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Abstract

Properties of probability distributions change when going from low to high dimensions, to
the extent that they exhibit counterintuitive behavior. Gaussian distributions intuitively
illustrate a well-known effect of moving to higher dimensions, namely that the typical set
almost surely does not contain the mean, which is the distribution’s most probable point.
This can be problematic in Bayesian Deep Learning, as the samples drawn from the high-
dimensional posterior distribution are often used as Monte Carlo samples to estimate the
integral of the predictive distribution. Here, the predictive distribution will reflect the
behavior of the samples and, therefore, of the typical set. For instance, we cannot expect
to sample networks close to the maximum a posteriori estimate after fitting a Gaussian
approximation to the posterior using the Laplace method. In this paper, we introduce
a method that aims to mitigate this typicality problem in high dimensions by sampling
from the posterior with Langevin dynamics on a restricted support enforced by a reflective
boundary condition. We demonstrate how this leads to improved posterior estimates by
illustrating its capacity for fine-grained out-of-distribution (OOD) ranking on the Morpho-
MNIST dataset.

1 Introduction

Epistemic uncertainty in machine learning captures a model’s lack of knowledge and represents how unsure
the model is about its own predictions. This type of uncertainty can be reduced by providing the model with
more diverse and informative training data (Gawlikowski et al., [2021). It plays a central role in identifying
samples for which the model’s predictions cannot be trusted, including both OOD inputs and challenging
in-distribution (ID) cases. Even more so, an accurate estimation of epistemic uncertainty can play a crucial
role in identifying domain shifts.

To this end, given a finite sample size and an overparameterized neural network model, which is often the
case, identifying different sets of “optimal weights” is key to estimating epistemic uncertainty of the model.
We find it important to explicitly define the “optimality” of these sets of weights. In this work, we adopt
the following definition. If two sets of weights are optimal, they are both local minima of the loss function
and yield similarly high accuracies on the training and/or validation sets. As such, it would not be possible
to choose one over the other; thus, they are both optimal. Evaluating these different optimal models on the
same sample would allow for approximating the epistemic uncertainty.

The current set of methods for estimating epistemic uncertainty can be divided into two groups. First, the
discrete support group, estimates a finite number of parameter sets either through training multiple models
and ensembling (Lakshminarayanan et al., [2017), approximating ensembling through Monte-Carlo (MC)
Dropout (Gal & Ghahramani, 2016, or directly sampling from a posterior distribution using an appropriate
sampling, such as Hamiltonian Monte Carlo (Betancourt], 2017). The second group, the continuous support
group, estimates continuous posterior distributions for network parameters through using Laplace approxi-
mations (MacKayl, [1992; |[Ritter et al., 2018} Daxberger et al.l |2021)) or variational inference (Graves|, [2011}
Bishop & Nasrabadi, [2006)).
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(a) Original (b) Noisy (c) MAP estimate (d) Posterior sample

Figure 1: Illustration from : A Deep decoder is trained to denoise the image shown in (b).
(c) shows a MAP estimate obtained by training with Equation |4 using a Gaussian prior for weights, i.e.,
weight decay. (d) shows reconstruction with a sample drawn with MALA from the posterior distribution of
the network weights after making sure the chain has converged. As explained below, this posterior sample
likely comes from the typical set, and the reconstruction quality is clearly lower than the MAP estimate.

Setting model ensembling aside for a moment, the current techniques rely on an underlying Bayesian model
and posterior distribution of network weights given a dataset. This posterior is either approximated or
sampled from. However, even in small networks, the number of parameters is very high, and therefore,
the underlying Bayesian model is very high-dimensional. As such, these Bayesian models are prone to
counterintuitive effects of typical sets in high dimensions. An intuitive description of a typical set is given
by |Carpenter| (2017); MacKay| (2003) as “..the central log density band into which almost all random draws
from that distribution will fall”. The main issue is that this band may be quite far from the modes of
a distribution in high dimensions [1969). Thus, drawn samples will come from areas where the
likelihood is potentially extremely low. When we consider the posterior distribution of network weights, this
means sampled sets of weights may not be optimal as we defined above. They most likely have very low
data likelihoods, or in other words, they will not make an accurate prediction on the training set. [Cagnotti
@ et al. demonstrated this on the problem of image denoising with the Deep Decoder model (Heckel &
Hand . Denoising an image with network weights that are sampled from the corresponding posterior
distribution, using a Metropolis-adjusted Langevin algorithm (MALA), yielded much worse results compared
to the Maximum-a-Posteriori (MAP) estimate, which is illustrated in Figure

Model ensembling by [Lakshminarayanan et al.| (2017)) notably does not share this issue since the different
sets of weights are all optimized and thus constitute modes in the posterior distribution when we view this
approach from a Bayesian perspective using a flat prior (Wilson & Izmailov, [2020} |Gustafsson et al., [2020}
[Pearce et all [2018)). While this is a good step, the small number of models that can be extracted with this
approach may underestimate the true epistemic uncertainty, since there may be many more optimal weight
sets than the number of models in the ensemble. One approach is to use Laplace approximations for each
model in the ensemble (Eschenhagen et al. 2021). Although the approach shows promising experimental
results, the above-described problem of sampling in high dimensions persists here.

In this work, we propose a middle way between discrete and full continuous support by defining a mixture of
bounded support regions. We propose to approximate the posterior locally around the weight configurations
found by a deep ensemble using locally bounded MALA (IbMALA). We do so by defining a fixed-width
hyperball around each ensemble weight parameter and setting a reflective boundary condition, effectively
reducing the search space and support of the distribution to which the Markov Chain converges. While the
normal distribution found by the standard Laplace approximation might struggle to pick up the complex
statistical dependencies between weights, IbDMALA inherently takes such dependencies into account.

To test whether IbMALA indeed leads to improved posterior estimates, we design a fine-grained OOD
detection validation benchmark. This measures how sensitive different epistemic uncertainty methods are to
samples that move gradually out of distribution. Finally, through the improved performance of IbMALA on
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this benchmark, we provide evidence that the typical set problem is indeed real and affecting the uncertainty
estimates of state-of-the-art (SOTA) models.

2 Related Work

In probabilistic machine learning, the effects of concentration of measure and typicality appear both in the
data and parameter space. The relevance is apparent: with larger models and higher-dimensional data, such
as higher-resolution images, the studied spaces grow in dimension, reinforcing the issue. [Nalisnick et al.
(2018) and |Choi et al.| (2018) find that deep generative models might assign higher likelihoods to OOD data
than to their training data. Based on this observation, Nalisnick et al.| (2019)) argues that high-likelihood
samples might not be part of the typical set of the high-dimensional distribution of images. They developed
an OOD test based on typical set membership, where the entropy of new samples is compared to the entropy
of the source distribution using the condition in Equation @ However, |Zhang et al.| (2021) finds the test
unreliable, and |Osada et al.| (2024) attributes this to varying image complexity. |Grathwohl et al.| (2019)
proposes a score that argues that data points with a high likelihood outside the typical set should have a
higher gradient norm than ID samples. Recently, |Abdi et al. (2024) has applied the above methods to a
medical imaging setting with promising results in OOD detection.

The effects of typicality for Gaussian posterior approximations given by mean field variational inference in the
parameter space of a neural network have been observed and discussed by |Farquhar et al.| (2020) and [Farquhar
(2022), which they termed “soap bubble” pathology. They propose an alternative probability distribution
based on hyperspherical coordinates that forces probability mass to be close to the mean. However, such
probability concentration may be “artificial” as samples are biased towards the mean with less exploration.

The combination of multiple MAP estimates from a deep ensemble with local approximations of the posterior
around each estimate is a well-established technique. [Eschenhagen et al| (2021]) uses post-hoc Laplace
approximations around independently trained neural networks, resulting in a Gaussian mixture model. The
marginal likelihood is used to weight each distribution. [Wilson & Izmailov| (2020) extends Stochastic Weight
Averaging (SWA) (Izmailov et al.||2018)) and Stochastic Weight Averaging Gaussian (SWAG) (Maddox et al.
2019) to multiple neural networks of an ensemble. SWA averages the weights collected at different points,
usually in later epochs, during training with a constant or cyclic learning rate. Wilson & Izmailov| (2020))
introduce MultiSWA, which uses an ensemble of models found with SWA. SWAG extends SWA by not only
averaging the weights but also fitting a Gaussian distribution to them, capturing the posterior distribution
locally. MultiSWAG from [Wilson & Izmailov| (2020)) extends MultiSWA and involves training multiple neural
networks independently and then applying SWAG to each of these networks.

The Bayesian supervised learning framework distinguishes two types of uncertainty: Aleatoric, which cap-
tures the inherent variation in the data, and Epistemic uncertainty, which informs about a trained model’s
state of knowledge in a certain area of the domain of the network. Different theoretically derived uncertainty
measures capture aleatoric and epistemic uncertainty, and it is an open research question which of those
measures captures the different types of uncertainty best (Schweighofer et al., |2023a; |[Wimmer et al.| |2023;
Zepf et al., |2024; |Schweighofer et al 2023b)). The success of the chosen uncertainty measure can depend on
the application; therefore, mutual information, variance in predictions, the deviation of the posterior from
the prior and predictive entropy (Abdar et al., [2021), could vary in their suitability downstream tasks like
OOD detection. In addition, a strong correlation between measures of aleatoric and epistemic uncertainty
has been found, posing the question of whether decomposition is possible (Kahl et al.| 2024). Therefore, in
practice, one often relies on the combined total uncertainty to circumvent the problem of decomposing un-
certainties (Yang et al.l [2024), especially when either the likelihood or the Shannon entropy of the predictive
distribution is the most frequently used measure for total uncertainty in the Bayesian framework, which in
practice is approximated by sampling using the Monte-Carlo method.



Under review as submission to TMLR

3 Method: Mixtures of locally bounded Langevin dynamics

3.1 Bayesian Deep Learning

The Bayesian framework for supervised learning assumes a data-generating process:

iid. .

(z,9); =~ plz,y), i=1,...,N; (1)
from which a dataset D = («, y)iv is an independently and identically distributed sample. To infer y from z
we assume a model of p(y|z) with parameters 6 and search for likely model parameters 6 based on the data
D. The predictive distribution marginalizes over the model parameters

p(ylz, D) = / Py, 01, D)d6 = / Pyl 6)p(6] D)6, (2)

where the data D and the model parameters 6 are connected by Bayes’ rule. The posterior distribution
p(0]D) of the parameters 0 after observing the data D then decomposes into

p(D[6)p(0)

p(0ID) = PETE, 3)

with p(D|0) being the likelihood of observing the data D given the parameters 0, p(0) the prior distribution
of 6, which represents the beliefs about 6 before any data is seen and, the evidence p(D) is called marginal
likelihood, that serves as a normalizing constant to ensure that the posterior distribution sums up to one.
The integral p(D) = [p(D,0)dd = [ p(D|0)p(6)df usually cannot be solved analytically and is intractable
for numerical integration.

The standard way of training Neural Networks corresponds to MAP inference in the Bayesian framework
and yields a single parameter configuration for the posterior distribution:

N

Oniap = argg max Y _ log p(y;|ai, 0) + log p(f) (4)
i=1

Here, log p(#) corresponds to a weight regularization, such as weight decay, and if no such regularization is
used, it is a constant value corresponding to an improper flat prior. The goal of any approximate inference
technique is to go beyond such point estimates to capture more characteristics of the posterior distribution.

3.2 Typicality

Consider a set of i.i.d. random variables X, ..., X,, i p(z). A sample of this set is a sequence of observed

values ™ = (21, ...,x,). We call such a sequence typical (Cover} [1999) if it satisfies

o H@) ) < p(gy, . @) < 27 HE)=O) (5)

..y

for € > 0 and the Shannon entropy H (z) of p(x). The typical set Al™ is defined as the set of all these typical
sequences. If 2" € A" we can rewrite the criterion in Equation [5 into:

H(r) — e <> logyplry) < H(z) +e. (6)

=1

where the Shannon entropy of a typical sequence is bounded from below and above by the Shannon entropy
of the distribution p(z) and defined by Equation

H[p(y|z, D)] = = p(ylz, D) log p(y|z, D) (7)
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Since —1 >°"  log, p(z;) converges to H(z) in probability for large n by the Asymptotic Equipartition

n

property (Cover, [1999) it follows that:

P(z" € AW) > 1—¢ (8)

which means the probability that a sequence is part of the typical set is almost 1. At this point, it is pertinent
to describe and emphasise the distinction between the regions of high probability (high density) and regions
containing most of the probability mass, which is particularly important in high-dimensional settings. The
probability density of a distribution indicates how likely an individual point is relative to others at the mode,
but the probability mass depends on the density and volume of the region under consideration (Betancourt),
2017). To provide further intuition, Figure [2| illustrates a one-dimensional Gaussian distribution (on the
left) divided into five regions based on its cumulative distribution function (CDF). Each colored region,
therefore, has equal probability mass (0.2). If we draw 20 independent samples from this Gaussian, the
probability that all samples fall within the central green region corresponding to the highest probability
density is: 0.220 ~ 1.4 x 10~!4. This probability rapidly decreases as the number of samples increases.

Conversely, the probability that at least one sample falls in either the blue or purple outer regions, which
exceeds 0.9999, computed as: 1 — 0.6%0 and increases with the number of samples. Interpreting these
samples as coordinates of a 20-dimensional Gaussian vector, this implies that the probability that at least one
dimension lies far from the high-density region is extremely high. Consequently, samples in high dimensions
are far more likely to lie far from the Gaussian’s mode than near it.

A second illustration (on the right in Figure |2)) extends this idea by dividing the Gaussian into 25 equal-
probability regions, each with probability 0.04. For a 20-dimensional Gaussian, the probability that at least
one coordinate falls within the outermost blue or purple regions is: 1 —0.922° > 0.81. For a 200-dimensional
Gaussian, this probability exceeds 0.999999. Again, this demonstrates that in high dimensions, it is almost
certain that at least one coordinate lies far from the mode, meaning typical samples occur far from the region
of highest probability density.

Thus, in low dimensions d, Gaussian distributions have most of their probability mass close to the mean.
However, for large d, an origin-centered normal Gaussian N (0, ¢l) has almost all of its mass located near
a thin annulus with radius ov/d (Gaussian Annulus Theorem (Blum et al., [2020)). As a result, in high-
dimensional distributions, most samples from a distribution will fall into this typical set (Carpenter} 2017)).
Considering the expected squared distance of a point x ~ A(0,1) to the mean provides some intuition as to
where to expect points when we sample from the distribution:

E(]x]*) =ZE(9€?) = dE(z}) =d 9)

While the Annulus theorem, as a result of the concentration of measure, describes the probability mass, the
entropy-based condition of the typical set inequation [6] leads to a similar result. For n = 1 a point = belongs
to the typical set of the distribution A'(0,0l) if ||z — u||3 = oV/d.

As a consequence, posterior approximations of Bayesian neural networks based on high-dimensional Gaus-
sian’s tend to under-represent the most-probable weight configurations (Farquhar et al., 2020; Bishop &
Nasrabadi, 2006)), since there is almost no probability mass in the hyper ball of radius smaller v/d and
typical samples do almost certainly not lie in this region as illustrated in Figure [3] Assuming some degree
of continuity in the weight space, i.e., weight configurations close to each other yield similarly performing
functions, the likely weight configurations within the neighborhood of a MAP estimate would not be sampled
by Gaussians in high dimensions.
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From One Dimension to High Dimensions in Gaussian Distributions
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Figure 2: Illustration of high-dimensional Gaussian geometry. Left: A one-dimensional Gaussian partitioned
into equal-probability regions using its CDF. Right: Extension to high dimensions, where multiple indepen-
dent coordinates are sampled. As dimensionality increases, the probability that at least one coordinate lies
in a low-density outer region approaches 1, indicating that high-dimensional samples concentrate far from
the mode.
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Figure 3: Tllustrations of typical set "phenomena": (a) Samples of a uniform distribution on the unit cube in
three dimensions. Samples that lie within the unit sphere are coloured grey, and samples outside are orange.
(b) With growing dimensions of the unit cube, most samples lie outside of the respective unit sphere. (c)
Probability density of a standard Gaussian distribution as a function of distance to the origin. In higher
dimensions, most probability mass concentrates not at the mean (origin) but on a given radius.
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3.3 Metropolis adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that combines Langevin dy-
namics (Welling & Tehl [2011) with the Metropolis-Hastings acceptance criterion to sample from a target
distribution (Roberts & Rosenthall [1998)).

1. Langevin Proposal:

2
0 =0, + % Vologm(6;) + e, n~N(0,1I;) (10)

Where 6’ is the proposed move, 6; is the current position, Vglogn(6;) is the gradient of the log target
distribution at 0, € > 0 is the step size, and 7 is a d-dimensional standard normal random vector. We take
7(0) o< p(y | 0) p() to be the target posterior over the (flattened) parameter vector 6 € R

The corresponding forward proposal density is

46— 0) = N(85 00+ 5 Vologm(8)), L) (11)

2. Metropolis-Hastings Acceptance Criterion:

N m(0") (0" — 61)
a(f:,0") = min (1, 7"'(915)(](9t—>9')> (12)

Where 7(0) is the target distribution and g(6; — ') is the transition kernel of the Langevin dynamics. The
term g(6" — 6;) represents the probability of transitioning from the proposed move 6" back to the current
position 6, and vice versa for q(6; — 0').

The algorithm accepts the proposed move 6" with probability «(6;,6’). If accepted, the chain moves to ',
otherwise it remains at 6;.

3.4 Domain Restriction through Reflective Boundary Condition

A hyperball is defined around the fyap with radius R, where R < ov/d (Gaussian Annulus). Here, o is the
standard deviation of a Laplace approximation, i.e., a function of the curvature in the fyap. This curvature
can also be calculated using the diagonal Hessian H of the negative log-posterior (Bergamin et al.l |2023)).
MALA is then run while enforcing a reflective boundary in this constrained region. Thus, if a proposed
MALA step moves the chain outside the hyperball of radius R, the proposal is “reflected” back into the
domain. This prevents the chain from leaving a feasible space. In this way, we still converge to a stationary
distribution but within a restricted domain. This ensures more stable outcomes and confines the samples to
regions with the highest probability, thereby ensuring an ergodic chain (Oliviero-Durmus & Moulines, 2024)).

3.5 Mixtures of Locally Bounded Langevin dynamics

The approach starts with an ensemble of initial models, represented from a constrained region of high proba-
bility. Each model is run under a domain-restricted MALA, yielding a locally bounded stationary distribution
in the region. This results in a mixture of the distributions (IbMALA) in multiple high-probability regions.

3.6 Implementation

IbMALA was implemented in three stages, as illustrated in Algorithm

Step 1: Initialisation A pre-trained baseline model is required and used to initialise the chain with
a starting point estimate, 6y, i.e., the MAP estimate. The associated model parameters are loaded and
hyperparameters defined; step size ¢, chain length L, burn-in Byyy. Then local curvature was estimated
using the Hessian of the negative log posterior, to define the radius of the reflective hyperball as R = 3 ||o]|2,
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radius scaling factor § = 2 (two standard deviations), with centre ¢ = 6y, to dynamically calculate the
reflective boundaries and constrain the sampling to a high probability region of the posterior, described
in Algorthim A buffer size S = 5000 was also initialised to store a sufficient number of samples while
searching within the boundary conditions.

Step 2: Constrained MALA Sampling with Reflective Boundaries aimed to accelerate convergence,
but through a constrained MALA adapted with the reflective boundary condition to provide an efficient
sampling approach. With each iteration, a mini-batch of data, D is drawn, the gradient g = Vylogm(0)
is computed, and a new Langevin sample is proposed (6’). Each proposal is checked against the hyperball
constraint, and if it lies outside the ball, it is radially reflected back toward the MAP centre, as detailed in
Section [3.3] This ensures better definition in the constrained region. Thereafter, the continuous acceptance
and rejection rates are monitored and assessed as convergence occurs to ensure stability and convergence in
the bounded region.

Step 3: Extract Posterior Samples and Fine-Tune allows n = 5 posterior samples from the chain, with
the sample initialising a separate model which was fine-tuned and trained for a further 10 epochs for MNIST
and 100 epochs for CIFAR-10. To ensure consistency with SWAG and Multi-SWAG, the baseline MAP at
10 epochs was utilised for MNIST and 100 epochs for CIFAR-10. A final set of parameters produced the
optimal IbMALA approach with step size € of 1e — 6 for MNIST and 1le — 8 for CIFAR-10, chain length L of
400, burn-in By, of 1000 samples, with the learning rate for the final optimisation set to Ir = le —4. Given
the computational cost of a full hyperparameter search, we limited optimisation to adjusting the learning
rate between Ir = le — 4 and Ir = le — 6 for MNIST and Ir = le — 4 and lr = le — 8 for CIFAR-10,
with both datasets having a burn-in of 1000 to 2500 samples. Interestingly, empirically, we observe that
acceptance rates were initially low when the chain was far from the typical set. Still, we observed that it
stabilises during burn-in and sampling, with rejection becoming comparatively infrequent. We illustrate this
transient-to-stable behavior with a representative run shown in Figure [§] Appendix [A]

4 Experimental Analysis

Our experiments are designed to highlight the ability of different methods to perform fine-grained ID versus
OOD detection. To this end, we utilise two datasets, the Morpho-MNIST toolkit was used to create versions
of the MNIST digit classification dataset that are increasingly distorted (Castro et all 2019). Second, cor-
rupted CIFAR-10 (CIFAR-10-C) was used to obtain increased corruption severity on the CIFAR-10 dataset
(Hendrycks & Dietterich| [2019). Using these increasingly OOD datasets, we quantify the ability of different
posteriors to rank these datasets according to their level of OOD distortion.
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Algorithm 1 IbMALA Algorithm

1:

Step 1: Initialisation

2: Load pretrained model with MAP estimate Zy, flattened to 6o

12:

13:
14:
15:

16:
17:

18:

: Define hyperparameters: step size ¢, total iterations L + Bpurn, buffer size S and radius scaling factor 8 = 2 (two

standard deviations).

: Estimate local curvature using the diagonal of the Hessian H
: Compute approximate marginal scales

g; = .. s 1= 1, ey d
and collect as vector o = (01,...,04) in order to approximate local posterior variability
: Define hyperball center and radius:
¢+ 6o, R« Blofl2,
where the norm
d
lofla = | Y o~ oVd
i=1

corresponds to the Gaussian-annulus radius in d-dimensional parameter space, where R is the fixed radius of the
locally bounded region, and the feasible set is

B={0:]6—cl. < R}

: Initialize 6 < 609, rejection counter < 0, buffer S
: Step 2: Constrained MALA Sampling with Reflective Boundaries
: for i =1 to L + Bpurm do

Draw mini-batch (z,y) ~ D
Compute gradient of posterior for batch:
g = Vglogm(0)

Propose a new state (MALA proposal):

2

6’:0+%g+6n, n ~N(0,1)

Apply reflective boundary:
if |0’ — ¢|2 > R then
Project 6’ back onto the boundary of the hyperball (approximating radial reflection)

0 —c

0 «— R—m8F
R T

end if
Compute gradient at the proposal:
g = Velogm(6")

Compute acceptance ratio using proposal densities (using Eq. :

o — min (1 7r<9>q<HQ>>
" 7(0)q(60 — 0)

If it is accepted, set 0 < 6, else keep previous 6.
if 7 > Bpum then

Append 6 to buffer S.
end if

: end for

: Step 3: Extract Posterior Samples and Fine-Tune

: Select n = 5 posterior samples from §; for each and initialise a model
: Retrain model with Ss for additional epochs

: Output: Ensemble of retrained models
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4.1 Design and Setup

The Morpho-MNIST toolkit provides four different distortions that can be applied to the original MNIST
digits to produce either a thickened, swelled, thinned, or fractured (broken continuity) version of any MNIST
digit, see Figure {4 for an illustration. As shown in the figures, the level of distortion is controlled by a
perturbation factor that influences the severity of a distortion. We used the original digits as an ID (Plain)
dataset for training and ID testing, and generated, for each of the four distortions, three increasingly OOD
test sets by using each distortion with three increasing severity levels.

The CIFAR-10-C dataset consists of images derived from the original CIFAR-10 test set by applying a
diverse set of image corruptions. In total, 19 corruption types are considered, with categories such as
additive noise, blur, weather effects, and digital distortions. Each corruption applies five increasing severity
levels to control the strength of the perturbation. Thus, a comprehensive benchmark of distributional shifts
that systematically degrade image quality is developed. In our experiments, the original CIFAR-10 test set
is used as the ID evaluation set, while the corrupted variants at increasing severity levels serve as OOD test
sets for assessing robustness under progressively more challenging severities. Overall, there are ten object
classes. We utilise one corruption from each of the five different categories: impulse noise, gaussian blur,
snow, elastic transform, and spatter for all five levels of severity, illustrated in Figure

Thickening Swelling Thinning Fractures

Plain

7 Vel b

Distortion

Figure 4: An illustration for the digit 7 across the types of perturbations, across each distortion placed on
the original “plain” MNIST dataset.

To evaluate the performance of IbMALA, it was benchmarked against several baseline methods for epistemic
uncertainty quantification. All methods were tested with two different backbones: a lightweight convolutional
neural network (CNN) and a more complex ResNet18 model. The CNN model consists of 2 convolutional
layers with ReLU 4 max pooling, followed by 2 fully connected layers producing logits for the 10 digits
(classes). The ResNetl18 model comprises 18 layers, 4 residual blocks, global pooling, and a final fully
connected layer. Both models were trained on the original MNIST (Plain) dataset, consisting of 28 X
28 grayscale images, of which 60.000 examples were used for training (90%) and validation (10%), and
10.000 were used for testing. The same hyperparameters Ir and b were used for both the CNN and ResNet
architectures. For CIFAR-10, we employed the same model architectures, modified to accommodate 32 x 32
RGB images. We used the same training—validation split as for MNIST, with 45.000 images for training and
5.000 for validation. For evaluation, 10.000 test images were used for each corruption severity within each
category. In addition, we implemented an unbounded MALA using identical parameter settings to enable a
direct comparison with IbMALA.

10
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CIFAR-10-C for class: horse, to illustrate the severities per corruption

Clean Severity 1  Severity 2  Severity 3  Severity 4  Severity 5

[ | w

A = ¥

snow ﬂ w W W ﬁi . ﬁil
oY A rF. "

Figure 5: An illustration for the class horse to indicate the five categories of corruptions and levels of severity.

impulse noise

Baselines To evaluate the performance of the IbMALA method for Bayesian posterior sampling and
uncertainty quantification, we performed comparisons against a range of widely utilised baselines. All
baselines were selected to cover a range of methods, including deterministic point-estimate models and
Bayesian inference approaches. Each method was implemented under consistent training conditions to
ensure a robust and fair comparison.

Maximum A Posteriori (MLAP) was used as the main baseline. Here, the cross-entropy loss is optimised,
and a single point-based estimate of model weights is generated as a result of the corresponding zero-mean
Gaussian prior over model parameters. This provides a computationally efficient approach, but as mentioned
earlier provides overconfident outcomes as there is no measure of uncertainty. Thus, it is used as an initial
starting point for subsequent approaches.

The MC dropout, was implemented to compute an approximation of variational inference by randomly
dropping units in the model to prevent overfitting (Gal & Ghahramani, 2016)), (with a dropout probability
of p=0.3) for both MNIST and CIFAR-10. However, even though it was easy to implement, it has been
known to not provide the best representation of model uncertainty.

Deep Ensembles, utilises multiple independently trained baseline MAP models (Lakshminarayanan|
, while computationally more expensive, typically outperform MC dropout, whose weight
configurations tend to be less diverse (Durasov et all |2021). We trained 5 models, each initialized and
trained from scratch on the same training data. All three of these approaches were trained over 20 epochs
and with a learning rate of Ir = le — 3 using stochastic gradient descent (SGD) and a batch size of 64 for
MNIST. CIFAR-10 utilised a batch size of 128, an SGD learning rate of Ir = le — 1 over 200 epochs. All
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subsequent models trained and discussed utilised the same batch size of 64 and 128, for the MNIST and
CIFAR-10 models, respectively.

SWAG provides a structured and more rigorous approach to Bayesian approximation. Here, SWAG
computes multiple weights when training using SGD and uses the mean and covariance of the collected
weights to estimate a Gaussian distribution; samples from this distribution are used to provide scalable yet
high-quality uncertainty estimates (Maddox et alJ |2019). We used the baseline MAP model at 10 epochs
as the initial starting MAP point for MNIST and 100 epochs for CIFAR-10. However, even with a better
approximation, SWAG is centered around the MAP estimate and thus may still not capture model diversity.
We therefore extended the approach through Multi-SWAG, which utilises an ensemble of SWAG model to
improve posterior coverage and improve prediction uncertainty with a more diverse posterior (Wilson & I1z-
mailov, |2020). Both SWAG and Multi-SWAG utilised a learning rate of Ir = 1le—2 for MNIST and CIFAR-10.

The last comparative approach implemented was the mixture of Laplace approximations (Eschenhagen
et all 2021)), applied to the baseline of ensemble MAP models to represent the complexity of the posterior
distribution using multiple local optima in the loss landscape. This approach allows a more accurate quan-
tification of uncertainty using the multimodal nature of the posterior. A smaller noise perturbation was
used (0.01) on model parameters, as higher values created very noisy and destabilised predictions for both
MNIST and CIFAR-10.

4.2 Results

To investigate the relative performance of IbMALA against the Bayesian SOTA approaches for fine-grained
OOD detection, the entropy values, reflecting epistemic uncertainty, were used to classify samples as ID or
OOD. For a well-estimated posterior distribution, we would expect our ability to detect distorted samples of
either kind as being OOD to increase with increasing level of distortion or severity for MNIST and CIFAR-10,
respectively. We illustrate our performance on ID vs OOD performance, quantified using the Area Under the
Curve (AUC) metric, for various distortions in Figure [6 with CNN results in the top row and ResNet18 on
the bottom row for MNIST and for various corruptions and their severity in Figure [7]for CIFAR-10. Finally,
all log entropy plots over the ID and OOD test sets across all distortions are represented in Appendix [A] for
the MNIST dataset.

We note that while all the tested methods show the desired trend of increased AUC for ID vs OOD classifi-
cation as the distortion level increases, our IbMALA performs consistently well across both distortion types
and backbones on both the MNIST and CIFAR-10 datasets.

5 Discussion

Quantification of epistemic uncertainty is critical in many applications, such as the OOD detection problem
tackled here. Many Bayesian approaches rely on posterior approximations based on posterior samples, and
are therefore sensitive to the fact that typical sets of very high-dimensional distributions can fall far from
the posterior modes. As a result, these samples do not represent sets of optimal parameters for the task
at hand. Our proposed IbMALA approach, which utilizes sampling within a restricted space around MAP
estimates, will generate samples closer to the MAP, which are more likely to be optimal for the ID datasets.
These samples should yield stronger differences between ID and OOD samples. The results presented in
Figure [l and Figure [7] confirm this assumption, as IbMALA has a more consistent and reliable performance
across both backbones. In particular, the Figures suggest that entropy-based measures assist in identifying
OOD cases of increasing complexity, where the distortions are increasingly pronounced, but the digit itself
is still recognisable.
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Figure 6: The AUC performance for MNIST with the CNN (top) and ResNet18 (bottom) architectures
across all methods for fine-grained ID and OOD separation for (from left to right) Fractures, Thinning,
Swelling, and Thickening datasets for 5 random seed initialisations for reliability.

Differences to existing methods:

MNIST: We compared IbMALA to a range of popular and recent methods for epistemic uncertainty
quantification on our entropy-based fine-grained ID vs OOD detection task, including an Unbounded variant
of MALA. MC dropout and Ensembles are well-known and widely used methods for epistemic uncertainty
quantification. Despite providing only discrete support, they are both able to separate ID and OOD data
in a fine-grained manner. However, their performance is not consistent between the 3 different distortions,
as illustrated in Figure [6] For instance, while MC Dropout for the CNN architecture performed well and
closer to other methods, it comes out as consistently worst on all distortions using the ResNet18 backbone,
see Figure [0

For the Thinning dataset in Figure [6] the MC dropout model exhibits a sharper deterioration in AUC
performance. This may indicate that the ResNet18 architecture assigns high softmax scores to an incorrect
class, leading to a reduced entropy value.

For the CNN backbone, IbMALA came out consistently top or second for the Fracturing, Thinning, and
Swelling distortions. It gets more competition for the ResNet18 backbone, where SWAG and Ensemble also
perform well. Interestingly, while IbMALA demonstrates consistently strong performance, the other methods
vary more in their performance across backbones — in particular, as we expect the (fine-tuned) ResNet18 to
represent a more over-fitted model than the simpler CNN.

To further analyse the performance of IbMALA across both architectures, we implemented a weighted ranking
utilising the mean AUC’s across distortions and dataset perturbations. Distortion 1 contributes a larger
share of the weighting formula, ensuring that fine-grained OOD AUC performance has a larger influence
on identifying the better-performing model. The final result is presented in Figures [L1] and [12] in Appendix
[A] illustrating that under this weighting scheme, IbMALA demonstrates consistent and stable performance
across architectures.
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Figure 7: The AUC performance for CIFAR-10 for the CNN (top) and ResNet18 (bottom) architectures
across all methods for fine-grained ID and OOD separation for (from left to right) five levels of severity for
five corruptions. For each test, we ran 5 random seed initialisations for reliability.

Lastly, to evaluate and assess the model’s behaviour under a far-OOD task, we evaluated the models using
the Fashion MNIST dataset. The results for both CNN and ResNet architectures indicate that the ResNet
backbone performs the best at OOD separation with IbMALA consistently indicating its ability to generalise
well even in far-OOD settings, as illustrated in Figures[I3]and [I4] Appendix A.

CIFAR-10: Similar to the MNIST experiments, we compare against recent methods for epistemic uncer-
tainty quantification in fine-grained ID versus OOD detection. Figure [7] shows that for the CNN backbone
(top row), IbMALA consistently ranks among the top-performing methods, but, with stronger competition
from ensemble-based approaches for the glass blur and impulse noise corruptions.

When comparing CNN and ResNet backbones, we observe a systematic increase in absolute AUC across
all corruptions as distortion severity increases. For the ResNet backbone in particular, IbMALA exhibits
lower variance across all five seeds and remains an overall top-performing method, similar to the behaviour
observed on MNIST. This trend highlights the robustness of IbMALA, demonstrating strong sensitivity to
increasing corruption severity, especially for noise-based and geometric distortions. While ensemble and
MSWAG methods offer competitive performance for the CNN backbone, IbMALA emerges as a consistently
reliable OOD detector across architectures.

Limitations. 1bMALA does exhibit some limitations, such as the high computational costs for the two-step
gradient evaluation (first proposing and then accepting a sample). While this is manageable for simpler prob-
lems like digit classification or lightweight architectures, it could impact more complex problems. However, as
shown in Figures |15 and Appendix [A] the evaluation time for IbDMALA is comparable to other competing
methods, but importantly, IbMALA delivers the overall more consistent performance across OOD detection
and architecture. Thus, we learn from IbMALA’s positive performance, that the typicality problem is
real and affects the performance of epistemic uncertainty quantification. This is critical knowledge
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and a necessary starting point for developing more efficient methods whose solutions are not limited to the
typical set.

Need for fine-grained OOD detection. In this paper, we have introduced a notion of fine-grained ID
vs OOD detection, including a validation benchmark based on the Morpho-MNIST toolkit and CIFAR-10
dataset. This is a contrast to the standard validation schemes found in uncertainty quantification papers,
where the performance of OOD detection is often demonstrated by showing that methods can recognize
that data comes from an entirely different dataset — e.g., MNIST versus Fashion-MNIST. We stress that
fine-grained OOD detection is of crucial importance, e.g. in healthcare Al where "typical" model failure does
not come as a clear breakdown on obviously incorrect data — but rather as somewhat reduced performance
on underrepresented population groups or disease subtypes (Cui & Wang), [2022)). Often, these somewhat
reduced performances are only visible when aggregating performances across an entire group, which is rarely
done in everyday practice. As a result, fine-grained OOD detection is important for warning users of a
potential decrease in the reliability of the model.

6 Conclusion

Ensuring more robust discrimination between ID and OOD data is fundamental for developing reliable deep
learning models, more so for applications in high-risk settings where misclassification of samples may have a
pronounced impact.

In this paper, we propose IbMALA, a Bayesian approach utilising a reflective boundary condition to enhance
the ability to localise the approximation of the posterior weight configurations. To evaluate the performance
of the method, various comparative SOTA approaches were implemented on the problem of fine-grained ID
and OOD detection settings. Our analysis demonstrated promising outcomes with the novelty of IbMALA
outperforming SOTA in terms of reliability and consistency across OOD datasets to separate data on a finer
scale, as reflected by the AUC values through logistic regression analysis.

However, even with the noticeable improvements, some limitations require further exploration to determine
the impact on computational costs and performance on more complex datasets. Nevertheless, it would be
valuable to apply the IbMALA approach to a larger dataset or a more complex domain (medical applications)
to explore further and evaluate its benefit for reliable uncertainty quantification.

7 Impact statement
This paper presents work whose goal is to advance the field of Machine Learning. There are many potential

societal consequences of our work, one of which we would like to emphasise. If the uncertainty estimates of
our predictions are inaccurate and users trust them, it could mislead users and impact their work.
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Figure 8: Illustrating the running (cumulative) acceptance rate of the MALA sampler over iterations.

A Appendix

In this appendix, we provide all the detailed log softmax entropy graphs for each of the methods discussed
in this paper.

A.1 lllustrations ID vs OOD
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Figure 9: All log softmax entropy distributions indicating the ID and OOD datasets (Thickening, Swelling,
Thinning, and Fracture datasets respectively) across all implemented methods for the CNN architecture.
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Figure 10: All log softmax entropy distributions indicating the ID and OOD datasets (Thickening, Swelling,
Thinning, and Fracture datasets respectively) across all implemented methods for the ResNet18 architecture.
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Figure 11: Average weighted AUC mean ranking of all uncertainty estimation methods on the CNN baseline
architecture.Each bar represents the method’s overall ranking across fine-grained OOD distortion types, with
lower values indicating superior performance.

20



Under review as submission to TMLR

Average Rank ResNet Baseline (Weighted Mean)
8 ] 7.75

Rank (lower is better)
'y

Figure 12: Average weighted AUC mean ranking of all uncertainty estimation methods on the ResNet
baseline architecture.Each bar represents the method’s overall ranking across fine-grained OOD distortion
types, with lower values indicating superior performance.
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Figure 13: Far-OOD performance on the Fashion-MNIST dataset for all methods for CNN Baseline. Higher
AUC values indicate better separation between MNIST (ID) and Fashion-MNIST (OOD).
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Figure 14: Far-OOD performance on the Fashion-MNIST dataset for all methods for ResNet Baseline. Higher
AUC values indicate better separation between MNIST (ID) and Fashion-MNIST (OOD).
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Figure 15: Comparison of evaluation times across methods, showing the average minutes required for the
CNN architecture.
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Figure 16: Comparison of evaluation times across methods, showing the average minutes required for the
ResNet architecture.
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