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ABSTRACT

Existing benchmarks for chart analysis primarily focus on single-chart tasks,
whereas multi-chart benchmarks are scarce and limited to simplistic question
types, making it difficult to comprehensively evaluate the reasoning and decision-
making capabilities of multimodal large language models (MLLMs) in realis-
tic scenarios. We present MultiChartQA-R, a benchmark designed to evaluate
multi-chart question answering capabilities, ranging from fundamental abilities
to decision-making applications, with four progressively complex reasoning tasks
that encompass real-world scenarios: cross-chart trend comparison, complemen-
tary data integration, anomaly and causal analysis, and strategy recommendation.
The benchmark consists of versions in three major languages, each containing 695
chart–code pairs and 2,160 QA pairs, with extensibility to additional languages.
We further propose a flexible multiple-choice evaluation metric that can be ad-
justed based on real-world scenarios, along with an extended dataset consisting of
512 charts and 1,212 QA pairs, designed to study retrieval and scaling behavior
as the number of charts increases. Our evaluation of 13 representative MLLMs
(4 proprietary models and 9 open-weight models) reveals significant performance
gaps compared to human, especially in cross-chart visual perception, data integra-
tion, and aligning with human preferences. Additionally, our experiments reveal
interesting multilingual characteristics of multi-chart question answering.

1 INTRODUCTION

Multimodal large language models (MLLMs) have recently demonstrated outstanding performance
in various vision-language tasks, such as visual question answering (VQA) (Schwenk et al., 2022;
Li et al., 2024b; Jia et al., 2025), chart-to-code generation (Yang et al., 2024), image captioning
(Agrawal et al., 2019; Rahman et al., 2023; Kantharaj et al., 2022), and chart question answering
(Masry et al., 2022; Methani et al., 2020; Wang et al., 2024; Li et al., 2025; Zeng et al., 2025). The
task of chart question answering can be found everywhere in our daily work. Charts, as a powerful
tool for data visualization, enable users to quickly grasp trends, patterns, and relationships within the
data, thereby facilitating the formulation of strategies for subsequent actions. Many critical scenarios
involve the comprehensive analysis of multiple charts. For example, in the financial sector, analysts
examine several stock-related indicator charts to predict market trends; researchers compare multiple
experimental data charts to discover patterns; and business managers analyze multiple charts related
to departmental performance and costs to devise response strategies. However, the effectiveness
of multimodal large language models in handling real-world multi-chart analysis scenarios remains
insufficiently investigated.

Current chart analysis benchmarks mostly focus on single-chart tasks (Kahou et al., 2018; Kafle
et al., 2018; Methani et al., 2020; Masry et al., 2022; Xu et al., 2023; Wang et al., 2024), primar-
ily studying data extraction and multi-hop reasoning within a single chart. These benchmarks do
not cover the multi-chart analysis scenarios encountered in real-world applications. The number
of multi-chart benchmarks (Liu et al., 2024; Zhu et al., 2025b) is limited, and the variety of ques-
tions is insufficient. Research in this area primarily focuses on data comparison between charts and
multi-hop question answering, with less emphasis on more complex cross-chart deep logical reason-
ing and multi-dimensional information integration. Moreover, existing benchmarks for multi-chart
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analysis are predominantly English-centric, failing to meet the practical demands of multilingual
chart analysis in a globalized context.

To address this, we introduce MultiChartQAR (fig. 1), a benchmark designed to evaluate multi-
chart question answering abilities, from fundamental skills to decision-making applications. The
core of multi-chart joint question answering lies in addressing questions that cannot be answered by
a single chart alone, requiring the extraction, correlation, and reasoning of information across mul-
tiple charts. MultiChartQA-R is designed to reflect the practical scenarios of multi-chart question
answering. It defines four tasks (section 2.1) to evaluate the capabilities of MLLMs. 1) Cross-chart
trend inference: Emphasizes the ability of ”information correlation,” requiring the identification of
dynamic relationships (e.g., synchronization, divergence) between indicators across different charts,
which is fundamental for multi-chart analysis. 2) Complementary data integration: Focuses
on the ”data utilization” ability, emphasizing the extraction of hidden insights through logical or
mathematical combinations of multi-chart data, highlighting the core value of ”complementarity”
in multi-chart data. 3) Anomaly and pattern analysis: Centers on the ”deep analysis” ability,
requiring the exploration of the underlying causes behind surface-level phenomena by combining
chart information with external knowledge, thus reflecting the ”depth” of the analysis. 4) Strategy
recommendation: Focuses on the ”practical application” ability, providing actionable decision-
making suggestions based on the correlation patterns between multiple charts, thereby reflecting the
”practicality” of the analysis. Together, these four tasks form a comprehensive logical chain for
multi-chart analysis, progressing from ”basic correlation” and ”data utilization” to ”deep analysis”
and ”practical application,” covering the essential capabilities required for multi-chart joint question
answering.

This paper presents the construction and expansion process of MultiChartQA-R (section 2.2), which
includes the creation of chart-code pairs, QA pair generation, and multilingual expansion methods.
MultiChartQA-R includes 14 chart types across 36 domains, available in three languages, with each
language containing 2,160 QA pairs to ensure diverse coverage, with stringent data quality control
and validation applied (section 2.3). A comprehensive comparison with existing chart QA bench-
marks was performed (section 2.4), demonstrating MultiChartQA-R’s significance in the field of
chart-based question answering.

We evaluated four proprietary models and nine open-weight MLLMs on the MultiChartQA-R
benchmark (section 3.1). To better evaluate model performance, we propose a flexible multiple-
choice metric (appendix E.1) that balances rewards and penalties. This metric also allows for as-
sessing the model’s conservatism or aggressiveness, facilitating the training of models with different
preferences. Extensive experiments show that proprietary and certain open-source models excel in
analytical decision-making, but still lag behind humans in basic visual understanding and data in-
tegration (section 3.3). We conducted a comprehensive set of comparisons (section 4), exploring
the performance of MLLMs in real-world multi-chart QA scenarios and examining the multilingual
aspects of cross-chart question answering.

Our main contributions are as follows:

• We introduce the first scalable, multilingual benchmark for multi-chart question answering, de-
signed to focus on real-world multi-chart task scenarios.

• We propose a flexible multiple-choice evaluation metric that balances rewards and penalties,
reflecting the model’s analytical decision-making ability and preferences. It can also be used for
training preference-based models.

• We comprehensively evaluate existing MLLMs to provide insights into the critical capabilities
required for real-world multi-chart scenarios and to assess their performance on cross-modal,
multilingual multi-chart tasks.

2 MULTICHARTQA-R:

In this section, we first introduce the definition of four tasks involved in MultiChartQA-R (sec-
tion 2.1), and then delineate the data curation process (section 2.2). Subsequently, we conduct a
quantitative analysis to demonstrate the diversity of MultiChartQA-R and validate its quality through
manual evaluation methods (section 2.3). Finally, we compare MultiChartQA-R with existing re-
lated benchmarks to demonstrate its superiority and effectiveness (section 2.4).
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Figure 1: Examples of the four tasks in MultiChartQA-R. Task1&2 use arrows to illustrate the so-
lution process, where the model must identify corresponding trends in the charts for comparison
or find complementary data for integration. Task4&5 require identifying related information across
multiple charts and reasoning based on the model’s internal knowledge to derive the correct infer-
ence. Information used by the model is numbered, with erroneous inferences highlighted in red.

2.1 TASK DEFINITION

We designed four tasks based on common multi-chart question answering scenarios encountered in
daily life and work. These tasks form a complete logical chain of multi-chart analysis, progressing
from ”basic correlation” and ”data utilization” to ”deep analysis” and finally ”practical application,”
covering the core capability requirements of multi-chart question answering scenarios.

Cross-Chart Trend Inference Task 1 aims to evaluate the model’s ability to analyze and judge
trends across multiple charts, requiring the model to discern the relationships between the trends of
various indicators. Specifically, the model needs to identify the trend directions (such as increasing,
decreasing, or stable) of indicators in different charts and assess their synchronization or divergence,
as shown in Task 1 of Figure 1.

Complementary Data Integration Task 2 evaluates the model’s ability to integrate complementary
data from different charts and derive hidden information through logical combinations or mathemat-
ical operations. These data may include proportions, totals, ratios, and other forms, and the desired
result cannot be directly obtained from a single chart; instead, information from multiple charts must
be combined for inference, as shown in Task 2 of Figure 1.

Anomaly and Pattern Analysis Task 3 requires the model to identify anomalous data phenomena
or potential underlying patterns across multiple charts and provide explanations for these anomalies
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Figure 2: The Construction Pipeline of MultiChartQA-R

by combining chart information with relevant external knowledge. As shown in Task 3 of Figure 1,
it involves both identifying surface-level data phenomena and investigating their underlying causes.

Strategy Recommendation Task 4 aims to evaluate the model’s ability to extract relational pat-
terns between different indicators (such as trade-offs, threshold critical points influencing decisions,
etc.) based on multi-chart analysis results, and to propose optimization strategies or decision rec-
ommendations based on these patterns. As shown in Task 4 of Figure 1, the model must synthesize
key information from multiple charts and clarify the interactions between indicators. The strategies
generated should align with the patterns in the charts and have practical application value.

2.2 CONSTRUCTION PROCESS

Figure 2 illustrates the construction process of MultiChartQA-R, from the collection of chart-code
pairs, the construction of QA pairs, to the final multilingual expansion.

Chart-Code Pairs Collection We searched publicly available channels on the Internet for high-
quality industry analysis reports and search-index dashboards, which often contain multiple inter-
related charts for data analysis. Because the underlying raw data for these publicly shared charts
is typically unavailable, we employed a human-in-the-loop process in which a large model reverses
each chart into Python code. Through multiple rounds of manual interaction, we refined the gen-
erated code so that the reconstructed charts closely match the originals and preserve the conveyed
information. This approach yields charts that reflect real-world patterns, conform to common sense,
and carry greater value and significance, while human oversight ensures that the styles of the code-
generated charts are attractive and diverse. We collected a total of 180 multi-chart sets and 695
chart-code pairs.

Question–Answer Pair Construction The first two tasks are manually annotated, with a standard-
ized output format applied to the questions. For the latter two tasks, the synthesis process involves
extracting a set of multi-chart gold tables from the code and using a reasoning model to generate
questions, correct options, and the reasoning process for the correct options, with the task definition
and gold tables serving as context in a few-shot manner. To further enhance the quality and relevance
of the generated QA pairs, RAG web retrieval is employed to access domain-specific knowledge,
supplementing the reasoning process with additional contextual information. The reasoning model
is then used to generate 3-4 incorrect distractors, using the gold tables, correct question-answer pairs,
and web-retrieved knowledge as context. These distractors are classified into two difficulty levels:
”easy” and ”hard.” Easy distractors (1 or 2) do not rely on chart content and can be easily excluded
based on general industry or logical knowledge, while hard distractors (1 or 2) involve misinter-
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Table 1: Statistics of MultiChartQA-R
Statistic Number Category Number Ans Type

Total Questions 2160 - Cross-chart Trend Inference 540(25%) Yes/No
Unique charts 695 - Complementary Data Integration 540(25%) Generation
Multi-chart sets 180 - Anomaly and Pattern Analysis 540(25%) Multi-option
Average charts 3.9 - Strategy Recommendation 540(25%) Multi-option

preting the chart data or using rigorous reasoning that leads to an incorrect conclusion, making them
harder to distinguish due to their more convincing structure and use of chart information.

Multilingual Expansion First, we construct charts in different languages by using LLMs to translate
the textual information in the chart rendering code into the target languages, and then execute the
code to render charts in those languages. During the code translation step, RAG is employed to
search for relevant technical terms and specialized vocabulary to ensure accurate and contextually
correct translation of the chart’s content. Next, we construct question-answer pairs in different
languages by extracting gold tables from the chart rendering code. The content of the gold tables is
organized into text, describing each data point, and we feed these descriptions as context to the LLM
during translation to ensure consistent terminology with the chart content. Additionally, RAG is
utilized during QA pair translation to search for related domain-specific knowledge, further ensuring
that the translation is consistent with the intended meaning and usage. We provide charts and QA
pairs in English, Chinese, and Spanish, and this approach can be extended to additional languages
to facilitate in-depth exploration of multilingual cross-chart tasks.

2.3 DATA STATISTICS & QUALITY INSPECTION

MultiChartQA-R includes 180 sets of charts and 695 chart-code pairs, covering three languages
(extendable), as detailed in Table 1. In terms of chart types, it includes 14 categories of charts,
spanning 36 domains, with specific details provided in Figures 4 and 3 in the appendix D.1.

We conducted a rigorous cross-review of all question–answer pairs in the first two tasks. Task 3 and
Task 4 are multi-step synthesized data. We designed a supervised scoring mechanism to perform
manual quality evaluation across three dimensions: question-type alignment, validity of correct
options, and effectiveness of distractors. We divided the experts into a review group and a problem-
solving group to score and solve a randomly sampled 30% of the data, respectively. The review
group results showed that the average scores for both task types exceeded 9.0 (out of 10), while the
problem-solving group achieved a 90+ MFβ score and over 85% inter-rater consistency, indicating
that the overall data quality is robust and reliable. This also reflects the rationality of the task design
and its research value. Detailed evaluation metrics and processes can be found in the appendix D.2.

2.4 COMPARISONS WITH EXISTING BENCHMARKS

To further distinguish the difference between MultiChartQA-R and other existing ones, we elaborate
the benchmark details in table 2. A comparison with other benchmarks clearly demonstrates that
MultiChartQA-R excels in terms of broader scope, flexibility, and real-world applicability, offering
superior quality and relevance for multi-chart question answering tasks.

Table 2: Comparison of MultiChartQA-R with existing chart-based QA benchmarks.
Benchmarks Reflect Real

Scenarios
Topic

Diversity MultiChart Multilingual CoT Chart-Code
Pairs

Evaluation
Metric

# of
Chart Types

PlotQA (Methani et al., 2020) ✗ ✗ ✗ ✗ ✗ ✗ Accuracy 3
ChartQA (Masry et al., 2022) ✓ - ✗ ✗ ✗ ✗ Accuracy 3
ChartXiv (Wang et al., 2024) ✓ ✓ ✗ ✗ ✗ ✗ GPT-4 Score 18
ChartQAPro (Masry et al., 2025) ✓ ✓ ✓ ✗ ✗ ✗ Accuracy + ANLS score 9+
MultiChartQA (Zhu et al., 2025b) ✓ - ✓ ✗ ✗ ✗ Accuracy -
MultiChartQA-R(Ours) ✓ ✓ ✓ ✓ ✓ ✓ Accuracy + MFβ-score 14

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conducted benchmark evaluations on 13 widely used proprietary and open-weight MLLMs in
the field. For proprietary models, we selected three representative models: GPT-4o (OpenAI, 2024),
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Claude-Sonnet-4 (Anthropic, 2025), and Gemini-2.5-Pro (Team, 2025), and also included a newly
discovered proprietary model, Seed1.5-VL (Guo et al., 2025) in the evaluation. For open-weight
MLLMs, we selected nine competitive models, with parameter sizes ranging from 7B to 78B: In-
ternVL2(26B, 76B) (Chen et al., 2024b), InternVL3-78B (Zhu et al., 2025a), Qwen2.5-VL(7B, 72B)
(Qwen et al., 2025), LLaVA-OV(7B, 72B) (Li et al., 2024a), DeepSeek-VL-7B (Lu et al., 2024), and
MiniCPM-V-2.6 (Yao et al., 2024). All evaluations employed the Chain-of-Thought (CoT) (Wei
et al., 2022) technique, and the corresponding prompts are provided in the appendix H.

3.2 EVALUATION METRIC

Cross-Chart Trend Inference employs strict string matching, as the questions explicitly constrain
the answer format and are predominantly Yes/No judgments.

Complementary Data Integration addresses the fact that large language models struggle with
arithmetic. We ask the model to extract the necessary values from the charts and outline the step-
by-step reasoning. We then feed those steps into DeepSeek-V3.1 to generate executable Python
code, run the code to obtain the final numeric result, and use a regular expression to extract the
numeric component. We evaluate the correctness of the reasoning chain with a relaxed accuracy
metric(Masry et al., 2022), thus testing the model’s ability to perform long-form, multi-step infer-
ence.

Anomaly and Pattern Analysis and Strategy Recommendation involve open-ended multi-chart
question-answering, where the answers are not unique, and human evaluators often make selections
based on their preferences. Therefore, these tasks are designed in a multiple-choice format. To
evaluate the model’s performance, we propose an evaluation metric, the Multiple-choice Fβ Score
(MFβ), which combines the base score, penalty, and a final composite score, comprehensively
measuring the model’s ability to balance correct selections and avoid incorrect ones. The process
for constructing MFβ is as follows.

BaseScore is used to assess the model’s ability to select the correct answers. Let the set of correct
answers be denoted as A and the set of answers selected by the model as B. The BaseScore is
defined as:

BaseScore =
|A ∩B|
|A|

(1)

where |A ∩ B| is the number of correctly selected items by the model, and |A| is the total number
of correct answers. The BaseScore lies in the range [0, 1], with a score of 1 for perfect correctness,
a score between 0 and 1 for partial correctness, and a score of 0 for complete incorrectness.

Penalty measures the model’s misselection behavior, especially when the model selects incorrect
or interfering options. We classify interfering items into two categories: easy-to-confuse items (set
E) and hard-to-confuse items (set H). Each time the model selects an interfering item, it incurs
a penalty. The penalty coefficients we and wh correspond to the easy and hard interfering items,
respectively, and satisfy the constraint we = 2wh and we · |E| + wh · |H| = 1, where |E| and |H|
represent the number of easy and hard interfering items. The total penalty is then computed as:

Penalty = we · |B ∩ E|+ wh · |B ∩H| (2)

where |B ∩E| and |B ∩H| represent the numbers of easy and hard interfering items selected by the
model.

If the score for each task is simply computed as Score = max(0,BaseScore − Penalty), this for-
mula ensures non-negative performance by considering both correct selections and error avoid-
ance. However, a low score may indicate that the model is either too conservative (e.g., |B| = 1,
|E| = |H| = 0) or too aggressive (e.g., |B| = 4, |E| + |H| = 4). To address this, we propose a
more integrated metric that evaluates the BaseScore, Penalty, and Score simultaneously.

We introduce the Fβ-score to multiple-choice tasks and construct the MFβ evaluation metric, which
considers two key aspects of performance: selecting correct answers (BasicScore) and avoiding
incorrect ones (EscapeScore). This approach provides a more comprehensive assessment of the
model’s overall effectiveness.

EscapeScore = 1− Penalty (3)

6
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MFβ = (1 + β2)× BaseScore × EscapeScore
β2 × BaseScore + EscapeScore

(4)

where β is a tuning parameter used to control the balance between BaseScore and EscapeScore. If
β = 1, the model is required to both select correctly and avoid errors equally. When β > 1, greater
emphasis is placed on avoiding incorrect selections, whereas if β < 1, the focus shifts toward
selecting correct items.

This refined scoring mechanism offers a balanced approach for evaluating multi-option selection
tasks by considering both the accuracy of selections and the avoidance of errors. We compare MFβ

with Com2(Xiong et al., 2025) in appendix E.1, where we highlight MFβ’s role in model selection
for specific scenarios and its feasibility for preference model training.

Table 3: The MultiChartQA-R leaderboard. The best scores are in bold.

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

en zh es en zh es en zh es en zh es

Human 97.83 94.83 90.60 91.60

Proprietary Models

Claude-Sonnet-4 70.00 75.78 69.33 60.99 59.64 62.98 84.92 64.12 84.84 87.53 67.09 86.95
Gemini-2.5-Pro 75.06 79.33 75.11 65.08 69.35 65.91 81.87 83.92 82.48 83.79 84.49 83.96
Seed1.5-VL 72.44 71.78 67.33 67.66 72.81 68.64 78.87 82.46 78.69 82.22 85.38 78.81
GPT-4o 64.21 62.64 59.87 64.83 63.60 64.77 71.76 63.62 67.33 76.88 67.72 70.47

open-weight MLLMs

InternVL3-78B 73.21 68.46 64.66 67.50 70.72 63.33 81.62 82.22 78.16 81.78 84.48 76.57
InternVL2-L3-76B 59.91 48.88 59.19 51.59 53.51 51.14 68.33 71.69 70.86 70.19 76.51 75.77
Qwen2.5-VL-72B 56.25 56.95 53.13 25.40 14.77 21.51 72.62 75.89 71.12 76.34 78.75 72.85
LLaVA-OV-72B 61.33 57.59 53.33 43.02 16.25 22.22 66.82 66.82 66.58 71.37 68.62 69.79
InternVL2-26B 54.46 58.65 50.11 31.03 28.70 21.95 56.85 62.66 53.39 64.72 67.41 58.98
Qwen2.5-VL-7B 54.44 54.91 52.22 21.04 19.64 21.14 71.38 70.93 65.08 74.55 73.77 68.21
MiniCPM-V-2 6 49.88 55.36 44.22 23.29 26.15 16.91 60.67 60.73 54.87 60.13 65.27 55.52
DeepSeek-VL-7B 49.32 47.11 40.44 7.95 5.01 6.74 49.90 48.30 48.30 56.95 52.51 49.91
LLaVA-OV-7B 48.55 34.00 46.00 21.84 8.20 12.38 52.18 52.40 56.14 58.98 62.31 61.30

3.3 MAIN RESULTS

Table 3 summarizes the evaluation results of 13 MLLMs on MultiChartQA-R. Our key observations
are as follows:

The foundational visual capabilities and data integration abilities of proprietary models show a
significant gap compared to humans in cross-chart scenarios, but they have demonstrated good
performance in pattern summarization and logical reasoning. Among the proprietary models,
Gemini-2.5-Pro shows superior trend-analysis ability across three languages. The newly released
Seed1.5-VL achieves the best results on data integration task. InternVL3-78B exhibits outstanding
performance, achieving state-of-the-art results among open-weight MLLMs and approaching the
performance of proprietary models across all tasks.

Proprietary models continue to outperform most open-weight MLLMs by a considerable mar-
gin. Although InternVL3-78B achieves performance comparable to proprietary models, the remain-
ing open-weight MLLMs lag substantially. This marked disparity confirms that MultiChartQA-R
poses a significant challenge for current open-weight multimodal large language models. In par-
ticular, 7B and 8B open-weight MLLMs attain only near-random accuracy on trend-judgment task,
revealing a lack of genuine trend-analysis capability, and their accuracy across the other three tasks
also remains deficient. Nonetheless, a clear positive correlation is observed between parameter scale
and performance on all four tasks. Overall, these results indicate that the open-source community
still has ample scope to enhance MLLMs’ competencies in complex visual understanding, cross-
modal reasoning, conflict detection and attribution, and strategy formulation.

MLLMs exhibit heterogeneous performance in multi-chart tasks across different languages.
Unlike other multilingual benchmarks, we did not observe English dominance. We speculate that
the parameter subspace associated with data-analytic reasoning has limited overlap with that gov-
erning multilingual processing, thereby attenuating any potential English-language advantage. We
will investigate MLLMs’ performance in cross-lingual multi-chart tasks further in the Discussion
section.
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4 DISCUSSION

4.1 IMPACT OF IRRELEVANT CHARTS

During annotation, We recorded the specific charts associated with each QA pair in a “charts in-
volved” field. In the main experiments, only these relevant charts were provided to the MLLMs.
To investigate the impact of irrelevant ones on MLLMs’ visual QA performance, we designed a
comparative experiment in which additional unrelated charts were introduced alongside the relevant
ones during inference. When the number of charts in a set is too large, the issue of excessively long
visual tokens arises. The solution to this problem is provided in the appendix F.1.

Table 4 demonstrates that proprietary models maintain stable performance across the four tasks,
even with additional chart inputs. This suggests that proprietary models possess strong capabili-
ties for locating and retrieving relevant chart information when the question intent is clear. Open-
weight MLLMs suffer performance drops across all four task categories, indicating that their chart-
information retrieval and localization abilities still have substantial room for improvement.

4.2 PERFORMANCE ACROSS DIFFERENT LANGUAGES

To further assess multilingual performance in multi-chart QA, we conducted two comparative ex-
periments. In the first setting, we used charts in English while varying the language of the question-
answer pairs and prompts. In the second setting, the QA pairs and prompts remained in English,
whereas the charts were translated into different languages. The results show that reasoning on
English charts with prompts in different languages resulted in significant performance fluctuations.
In contrast, when reasoning with different charts but the same language, the fluctuation in results
across languages was smaller. This indicates that the cross-linguistic consistency of reasoning in
multi-chart question answering tasks for MLLMs still requires improvement. The experimental data
are presented in Table 6&7 of the appendix F.2.

4.3 EXPLORING MLLMS’ RETRIEVAL CAPABILITIES

Additionally, we constructed a dedicated dataset to analyze large models’ entity-extraction perfor-
mance across multiple charts by extracting the numeric answers and computing relaxed accuracy.

Details about the extended-benchmark can be found in the appendix G. A brief overview of its four
task types is as follows: Parallel-type question-answer pairs extract content from different charts
based on independent sub-questions and list them individually. Union-type question-answer pairs
extract content from different charts based on a single question, perform combination operations,
and output a single answer. ”PCPC” stands for ”per chart per content” meaning each chart involves
one piece of content. ”PCMC” stands for ”per chart multi-content” meaning each chart may involve
more than one piece of content.

Comparing the results across the four sets in Figure 7 of appendix F.3, we observed that MLLMs’
performance consistently worsens as the number of charts increases and the amount of informa-
tion per chart grows. Interestingly, the experiments also revealed that when processing multiple
charts—extracting one datum per chart—a simple additional computation step to produce a cal-
culated result achieves a higher score than directly outputting multiple data points. This finding
indicates that MLLMs still need to improve their ability to process multiple queries in parallel.

4.4 ERROR ANALYSIS

In the evaluation, GPT-4o exhibited a marked decline in accuracy in task 3 and task 4 multiple-
choice tasks, with accuracy rates much lower than those of Claude-Sonnet-4 and Seed1.5-VL. We
further discovered that this performance decline in GPT-4o is closely related to its tendency to mimic
the format of one-shot example answers (B, C, E) in the prompt. Although the order of the options
in the test questions had been shuffled, GPT-4o still frequently selected options B, C, and E. For ex-
ample, in task 3, the misselection rates for B, C, and E were 48.0%, 53.4%, and 51.6%, respectively,
significantly higher than the rates for other options (with an average misselection rate of 1.2% for
other options) and other models (Claude had an average misselection rate of 10.4% for B, C, and E).
This indicates that the model failed to reason based on the chart content and instead overly replicated
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the structural pattern of the example answers, showing a strong dependency on example structure,
which resulted in higher misselection rates and an overall performance decline.

In contrast, Claude-Sonnet-4 maintained a higher accuracy rate while demonstrating significantly
lower misselection rates for non-example options (such as A, D, F), showing stronger suppression
of prompt bias (Xu et al., 2024) (where pre-trained language models may develop unreasonable
preferences for labels suggested by the prompt) and a more balanced judgment of the content of
each option. Seed1.5-VL showed slightly lower accuracy, but its bias toward specific options was
still noticeably better than that of GPT-4o. Overall, the models’ performance on multiple-choice
tasks is somewhat limited by their ability to suppress irrelevant structural information introduced by
the prompt and to adapt to the actual semantic requirements of the questions. The statistical results
are presented in the appendix F.4.

5 RELATED WORKS

Chart Question Answering Benchmarks Early benchmarks such as FigureQA (Kahou et al.,
2018), DVQA (Kafle et al., 2018), PlotQA (Methani et al., 2020), and ChartQA (Masry et al., 2022)
primarily focused on basic chart types, and addressed fundamental question-answering tasks such
as data extraction. These tasks were limited in scope and did not fully cover the application of charts
in complex and diverse environments. In recent years, with advancements in research, new bench-
marks have emerged, such as ChartBench (Xu et al., 2023), ChartLlama (Han et al., 2023), Charxiv
(Wang et al., 2024), and ChartAssistant (Meng et al., 2024), which enhance the diversity of both
charts and questions. Additionally, tasks like Chart-to-code (Yang et al., 2024), which involve more
challenging visual understanding, have also appeared. However, research on multi-chart question
answering remains relatively scarce.

Multilingual Chart Question Answering Benchmarks The rapid growth of multilingual VQA
benchmarks (e.g., xGQA (Pfeiffer et al., 2022), MaXM (Changpinyo et al., 2023), CVQA (Romero
et al., 2025)) has addressed the English-centric bias in visual question answering. However, mul-
tilingual reasoning over structured charts remains severely . POLYCHARTQA (Xu et al., 2025)
spans ten languages and reveals performance deficits on non-English inputs, but its tasks empha-
size shallow extraction and lack true reasoning challenges. OneChart (Chen et al., 2024a)’s ChartY
benchmark covers only Chinese and English and focuses on structural extraction, lacking a sys-
tematic evaluation of multilingual chart reasoning. KITAB-Bench (Heakl et al., 2025) targets En-
glish–Arabic chart localization but is limited both in language coverage and task depth.

Multi-chart Question Answering Benchmarks A series of multi-image question-answering
benchmarks have emerged, such as Mantis-Instruct (Jiang et al., 2024), BLINK (Fu et al., 2024),
and MUIRBENCH (Wang et al., 2025). However, these do not include chart-type images. MMC-
Benchmark (Liu et al., 2024) contains a small subset of multi-chart data, but it only includes 52
samples. ReMI (Kazemi et al., 2024) includes some multi-chart scenarios, but the question types
are limited. MultiChartQA (Zhu et al., 2025b) is the first benchmark specifically designed to explore
multi-chart question answering, encompassing three types of multi-chart tasks: multi-chart informa-
tion extraction, cross-chart data comparison, and sequential reasoning. While it reflects some of the
capabilities of MLLMs in multi-chart reasoning tasks, it does not fully capture the real-world sce-
nario demands. This paper introduces more realistic tasks that better reflect the performance aspects
that are of greater concern to users.

6 CONCLUSION

In this paper, we introduce MultiChartQA-R, a benchmark designed to assess the multi-chart reason-
ing capabilities of MLLMs through four core tasks, each reflecting a crucial aspect of the multi-chart
analytical reasoning process. Additionally, it can be extended to multiple languages. We also pro-
pose a flexible multiple-choice evaluation metric, MFβ , whose effectiveness is validated through
formal reasoning and comparative experiments. Furthermore, we conduct extensive cross-chart
question-answering and cross-language experiments on 13 mainstream MLLMs, revealing several
intriguing phenomena. MultiChartQA-R serves as a foundation for advancing the development of
more capable MLLMs in real-world scenarios.
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A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no animal experimentation was in-
volved, and no personal data containing privacy or sensitive information was used.

Human annotators were engaged during dataset construction and evaluation. Their tasks were
strictly limited to assessing the validity, logical consistency, and accuracy of chart-based question–
answer pairs. These activities did not involve personally identifiable information and posed no
privacy, safety, or psychological risks. All annotation and evaluation procedures were carried out
under compliant and safe conditions.

We took care to avoid potential biases or discriminatory outcomes in both the dataset and the reported
results. The authors are committed to maintaining transparency and academic integrity throughout
the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
paper provides detailed descriptions of the data annotation process, quality control mechanisms,
experimental design, and evaluation methodology, enabling other researchers to understand and
replicate our work. All code and datasets will be released in an anonymous repository upon publica-
tion to facilitate replication and verification. The comparative experiments reported in this paper are
based on publicly available models and methods, ensuring consistent and reproducible evaluation
results. We believe these measures will enable other researchers to reproduce our work and further
advance the field.

C LLM USAGE

Large Language Models (LLMs) were partially used during this research. Specifically, in dataset
construction, LLMs were employed in the initial generation of a subset of questions and answer
options, after which human annotators conducted verification and quality checks to ensure accuracy
and safety. In manuscript preparation, LLMs were used to assist with language polishing, improving
clarity, accuracy, and overall fluency of the text.

It is important to note that LLMs were not involved in research ideation, methodological design,
or experimental planning. All research concepts, scientific claims, and data analyses were indepen-
dently developed and carried out by the authors. The authors take full responsibility for the content
of the manuscript, including sections that involved LLM assistance, and have ensured that the use
of LLMs complies with academic ethical standards without contributing to plagiarism or research
misconduct.

D BENCHMARK

D.1 STATISTICS

The statistical results can be found in Figure 3 and Figure 4.

D.2 QUALITY INSPECTION

For the first two task types—true/false and numerical-answer questions, both characterized by objec-
tively verifiable answers—we implemented a systematic cross-review of all question–answer pairs.
The annotation team consisted of four members and employed a cyclic peer-review mechanism.
Each annotator’s work was independently verified by another member, and any identified errors
were promptly corrected. The review criteria included:

• Question validity: ensuring that each question conformed to its definition and was clearly
formulated;

15
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• Reasoning correctness: verifying that the annotated reasoning chain was logically sound
and rigorous;

• Answer accuracy: confirming that the final answer was fully consistent with the chart
data.

Through this process, we ensured the dataset’s robust quality and reliability in terms of question
formulation, reasoning, and answer accuracy.

For the two more challenging task types, we randomly sampled 30% of the data for human quality
evaluation. Each question–answer pair was scored by evaluators with reference to the reasoning
chain used during its generation. We applied a 10-point evaluation scale based on three criteria:

• Question-type alignment: assessing whether the question corresponded to the intended
task type and was reasonably designed;

• Validity of correct options: ensuring that the reasoning behind correct options was strictly
grounded in the chart data, logically coherent, and led to reliable conclusions;

• Effectiveness of distractors: requiring simple distractors to appear superficially plausible
yet independent of the chart data, and difficult distractors to superficially rely on chart
reasoning while containing critical logical flaws (e.g., misinterpreting a downward trend as
upward).

Evaluation results indicate that the average score for the third task type was 9.1/10, with an inter-rater
agreement of 85%, while the fourth task type achieved an average score of 9.3/10 and an inter-rater
agreement of 87%, demonstrating highly robust overall evaluation outcomes.

In addition, the evaluators completed all four task types, obtaining corresponding scores of 97.83,
94.83, 90.60, and 91.60, respectively. Human performance consistently exceeded that of the models,
though a non-negligible error rate remained. This observation both confirms that the tasks remain
challenging for current models and highlights the intrinsic difficulty of the tasks, underscoring their
research value.

E EXPERIMENTS

E.1 EVALUATION METRIC

MFβ and Com2 exhibit similar distributions across the evaluation of various models, indicating that
MFβ can effectively capture the model’s multiple-choice capabilities. However, Com2 amplifies
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the impact of distractors, making its evaluation results not applicable in all scenarios. In contrast,
MFβ can be more flexible and applicable to a wider range of situations by adjusting the β parameter.

ANALYSIS OF MFβ CURVES

We plotted the MFβ curves of all models under varying values of β. Overall, the curves exhibit a
monotonically increasing trend, indicating that within the current task setting, “selecting all correct
options” is significantly more difficult than “avoiding incorrect options.” In other words, the models
generally perform better at eliminating incorrect options than at fully covering the correct ones.
We hypothesize that this phenomenon is related to the characteristics of the hard options: such
options are more prone to being selected by the models, yet their penalty weight in the scoring
scheme is relatively low, which to some extent “inflates” the overall scores. This effect is particularly
pronounced for smaller-parameter models whose performance approaches random selection.

Intersection points. The intersections between the curves carry critical implications: they reveal
the trade-offs between different models in terms of “recalling correct options” versus “avoiding
incorrect ones,” thereby providing guidance for model selection across application scenarios. For
example, in recall-oriented tasks, models that perform better before the intersection point should
be prioritized, whereas in precision-oriented tasks, models that excel after the intersection point are
preferable.

Curve variability. Taking InternVL2-26B as an example, its curve ranks relatively low when β
is small, but improves markedly as β increases. This pronounced change highlights the model’s
substantial variability across different evaluation emphases, reflecting a lack of balance—that is, an
insufficiently stable ability to reconcile recall and precision.

Figure 5: Model Performance on Task 3 under Different β

F DISCUSSION

F.1 IMPACT OF IRRELEVANT CHARTS

In these experiments, because the number of charts varies and high-quality charts with many visual
tokens can cause the total input length to exceed the model’s context window, the model will begin
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Figure 6: Model Performance on Task 4 under Different β

discarding tokens from the left (i.e., the earliest inputs) until the remaining token count less than
session len. Therefore, we deliberately placed any image tokens for charts unrelated to the QA pair
on the far left; even if they are dropped, the model’s ability to answer correctly remains unaffected.

Method for handling excessively long image tokens. In these experiments, because the number
of charts varies and high-quality charts with many visual tokens can cause the total input length to
exceed the model’s context window, the model will begin discarding tokens from the left (i.e., the
earliest inputs) until the remaining token count less than session len. Therefore, we deliberately
placed any image tokens for charts unrelated to the QA pair on the far left; even if they are dropped,
the model’s ability to answer correctly remains unaffected.

Table 4: Compare the question-answering performance when inputting all charts versus only the
relevant charts.

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

involved all involved all involved all involved all

Claude-Sonnet-4 70.00 69.11 60.99 61.38 84.92 85.32 87.53 87.85
Seed1.5-VL 72.44 72.83 67.66 66.74 78.87 79.08 82.22 81.95
GPT-4o 64.21 66.14 64.83 63.10 71.76 70.79 76.88 76.71

InternVL3-78B 73.21 60.93 67.50 64.68 81.62 81.56 81.78 80.57
InternVL2-Llama3-76B 59.91 52.46 51.59 44.36 68.33 67.23 70.19 70.04
Qwen2.5-VL-72B-Instruct 56.25 58.93 25.40 22.94 72.62 73.48 76.34 74.34
LLaVA-OV-72B 61.33 59.11 43.02 38.07 66.82 65.47 71.37 70.69
InternVL2-26B 54.46 46.33 31.03 22.90 56.85 54.53 64.72 64.37
Qwen2.5-VL-7B-Instruct 44.00 53.56 21.04 23.98 71.38 66.70 74.55 71.51
MiniCPM-V-2 6 49.88 52.89 23.29 27.48 60.67 59.85 60.13 59.44
DeepSeek-VL-7B 49.32 24.22 7.95 3.48 49.90 45.58 56.95 55.74
LLaVA-OV-7B 48.55 45.19 21.84 13.55 52.18 52.10 58.98 57.92
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Table 5: Compare the question-answering performance when inputting all charts versus only the
relevant charts under the com2 metric.

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

involved all involved all involved all involved all

Claude-Sonnet-4 70.00 69.11 60.99 61.38 65.04 62.56 69.67 69.15
Seed1.5-VL 72.44 72.83 67.66 66.74 58.72 58.63 66.30 63.81
GPT-4o 64.21 66.14 64.83 63.10 39.29 35.55 39.13 38.54

InternVL3-78B 73.21 60.93 67.50 64.68 57.37 54.25 57.20 54.20
InternVL2-Llama3-76B 59.91 52.46 51.59 44.36 34.24 33.99 36.95 36.18
Qwen2.5-VL-72B-Instruct 56.25 58.93 25.40 22.94 32.93 33.19 39.44 37.26
LLaVA-OV-72B 61.33 59.11 43.02 38.07 27.26 27.48 31.67 30.91
InternVL2-26B 54.46 46.33 31.03 22.90 36.32 30.81 36.53 37.27
Qwen2.5-VL-7B-Instruct 44.00 53.56 21.04 23.98 37.33 32.81 43.19 39.52
MiniCPM-V-2 6 49.88 52.89 23.29 27.48 21.27 24.63 21.90 22.86
DeepSeek-VL-7B 49.32 24.22 7.95 3.48 11.35 7.59 17.19 16.30
LLaVA-OV-7B 48.55 45.19 21.84 13.55 9.20 8.97 12.03 10.13

F.2 PERFORMANCE ACROSS DIFFERENT LANGUAGES

Table 6: English Charts - Different Language QAs

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

en zh es en zh es en zh es en zh es

Seed1.5-VL 72.44 71.56 67.56 67.66 68.76 67.04 78.87 81.05 79.22 82.22 85.17 79.19
InternVL3-78B 73.21 70.98 66.00 67.50 70.69 65.91 81.62 83.47 78.54 81.78 84.07 76.91
InternVL2-26B 54.46 46.09 45.07 31.03 28.57 21.72 56.85 61.36 56.91 64.72 66.25 60.77
MiniCPM-V-2 6 49.88 51.79 48.78 23.29 29.50 23.95 60.67 63.64 56.57 60.13 66.14 59.62
Qwen2.5-VL-7B 54.44 55.23 48.67 21.04 23.81 23.29 49.90 70.74 66.25 56.95 72.34 68.45
LLaVA-OV-7B 48.55 33.48 46.33 21.84 18.26 13.14 52.18 54.10 59.92 58.98 66.08 62.03

Table 7: Different Language Charts - English QAs

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

en zh es en zh es en zh es en zh es

Seed1.5-VL 72.44 68.22 69.78 67.66 65.69 65.70 78.87 80.26 80.66 82.22 82.78 81.30
InternVL3-78B 73.21 68.97 69.87 67.50 67.26 58.03 81.62 80.88 80.93 81.78 82.46 81.97
InternVL2-26B 54.46 53.56 48.44 31.03 18.20 19.46 56.85 56.36 53.09 64.72 65.30 61.48
MiniCPM-V-2 6 49.88 50.00 49.56 23.29 24.53 25.29 60.67 61.81 61.81 60.13 62.21 61.29
Qwen2.5-VL-7B 54.44 52.35 52.67 21.04 14.41 20.95 49.90 70.11 72.74 56.95 72.65 74.33
LLaVA-OV-7B 48.55 41.67 46.85 21.84 5.11 14.25 52.18 52.03 52.95 58.98 55.96 57.67

Table 8: The test results of English Q&A on mixed-language charts.

Model Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

Seed1.5-VL 70.38 65.11 80.45 82.83
InternVL3-78B 69.93 64.96 81.78 81.75
Qwen2.5-VL-7B-Instruct 54.12 19.38 70.76 72.71

Table 9: English Charts - Different Language QAs Under the Com2 Metric

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

en zh es en zh es en zh es en zh es

Seed1.5-VL 72.44 71.56 67.56 67.66 68.76 67.04 58.72 63.57 59.39 66.30 69.63 62.52
InternVL3-78B 73.21 70.98 66.00 67.50 70.69 65.91 57.15 55.21 51.69 57.20 58.60 52.78
InternVL2-26B 54.46 46.09 45.07 31.03 28.57 21.72 36.32 26.54 26.76 36.53 31.22 29.44
MiniCPM-V-2 6 49.88 51.79 48.78 23.29 29.50 23.95 21.27 25.93 17.44 21.90 24.93 18.01
Qwen2.5-VL-7B 54.44 55.23 48.67 21.04 23.81 23.29 37.33 35.05 39.07 43.19 36.07 48.67
LLaVA-OV-7B 48.55 33.48 46.33 21.84 18.26 13.14 9.20 11.19 18.52 12.03 20.04 17.04
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Table 10: Different Language Charts - English QAs Under the Com2 Metric

Model
Trend Inference Data Integration Anomaly/Pattern Attr Strategy Rec

en zh es en zh es en zh es en zh es

Seed1.5-VL 72.44 68.22 69.78 67.66 65.69 65.70 58.72 63.06 61.43 66.30 66.00 63.52
InternVL3-78B 73.21 68.97 69.87 67.50 67.26 58.03 57.15 56.34 53.75 57.20 55.47 57.23
InternVL2-26B 54.46 53.56 48.44 31.03 18.20 19.46 36.32 35.51 30.54 36.53 41.07 35.94
MiniCPM-V-2 6 49.88 50.00 49.56 23.29 24.53 25.29 21.27 23.19 23.04 21.90 21.86 21.41
Qwen2.5-VL-7B 54.44 52.35 52.67 21.04 14.41 20.95 37.33 35.26 41.41 43.19 39.20 43.52
LLaVA-OV-7B 48.55 41.67 46.85 21.84 5.11 14.25 9.20 8.43 8.75 12.03 8.48 11.15

F.3 EXPLORING MLLMS’ RETRIEVAL CAPABILITIES
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Figure 7: Compare the performance of MLLMs across four retrieval tasks. The x-axis represents
the number of charts involved in the question, for example, 2c denotes two charts.

F.4 ERROR ANALYSIS

The detailed response statistics of the four proprietary models on Task 3 and Task 4 are presented in
Tables 11 & 12.

Table 11: Omission and multiple-selection rates per option for each model for task 3 (%). In this
context, “claude” refers to Claude-Sonnet-4, “seed” refers to Seed1.5-VL, “gpt” refers to GPT-4o,
and “gemini” refers to Gemini-2.5-Pro.

Option claude seed gpt gemini

A 24.5 / 6.3 36.8 / 0.8 64.2 / 1.3 26.9 / 1.7
B 7.9 / 9.2 10.2 / 8.1 3.4 / 48.0 2.3 / 19.0
C 9.6 / 10.3 6.9 / 12.6 4.8 / 53.4 2.7 / 24.4
D 17.3 / 6.6 36.1 / 0.8 76.0 / 0.8 36.1 / 1.2
E 9.4 / 11.6 9.9 / 10.5 4.7 / 51.6 1.6 / 23.3
F 8.9 / 5.6 29.7 / 1.6 63.4 / 1.6 34.7 / 1.6
G 12.4 / 4.3 33.8 / 1.6 57.9 / 1.0 26.9 / 0.7
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Table 12: Omission and multiple-selection rates per option for each model for task 4 (%). In this
context, “claude” refers to Claude-Sonnet-4, “seed” refers to Seed1.5-VL, “gpt” refers to GPT-4o,
and “gemini” refers to Gemini-2.5-Pro.

Option claude seed gpt gemini

A 11.6 / 4.4 40.7 / 1.2 62.8 / 0.4 31.6 / 0.5
B 4.3 / 9.1 2.9 / 7.9 1.9 / 49.2 3.0 / 21.1
C 2.5 / 6.8 2.5 / 10.4 1.0 / 47.4 1.2 / 30.5
D 8.9 / 2.7 32.8 / 0.0 62.0 / 1.2 25.2 / 0.9
E 4.2 / 11.6 7.8 / 12.8 2.1 / 58.1 0.0 / 32.7
F 9.1 / 4.4 25.6 / 0.7 58.0 / 2.9 26.3 / 3.8
G 7.3 / 4.0 35.8 / 0.0 58.9 / 2.3 34.2 / 0.0

G EXTENDED BENCHMARK.

G.1 TASK DESCRIPTION

PARALLEL TYPE

• EXAMPLE
question: question 1 about chart 1 question 2 about chart 2 question 3 about chart 3 ques-
tion 4 about chart 4
answer: answer1. answer2. answer3. answer4.

• PCPC
A question contains multiple parallel sub-questions, each retrieving one piece of informa-
tion from a single chart.
2c, 3c, and 4c refer to retrieving one piece of information from charts 2, 3, and 4, respec-
tively, and providing separate answers.

• PCMC
A question contains multiple parallel sub-questions, each retrieving multiple pieces of in-
formation from a single chart.
2c, 3c, and 4c refer to retrieving at least one piece of information from charts 2, 3, and 4,
respectively, and providing separate answers.

UNION TYPE

• EXAMPLE
question: question about chart 1&2&3&4
answer: answer.

• PCPC
The question involves multiple charts, retrieving one piece of information from each chart,
combining the information to perform a simple calculation, and outputting the final result.

• PCMC
The question involves multiple charts, retrieving at least one piece of information from
each chart, combining the information to perform a simple calculation, and outputting the
final result.

G.2 PIPELINE

1. Manually select articles from Pew that contain at least four charts, and scrape both the
articles and charts.

2. Extract chart information and perform manual sampling-based screening to ensure quality.

3. Automatically generate topic summaries based on the content of the article.

4. Generate question-and-answer pairs by utilizing the extracted chart information and setting
different prompts based on the topics.
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5. Use scripts to check whether the number of charts involved in all question-and-answer
pairs and the amount of content related to each chart meet the expected criteria. If they do
not meet the criteria, regenerate the pairs and manually adjust them until all question-and-
answer pairs satisfy the conditions.

6. Use scripts to check the length of all answers, manually screen answers that exceed the
threshold, remove redundant parts, and retain concise answers.

7. Utilize the rationale of generated question-and-answer pairs to generate code-based com-
putation results, manually compare all inconsistent answers, correct the answers and ratio-
nales in the labels, and ensure the accuracy of the computation results.

G.3 DATA STATISTICS

We collected 101 articles from Pew Research Center, each containing at least four charts centered on
the same topic, spanning nine topics in total (Refer to Table 13), yielding 1,212 QA pairs. These QA
pairs span four distinct question types, comprehensively probing models’ capabilities in cross-chart
information retrieval.

Table 13: Category-wise Number of Articles
Category Number of Articles

Economy & Work 11
Politics & Policy 11

Internet & Technology 11
Family & Relationships 11

Age & Generations 11
Immigration & Migration 11

Science 11
News Habits & Media 12

Other Topics 12
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H QAS PROMPTS

Task 1

output_prompt = ’’’\nOutput according to the following json format:
{

"rationale": "Reasoning process",
"answer": "Final answer"

}\nPlease strictly output according to the json format.\n’’’

prompt = image_tokens + question + output_prompt

Task 2

output_prompt = ’’’
Please answer according to the following steps, **all details must

be included and must not be omitted**:
1. Extract relevant information: List all data required for the

calculation and indicate which chart each data comes from.
2. Explain the association logic: Explain why these data are needed

.
3. Calculation process: Write out the detailed calculation process.
4. Conclusion summary: Answer according to the format required in

the question.
5. Output requirements: Extract the output format requirements

after the question.\n’’’

prompt = image_tokens + question + output_prompt

Task 3

text1 = "The options for the question are as follows: "
hints = "(Multiple choice question) Please analyze the content of

the chart and select the correct options based on the chart
information. Note: Correct options should be supported by chart
data; otherwise, they will be regarded as incorrect."

output_prompt = ’’’\nAnswer the question according to the following
json format:

{
"rationale": "Reasoning process",
"answer": ["B", "C", "E"] /* Select the correct one or more

options according to the actual situation */
}\n’’’

prompt = image_tokens + hints + question + text1 + answer_choices +
output_prompt

Task 4

text1 = "The options for the question are as follows: "
hints = "(Multiple choice question) Please analyze the content of

the chart and select the correct options based on the chart
information. Note: Correct options should be supported by chart
data; otherwise, they will be regarded as incorrect."

output_prompt = ’’’\nAnswer the question according to the following
json format:
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{
"rationale": "Reasoning process",
"answer": ["B", "C", "E"] /* Select the correct one or more

options according to the actual situation */
}\n’’’

prompt = image_tokens + hints + question + text1 + answer_choices +
output_prompt

The prompt for generating python calculation code based on the reasoning process in task 2
is as follows:

gen_code_prompt = ’’’
The above is the reasoning process. Since large models are not good

at calculations, ignore the calculated results in the reasoning
process above, and generate executable Python code for the

reasoning process.
Please note:
1. Strictly generate Python code based on the "rationale" process

above.
2. Ensure the code correctly reflects the reasoning of the "

rationale" by using variables to replace the intermediate
calculation results in the rationale, as the code execution is
more accurate and avoids cumulative errors caused by using
intermediate calculation results.

3. The final output should strictly follow the required format,
only printing the last output from the final ‘print‘ statement,
without any descriptive print statements. Below are some
examples of the final print outputs for reference:
a. Output format: "The answer should be presented as an integer

."
Incorrect final output 1: print(f"The final answer is: {

answer}.")
Incorrect final output 2: print(f"**{answer}**")
Correct final output: print(f"{answer}")

b. Output in percentage, rounded to 4 significant digits.
Incorrect final output 1: print(f"In mobile search, the

proportion of images is **{answer}%**.")
Correct final output: print(f"{answer}%")

c. Output in dollars, rounded to 3 decimal places. Answer: xx
dollars.
Incorrect final output 1: print(f"In Q1 2023, the in-app

purchase revenue per download for mobile games on the
App Store in Japan is {answer} USD.")

Correct final output: print(f"{answer} USD")
d. Output "Yes" or "No".

Incorrect final output 1: print("True")
Correct final output: print("Yes")

e. Answer: xx times.
Incorrect final output 1: print(f"{answer}")
Correct final output: print(f"{answer} times")

4. Be sure to distinguish between "significant digits" and "decimal
places." "Significant digits" refer to all digits from the

first non-zero digit to the last digit. "Decimal places" refer
to the number of digits after the decimal point.

5. If floating-point calculations are involved, please use the ‘
decimal‘ library to avoid precision loss from floating-point
operations.

’’’
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I TASK 3&4 SYNTHESIS METHOD

Algorithm 1: QA Pair Synthesis

Input:
C <= Original code rendering scripts for multiple charts
Q_defs <= Definitions of question types (templates + few-shot

examples)
M <= Reasoning model with chain-of-thought capabilities

Output:
QA_dataset <= Complete set of question-answer pairs (including

correct options and distractors)

1. // Step 1: Extract Gold Tables
2. gold_tables <= ExtractTablesFromCode(C)

3. // Step 2: Generate questions and correct answers
4. for each table_set in gold_tables:
5. context <= Concatenate(Q_defs, table_set)
6. prompt_correct <= BuildPrompt(context, task="generate

question + correct answer + reasoning")
7. (Q, A_correct, Reasoning) <= M.generate(prompt_correct)
8. store CorrectPair = (Q, A_correct, Reasoning)

9. // Step 3: Generate Easy and Hard distractors
10. for each CorrectPair in dataset:
11. // Easy distractors
12. prompt_easy <= BuildPrompt(
13. context=(table_set, CorrectPair),
14. instructions="generate 1 or 2 easy distractors;

responses that do not include information from the table, only
based on internal knowledge"

15. )
16. D_easy <= M.generate(prompt_easy, count=2)

17. // Hard distractors
18. prompt_hard <= BuildPrompt(
19. context=(table_set, CorrectPair),
20. instructions="generate 1 or 2 hard distractors;

logically or numerically incorrect but superficially dependent
on the table"

21. )
22. D_hard <= M.generate(prompt_hard, count=2)

23. // Merge and shuffle all options
24. all_choices <= [A_correct] U D_easy U D_hard
25. random.shuffle(all_choices) // Shuffle all options

randomly

26. // Label the correct option after shuffling
27. correct_option <= all_choices.index(A_correct) // Find the

position of the correct option after shuffling

28. // Add the question, shuffled options, and correct option
to the dataset

29. QA_dataset.add( Q, all_choices, correct_option )

30. return QA_dataset
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