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Abstract

There is vivid research on adapting Large Lan-001
guage Models (LLMs) to perform a variety of002
tasks in high-stakes domains, such as health-003
care. Despite this popularity, there is a lack004
of understanding of the extent and contribut-005
ing factors that allow LLMs to recall rele-006
vant knowledge and combine it with presented007
information—a fundamental pre-requisite for008
success on down-stream tasks. Addressing009
this gap, we use Multiple Choice and Abstrac-010
tive Question Answering to conduct a large-011
scale empirical study on 22 datasets in three012
generalist and three specialist biomedical sub-013
domains. Our multi-faceted analysis of the per-014
formance of 15 LLMs, further broken down by015
sub-domain, source of knowledge and model ar-016
chitecture, uncovers success factors such as in-017
struction tuning that lead to improved recall and018
comprehension. We further show that while re-019
cently proposed domain-adapted models may020
lack adequate knowledge, directly fine-tuning021
on our collected medical knowledge datasets022
shows encouraging results, even generalising023
to unseen specialist sub-domains. We com-024
plement the quantitative results with a skill-025
oriented manual error analysis, which reveals026
a significant gap between the models’ capabili-027
ties to simply recall necessary knowledge and028
to integrate it with the presented context. To029
foster research and collaboration in this field030
we share M-QALM—our resources, standard-031
ised methodology, and evaluation results—with032
the research community to facilitate further ad-033
vancements in clinical knowledge representa-034
tion learning within language models.035

1 Introduction036

The recent success in the application of propri-037

etary large language models in the knowledge-038

intensive medical domain (Singhal et al., 2023a,b)039

has sparked vivid research interest in applying040

smaller, more readily available open-source LLMs041

to various settings in the clinical and biomedi-042
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Figure 1: The landscape of LLM evaluation in the medi-
cal domain with representative evaluation tasks, organ-
ised by Bloom’s taxonomy of learning objectives (bold)
(Bloom, 1956).

cal domains. Examples of tasks include summa- 043

rization of clinical text (Veen et al., 2023), auto- 044

matic note generation for physicians (Ben Abacha 045

et al., 2023b) and condensation of doctor-patient 046

dialogues (Ben Abacha et al., 2023a; Toma et al., 047

2023). More broadly, open-source LLMs have been 048

adapted to the domain to serve as foundational clini- 049

cal models (Han et al., 2023; Wu et al., 2023; Toma 050

et al., 2023; Bolton et al., 2022; Li et al., 2023). 051

The success of such adaption is typically 052

established by measuring the performance on 053

down-stream tasks, by means of token-overlap 054

or semantic-similarity based metrics (Lin, 2004; 055

Zhang et al., 2020). To address their inherent weak- 056

nesses (Schlegel et al., 2022; Gatt and Krahmer, 057

2018), research is carried out vividly to incorporate 058

specific dimensions, such as factuality or faithful- 059

ness (Umapathi et al., 2023). Two important prob- 060

lems pertain, however. Firstly, NLG evaluation met- 061

rics are merely approximations of the phenomena 062

they are aimed to measure, and their effectiveness is 063

typically established by the degree of correlation to 064

human judgements of the evaluated criteria (Huang 065

et al., 2021). Secondly, an (offline) evaluation setup 066

is functionally grounded and serves as a proxy of 067

a real-world application scenario, and the trans- 068

ferability of insights from functionally-grounded 069
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Dataset Type Size Domain
USMLE (Jin et al., 2021) MCQA 10178/1272/1273 General Medical
MEDMCQA (Pal et al., 2022) MCQA 182822/4183/6150 General Medical
BIOASQ-MCQ (Tsatsaronis et al., 2015; Krithara et al., 2023) MCQA 975/173/123 General Biomedical
HEADQA (Vilares and Gómez-Rodríguez, 2019) MCQA 2657/1366/2742 General Medical
PROCESSBANK (Berant et al., 2014) Context + MCQA 358/77/150 Biological Processes
PUBMEDQA (Jin et al., 2019) Context + MCQA 400/100/500 General Biomedical
MMLU (Hendrycks et al., 2021) MCQA 30/NA/1089 General Medical/Clinical
BIOMRC-Tiny A (Pappas et al., 2020) Context + MCQA NA/NA/30 General Biomedical
BIOMRC-Tiny B (Pappas et al., 2020) Context + MCQA NA/NA/30 General Biomedical
OPHTH (Raimondi et al., 2023; RCOphth, 2022a,b) MCQA NA/NA/92 Ophthalmology
QA4MRE-(Alzheimer’s QA) (Morante et al., 2012) MCQA NA/NA/40 Alzheimer’s Disease
Total Questions across Splits - 197420/7171/12219 -
LIVEQA (Abacha et al., 2017; Ben Abacha and Demner-Fushman, 2019) AQA NA/NA/131 Consumer Health
MEDIQA-ANS (Savery et al., 2020) AQA NA/NA/156 Consumer Health
BIOASQ-QA (Tsatsaronis et al., 2015; Krithara et al., 2023) AQA 4733/697/363 General Biomedical
MASHQA (Zhu et al., 2020) AQA 27728/3587/3493 Consumer Health
MEDQUAD (Ben Abacha and Demner-Fushman, 2019) AQA 14068/981/1358 General Medical
MEDINFO (Ben Abacha et al., 2019) AQA NA/NA/663 Consumer Medication
Total Questions across Splits - 46529/5265/6164 -

Table 1: Overview of the M-QALM datasets. We present the size in terms of train/val/test splits. We create a manual
train/val split for BIOASQ-MCQ, PROCESSBANK, PUBMEDQA, BIOASQ-QA and MEDQUAD.

to application-grounded evaluation is barely dis-070

cussed (Doshi-Velez and Kim, 2017). Taken to-071

gether, these problems might taint the credibility of072

conclusions about the successful adaption of LLMs073

drawn from such experiments.074

Given such difficulties, we approach the prob-075

lem of evaluating LLM adaption from a comple-076

mentary angle. Specifically, we ask: Do LLMs077

possess the necessary pre-requisites to succeed in078

the clinical and medical domains? Absent an es-079

tablished theory of how knowledge is acquired and080

organised in LLMs, the present work is guided by081

the established theories of knowledge acquisition082

in humans (Adams, 2015). Typical NLG tasks,083

such as summarisation, are higher-level cognitives084

that require the understanding of learned knowl-085

edge and its application in new contexts (Bloom,086

1956). They build on the most fundamental capa-087

bility of reading comprehension (Kintsch, 1988):088

the construction of a text-base and its integration089

with previously acquired background knowledge.090

In NLP research, this process is evaluated by open-091

book Question Answering (QA), the task of either092

generating (abstractive, AQA) or selecting among093

presented options (multiple-choice, MCQA) the cor-094

rect answer for a question, where potentially not all095

necessary information is included in the question or096

the presented context. MCQA evaluation does not097

suffer from the issues pertaining to NLG metrics, as098

performance is established by exact match. Thus,099

conclusions obtained from such evaluations tend to100

be more robust, if the quality of the benchmark is101

sufficient.102

Therefore, in this paper we focus on the task103

of QA, to evaluate the knowledge recall and com- 104

prehension pre-requisites of LLMs for successful 105

adaption to the medical domain. We present an ex- 106

haustive, publicly available QA benchmark called 107

M-QALM including 16 MCQA datasets. To enable 108

future research on NLG-based QA, we complement 109

M-QALM by 6 high-quality AQA datasets, where 110

the ground-truth answer is an unconstrained string. 111

With such a standardized benchmark, we conduct 112

an extensive evaluation of the capabilities of openly 113

available general-purpose and medical LLMs, both 114

“out-of-the-box” and after fine-tuning on M-QALM. 115

Our findings provide insights into the strengths 116

and weaknesses of different LLMs across different 117

datasets, question categories and QA tasks. Overall, 118

we find their performance lacking, both compared 119

to humans and to proprietary LLMs. Further analy- 120

sis reveals promising tendencies of domain-specific 121

pre-training and fine-tuning to bridge this gap and 122

to generalise to new QA datasets. 123

2 Related Work 124

Large Open-domain QA benchmarks The avail- 125

ability of QA datasets from multiple domains and 126

sources has enabled the curation of large and di- 127

verse QA benchmarks (Dua et al., 2019; Fisch et al., 128

2019; Talmor and Berant, 2019). Such resource col- 129

lections enable researchers to perform large-scale 130

empirical studies to understand, how well language 131

models can generalise to new questions from new 132

domains, or sources or how fine-tuning can impact 133

this performance. While multiple studies exist in 134

the general domain, to the best of our knowledge, 135

no such large-scale study has been carried out for 136
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QA in the clinical domain. In this paper we aim to137

address this gap.138

Evaluation in the clinical domain Datasets that139

evaluate the lowest-level cognitive task of knowl-140

edge recall and reading comprehension have been141

previously proposed in the medical domain (Jin142

et al., 2021; Vilares and Gómez-Rodríguez, 2019;143

Pal et al., 2022). They feature questions commonly144

found in medical licensing examinations, including145

the US Medical Licensing Exam (USMLE). M-146

QALM unifies the existing literature by incorporat-147

ing licensing exam questions from diverse regions,148

such as India and Spain. We go beyond the scope149

of the general medical domain, covering special-150

ist topics such as Ophtalmology and Alzheimer’s151

disease.152

Beyond factual recall and comprehension,153

Fries et al. (2022) collect a unified bio-medical154

benchmark, featuring NLP primitives such as155

sentence(-pair) classification or entity recognition156

and linking. Aiming at higher, more task-specific157

cognitives, Singhal et al. (2023a) introduce Mul-158

tiMedQA, including HealthSearchQA, which re-159

quires models to generate high-quality free-form160

answers. Similarly, He et al. (2023) introduce a161

multi-domain benchmark for evaluating generation162

and classification capabilities on a diverse set of163

in-hospital downstream tasks. Other researchers164

looked to evaluate the quality and factuality of165

generations (Umapathi et al., 2023) and synthe-166

sised general-purpose medical instructions (Flem-167

ing et al., 2023). Our work is complementary, be-168

cause we evaluate knowledge recall and compre-169

hension as a pre-requisite of higher-level cognitive170

tasks, such as understanding and application—the171

focus of previously discussed works.172

3 M-QALM Datasets173

The primary goal of M-QALM is to develop a com-174

prehensive, open-source repository of medical QA175

datasets to assess the recall of medical knowledge176

in LLMs. To obtain such a collection, we perform177

an exhaustive literature and resource search using178

the terms “clinical OR medical”, “Question An-179

swering OR QA” and include a dataset or resource,180

if it satisfies the following criteria: (i) The lan-181

guage is English, as medical documents are usually182

written in English, even in non English-speaking183

countries; (ii) The questions and answers are on184

general, specialist or consumer-facing medical top-185

ics; (iii) The resource is openly available without186

restrictive licensing or data agreements; (iv) The re- 187

source evaluates the task of MCQA or AQA (v) The 188

ground truth is collected or reviewed by domain 189

experts. 190

The result is M-QALM—a comprehensive collec- 191

tion of 22 datasets designed to thoroughly evaluate 192

the clinical knowledge of LLMs. Table 1 gives an 193

overview of the collected MCQA and AQA datasets, 194

including task formulation, size and domain. For 195

further details on each of the datasets, we refer to 196

the Appendix. 197

Knowledge Source Categorization The MCQA 198

datasets within the M-QALM benchmark cover a 199

diverse range of medical domains. To be able to 200

perform fine-grained analysis of both the topics 201

covered in these datasets as well as the models 202

performance, we categorise the MCQA datasets into 203

eleven high-level categories, representing different 204

facets of medical knowledge. 205

To do so, we leverage available meta-data 206

from the source datasets, MEDMCQA, HEADQA, 207

MMLU and BIOASQ-MCQ. We categorize the 208

PROCESSBANK, PUBMEDQA and BIOMRC 209

datasets into a distinct twelfth Within Context 210

category, as the relevant knowledge is presented in 211

the context. The USMLE and QA4MRE lack nec- 212

essary meta-data, thus we train a BioBERT-based 213

classifier (Lee et al., 2019) to assign questions into 214

one of the eleven elicited categories using the la- 215

bels from the other datasets. The classifier achieves 216

71.56% (micro-)averaged F1 score on a held-out 217

test set, which we deem sufficient. 218

Table 4 shows that nearly half of all questions 219

(47%) fall into the Basic and Life Sciences 220

and General Medicine category. Miscellaneous 221

and Within Context account for the least per- 222

centage of questions (3%), with other ques- 223

tions more evenly distributed amongst cate- 224

gories. Diagnostic Sciences, Women’s and 225

Children’s Health and Pharmacology and 226

Anesthesia account for nearly 30% of questions. 227

4 Empirical Evaluation 228

Considering the M-QALM datasets, we investigate 229

how well existing, open-source LLMs are able to 230

recall clinical knowledge and integrate it into a 231

given context in order to succeed on the benchmark. 232

Specifically, we focus on performance in zero-shot 233

setting, and after fine-tuning on M-QALM training 234

portions. 235

In the Zero-shot setting: 236
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• RQ1. How well do open-source LLMs recall nec-237

essary clinical knowledge when they are tested238

on M-QALM?239

• RQ2. Does open-domain instruction fine-tuning240

of LLMs improve their ability to do so?241

• RQ3. Does domain-specific fine-tuning improve242

performance on M-QALM?243

In the Fine-tuned setting:244

• RQ4. Does finetuning on M-QALM improve per-245

formance on unseen data from datasets seen dur-246

ing training?247

• RQ5. Does fine-tuning improve performance on248

unseen M-QALM datasets?249

4.1 Study Setup250

To seek evidence for RQs:1-3 empirically, we eval-251

uate several LLMs and their instruction-tuned ver-252

sions on the test splits of M-QALM in zero-shot1253

manner. To answer RQ4 and RQ5, we fine-tune254

LLMs on the training portion of M-QALM and eval-255

uate on test splits of datasets both seen and unseen256

during training. We complement our evaluation257

with additional automated and manual error anal-258

yses to identify causes for model successes and259

failures.260

Models: To assess the zero-shot capabilities261

of models (RQ1 and RQ2), we include a di-262

verse array of open-source decoder-only models263

with parameter scales ranging from 3B-13B. We264

use models from MPT and MPT-Instruct (7B) (Mo-265

saicML, 2023), Falcon and Falcon-Instruct (7B)266

(Almazrouei et al., 2023), LLaMA 1 (7B and 13B)267

(Touvron et al., 2023a) and LLaMA 2 and LLaMA 2-268

chat (7B and 13B) (Touvron et al., 2023b). In269

addition to these models, we also use two instruc-270

tion fine-tuned encoder-decoder models: Flan-T5271

(3B and 11B) (Wei et al., 2021). Models with272

Instruct or Chat appended to their names are in-273

struction fine-tuned (Ouyang et al., 2022) versions274

of their base models. The details of the models275

are given in Table 10. To address RQ3, we evalu-276

ate ChatDoctor (7B) (Li et al., 2023), MedAlpaca277

(7B) (Han et al., 2023) and PMC-LLama (Wu et al.,278

2023). To address RQ4, we fine-tune models using279

the training set of the M-QALM datasets. When280

official validation splits are unavailable, we em-281

ploy a random split of up to around 20% of the282

1For MCQA evaluation in the zero-shot setting (where mod-
els are not explicitly fine-tuned for MCQA tasks), we use a
1-shot prompt—giving an example to the model, and find that
it adheres better to the MCQA format and the standard 5-shot
prompt for MMLU datasets.

data for validation purposes. If no training datasets 283

are available, we do not use this dataset for fine- 284

tuning and only consider the test split of the respec- 285

tive datasets to answer RQ5. For evaluating AQA, 286

we use a sub-sampled version of the test sets of 287

MASHQA (500 questions) and MEDQUAD (200 288

questions by sampling 100 questions from the two 289

holdout websites), while we use the other datasets 290

as they are. For MCQA, similar to Singhal et al. 291

(2023a), we evaluate all models on the validation 292

set of MEDMCQA since the answers for the test 293

set are not released publicly. 294

Finetuning and hyperparameters: Since the 295

number of parameters for most of our models 296

are in the billions, we follow a more accepted 297

practice of using parameter-efficient fine-tuning. 298

Specifically, we use QLora and 4-bit quantization 299

(Dettmers et al., 2023) for fine-tuning. We utilize 300

8-bit quantization for evaluating Flan-T5 (11B), 301

LLaMA 1 (13B), LLaMA 2 (13B) and LLaMA 2-Chat 302

(13B) (Dettmers et al., 2022). We use A100-40G 303

GPUs for all our experiments. The other hyper- 304

parameters used to train our models are reported in 305

the Appendix (Table 11). 306

Evaluation measures: We use Accuracy to 307

measure the performance of the model on MCQA 308

datasets; for AQA datasets, we use ROUGE-L (Lin, 309

2004), BERTScore (Zhang et al., 2020) (based on 310

deberta-xlarge-mnli) and METEOR (Banerjee and 311

Lavie, 2005), which is found to correlate better 312

with human judgments than other metrics on AQA 313

(Chen et al., 2019). 314

4.2 Results and Analysis 315

In this section, we report and analyse the findings 316

of our empirical study. 317

4.2.1 Zero-shot Evaluation Results 318

Table 2 reports the dataset-averaged scores of the 319

zero-shot evaluation of language models as evi- 320

dence towards RQs:1-3. Note that in this way, each 321

dataset contributes equally to the average, regard- 322

less of its size. Micro-averaged MCQA accuracy 323

scores are reported in Table 4. However, these are 324

biased towards datasets with more examples (i.e., 325

MEDMCQA). While the results between micro- 326

and by-dataset-averaged metrics might differ in 327

detail (consult Appendix G for a break-down by 328

dataset), we not that the average mean difference 329

between the metrics for all models is 4.2, which 330

suggests that reported trends do not depend on the 331

averaging method. 332
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MCQA AQA

Acc RL BS MTR
B

as
e

LLaMA 1 (7B) 31.9 14.0 54.2 20.5
LLaMA 1 (13B) 44.1 14.4 54.0 20.3
LLaMA 2 (7B) 42.9 14.9 55.3 21.1
LLaMA 2 (13B) 47.1 15.0 56.4 22.5
MPT (7B) 27.6 13.3 52.6 21.1
Falcon (7B) 34.7 14.0 54.1 20.0

In
st

ru
ct

io
n

tu
ne

d LLaMA 2-chat (7B) 45.9 15.0 58.0 23.3
LLaMA 2-chat (13B) 50.3 15.3 58.0 23.6
MPT-Instruct (7B) 31.6 15.8 59.7 15.6
Falcon-Instruct (7B) 31.8 17.2 62.4 17.4
Flan-T5 (3B) 51.8 10.8 55.0 7.4
Flan-T5 (11B) 56.5 11.5 56.3 8.2

A
da

pt
ed ChatDoctor (7B) 42.8 17.4 62.3 18.7

MedAlpaca (7B) 48.8 15.5 58.9 15.6

PMC-LLama (13B) 53.7 19.7 60.7 19.0

Table 2: Zero-shot performance of base (top),
instruction-tuned models (middle) and domain-adapted
(bottom) models. Metrics are Accuracy for MCQA;
Rouge-L, BERTScore, and METEOR for AQA.

Table 2 shows that LLMs exhibit strong zero-333

shot capability on MCQA and AQA datasets, cor-334

roborating the findings of Singhal et al. (2023a).335

Considering LLMs of the same size (i.e., 7B),336

LLaMA 2 performs best, possibly due to larger diver-337

sity in pre-training data—LLaMA 2 is trained on the338

most tokens. Another difference is the mixture of339

datasets used for pre-training, which is not revealed340

in some cases (c.f. Table 10 in Appendix).341

Unsurprisingly, across all models of same archi-342

tecture, scale predicts model performance, even343

without domain-specific adaptation of LLMs on the344

medical domain. For example, LLaMA 2 (13B) per-345

forms better on MCQA (+4.2 Accuracy improve-346

ment) compared to the 7B version. Figure 7 in347

the Appendix shows the relationship between the348

number of parameters and performance.349

To address RQ2, we investigate whether im-350

provements from instruction fine-tuning also apply351

to the clinical domain of M-QALM. The results are352

reported in the middle part of Table 2.353

Surprisingly, instruction fine-tuned models354

perform better than their corresponding Base ver-355

sions, despite the fact that the instruction set used356

for fine-tuning contains only tasks in the general357

domain, see Table 10 (bottom) and compare *-358

Instruct/Chat with their base versions (top). Among359

them, Flan-T5 models show the best zero shot per-360

formance on MCQA, outperforming all comparable361

decoder-only models. Seemingly, instruction fine-362

tuning enables models to obtain representations of 363

question and context which are beneficial for fact 364

recall. 365

We note that bigger models are not always 366

better—the choice of model architecture and the 367

dataset for instruction fine-tuning can have a bigger 368

impact on performance than model size alone. For 369

example the encoder-decoder Flan-T5 (3B) model 370

outperforms LLaMA 2-chat (13B) on average on the 371

MCQA task, despite being four times smaller in 372

size. 373

The performance of domain-adapted models is 374

reported in Table 2 (bottom), as evidence for RQ3. 375

For MCQA, both MedAlpaca and ChatDoctor in- 376

deed exhibit improvements in Accuracy over their 377

respective 7B and 13B LLaMA 1 base and versions; 378

however they fail to reach the strong zero-shot per- 379

formance of Flan-T5 (11B). 380

In contrast, PMC-LLama performs well due to 381

continued pre-training on biomedical corpora be- 382

fore instruction tuning on biomedical and clinical 383

datasets. The latter results in exceptionally high 384

scores on the MEDINFO AQA dataset (See Table 19 385

in Appendix). This dataset, along with LIVEQA 386

was used as part of the instruction tuning process, 387

leading to evaluation on these dataset not being 388

“zero-shot”2. Scores on LIVEQA, however, are not 389

inflated, compared to LLaMA 2(-chat) (13B). This 390

is possibly because we use a filtered version of 391

LIVEQA which contains only challenging answers 392

that with sufficiently good expert quality rating. 393

PMC-LLama demonstrates significant improvements 394

over other open-source LLMs on MCQA datasets 395

such as USMLE, MEDMCQA and MMLU. 396

Summarily, we conclude that while available 397

LLMs adapted to the medical domain successfully 398

improve performance of the adapted models, they 399

appear to have no improved domain knowledge 400

compared to other available open-domain mod- 401

els. Evaluating these adaptation techniques on 402

stronger base models is an exciting avenue for fu- 403

ture research. 404

Importantly, we note that none of the evalu- 405

ated open-source LLMs outperform humans: While 406

the passing score for USMLE is 60%3, we ob- 407

serve the best zero-shot scores for USMLE are 408

43% for LLaMA 2, and 54% for the domain-adapted 409

PMC-LLama, both below the passing score. Mean- 410

2https://huggingface.co/datasets/axiong/pmc_
llama_instructions

3https://www.usmle.org/bulletin-information/
scoring-and-score-reporting
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while, GPT-4 (OpenAI, 2023) with a customized411

prompting strategy labeled MedPrompt (Nori et al.,412

2023) achieves 90.2% while Med-PALM 2 (Sing-413

hal et al., 2023b) achieves scores of 86.5% on414

USMLE. Similarly, for the PubmedQA dataset, hu-415

man performance is 78% (Jin et al., 2019), com-416

pared to 72.4% of Flan-T5. To summarize: While417

available LLMs exhibit performance significantly418

higher than random chance “out-of-the-box”, there419

is still a significant gap compared to humans420

and proprietary LLMs (Singhal et al., 2023a,b)421

(See Appendix A).422

4.2.2 Impact of Fine-tuning423

Given the scale of M-QALM, we are able to fine-424

tune models on parts of the data, to address RQ4425

and RQ5. We fine-tune four models on MCQA and426

AQA separately, given the different nature of these427

datasets, but joint fine-tuning on both MCQA and428

AQA did not yield significantly different results.429

We fine-tune the models only on the MCQA sub-430

set of datasets first (c.f. Table 3). We find that431

the fine-tuned models perform better compared432

to their non-fine-tuned counterparts. Decoder-433

only models like MPT (7B) benefit more than others434

(+25.6 Accuracy improvement). Fine-tuning mod-435

els on the data seems to close the gaps introduced436

by different model architectures and pre-training437

data: The standard deviation of the evaluated mod-438

els’ accuracies reduces from 9.0 in the zero-shot439

setting, to 1.7 after fine-tuning. This suggests that440

LLMs can benefit from task-specific fine-tuning to441

address seemingly sub-optimal architecture or pre-442

training conditions. For AQA, Flan-T5 benefits443

more from fine-tuning compared to the decoder-444

only models, possibly by better aligning generated445

outputs to the expected format of the answer. De-446

coder models present inconsistent results with im-447

provements in ROUGE-L and BERTScore at the ex-448

pense of lower METEOR scores, which raises con-449

cerns about the reliability of the AQA metrics.450

MCQA AQA

Acc RL BS MTR

LLaMA 2 (7B) 53.5 +10.6 17.7 +2.8 60.8 +5.5 16.9 −4.2

Falcon (7B) 49.3 +14.6 17.4 +3.4 60.4 +6.3 17.1 −2.9

MPT (7B) 53.2 +25.6 17.3 +4.0 60.0 +7.4 17.2 −3.9

Flan-T5 (3B) 52.9 +1.1 15.9 +5.1 56.8 +1.8 15.6 +8.2

Table 3: Model fine-tuning is performed either on MCQA
or AQA datasets. Reported are Accuracy for MCQA;
Rouge-L, BERTScore, and METEOR for AQA. Sub-
scripts indicate improvement over zero-shot versions.

Scaling up models introduces practical problems 451

of deploying the model in real-world scenarios— 452

smaller models may be preferred to larger ones 453

due to faster inference times and lower memory 454

footprints. We find that fine-tuning helps com- 455

pensate for scale. Fine-tuned LLaMA 2 (7B) signifi- 456

cantly outperforms the zero-shot LLaMA 2 (13B) 457

(+6.4 Accuracy gain on MCQA, +2.7 ROUGE-L 458

gain and +4.4 BERTScore gain on AQA). Similarly, 459

the fine-tuned Flan-T5 (3B) outperforms zero-shot 460

LLaMA 2 (13B) on 8 out of 16 MCQA datasets (see 461

Tables 13 and 15). 462

In summary, we conclude that task-specific fine- 463

tuning improves performance, mitigating weak- 464

nesses due to size, architecture and training 465

data. 466

Finally, we report the potential of LLMs fine- 467

tuned on in-domain data to generalize to medical 468

datasets unseen during training to answer RQ5. To 469

this end, during fine-tuning, we hold out ten MCQA 470

and four AQA datasets presented in Figures 2 and 3. 471

Figure 2 shows the performance of LLaMA 2 (7B) 472

and Flan-T5 (3B) models on the four held-out 473

AQA evaluation sets on various metrics. While 474

LLaMA 2 does not appear to generalise to new 475

unseen AQA datasets, Flan-T5’s scores improve 476

across the board. We note however, that this re- 477

sult might depend on the choice of metric, as Fig- 478

ures 8 and 9 in the Appendix paint a different pic- 479

ture. Indeed, across all conducted experiments, 480

only ROUGE-L scores show a statistically signifi- 481

cant Spearman rank correlation with the reliable 482

MCQA accuracy measure (r = 0.616, p = 0.008, 483

more details in Appendix B). This suggests that 484

other metrics used are either a sub-optimal choice 485

or that they measure some other, complementary as- 486

pect not captured by accuracy nor ROUGE-L. These 487

findings showcase the low robustness of overlap- 488

based NLG metrics discussed in the introduction. 489

Investigating the more robust MCQA setting, Fig- 490

ure 3 (comparing blue ZS with orange AQA-FT 491

bars) shows that fine-tuning on AQA does not im- 492

prove performance on unseen MCQA datasets. 493

This suggests that higher scores on unseen AQA 494

datasets might stem from better aligning genera- 495

tions to the expected answer form of AQA answers, 496

which shows improvements in some of the AQA 497

metrics, rather than acquiring additional medical 498

knowledge during fine-tuning. 499

Figure 3 (comparing blue ZS with green MCQ- 500

FT) suggests that models indeed can learn to 501
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Category Support Flan-T5 (ZS) Flan-T5 (FT) MPT (ZS) MPT (FT) Falcon (ZS) Falcon (FT) LLaMA 2 (ZS) LLaMA 2 (FT)
D

om
ai

n General Medical 9275 37.9 44.9 26.5 49.5 29.5 46.9 37.6 50.5
General Biomedical 683 64.4 71.0 32.4 70.0 56.7 68.4 58.9 68.5

Biological 294 71.4 70.4 39.5 71.1 39.1 58.2 57.8 68.4

K
no

w
le

dg
e

So
ur

ce

General Medicine 2675 38.0 43.2 26.0 46.4 30.1 46.4 36.6 50.0
Basic and Life Sciences 2235 38.9 44.3 26.9 52.6 30.6 49.4 40.0 52.5

Dental and Oral Health 1318 34.8 42.9 25.9 44.3 30.7 43.8 36.1 44.2

Pharmacology and Anesthesia 784 39.7 48.1 29.0 55.6 28.8 54.0 42.9 59.4
Within Context 710 74.1 75.2 37.2 71.5 52.7 66.5 60.8 67.7

Diagnostic Sciences 640 32.2 43.1 26.4 51.1 30.3 46.4 37.2 47.5

Supportive and Preventive Services 599 48.2 56.6 23.7 55.1 27.9 48.1 39.9 56.3

Women’s and Children’s Health 507 30.2 42.6 27.2 51.7 28.4 43.0 34.3 49.9

Mental and Behavioral Health 496 50.0 57.9 29.4 55.4 31.5 49.2 40.7 59.1
Sensory Organs 205 29.8 42.0 27.8 45.4 28.8 42.4 33.2 42.0

Miscellaneous 45 42.2 44.4 20.0 60.0 24.4 44.4 31.1 40.0

Musculoskeletal and Dermatology 38 18.4 26.3 18.4 44.7 34.2 42.1 28.9 44.7
Micro-averaged Accuracy 10252 40.6 47.4 27.3 51.5 31.6 48.6 39.6 52.2
Category-averaged Accuracy 12 39.7 47.2 26.5 52.8 31.5 48.0 38.5 51.1

Table 4: Performance of LLMs in the zero-shot and fine-tuned setting across various categories on the test set.

LIVEQA

MEDIQA-ANS

MEDQUAD
MEDINFO

0
0
.2

0
.4

ME
TE

OR

LLAMA-ZS LLAMA-AQA-FT

FLAN-T5-AQA-ZS FLAN-T5-AQA-FT

Figure 2: Performance of base and AQA-fine-tuned
LLaMA 2 and Flan-T5 models on unseen AQA test sets.

acquire domain-specific knowledge during fine-502

tuning, as MCQA-tuned models consistently per-503

form better than their zero-shot counterparts. This504

seemingly contradicts the previous finding that505

models fail to acquire additional medical knowl-506

edge when fine-tuned on the AQA datasets.507

BIO
MRC-A

BIO
MRC-B

QA4MRE

MMLU-AN

MMLU-CK

MMLU-CB

MMLU-CM

MMLU-M
G

MMLU-PM
OPTH

0
0
.2

0
.4

0
.6

0
.8

A
cc

ur
ac

y

ZS MCQA-FT AQA-FT

Figure 3: Performance of base, MCQA-tuned and AQA-
tuned LLaMA 2 model on unseen MCQA test sets.

Further analysing the causes of these generalisa-508

tion capabilities, we find that the reported general-509

isation capabilities might be over-stated, as evalu-510

ation questions from the unseen datasets have se-511

mantically similar counterparts in the fine-tuning512

data. However, a manual analysis of the cases513

where fine-tuned models outperform their zero-shot 514

counter-parts reveals that only about 60% of the 515

improvement can be explained by presence of such 516

similar examples. Details of this analysis are re- 517

ported in Appendix C. 518

Based on these findings, we conclude that fine- 519

tuning can serve as a partial solution for achiev- 520

ing generalisable adoption to the medical do- 521

main. 522

4.3 Category-wise and manual error analysis 523

To better understand the performance of zero- 524

shot and fine-tuned performance of models across 525

MCQA, we analyze the performance of the models 526

broken down by sub-domain and knowledge source. 527

We calculate the accuracy of the models in their 528

zero-shot and fine-tuned settings for each category, 529

as shown in Table 4. 530

Models tend perform better on the biological 531

and biomedical sub-domains. We posit that the 532

reason for this is the fact that biomedical informa- 533

tion is more readily available in the pre-training 534

corpora of the models, e.g. in form of biomedical 535

abstracts (see also Table 10 in the Appendix). Fur- 536

thermore, fine-tuning improves performance for 537

all categories, but the gap between medical and 538

biomedical domains still persist, indicating that 539

medical questions are indeed harder to solve, even 540

though they prevail in the training set. Perhaps 541

more worryingly, the Consumer Health AQA scores 542

do not improve as much as for other domains, even 543

after fine-tuning (See Appendix, Table 20). 544

For knowledge sources, notably, fine-tuned 545

Flan-T5 (3B) excels in Within Context and 546

Supportive and Preventive Services, also 547
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Reasoning Type Support Flan-T5 (ZS) Flan-T5 (FT) MPT (ZS) MPT (FT) Falcon (ZS) Falcon (FT) LLaMA 2 (ZS) LLaMA 2 (FT)

Factual 131 48.1 49.6 23.7 51.1 31.3 49.6 47.3 51.1
Conceptual 59 27.1 39.0 27.1 35.6 40.7 47.5 33.9 42.4

Quantitative/Arithmetic 10 40.0 30.0 10.0 20.0 30.0 40.0 30.0 30.0

Table 5: Performance of LLMs in the zero-shot and fine-tuned setting on three reasoning types identified in M-QALM.

showing strong zero-shot capabilities in these548

categories, perhaps due to architecture or pre-549

training data. Similarly, fine-tuned MPT (7B) and550

LLaMA 2 (7B) show superior performance across551

categories. However, despite fine-tuning benefits,552

models still underperform in areas like General553

Medicine, Basic and Life Sciences, and554

Dental and Oral Health, which form the ma-555

jority of the benchmark. Overall, we conclude556

that Fine-tuning improves model performance557

and sub-domains but knowledge gaps still per-558

sist across different domains and knowledge559

sources.560

Finally, we sample 200 MCQA-questions from561

M-QALM evaluation data, and annotate the type562

of reasoning required to solve the problem: we563

distinguish three broad categories: Factual ques-564

tions, which only require to recall necessary565

knowledge, Conceptual questions, which require566

reading comprehension—the recall of knowledge567

and its combination with a given context—and568

Quantitative/Arithmetic questions, which re-569

quire the calculation of quantities, such as proba-570

bilities or dosages. The majority of analyzed ques-571

tions fall into the Factual category. Together with572

the Conceptual category, these questions account573

for 95% of annotated questions. These two cat-574

egories probe the capabilities required for read-575

ing comprehension (Kintsch, 1988), validating the576

use of M-QALM for the stated purpose of evaluat-577

ing comprehension and recall. Table 5 describes578

the accuracy of the four base and fine-tuned mod-579

els: we find that Factual questions dominate the580

sample and models tend to perform best in this581

category, but even after fine-tuning on M-QALM,582

their performance hardly surpasses 50%, indicat-583

ing that they may yet lack the necessary knowl-584

edge. However, models perform worse on the585

Conceptual questions, suggesting that it is indeed586

harder to integrate necessary knowledge rather than587

just recall it. Fine-tuning improves performance588

for all models for both types of reasoning. Fi-589

nally, Quantitative/Arithmetic are the worst-590

performing category, even after fine-tuning. This591

is unsurprising, as arithmetic capabilities emerge592

with larger model scale (Wei et al., 2022). For 593

an extended error analysis of the best-performing 594

LLaMA 2 fine-tuned model, consult Appendix D. 595

5 Conclusion 596

In this work, we introduce M-QALM, a compre- 597

hensive collection of clinical datasets compris- 598

ing 16 multiple-choice and 6 abstractive question- 599

answering datasets. Our study encompasses an ex- 600

tensive empirical investigation of open-source lan- 601

guage models, some of which have upto 13 billion 602

parameters. We assess their clinical and biomedical 603

knowledge, their capacity to acquire such knowl- 604

edge through training on M-QALM, and their ability 605

to generalize to previously unseen datasets. 606

Our results highlight the strengths and limita- 607

tions of LLMs on MCQA and AQA, showing that 608

while performing significantly better than a ran- 609

dom guess baseline, they still fall significantly short 610

in performance compared to proprietary language 611

models and humans. This is true even after fine- 612

tuning on M-QALM, which demonstrates potential 613

improvements, especially in the context of instruc- 614

tion fine-tuned models like Flan-T5. Based on 615

our findings, we caution the unconstrained use of 616

open-source LLMs (Li et al., 2023; Han et al., 2023) 617

as assistants to help perform medical tasks or pro- 618

vide answers to medical queries, to experts or lay 619

people alike, as these seem to lack the necessary 620

knowledge required in the medical domain. 621

We make the dataset, experiment code and eval- 622

uation protocol publicly available under https: 623

//anonymized, to allow future developers of medi- 624

cal LLMs to assess the foundations of their models’ 625

knowledge, as our evaluation shows that architec- 626

ture of language models, the choice of datasets for 627

pre-training and instruction fine-tuning can greatly 628

impact their knowledge to the extent it can be as- 629

sessed by M-QALM. 630

Finally, we show inconsistencies arising from 631

the use of different AQA metrics—in future work 632

we will supplement the automated metrics by fine- 633

grained expert-driven manual evaluation of LLM’s 634

answers on M-QALM to learn to automate (some 635

dimensions of) these expert judgements. 636
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Limitations637

In this paper, we evaluate the medical or clinical638

knowledge of LLMs by measuring their capability639

of answering test questions. While this can be a640

useful proxy-measure of a model’s domain knowl-641

edge, it is insufficient to gauge its potential applica-642

tion in a real-world scenario. A multi-dimensional643

analysis of a model’s behaviour, including judging644

the completeness, harmlessness and usefulness of645

generated answers, is required in addition to solely646

evaluating their correctness.647

Furthermore, the aggregated resource presented648

in this paper might be seen as lacking diversity,649

as all collected datasets are in English. To make650

inferences about the capabilities of evaluated mod-651

els in other languages, a more diverse dataset with652

examples in other languages is required.653

For our finetuning experiments, we only use654

parameter-efficient finetuning methods (PEFT)655

with QLora due to the high compute requirements656

for full-finetuning. We have not investigated the657

impact of the full-finetuning of these LLMs on our658

benchmark.659
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A Performance of other methods for1061

MCQA datasets1062

We report the prior and current best scores on1063

MCQA datasets from current literature in Table 9.1064

GPT-4 combined with a prompting strategy la-1065

beled MedPrompt performs the best currently on1066

USMLE, MEDMCQA, and the MMLU datasets.1067

Of the 16 datasets, we can obtain comparable1068

scores for 12. For HEADQA, the results reported1069

by (Vilares and Gómez-Rodríguez, 2019) and (Liu1070

et al., 2020) are across individual sections, whereas1071

we calculate the scores overall across all questions.1072

The method proposed by (Liu et al., 2020), named1073

MurKe achieves average scores of 45.5% on Bi-1074

ology questions, 42.4% on Medicine questions,1075

42.3% on Nursing Questions, 48.0% on Pharma-1076

cology questions, 44.3% on Psychology questions1077

and 44.3% on Chemistry Questions, with an over-1078

all macro-average of 44.4% across all the sections.1079

Similarly, for the OPHTH dataset, the results re-1080

ported by (Raimondi et al., 2023) are separate for1081

Part 1 and Part 2 questions. Bing Chat performs the1082

best on Part 1 questions, achieving a performance1083

of 78.9%, and GPT-4 with prompting obtains a per-1084

formance of 88.4% on Part 2 questions (Raimondi1085

et al., 2023). We could not find directly compara-1086

ble scores for the BioASQ MCQ datasets as the1087

test sets are provided in different batches, with the1088

results on the BioASQ leaderboard also reported1089

separately in terms of batches. We combine the1090

questions across all the batches into one combined1091

test set. For BIOMRC - Tiny A, we do not have1092

comparable scores from prior works as we formu-1093

late this task differently by providing the names of1094

the original entities to the model.1095

B Correlation between AQA and MCQA1096

metrics1097

We use ROUGE-L, BERTScore and METEOR for eval-1098

uating the performance of LLMs for AQA. We try to1099

understand which of the three metrics might be the1100

most reliable for evaluation. Assuming that MCQA1101

evaluations give a more robust estimate of models’1102

capabilities due to the exact nature of evaluation,1103

we calculate the correlation between the MCQA ac-1104

curacy and each of the AQA metrics. Removing the1105

Flan-T5-ZS models as outliers, we calculate the1106

Spearman Rank Correlation and obtain the follow-1107

ing results:1108

The scores indicate that only ROUGE-L scores1109

show a reliable and statistically significant corre-1110

Metrics Spearman R Correlation P-value

MCQA Accuracy and AQA ROUGE-L 0.616 0.008

MCQA Accuracy and AQA BERTScore 0.353 0.164

MCQA Accuracy and AQA METEOR -0.192 0.461

Table 6: Spearman Rank Correlation between MCQA
accuracy and AQA metrics along with their statistical
significance

lation to MCQA Accuracy scores, suggesting that 1111

this might be the more reliable metric of the three. 1112

However, we wish to stress that these results must 1113

not be taken as definitive because the underlying 1114

assumption is that models performing better on 1115

MCQA should also perform better on AQA. 1116

C Analysis of the causes of generalisation 1117

to unseen datasets 1118

We aim to discriminate whether MCQA fine-tuned 1119

models’ performance on unseen MCQA datasets 1120

can be attributed to their ability to generalize in an- 1121

swering medical questions, or if their performance 1122

is influenced by memorization of questions from 1123

the training set. To this end, we examine three 1124

evaluation-only MCQ datasets not used in the train- 1125

ing split of M-QALM: Clinical Knowledge Tests 1126

(MMLU-CK) and Medical Genetics (MMLU- 1127

MG) from MMLU and the OPHTH dataset. We uti- 1128

lize semantic similarity algorithms to retrieve ques- 1129

tions in the training sets that closely resemble those 1130

in these test sets and manually filter the retrieved re- 1131

sults. We identify 6 out of 92, 12 out of 265, and 17 1132

out of 100 questions in the OPHTH, MMLU-CK, 1133

and MMLU-MG datasets, respectively, that have 1134

similar counterparts in the MEDMCQA dataset 1135

which was used to fine-tune the LLaMA 2 model 1136

This suggests that scores might be inflated due to 1137

train-test leakage. 1138

Next, we focus on questions that the LLaMA 2 1139

(7B) model answered wrongly, but which were 1140

corrected by MCQA-fine-tuning. We then cross- 1141

reference these with the closest equivalent ques- 1142

tions in the MEDMCQA dataset. This allows us to 1143

categorize the correct answers from near-duplicate 1144

memorization or the model’s generalized learning 1145

capabilities. We find 5, 2, and 5 questions in the 1146

three investigated datasets, respectively, where the 1147

MCQA-fine-tuned model outperformed its zero-shot 1148

counterpart and identified closely related questions 1149

in MEDMCQA. Of these, 7 questions were near- 1150

duplicates with identical answers, while the remain- 1151

ing 5 would have required some level of clinical un- 1152

derstanding for the model to answer them correctly. 1153
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This suggests that the improved performance of1154

instruction-tuned models on unseen datasets can1155

be partially attributed to exposure to near-identical1156

questions during training.1157

D Error Analysis of LLama-21158

In our manual error analysis of a fine-tuned1159

LLaMA 2 (7B) model on MCQA, we examined1160

200 non-Within Context questions where1161

the model erred, categorizing them into1162

Factual, Conceptual Understanding, and1163

Quantitative/Arithmetic. Factual ques-1164

tions involve direct medical knowledge recall,1165

Conceptual Understanding questions as-1166

sess the application of medical and clinical1167

concepts, and Quantitative/Arithmetic ques-1168

tions require mathematical skills for correct1169

answers. The model incorrectly answered 1341170

Factual, 52 Conceptual Understanding, and1171

14 Quantitative/Arithmetic questions (Table1172

7). Comparing these errors to a random sample1173

of 200 questions from the test set revealed1174

similar error rates across categories, reflecting1175

the general frequency of question types in the1176

test set. The prevalence of Factual questions1177

in errors aligns with their dominance in medical1178

exams like MEDMCQA, USMLE, and HEADQA.1179

While fine-tuning on extensive medical corpora1180

may enhance Factual question performance,1181

improving on Conceptual Understanding and1182

Quantitative/Arithmetic questions might1183

require different fine-tuning approaches, as these1184

categories demand comprehension skills rather1185

than mere knowledge recall.

Category General Test Set Distribution LLaMA 2 Errors

Factual 65.5% 67%

Conceptual Understanding 29.5% 26%

Quantitative/Arithmetic 5% 7%

Table 7: Distribution of Llama-2 errors across reason-
ing categories, compared with overall distribution of
reasoning errors.1186

E Datasets Used1187

In this section, we explain the MCQA and AQA1188

datasets we used in detail. The dataset characteris-1189

tics are presented in Table 1.1190

1. USMLE - English: We incorporate the1191

USMLE dataset obtained from the MedQA1192

dataset (Jin et al., 2021), comprising MCQA1193

questions from the Medical Licensing Exam1194

conducted in the US. We retain this dataset’s 1195

original training, validation, and test set divi- 1196

sions. 1197

2. MEDMCQA: We incorporate the MEDM- 1198

CQA dataset from (Pal et al., 2022), which 1199

comprises medical MCQA from Indian Medi- 1200

cal Entrance Exams. We retain this dataset’s 1201

original training, validation, and test set splits. 1202

Similar to Singhal et al. (2023a), we evaluate 1203

all models on the validation set since we do 1204

not have answers for the test set. 1205

3. MMLU: Following the design of Singhal 1206

et al. (2023a), we incorporate a subset of 1207

the MMLU datasets (6 datasets) (Hendrycks 1208

et al., 2021) which are MCQA specifically cu- 1209

rated to assess medical domain knowledge. 1210

The subsets used are the anatomy, clinical 1211

knowledge, college medicine, medical genet- 1212

ics, professional medicine and college biol- 1213

ogy questions from MMLU. We utilize these 1214

datasets only for evaluating models. 1215

4. MEDIQA-ANS: The MEDIQA 2019 shared 1216

task introduced the MEDIQA-QA dataset 1217

(Savery et al., 2020) for answer-ranking, com- 1218

prising consumer health questions and pas- 1219

sages from reputable online sources. The 1220

dataset was curated by extracting passages 1221

from the text of web pages, and includes man- 1222

ually generated single and multi-document 1223

summaries in both extractive and abstractive 1224

forms. We employ the multi-document ab- 1225

stractive summary as our questions’ ground 1226

truth reference answer. We specifically filter 1227

for questions and answers marked as excellent 1228

and utilize this as an AQA dataset solely for 1229

evaluating models. 1230

5. HEADQA: We include the HEADQA dataset 1231

(Vilares and Gómez-Rodríguez, 2019), which 1232

comprises graduate-level MCQA about various 1233

fields of medicine used for examinations to ap- 1234

ply for specialization positions in the Spanish 1235

public healthcare system. We use the English 1236

version of the dataset and retain the original 1237

train, validation, and test split. 1238

6. PubmedQA: The PubMedQA dataset (Jin 1239

et al., 2019) is a biomedical question- 1240

answering dataset comprising 1,000 expert- 1241

annotated QA instances. Each instance neces- 1242

sitates reasoning over a biomedical paper’s 1243

14



abstract to answer a relevant question. While1244

the dataset provides long and short answers1245

(yes, no, or maybe), we focus exclusively on1246

the short answers for our evaluation, thereby1247

generalizing the task as MCQA. We retain1248

the original test split of 500 questions. Addi-1249

tionally, we allocate 100 questions from the1250

training set to serve as a validation set, facili-1251

tating standardized training and validation in1252

future studies.1253

7. BioMRC: The BIOMRC dataset (Pappas1254

et al., 2020) focuses on machine reading com-1255

prehension within the biomedical domain. It1256

is structured in a cloze-style MCQA format,1257

where questions are based on biomedical ab-1258

stracts where biomedical entities are replaced1259

with pseudo-identifiers. The task is to cor-1260

rectly identify the masked entity in the title1261

from a list of masked entities. We utilize two1262

compact versions of BioMRC: tiny A and tiny1263

B, also referred to as Setting A and B, re-1264

spectively. The BIOMRC dataset comprises a1265

large training corpus, where masked entities1266

share the same pseudo-identifier across the1267

entire corpus. Setting A, also known as tiny1268

A, retains the same pseudo-identifiers used1269

for masked biomedical entities in the training1270

corpus. This setup is beneficial when testing1271

models trained using the BioMRC training set,1272

allowing them to draw on previously seen pat-1273

terns. Tiny B (Setting B), conversely, changes1274

the pseudo-identifiers for every single ques-1275

tion. This means that a model must rely solely1276

on the information in the text of the question1277

and the passage it refers to, without any help1278

from repeated exposure to the same placehold-1279

ers. While we maintain the original format for1280

Setting B, assessing Setting A as is, is difficult1281

as since we do not utilize the BioMRC train-1282

ing set, it is functionally the same as Setting1283

B. To address this limitation, we modify Set-1284

ting A to include the original entity names and1285

their corresponding pseudo-identifiers in the1286

answer options. This aims to assess whether1287

the model can accurately answer when pro-1288

vided with the information about their original1289

entity names.1290

8. Processbank: The Processbank dataset (Be-1291

rant et al., 2014) is designed for machine read-1292

ing comprehension, featuring questions based1293

on paragraphs describing biological processes. 1294

Each question, associated with a particular 1295

paragraph, has two answer options (MCQA). 1296

The dataset comes with a predefined split of 1297

435 questions (150 files) for training and 100 1298

questions (50 files) for testing. We allocate 25 1299

files from the training set to create a valida- 1300

tion set while retaining the original test set for 1301

model evaluation. 1302

9. QA4MRE - Alzheimer’s disease QA: The 1303

dataset proposed by Morante et al. (Morante 1304

et al., 2012) contains MCQA questions re- 1305

garding Alzheimer’s disease, aimed at assess- 1306

ing machine reading systems’ ability to an- 1307

swer questions about the disease by parsing 1308

relevant documents. We have adapted this 1309

dataset as an open-ended MCQA task to eval- 1310

uate LLMs’ ability to answer these questions 1311

based on inherent knowledge. This dataset 1312

is employed solely for model evaluation pur- 1313

poses. 1314

10. BioASQ: The BioASQ dataset (Tsatsaronis 1315

et al., 2015; Krithara et al., 2023) features 1316

biomedical questions crafted by experts. We 1317

utilize the BioASQ 2022 dataset for our bench- 1318

mark. The BioASQ dataset is divided into two 1319

parts: for MCQA and another for AQA. For 1320

the MCQA part, we filter out the yes/no ques- 1321

tions from BioASQ, converting them into an 1322

MCQ format to create a new subset, which we 1323

term BioASQ-MCQ. We manually create a 1324

training-validation (train-val) split of roughly 1325

85%-15% from the filtered questions, result- 1326

ing in 975 training questions and 173 vali- 1327

dation questions and retaining a test set of 1328

123 questions. For the AQA part, BioASQ 1329

provides fact, list, and bullet-type questions. 1330

We compile these into an AQA dataset, ensur- 1331

ing a balanced representation of all question 1332

types in training and validation sets. The train- 1333

validation split results in 4733 training and 1334

697 validation questions, with approximately 1335

15% of all question types in the validation set. 1336

11. MASH-QA: The MASH-QA dataset (Zhu 1337

et al., 2020) was designed for answering med- 1338

ical questions based on paragraphs where an- 1339

swers may span multiple text segments. Ini- 1340

tially intended for extractive answering tasks, 1341

we repurpose it as an AQA task, utilizing the 1342

extractive answers as the reference ground 1343
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truth.1344

12. MedQUAD: The MedQUAD dataset (Ben1345

Abacha and Demner-Fushman, 2019) en-1346

compasses medical question-answer pairs ex-1347

tracted from various National Institute of1348

Health (NIH) websites, covering topics on dis-1349

eases, drugs, and other medical entities. Only1350

nine of the twelve websites contributing to1351

the original dataset have answers. We segre-1352

gate questions from these nine websites and1353

devise a train-validation-test split (AQA), as-1354

signing data from six websites for training,1355

one website for validation, and two websites1356

for testing.1357

13. TREC-2017 LiveQA: We employ the TREC-1358

2017 LiveQA dataset (Abacha et al., 2017) for1359

evaluation purposes. Specifically, we leverage1360

the rankings provided within the MedQUAD1361

evaluation process (Ben Abacha and Demner-1362

Fushman, 2019) to keep question-answer pairs1363

that have answer rating as excellent. We uti-1364

lize this as an AQA dataset for evaluating the1365

model.1366

14. British Ophthalmology Practice Tests: We1367

employ sample questions from the Fellow-1368

ship of the Royal College of Ophthalmolo-1369

gists (FRCOphth) exams, as provided by the1370

Royal College of Ophthalmologists on their1371

website (Raimondi et al., 2023; RCOphth,1372

2022a,b). These MCQA questions, geared to-1373

wards testing ophthalmology-related knowl-1374

edge, are used for evaluation.1375

15. MEDINFO: The MEDINFO dataset, intro-1376

duced by Abacha et al. (Ben Abacha et al.,1377

2019), consists of real consumer questions1378

concerning medications and drugs. It en-1379

compasses 674 question-answer pairs (AQA),1380

which we employ solely for evaluation.1381

F Sample Questions1382

We provide representative questions from the fac-1383

tual, conceptual and quantitative/arithmetic cate-1384

gories in Figures 4, 5 and 6.1385

G Detailed results, additional information1386

and hyper-parameters1387

During CPR, chest compressions should be delivered
at a rate of:

A. 80/minute.

B. as fast as possible.

C. 100/minute.

D. varies with each patient.

Answer: C. 100/minute

Figure 4: An example of a factual category question

A 22-year-old man comes to the physician for a routine
health maintenance examination. He feels well. He has had a
painless left scrotal mass since childhood. Examination
shows a 6-cm, soft, nontender left scrotal mass that
transilluminates; there are no bowel sounds in the
mass. Examination of the testis shows no abnormalities.
Which of the following is the most likely cause of
the mass?

A. Accumulation of scrotal adipose tissue

B. Cryptorchidism of the left testis

C. Dilation of the pampiniform plexus of veins around
the testis

D. Persistence of a patent processus vaginalis

Answer: D. Persistence of a patent processus vaginalis

Figure 5: An example of a conceptual category question

A person is prescribed Ropinirole 1.5 mg divided into
three doses. How many micrograms is each dose?
Choose one answer from the following:

A. 5

B. 50

C. 0.5

D. 500

Answer: D. 500

Figure 6: An example of a quantitative/arithmetic ques-
tion
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MCQA

Macro-Avg Micro-Avg

B
as

e

LLaMA 1 (7B) 31.9 30.7
LLaMA 1 (13B) 44.1 38.9
LLaMA 2 (7B) 42.9 39.6
LLaMA 2 (13B) 47.1 43.4
MPT (7B) 27.6 27.3
Falcon (7B) 34.7 31.6

In
st

ru
ct

io
n

tu
ne

d LLaMA 2-chat (7B) 45.9 41.2
LLaMA 2-chat (13B) 50.3 45.6
MPT-Instruct (7B) 31.6 29.1
Falcon-Instruct (7B) 31.8 29.7
Flan-T5 (3B) 51.8 40.6
Flan-T5 (11B) 56.5 45.2

Fi
ne

tu
ne

d LLaMA 2 (7B) 53.5 52.2
MPT (7B) 53.2 51.5
Falcon (7B) 49.3 48.6
Flan-T5 (3B) 52.9 47.4

A
da

pt
ed ChatDoctor (7B) 42.8 36.0

MedAlpaca (7B) 48.8 42.3
PMC-LLama (13B) 53.7 57.9

Table 8: Micro-Average and Macro-Average Accuracies of all Models

Dataset Best Reported Score Method

USMLE (4 options) 90.2 GPT 4 + MedPrompt (Nori et al., 2023)

MEDMCQA 79.1 GPT 4 + MedPrompt (Nori et al., 2023)

PubMedQA 82.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Anatomy 89.6 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Clinical Knowledge 95.8 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - College Biology 97.9 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - College Medicine 89.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Medical Genetics 98.0 GPT 4 + MedPrompt (Nori et al., 2023)

MMLU - Professional Medicine 95.2 GPT 4 + MedPrompt (Nori et al., 2023)

ProcessBank 68.8 SemanticILP (Biology Cascade) (Khashabi et al., 2018)

QA4MRE 55.0 Index Expansion (Attardi et al., 2012)

BioMRC - Tiny B 60.0 SciBERT-Max-Reader (Pappas et al., 2020)

Table 9: Performance scores of various methods on various MCQA datasets
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Model Architecture # Tokens Data Source

Base models

MPT Decoder 1T Red Pajama (Computer, 2023), The Stack (Kocetkov et al., 2022), C4
(Raffel et al., 2019), mC4 (Xue et al., 2021), S20RC (Lo et al., 2020)

LLaMA 1 Decoder 1.4T Common Crawl, C4 (Raffel et al., 2019), Github, Wikipedia, Gutenberg,
Books3 (Gao et al., 2021), Arxiv and Stack Exchange

Falcon Decoder 1.5T RefinedWeb (Penedo et al., 2023)

LLaMA 2 Decoder 2T Unknown

Instruction tuned models

Flan-T5 Encoder-Decoder 1T C4 (Raffel et al., 2019) and Flan-Collection (Wei et al., 2021)

MPT-Instruct Decoder 1T MPT, Databricks Dolly-15k (Conover et al., 2023), Anthropic Helpful and
Harmless (Bai et al., 2022)

Falcon-Instruct Decoder 1.5T Falcon, baize (Xu et al., 2023), GPT4All, GPTeacher 4

LLaMA 2-Chat Decoder 2T LLaMA 2, Flan Collection (Wei et al., 2021), Private Data

Table 10: Pretrained LLMs considered in this paper. (Top rows) Open-source models that are decoder-only. (Bottom
rows) Instruction-fine-tuned language models. # Tokens: Number of tokens used in pretraining the model. Data
Source: Data used for pre-training (instruction data is italicized).

Parameter Flan-T5 XL Llama-2 7B Falcon 7B MPT 7B
lora_r 16 16 16 16
lora_alpha 16 16 16 16
lora_dropout 0.05 0.05 0.05 0.05
bias none none none none
optimizer adamw adamw adamw adamw
epochs 4 4 4 4
batch size 8 8 8 8
model_max_length 256 384 384 384

Table 11: Hyper-parameters used to train our models

Parameter Decoder LLMs Encoder-Decoder LLMs
Beam Size 3 3
Repetition Penalty 1.5 1.5
Max Output Length 200 200

Table 12: Inference time parameters used for abstractive question answering

Dataset Falcon (7B) MPT (7B) LLaMA 2 (7B) LLaMA 2 (13B) LLaMA 1 (7B) LLaMA 1 (13B)

BIOASQ-MCQ 72.4 33.3 67.5 35.8 35.0 37.4

BIOMRC Tiny A 26.7 23.3 30.0 53.3 26.7 60.0

BIOMRC Tiny B 16.7 13.3 26.7 20.0 13.3 33.3

MMLU - Anatomy 28.1 26.7 40.7 54.1 37.8 45.9

MMLU - Clinical Knowledge 32.5 29.8 38.1 57.7 35.5 43.4

MMLU - College Biology 27.1 22.2 39.6 58.3 35.4 44.4

MMLU - College Medicine 30.6 26.6 35.3 54.3 25.4 42.2

MMLU - Medical Genetics 33.0 27.0 49.0 52.0 34.0 42.0

MMLU - Professional Medicine 44.1 20.2 44.1 53.7 28.3 47.1

HEADQA 27.8 28.0 40.4 48.5 34.4 40.6

MEDMCQA 30.4 26.5 36.0 37.5 27.0 35.9

OPHTH 21.7 28.3 27.2 30.4 20.7 39.1

PROCESSBANK 50.7 56.0 75.3 83.3 63.3 74.0

PUBMEDQA 57.0 33.8 60.4 33.8 34.2 34.8

QA4MRE 30.0 22.5 40.0 37.5 30.0 47.5

USMLE 27.0 24.2 35.3 42.9 29.1 37.5

Average 34.7 27.6 42.9 47.1 31.9 44.1

Table 13: MCQA scores of LLMs in the zero-shot setting. We utilize 5-shot prompting for the MMLU datasets and
1-shot prompting for other datasets to evaluate these models.
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Figure 7: Zero-shot performance of models on MCQA (top-left) and AQA (top-right, bottom-left and bottom-right)
as a function of model size. The dashed line represents a fitted linear regression showing the correlation between the
model size and the score.
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Figure 8: Performance of base and AQA-finetuned LLaMA 2 and Flan-T5 models on four unseen AQA test sets in
terms of ROUGE-L.
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Figure 9: Performance of base and AQA-finetuned LLaMA 2 and Flan-T5 models on four unseen AQA test sets in
terms of BERTScore.
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Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B) Chat Flan-T5 (11B) LLaMA 2 (13B) Chat

BIOASQ-MCQ 43.9 45.5 34.1 69.9 48.8 65.0

BIOMRC Tiny A 73.3 30.0 23.3 26.7 63.3 33.3

BIOMRC Tiny B 46.7 23.3 23.3 20.0 60.0 26.7

MMLU - Anatomy 46.7 27.4 32.6 44.4 48.9 52.6

MMLU - Clinical Knowledge 52.1 31.7 36.6 54.3 61.9 57.7

MMLU - College Biology 48.6 25.0 29.9 55.6 54.9 59.0

MMLU - College Medicine 41.6 27.7 30.1 44.5 52.6 46.2

MMLU - Medical Genetics 50.0 32.0 32.0 60.0 55.0 56.0

MMLU - Professional Medicine 42.6 37.9 28.3 45.2 55.1 51.1

HEADQA 42.9 26.1 30.2 43.9 49.1 51.3

MEDMCQA 33.1 29.8 27.2 35.0 36.4 39.3

OPHTH 26.1 32.6 30.4 26.1 25.0 27.2

PROCESSBANK 93.3 52.0 56.7 72.0 95.3 80.0

PUBMEDQA 70.0 47.4 35.6 61.6 70.8 45.2

QA4MRE 82.5 15.0 30.0 40.0 87.5 72.5

USMLE 36.1 25.1 24.6 35.6 39.7 42.2

Average 51.8 31.8 31.6 45.9 56.5 50.3

Table 14: MCQA scores of Instruction-tuned LLMs in the zero-shot setting. We utilize 5-shot prompting for the
MMLU datasets and 1-shot prompting for other datasets to evaluate these models.

Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 73.2 80.5 78.9 81.3

BIOMRC Tiny A 53.3 23.3 26.7 23.3

BIOMRC Tiny B 26.7 23.3 20.0 26.7

MMLU - Anatomy 43.7 43.7 45.9 54.1

MMLU - Clinical Knowledge 54.0 52.8 53.2 59.6

MMLU - College Biology 47.2 46.5 56.9 61.1

MMLU - College Medicine 44.5 53.2 50.3 52.0

MMLU - Medical Genetics 47.0 55.0 60.0 62.0

MMLU - Professional Medicine 48.5 50.0 49.3 59.6

HEADQA 49.0 47.7 52.4 53.9

MEDMCQA 43.0 45.9 48.4 48.3

OPHTH 34.8 30.4 35.9 31.5

PROCESSBANK 92.7 69.3 84.7 75.3

PUBMEDQA 74.2 70.8 73.4 70.6

QA4MRE 75.0 50.0 70.0 50.0

USMLE 39.7 46.3 45.7 46.1

Average 52.9 49.3 53.2 53.5

Table 15: MCQA scores of LLMs finetuned with QLora on MCQA datasets from the M-QALM benchmark. We
evaluate these models without any examples in the prompt.

Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 0.8 13.8 14.6 7.3

BIOMRC Tiny A 50.0 23.3 10.0 16.7

BIOMRC Tiny B 36.7 23.3 16.7 16.7

MMLU - Anatomy 43.0 24.4 34.8 38.5

MMLU - Clinical Knowledge 50.9 25.3 28.7 40.8

MMLU - College Biology 42.4 23.6 34.7 38.9

MMLU - College Medicine 41.0 27.2 26.0 37.6

MMLU - Medical Genetics 45.0 31.0 22.0 49.0

MMLU - Professional Medicine 41.2 44.1 18.4 46.7

HEADQA 38.7 21.5 24.8 31.1

MEDMCQA 27.0 21.7 20.2 23.0

OPHTH 22.8 23.9 16.3 19.6

PROCESSBANK 88.0 54.7 42.0 50.7

PUBMEDQA 67.2 57.2 54.6 47.8

QA4MRE 77.5 35.0 10.0 15.0

USMLE 34.2 22.9 23.9 22.9

Average 44.1 29.6 24.9 31.4

Table 16: MCQA scores of LLMs finetuned with QLora on AQA datasets only from the M-QALM benchmark. We
utilize 5-shot prompting for the MMLU datasets and 1-shot prompting for other datasets to evaluate these models.
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Dataset Flan-T5 (3B) Falcon (7B) MPT (7B) LLaMA 2 (7B)

BIOASQ-MCQ 71.5 80.5 79.7 79.7

BIOMRC Tiny A 50.0 43.3 36.7 26.7

BIOMRC Tiny B 30.0 6.7 20.0 26.7

MMLU - Anatomy 40.7 45.2 47.4 52.6

MMLU - Clinical Knowledge 51.7 52.5 50.9 55.5

MMLU - College Biology 43.8 51.4 57.6 61.1

MMLU - College Medicine 41.6 48.0 54.3 52.6

MMLU - Medical Genetics 52.0 59.0 55.0 65.0

MMLU - Professional Medicine 47.1 46.0 50.4 59.9

HEADQA 47.5 47.4 51.2 54.2

MEDMCQA 41.7 45.2 47.4 48.0

OPHTH 32.6 28.3 38.0 28.3

PROCESSBANK 91.3 73.3 79.3 83.3

PUBMEDQA 71.4 67.8 72.8 71.8

QA4MRE 72.5 52.5 60.0 67.5

USMLE 40.9 45.7 44.3 45.6

Average 51.7 49.5 52.8 54.9

Table 17: MCQA scores of LLMs finetuned with QLora on both MCQA and AQA data from the M-QALM benchmark.
We evaluate these models without any examples in the prompt.

Dataset ChatDoctor (7B) MedAlpaca (7B) PMC-LLama (13B)

BIOASQ-MCQ 65.0 50.4 13.0

BIOMRC Tiny A 20.0 16.7 30.0

BIOMRC Tiny B 36.7 23.3 16.7

MMLU - Anatomy 43.7 60.0 63.0

MMLU - Clinical Knowledge 43.4 60.0 62.3

MMLU - College Biology 39.6 64.6 64.6

MMLU - College Medicine 32.4 52.6 53.2

MMLU - Medical Genetics 55.0 69.0 70.0

MMLU - Professional Medicine 47.1 67.3 67.6

HEADQA 37.2 45.1 59.1

MEDMCQA 29.4 35.0 56.5

OPHTH 30.4 23.9 46.7

PROCESSBANK 62.0 67.3 74.7

PUBMEDQA 67.4 40.8 72.6

QA4MRE 45.0 62.5 55.0

USMLE 31.3 42.4 54.7

Average 42.8 48.8 53.7

Table 18: MCQA scores of ChatDoctor (7B) , MedAlpaca (7B) and PMC-LLama (13B). To evaluate ChatDoctor, we
utilize 5-shot prompting for the MMLU datasets and 1-shot prompting for other datasets to evaluate these models.
We evaluate MedAlpaca (7B) and PMC-LLama (13B) directly without any examples in the prompt.
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Model BIOASQ-QA LIVEQA MASHQA MEDINFO MEDIQA-ANS MEDQUAD Average

RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR RL BS MTR

Falcon (7B) 13.9 53.1 22.5 15.4 55.8 17.4 13.4 53.7 22.0 12.1 51.1 17.8 15.3 56.1 21.7 14.3 54.7 18.4 14.0 54.1 20.0

MPT (7B) 11.4 50.1 21.7 15.7 55.2 20.9 12.8 52.3 23.0 11.2 49.6 18.4 14.8 55.6 23.3 13.7 53.2 19.4 13.3 52.6 21.1

LLaMA 1 (7B) 13.8 53.4 23.3 15.4 55.8 18.9 13.5 54.1 22.2 11.6 51.4 17.9 15.5 56.8 22.5 14.3 54.0 18.5 14.0 54.2 20.5

LLaMA 1 (13B) 14.6 53.3 22.8 16.7 55.7 19.7 13.1 53.3 20.9 12.5 51.7 18.6 15.4 57.0 22.1 14.0 53.2 17.8 14.4 54.0 20.3

LLaMA 2 (7B) 15.8 54.6 24.0 16.8 57.5 20.1 14.0 55.4 23.3 12.3 51.1 17.8 15.9 57.3 22.3 14.7 55.9 19.4 14.9 55.3 21.1

LLaMA 2 (13B) 14.9 55.3 24.9 16.2 57.3 20.1 14.5 56.4 24.4 12.7 53.6 20.0 16.4 58.9 24.4 15.4 57.1 20.9 15.0 56.4 22.5

Flan-T5 (3B) 15.0 57.7 11.1 9.3 52.5 6.1 10.5 56.0 7.5 10.8 54.9 7.6 9.8 55.7 6.2 9.3 53.2 6.0 10.8 55.0 7.4

MPT (7B) Instruct 23.2 64.5 22.4 14.5 58.1 13.4 15.0 61.1 15.9 14.0 56.8 12.9 14.8 60.5 16.1 12.9 57.1 13.1 15.8 59.7 15.6

Falcon (7B) Instruct 27.2 68.9 28.1 16.1 61.4 14.7 15.5 62.5 17.1 14.7 58.4 15.2 15.4 62.4 15.4 14.3 60.8 14.2 17.2 62.4 17.4

LLaMA 2 (7B) Chat 15.9 58.8 26.5 15.4 58.8 20.9 14.2 57.4 24.4 12.8 54.6 20.6 16.7 59.5 25.4 15.4 58.7 22.1 15.0 58.0 23.3

Flan-T5 (11B) 16.3 58.8 12.2 10.8 55.5 7.5 10.8 57.3 8.2 12.3 56.1 9.1 9.7 55.2 6.3 9.0 54.9 5.9 11.5 56.3 8.2

LLaMA 2 (13B) Chat 16.2 59.2 27.5 15.8 59.0 21.4 14.2 57.2 24.3 13.0 54.7 21.2 16.7 58.9 24.8 15.5 58.7 22.4 15.3 58.0 23.6

Flan-T5 (3B) (FT-QA) 26.6 66.2 25.2 16.1 55.0 16.9 15.4 58.2 16.4 11.7 53.8 10.5 12.6 55.7 12.0 12.8 52.2 12.7 15.9 56.8 15.6

Falcon (7B) (FT-QA) 27.8 68.4 26.6 20.1 60.6 21.1 16.7 61.3 17.8 12.4 56.5 9.4 12.8 57.9 11.6 14.8 57.5 16.2 17.4 60.4 17.1

LLaMA 2 (7B) (FT-QA) 30.0 69.7 28.2 18.3 60.7 19.2 16.9 61.9 17.5 12.2 55.8 9.0 13.0 58.5 11.2 15.7 58.5 16.6 17.7 60.8 16.9

MPT (7B) (FT-QA) 28.9 69.0 27.6 18.6 59.6 20.6 16.4 61.0 17.5 12.9 56.1 10.7 13.1 57.6 11.5 14.0 56.5 15.4 17.3 60.0 17.2

Flan-T5 (3B) (FT-All) 27.8 67.4 25.7 16.0 55.8 17.1 15.5 59.3 15.3 11.4 54.5 9.3 11.7 55.7 10.4 13.0 53.1 13.1 15.9 57.6 15.2

Falcon (7B) (FT-All) 27.3 68.6 26.1 18.9 59.9 19.8 16.1 61.0 16.7 11.7 55.4 8.0 12.8 58.0 10.9 14.8 57.5 16.5 16.9 60.1 16.3

LLaMA 2 (7B) (FT-All) 30.2 69.7 27.8 17.9 60.4 17.9 17.3 61.9 17.7 12.4 54.9 9.9 13.3 58.3 12.2 15.0 57.7 15.5 17.7 60.5 16.8

MPT (7B) (FT-All) 29.1 68.8 27.4 18.2 59.2 20.4 16.5 61.5 17.0 13.4 56.4 11.5 13.5 57.5 12.3 14.5 56.7 16.6 17.5 60.0 17.5

ChatDoctor 26.2 68.2 28.8 15.8 61.3 16.0 16.1 62.6 18.6 15.2 58.9 15.6 16.5 62.9 18.2 14.8 60.2 15.0 17.4 62.3 18.7

MedAlpaca 7B 26.4 67.8 27.1 14.7 55.6 13.0 13.4 59.3 15.0 12.3 55.1 12.6 13.9 59.0 15.4 12.5 56.8 10.2 15.5 58.9 15.6

PMC LLama 13B 19.7 62.6 20.9 12.7 55.8 11.0 13.5 58.8 14.4 45.6 70.7 43.6 14.8 59.6 14.0 11.9 57.0 10.1 19.7 60.7 19.0

Table 19: AQA scores of base, instruction-tuned LLMs in the zero-shot setting, LLMs fine-tuned with QLora and
other biomedical and clinical instruction tuned models such as ChatDoctor (7B), MedAlpaca (7B), PMC-LLama
(13B). FT-QA refers to models fine-tuned only with AQA data and FT-All refers to models fine-tuned with both
MCQA and AQA data.

Category Support Flan-T5 (ZS) Flan-T5 (FT) MPT (ZS) MPT (FT) Falcon (ZS) Falcon (FT) LLaMA 2 (ZS) LLaMA 2 (FT)

Consumer Health Dataset Questions 1449 10.5 13.4 12.6 14.6 13.2 14.6 13.7 14.5

General Biomedical Dataset Questions 363 15.0 26.6 11,4 28.9 13.9 27.8 15.8 30.0

General Medical Dataset Questions 200 9.3 12.8 13.7 14.0 14.3 14.8 14.7 15.7

Table 20: Performance of LLMs in the zero-shot and fine-tuned setting across various categories across various
dataset categories in terms of Rouge Score

22



H Prompts used for evaluation1388

H.1 Prompts for Fine-Tuned Falcon (Base),1389

MPT (Base), LLaMA 2 (Base) and Flan-T51390

H.1.1 AQA Prompt1391

Answer the medical question precisely and factually
Question: {Question}
Answer:

Figure 10: AQA prompt utilized without any examples
in the prompt. We finetune and evaluate these models
utilizing this prompt format.

H.1.2 MCQA Prompt1392

Pick the right option that answers the question
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:

Figure 11: MCQA prompt utilized without any examples
in the prompt. We finetune and evaluate the models
utilizing this prompt format.

H.1.3 Single Context MCQA Prompt1393

Given the context, pick the right choice that answers the question
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:

Figure 12: Single Context MCQA prompt utilized with-
out any examples in the prompt. We finetune and eval-
uate these models utilizing this prompt format for the
PROCESSBANK dataset.

H.1.4 Multi Context MCQA Prompt1394

Given the context, pick the right choice that answers the question
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 13: Multi Context MCQA prompt utilized without
any examples in the prompt. We finetune and evaluate
these models utilizing this prompt format for the PUB-
MEDQA dataset.

H.1.5 Cloze MCQA Prompt1395

Given the context, pick the right choice that corresponds to the XXXX in the question
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 14: Cloze MCQA prompt utilized without any
examples in the prompt. The BIOMRC datasets follow
this format. We evaluate these models utilizing this
prompt format.

H.2 Prompts for evaluating Falcon (Base and 1396

Instruct), MPT (Base), LLaMA 1 (Base), 1397

LLaMA 2 (Base) and Flan-T5 in the 1398

Zero-Shot setting 1399

H.2.1 Few-Shot MCQA Prompt 1400

Pick the right option that answers the question
Question: {Example 1}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:{Correct Option}
...
Question: {Example K}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:{Correct Option}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}
Answer:

Figure 15: Format of the Few-Shot MCQA prompt uti-
lized. We utilize this prompt for evaluating models prior
to any fine-tuning only. 5-shot prompting is utilized
for the MMLU datasets whereas 1-shot prompting is
utilized for all other MCQA datasets when evaluating
non-finetuned models.

H.2.2 1-Shot Cloze Prompt 1401

Given the context, pick the right choice that corresponds to the XXXX in the question
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:{Correct Option}
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 16: Cloze MCQA prompt utilized without any
examples in the prompt. The BIOMRC datasets follow
this format. We evaluate these models utilizing this
prompt format.

H.2.3 1-Shot Single Context MCQA Prompt 1402
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Given the context, pick the right choice that answers the question
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:{Correct Option}
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
Answer:

Figure 17: Format of the 1-Shot Single Context MCQA
prompt utilized. We adopt this prompt format for the
PROCESSBANK dataset.

H.2.4 1-Shot Multi Context MCQA Prompt1403

Given the context, pick the right choice that answers the question
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph n}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:{Correct Option}
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph n}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
Answer:

Figure 18: Format of the 1-Shot Multi-Context MCQA
prompt utilized. We adopt this prompt format for the
PUBMEDQA dataset.

H.2.5 AQA Prompt1404

Answer the medical question precisely and factually
Question: {Question}
Answer:

Figure 19: AQA prompt utilized without any examples
in the prompt.

H.3 Prompts for evaluating LLaMA 2 (Chat)1405

Models in the Zero-Shot setting1406

H.3.1 AQA Prompt1407

[INST] <<SYS>>
Answer the medical question precisely and factually
<</SYS>>

Question: {Question} [/INST]

Figure 20: AQA prompt utilized without any examples
in the prompt.

H.3.2 Few-Shot MCQA Prompt1408

[INST] <<SYS>>
Pick the right option that answers the question
<</SYS>>

Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text} [/INST] Answer:{Correct Option} </s><s>[INST] Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text} [/INST] Answer:

Figure 21: Format of the Few-Shot MCQA prompt uti-
lized. 5-shot prompting is utilized for the MMLU
datasets whereas 1-shot prompting is utilized for all
other MCQA datasets

H.3.3 1-Shot Single Context MCQA Prompt 1409

[INST] <<SYS>>
Given the context, pick the right choice that answers the question
<</SYS>>

Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:{Correct Option} </s><s>[INST] Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:

Figure 22: Format of the 1-Shot Single Context MCQA
prompt utilized. We utilize this prompt for evaluating
models on the PROCESSBANK dataset.

H.3.4 1-Shot Multi Context MCQA Prompt 1410

[INST] <<SYS>>
Given the context, pick the right choice that answers the question
<</SYS>>

Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text} [/INST] Answer:{Correct Option} </s><s>[INST] Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text} [/INST] Answer:

Figure 23: Format of the 1-Shot Multi-Context MCQA
prompt utilized. We adopt this prompt format for the
PUBMEDQA dataset.

H.3.5 1-Shot Cloze MCQA Prompt 1411

[INST] <<SYS>>
Given the context, pick the right choice that corresponds to the XXXX in the question
<</SYS>>

Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:{Correct Option} </s><s>[INST] Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text} [/INST] Answer:

Figure 24: Format of the 1-Shot Cloze MCQA prompt
utilized. We utilize this prompt for evaluating models
on the BIOMRC datasets in settings A and B.
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H.4 Prompts for evaluating MPT Instruct in1412

the Zero-Shot setting1413

H.4.1 AQA Prompt1414

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Answer the medical question precisely and factually. Question: {Question}

### Response:

Answer:

Figure 25: AQA prompt utilized without any examples
in the prompt.

H.4.2 Few-Shot MCQA Prompt1415

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Pick the right option that answers the question. Question: {Example Question 1}

Options:

A. {Option Text}

B. {Option Text}

C. {Option Text}

D. {Option Text}

### Response:

Answer:{Correct Option}

...

### Instruction:

Pick the right option that answers the question. Question: {Example Question K}

Options:

A. {Option Text}

B. {Option Text}

C. {Option Text}

D. {Option Text}

### Response:

Answer:{Correct Option}

### Instruction:

Pick the right option that answers the question. Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

C. {Option Text}

D. {Option Text}

### Response:

Answer:

Figure 26: Format of the Few-Shot MCQA prompt uti-
lized. 5-shot prompting is utilized for the MMLU
datasets whereas 1-shot prompting is utilized for all
other MCQA datasets.

H.4.3 1-Shot Single Context MCQA Prompt1416

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Given the context, pick the right choice that answers the question. Context: {Context Paragraph}

Question: {Example Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:{Correct Option}

### Instruction:

Given the context, pick the right choice that answers the question. Context: {Context Paragraph}

Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:

Figure 27: Format of the 1-Shot Single Context MCQA
prompt utilized. We adopt this prompt format for the
PROCESSBANK dataset.

1417

1418

H.4.4 1-Shot Multi Context MCQA Prompt1419

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Given the contexts, pick the right choice that answers the question. Contexts: {Context Paragraph 1}

{Context Paragraph 2}

...

{Context Paragraph N}

Question: {Example Question 1}

Options:

A. {Option Text}

B. {Option Text}

C. {Option Text}

### Response:

Answer:{Correct Option}

### Instruction:

Given the contexts, pick the right choice that answers the question. Contexts: {Context Paragraph 1}

{Context Paragraph 2}

...

{Context Paragraph N}

Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

C. {Option Text}

### Response:

Answer:

Figure 28: Format of the 1-Shot Multi-Context MCQA
prompt utilized. We adopt this prompt format for the
PUBMEDQA dataset.

H.4.5 1-Shot Cloze MCQA Prompt 1420

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:

Given the context, pick the right choice that corresponds to the XXXX in the question. Context: {Context Paragraph}

Question: {Example Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:{Correct Option}

### Instruction:

Given the context, pick the right choice that corresponds to the XXXX in the question. Context: {Context Paragraph}

Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:

Figure 29: Format of the 1-Shot Cloze MCQA prompt
utilized. We utilize this prompt for evaluating models
on the BIOMRC datasets in settings A and B.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Answer with the best option directly.

### Input:
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Answer with the best option directly.

### Input:
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
Answer:

Figure 30: Format of the Few-Shot MCQA prompt utilized for evaluating ChatDoctor. 5-shot prompting is utilized
for the MMLU datasets whereas 1-shot prompting is utilized for all other MCQA datasets.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Answer with the best option directly.

### Input:
Context: {Context Paragraph}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Answer with the best option directly.

### Input:
Context: {Context Paragraph}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}

### Response:
Answer:

Figure 31: Format of the 1-Shot Single Context MCQA prompt utilized for evaluating ChatDoctor. We adopt this
prompt format for the PROCESSBANK dataset.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Answer with the best option directly.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Example Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
Answer:{Correct Option}

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Answer with the best option directly.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
Question: {Question}
Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
Answer:

Figure 32: Format of the 1-Shot Multi-Context MCQA prompt utilized for evaluating ChatDoctor. We adopt this
prompt format for the PUBMEDQA dataset.
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:

If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:

Context: {Context Paragraph}

Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:{Correct Option}

### Instruction:

If you are a doctor, please answer the medical questions based on the patient's description. Analyze the question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:

Context: {Context Paragraph}

Question: {Question}

Options:

A. {Option Text}

B. {Option Text}

### Response:

Answer:

Figure 33: Format of the 1-Shot Cloze MCQA prompt utilized for evaluating ChatDoctor on the BIOMRC datasets
in settings A and B.
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
If you are a doctor, please answer the medical questions based on the patient's description.

### Input:
{Question}

### Response:

Figure 34: AQA prompt utilized without any examples in the prompt for evaluating ChatDoctor.
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Answer this multiple-choice question.

### Input:
{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}
D: {Option Text}

### Response:
The Answer to the question is:

Figure 35: Format of the Zero-Shot MCQA prompt utilized for evaluating MedAlpaca.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Answer this multiple-choice question.

### Input:
Context: {Context Paragraph}

{Question}
A: {Option Text}
B: {Option Text}

### Response:
The Answer to the question is:

Figure 36: Format of the Zero-Shot Single Context MCQA prompt utilized for evaluating MedAlpaca on the
PROCESSBANK dataset

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Answer this multiple-choice question.

### Input:
Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}

{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}

### Response:
The Answer to the question is:

Figure 37: Format of the Zero-Shot Multi-Context MCQA prompt utilized for evaluating MedAlpaca on the
PUBMEDQA dataset.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Analyze the question given its context. Pick the right option that corresponds to the XXXX in the question.

### Input:
Context: {Context Paragraph}

{Question}
A: {Option Text}
B: {Option Text}
C: {Option Text}
D: {Option Text}

### Response:
The Answer to the question is:

Figure 38: Format of the Zero-Shot Cloze MCQA prompt utilized for evaluating MedAlpaca on the BIOMRC
datasets in settings A and B.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Answer this question truthfully

### Input:
{Question}

### Response:

Figure 39: AQA prompt utilized without any examples in the prompt for evaluating MedAlpaca.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
You're a doctor, kindly address the medical queries according to the patient's account. Answer with the best option directly.

### Input:
###Question: {Question}
###Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}
D. {Option Text}

### Response:
###Answer:

Figure 40: Format of the Zero-Shot MCQA prompt utilized for evaluating PMC-LLama.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
You're a doctor, kindly address the medical queries according to the patient's account. Analyze the question given its context. Answer with the best option directly.

### Input:
###Question: {Question}
###Context: {Context Paragraph}
###Options:
A. {Option Text}
B. {Option Text}

### Response:
###Answer:

Figure 41: Format of the Zero-Shot Single Context MCQA prompt utilized for evaluating PMC-LLama on the
PROCESSBANK dataset.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
You're a doctor, kindly address the medical queries according to the patient's account. Analyze the question given its context. Answer with the best option directly.

### Input:
###Question: {Question}
###Contexts: {Context Paragraph 1}
{Context Paragraph 2}
...
{Context Paragraph N}
###Options:
A. {Option Text}
B. {Option Text}
C. {Option Text}

### Response:
###Answer:

Figure 42: Format of the Zero-Shot Multi-Context MCQA prompt utilized for evaluating PMC-LLama on the
PUBMEDQA dataset.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:

You're a doctor, kindly address the medical queries according to the patient's account. Analyze the question given its context. Pick the right option that corresponds to the XXXX in the question

### Input:

###Question: {Question}

###Context: {Context Paragraph}

###Options:

A. {Option Text}

B. {Option Text}

### Response:

###Answer:

Figure 43: Format of the Cloze MCQA prompt utilized for evaluating PMC-LLama on the BIOMRC datasets in
settings A and B.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
You're a doctor, kindly address the medical queries according to the patient's account.

### Input:
###Question: {Question}

### Response:
###Answer:

Figure 44: AQA prompt utilized without any examples in the prompt for evaluating PMC-LLama.
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