, we used a single
NVIDIA RTX A5000 (21g).

Training Tiny-LaDeDa. To train Tiny-LaDeDa, we use LaDeDa’s patch-wise deepfake scores as soft
labeling. We then use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999, batch size of
729 (which is the number of 9x9 patches in an input image, and initial learning rate of 2 × 10−4. To train
Tiny-LaDeDa, we used a single NVIDIA RTX A5000 (21g).

A.4 Simulated protocol

A.4.1 Standard benchmarks in the simulated protocol

ForenSynth (Wang et al., 2020) and UFD (Ojha et al., 2023) datasets. In this work, they chose
ProGAN (Karras et al., 2017) as their single generative model in train set. Specifically, they used real images
from LSUN (Yu et al., 2015), and fake images by train ProGAN on 20 different object categories of LSUN,
and generate 18K fake images per category, resulting in 360K real and 360K fake images as the train set. As
for the test set, they used ProGAN (Karras et al., 2017), BigGAN (Brock et al., 2018), StyleGAN (Karras
et al., 2019), GauGAN (Park et al., 2019), CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018),
Deepfakes (Rossler et al., 2019), SITD (Chen et al., 2018), SAN (Dai et al., 2019), IMLE (Li et al., 2019),
and CRN (Chen & Koltun, 2017). Another work of (Ojha et al., 2023) has suggested the UFD dataset,
comprising variations of diffusion models: guided (Dhariwal & Nichol, 2021), GLIDE (Nichol et al., 2021),
LDM (Rombach et al., 2022), and DALL-E (Ramesh et al., 2021) as the fake images.
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The real images sourced from the LAION (Schuhmann et al., 2021) and ImageNet (Deng et al., 2009) datasets.
In this work they also utilize the train set of the ForenSynth dataset to train their detector. By examining
the dataset publication of LSUN (lsu) (the real images in the ForenSynth train set), we can see that all
images have been resized to 256 × 256 resolution, and JPEG compressed with quality of 75. Additionally, the
real images in the UFD datasets are also in JPEG format. In 5.1 we show that methods that use the train
set of ForenSynth dataset, can become biased towards JPEG compression artifacts, when tested on a test set
with the same biases.

GenImage Dataset Zhu et al. (2024) In this dataset, the real images are all the images in ImageNet
(Deng et al., 2009). The fake images was generated using 100 distinct labels of ImageNet. The train set fake
images were generated using Stable Diffusion V1.4 (Rombach et al., 2022), and the test set fake images were
generated using Stable Diffusion V1.4, V1.5 (Rombach et al., 2022), GLIDE (Nichol et al., 2021), VQDM
(Gu et al., 2022), Wukong (wuk, 2022), BigGAN (Brock et al., 2018), ADM (Dhariwal & Nichol, 2021) and
Midjourney (mid, 2022). In total, GenImage contains 1, 331, 167 real and 1, 350, 000 fake images. However,
also here, we can observe the preprocessing discrepancy mentioned above. ImageNet images (the real images
in GenImage) are in JPEG format, while the generated images in GenImage saved in PNG.

A.4.2 Approaches for mitigating the datasets biases

A concurrent work of Grommelt et al. (2024) showed that training a detector on GenImage can cause it
functions as a JPEG detector. To overcome this discrepancy, the authors suggested using an unbiased
GenImage dataset where the real and fake images have similar resolutions and are JPEG compressed with the
same quality factor. Chai et al. (2020) suggested to preprocess the images to make the real and fake dataset
as similar as possible, in an effort to minimize the possibility of learning differences in preprocessing. To do so,
they pass the real images through the data loading pipeline used to train the generator. As these approaches
aim to mitigate the preprocessing differences between real and fake images, our approach uses images sampled
from the distribution encountered in-the-wild, aiming to capture real-world artifacts differences between real
and fake images.

A.5 Related datasets extracted from social networking platforms

Chen & Zou (2024). In this work, they introduce a dataset of 800k ai-generated images with metadata
from X (Twitter). However, the dataset is not opensourced and they did not provide real images, so we could
not tested our method on it.

Zi et al. (2020). In this work, they introduce a dataset comprising 7300 face sequences, with more persons
in each scene, and more facial expressions, compared to other deepfakes videos datasets. The faces extracted
from 700 deepfake videos collected from video-sharing websites. As we were not able to get access to this
dataset, we could not tested our method on it. You may include other additional sections here.
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Figure 9: Another WildRF image examples.
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