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Abstract

Properties of probability distributions change when going from low to high dimensions, to
the extent that they admit counterintuitive behavior. Gaussian distributions intuitively
illustrate a well-known effect of moving to higher dimensions, namely that the typical set
almost surely does not contain the mean, which is the distribution’s most probable point.
This can be problematic in Bayesian Deep Learning, as the samples drawn from the high-
dimensional posterior distribution are often used as Monte Carlo samples to estimate the
integral of the predictive distribution. Here, the predictive distribution will reflect the
behavior of the samples and, therefore, of the typical set. For instance, we cannot expect
to sample networks close to the maximum a posteriori estimate after fitting a Gaussian
approximation to the posterior using the Laplace method. In this paper, we introduce
a method that aims to mitigate this typicality problem in high dimensions by sampling
from the posterior with Langevin dynamics on a restricted support enforced by a reflective
boundary condition. We demonstrate how this leads to improved posterior estimates by
illustrating its capacity for fine-grained out-of-distribution (OOD) ranking on the Morpho-
MNIST dataset.

1 Introduction

Estimation of epistemic uncertainty during inference time is crucial for many applications in machine learning.
It is a key ingredient for identifying samples for which the algorithm’s prediction cannot be trusted, which
include both out-of-distribution (OOD) samples as well as challenging in-distribution (ID) samples. Even
more so, an accurate estimation of epistemic uncertainty can play a crucial role in identifying domain shifts.

To this end, given a finite sample size and an overparameterized neural network model, which is often the
case, identifying different sets of “optimal weights” is key to estimating epistemic uncertainty of the model.
We find it important to explicitly define the “optimality” of these sets of weights. In this work, we adopt
the following definition. If two sets of weights are optimal, they are both local minima of the loss function
and yield similarly high accuracies on the training and/or validation sets. As such, it would not be possible
to choose one over the other; thus, they are both optimal. Evaluating these different optimal models on the
same sample would allow for approximating the epistemic uncertainty.

The current set of methods for estimating epistemic uncertainty can be divided into two groups. First, the
discrete support group, estimates a finite number of parameter sets either through training multiple mod-
els and ensembling Lakshminarayanan et al. (2017), approximating ensembling through Monte-Carlo (MC)
Dropout Gal & Ghahramani (2016), or directly sampling from a posterior distribution using an appropriate
sampling, such as Hamiltonian Monte CarloBetancourt (2017). The second group, the continuous support
group, estimates continuous posterior distributions for network parameters through using Laplace approxi-
mations MacKay (1992); Ritter et al. (2018); Daxberger et al. (2021) or variational inference Graves (2011);
Bishop & Nasrabadi (2006).

Setting model ensembling aside for a moment, the current techniques rely on an underlying Bayesian model
and posterior distribution of network weights given a dataset. This posterior is either approximated or
sampled from. However, even in small networks, the number of parameters is very high, and therefore,
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Figure 1: Illustration from Cagnotti (2023): A Deep decoder is trained to denoise the image shown in (b).
(c) shows a MAP estimate obtained by training with Equation 4 using a Gaussian prior for weights, i.e.,
weight decay. (d) shows reconstruction with a sample drawn with MALA from the posterior distribution of
the network weights after making sure the chain has converged. As explained below, this posterior sample
likely comes from the typical set, and the reconstruction quality is clearly lower than the MAP estimate.

the underlying Bayesian model is very high-dimensional. As such, these Bayesian models are prone to
counterintuitive effects of typical sets in high dimensions. An intuitive description of a typical set is given by
Carpenter (2017) as “...the central log density band into which almost all random draws from that distribution
will fall”. The main issue is that this band may be quite far from the modes of a distribution in high
dimensions Kirby (1969). Thus, drawn samples will come from areas where the likelihood is potentially
extremely low. When we consider the posterior distribution of network weights, this means sampled sets of
weights may not be optimal as we defined above. They most likely have very low data likelihoods or in other
words, they will not do an accurate prediction on the training set. Cagnotti (2023) et al. demonstrated this
on the problem of image denoising with the Deep Decoder model Heckel & Hand (2019). Denoising an image
with network weights that are sampled from the corresponding posterior distribution, using a Metropolis-
adjusted Langevin algorithm (MALA), yielded much worse results compared to the Maximum-a-Posteriori
(MAP) estimate, which is illustrated in Figure 1.

Model ensembling Lakshminarayanan et al. (2017) notably does not share this issue since the different sets of
weights are all optimized and thus constitute modes in the posterior distribution when we view this approach
from a Bayesian perspective using a flat prior Wilson & Izmailov (2020); Gustafsson et al. (2020); Pearce
et al. (2018). While this is a good step, the small number of models that can be extracted with this approach
may be underestimating the true epistemic uncertainty, as there can be many more optimal weight sets than
the number of models in the ensemble. One direction towards this is to use Laplace approximations for each
model in the ensemble Eschenhagen et al. (2021). Although the approach shows promising experimental
results, the above-described problem of sampling in high dimensions persists here.

In this work, we propose a middle way between discrete and full continuous support by defining a mixture of
bounded support regions. We propose to approximate the posterior locally around the weight configurations
found by a deep ensemble using locally bounded MALA (lbMALA). We do so by defining a fixed-width
hyperball around each ensemble weight parameter and setting a reflective boundary condition, effectively
reducing the search space and support of the distribution to which the Markov Chain converges. While the
normal distribution found by the standard Laplace approximation might struggle to pick up the complex
statistical dependencies between weights, lbMALA inherently takes such dependencies into account.

To test whether lbMALA indeed leads to improved posterior estimates, we design a fine-grained OOD
detection validation benchmark. This measures how sensitive different epistemic uncertainty methods are to
samples that move gradually out of distribution. Finally, through the improved performance of lbMALA on
this benchmark, we provide evidence that the typical set problem is indeed real and affecting the uncertainty
estimates of state-of-the-art (SOTA) models.
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2 Related Work

In probabilistic machine learning, the effects of concentration of measure and typicality appear both in the
data and parameter space. The relevance is apparent: with larger models and higher-dimensional data, such
as higher-resolution images, the studied spaces grow in dimension, reinforcing the issue. Nalisnick et al.
(2018) and Choi et al. (2018) find that deep generative models might assign higher likelihoods to OOD data
than to their training data. Based on this observation Nalisnick et al. (2019) argues that high-likelihood
samples might not be part of the typical set of the high-dimensional distribution of images. They developed
an OOD test based on typical set membership, where the entropy of new samples is compared to the entropy
of the source distribution using the condition in equation 6. However, Zhang et al. (2021) finds the test
unreliable, and Osada et al. (2024) attributes this to varying image complexity. Grathwohl et al. (2019)
proposes a score that argues that data points with a high likelihood outside the typical set should have a
higher gradient norm than ID samples. Recently, Abdi et al. (2024) has applied the above methods to a
medical imaging setting with promising results in OOD detection.

The effects of typicality for Gaussian posterior approximations given by mean field variational inference in the
parameter space of a neural network have been observed and discussed by Farquhar et al. (2020) and Farquhar
(2022), which they termed “soap bubble” pathology. They propose an alternative probability distribution
based on hyperspherical coordinates that forces probability mass to be close to the mean. However, such
probability concentration may be ’artificial’ as samples are biased towards the mean with less exploration.

The combination of multiple MAP estimates from a deep ensemble with local approximations of the poste-
rior around each estimate is a well-established technique. Eschenhagen et al. (2021) use post-hoc Laplace
approximations around independently trained neural networks, resulting in a Gaussian mixture model. The
marginal likelihood is used to weight each distribution. Wilson & Izmailov (2020) extend Stochastic Weight
Averaging (SWA) Izmailov et al. (2018) and Stochastic Weight Averaging Gaussian (SWAG) Maddox et al.
(2019) to multiple neural networks of an ensemble. SWA averages the weights collected at different points,
usually in later epochs, during training with a constant or cyclic learning rate. MultiSWA Wilson & Izmailov
(2020) uses an ensemble of models found with SWA. SWAG extends SWA by not only averaging the weights
but also fitting a Gaussian distribution to them, capturing the posterior distribution locally. MultiSWAG
Wilson & Izmailov (2020) involves training multiple neural networks independently and then applying SWAG
to each of these networks.

The Bayesian supervised learning framework distinguishes two types of uncertainty: Aleatoric, which cap-
tures the inherent variation in the data, and epistemic uncertainty, which informs about a trained model’s
state of knowledge in a certain area of the domain of the network. Different theoretically derived uncertainty
measures capture aleatoric and epistemic uncertainty, and it is an open research question which of those
measures captures the different types of uncertainty best Schweighofer et al. (2023a); Wimmer et al. (2023);
Zepf et al. (2024); Schweighofer et al. (2023b). The success of the chosen uncertainty measure can depend on
the application; therefore, mutual information, variance in predictions, the deviation of the posterior from
the prior and predictive entropy Abdar et al. (2021), could vary in their suitability for downstream tasks like
OOD detection. In addition, a strong correlation between measures of aleatoric and epistemic uncertainty
has been found, posing the question whether decomposition is possible Kahl et al. (2024). Therefore, in
practice, one often relies on the combined total uncertainty to circumvent the problem of decomposing un-
certainties Yang et al. (2024), especially when either the likelihood or the Shannon entropy of the predictive
distribution is the most frequently used measure for total uncertainty in the Bayesian framework, which in
practice is approximated by sampling using the Monte-Carlo method.
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3 Method: Mixtures of locally bounded Langevin dynamics

3.1 Bayesian Deep Learning

The Bayesian framework for supervised learning assumes a data-generating process

(x, y)i
i.i.d.∼ p(x, y), i = 1, . . . , N (1)

from which a dataset D = (x, y)N
i is an independently and identically distributed sample. To infer y from x

we assume a model of p(y|x) with parameters θ and search for likely model parameters θ based on the data
D. The predictive distribution marginalizes over the model parameters

p(y|x, D) =
∫

p(y, θ|x, D)dθ =
∫

p(y|x, θ)p(θ|D)dθ, (2)

where the data D and the model parameters θ are connected by Bayes’ rule. The posterior distribution
p(θ|D) of the parameters θ after observing the data D then decomposes into

p(θ|D) = p(D|θ)p(θ)
p(D) , (3)

with p(D|θ) being the likelihood of observing the data D given the parameters θ, p(θ) the prior distribution
of θ, which represents the beliefs about θ before any data seen and, the evidence p(D) also called marginal
likelihood, that serves as a normalizing constant to ensure that the posterior distribution sums up to one.
The integral p(D) =

∫
p(D, θ)dθ =

∫
p(D|θ)p(θ)dθ usually cannot be solved analytically and is intractable

for numerical integration.

The standard way of training Neural Networks corresponds to Maximum a-posterior (MAP) inference in the
Bayesian framework and yields a single parameter configuration for the posterior distribution:

θMAP = argθ max
N∑

i=1
log p(yi|xi, θ) + log p(θ). (4)

log p(θ) corresponds to a weight regularization, such as weight decay, and if no such regularization is used, it
is a constant value corresponding to an improper flat prior. The goal of any approximate inference technique
is to go beyond such point estimates to capture more characteristics of the posterior distribution.

3.2 Typicality

Consider a set of i.i.d. random variables X1, ..., Xn
i.i.d.∼ p(x). A sample of this set is a sequence of observed

values xn = (x1, ..., xn). We call such a sequence typical Cover (1999) if it satisfies

2−n(H(x)+ϵ) ≤ p(x1, ..., xn) ≤ 2−n(H(x)−ϵ) (5)

for ϵ > 0 and the Shannon entropy H(x) of p(x). The typical set A
(n)
ϵ is defined as the set of all these typical

sequences. If xn ∈ A
(n)
ϵ we can rewrite the criterion in equation 5 into

H(x) − ϵ ≤ − 1
n

n∑
i=1

log2 p(xi) ≤ H(x) + ϵ, (6)

where the Shannon entropy of a typical sequence is bounded from below and above by the Shannon entropy
of the distribution p(x) and defined by equation 7.

H[p(y|x, D)] = −
∑

y

p(y|x, D) log p(y|x, D). (7)
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Figure 2: Illustrations of typical set "phenomena": (a) Samples of a uniform distribution on the unit cube in
three dimensions. Samples that lie within the unit sphere are coloured grey, and samples outside are orange.
(b) With growing dimensions of the unit cube, most samples lie outside of the respective unit sphere. (c)
Probability density of a standard Gaussian distribution as a function of distance to the origin. In higher
dimensions, most probability mass concentrates not at the mean (origin) but on a given radius.

Since − 1
n

∑n
i=1 log2 p(xi) converges to H(x) in probability for large n by the Asymptotic Equipartition

property Cover (1999) it follows that
P (xn ∈ A(n)

ϵ ) > 1 − ϵ,

which means the probability that a sequence is part of the typical set is almost 1.

In high dimensions, most samples from a distribution will fall into this typical set due to the concentration
of measure Carpenter (2017). In low dimensions d, Gaussian distributions have most of their probability
mass close to the mean. However, for large d an origin-centered normal Gaussian N (0, σI) has almost all
of its mass located near a thin annulus with radius σ

√
d (Gaussian Annulus Theorem Blum et al. (2020)).

Considering the expected squared distance of a point x ∼ N (0, I) to the mean provides some intuition as to
where to expect points when we sample from the distribution:

E(|x|2) =
d∑

i=1
E(x2

i ) = dE(x2
1) = d.

While the Annulus theorem, as a result of the concentration of measure, describes the probability mass, the
entropy-based condition of the typical set in Equation equation 6 leads to a similar result. For n = 1 a point
x belongs to the typical set of the distribution N (0, σI) if ||x − µ||22 = σ

√
d.

As a consequence, posterior approximations of Bayesian neural networks based on high-dimensional Gaus-
sians tend to under-represent the most-probable weight configurations Farquhar et al. (2020); Bishop &
Nasrabadi (2006), since there is almost no probability mass in the hyper ball of radius smaller

√
d and

typical samples do almost certainly not lie in this region as illustrated in Figure 2. Assuming some degree
of continuity in the weight space, i.e., weight configurations close to each other yield similarly performing
functions, the likely weight configurations within the neighborhood of a MAP estimate would not be sampled
by Gaussians in high dimensions.

3.3 Metropolis adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) is an MCMC method that combines Langevin dy-
namics Welling & Teh (2011) with the Metropolis-Hastings acceptance criterion to sample from a target
distribution.

1. Langevin Proposal:
X ′ = Xt + τ∇ log π(Xt) + τZ
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Where X ′ is the proposed move, Xt is the current position, ∇ log π(Xt) is the gradient of the log of the
target distribution at the current position, τ is a step size, and Z is a standard normal random variable.

2. Metropolis-Hastings Acceptance Criterion:

α(Xt, X ′) = min
(

1,
π(X ′)q(X ′ → Xt)
π(Xt)q(Xt → X ′)

)
Where π is the target distribution and q is the transition kernel of the Langevin dynamics. The term
q(X ′ → Xt) represents the probability of transitioning from the proposed move X ′ back to the current
position Xt and vice-versa for q(Xt → X ′).

The algorithm will accept the proposed move X ′ with probability α(Xt, X ′). If accepted, the chain moves
to X ′, otherwise it remains at Xt.

3.4 Domain Restriction through Reflective Boundary Condition

A hyperball is defined around the θMAP with radius r, where r < σ
√

K (Gaussian Annulus). Here, σ is the
standard deviation of a Laplace approximation, i.e., a function of the curvature in the θMAP. MALA is run
while enforcing the boundary reflection in the constrained region with radius r. This ensures the Markov
Chain is constrained to a feasible space, as any samples exceeding the boundary will reflect back. Samples
are then generated from the chain. In this way, we still converge to a stationary distribution but within a
restricted domain. This ensures more stable outcomes and confines the samples to regions with the highest
probability, thereby ensuring an ergodic chain Oliviero-Durmus & Moulines (2024).

3.5 Mixtures of Locally Bounded Langevin dynamics

The approach starts with an ensemble of initial models, represented from a constrained region of high proba-
bility. Each model is run under a domain-restricted MALA, yielding a locally bounded stationary distribution
in the region. This results in a mixture of the distributions (lbMALA) in multiple high-probability regions.

3.6 Implementation

lbMALA was implemented in three stages, as illustrated in Algorithm 1:

Step 1 A pre-trained baseline model is required and used to initialise the chain with a starting point
estimate, Z0, i.e., the MAP estimate. The associated model parameters are loaded and hyperparameters
defined; step size τ , chain length L, burn-in B, and boundary conditions (domainmin and domainmax). The
local curvature was estimated using the Hessian of the negative log-likelihood to dynamically calculate the
reflective boundaries and constrain the sampling to a high probability region of the posterior. A buffer size
S = 5000 was also initialised to store a sufficient number of samples while searching within the boundary
conditions.

Step 2 aimed to accelerate convergence but through a constrained MALA adapted with the reflective
boundary condition to provide an efficient sampling approach. With each iteration, a mini-batch of data, D
is drawn, the gradient ∇ log π(Z) computed, and a new Langevin sample is proposed (Z ′). Each proposal
is checked against pre-defined boundary constraints, and if a proposed movement is outside this region, it is
reflected within a valid vicinity as detailed in Section 3.3. This ensures better definition in the constrained
region. Thereafter, the continuous acceptance and rejection rates are monitored and assessed as convergence
occurs to ensure stability and convergence in the bounded region.

Step 3 allows n = 5 posterior samples from the chain, with the sample intialising a separate model which
was fine-tuned and trained for a further 10 epochs. To ensure consistency with SWAG and Multi-SWAG, the
baseline MAP at 10 epochs was utilised. A final set of parameters produced the optimal lbMALA approach
with step size τ of 1e − 6, chain length L of 400, burn-in B of 1000 samples, with the learning rate for the
final optimsation set to lr = 1e − 4.
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Figure 3: An illustration for the digit 7 across the types of perturbations, across each distortion placed on
the original “plain” MNIST dataset.

4 Experimental Analysis

Our experiments are designed to highlight the ability of different methods to perform fine-grained ID versus
OOD detection. To this end, we utilize the Morpho-MNIST toolkit Castro et al. (2019) to create versions
of the MNIST digit classification dataset that are increasingly distorted. Using these increasingly OOD
datasets, we quantify the ability of different posteriors to rank these datasets according to their level of
OOD distortion.

4.1 Design and Setup

The Morpho-MNIST toolkit Castro et al. (2019) provides four different distortions that can be applied to
the original MNIST digits to produce either a thickened, swelled, thinned, or fractured (broken continuity)
version of any MNIST digit, see Fig. 3 for an illustration. As shown in the figures, the level of distortion is
controlled by a perturbation factor that influences the severity of a distortion. We used the original digits
as an ID (Plain) dataset for training and ID testing, and generated, for each of the four distortions, three
increasingly OOD test sets by using each distortion with three increasing severity levels.

To evaluate the performance of the lbMALA, it was benchmarked against several baseline methods for
epistemic uncertainty quantification. All methods were tested with two different backbones: a lightweight
convolutional neural network (CNN) and a more complex ResNet18 model. The CNN model consists of 2
convolutional layers with ReLU + max pooling, followed by 2 fully connected layers producing logits for the
10 digits (classes). The ResNet18 model comprises 18 layers, 4 residual blocks, global pooling, and a final
fully connected layer. Both models were trained on the original MNIST (Plain) dataset, consisting of 28×28
grayscale images, of which 60.000 examples were used for training (90%) and validation (10%,) and 10.000
were used for testing. The same hyperparameters lr and batch size, were used for both the CNN and ResNet
architectures.
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Algorithm 1 lbMALA Algorithm
1: Step 1: Initialization
2: Load pretrained model with MAP estimate Z0
3: Define hyperparameters: τ , L, B, domainmin, domainmax, buffer size S
4: Estimate boundary using local Hessian curvature
5: Initialize Z = Z0, rejection counter = 0, buffer S
6: for i = 1 to L + B do
7: Sample mini-batch (x, y) ∼ D
8: Compute ∇ log π(Z)
9: Propose Z′ = Z + τ∇ log π(Z) +

√
2τ · η, η ∼ N (0, I)

10: if Z′ < domainmin then
11: Z′ = 2 · domainmin − Z′

12: end if
13: if Z′ > domainmax then
14: Z′ = 2 · domainmax − Z′

15: end if
16: Compute acceptance probability: α = min

(
1, π(Z′)q(Z′→Z)

π(Z)q(Z→Z′)

)
17: Sample u ∼ U(0, 1)
18: if u ≤ α then
19: Accept Z = Z′

20: else
21: Reject, increment rejection counter
22: end if
23: Append Z to S
24: if i > B and i mod k = 0 then
25: Save Z
26: end if
27: end for
28: Step 3: Extract and Retrain
29: for s = 1 to S do
30: Extract S samples Ss

31: Retrain model with Ss for more epochs
32: end for
33: Output: Ensemble of retrained models

Baselines To evaluate the performance of the lbMALA method for Bayesian posterior sampling and
uncertainty quantification, we performed comparisons against a range of widely utilised baselines. All
baselines were selected to cover a range of methods, including deterministic point-estimate models and
Bayesian inference approaches. Each method was implemented under consistent training conditions to
ensure a robust and fair comparison.

Maximum A Posteriori (MAP) was used as the main baseline. Here, the cross-entropy loss is optimised
and a single point-based estimate of model weights is generated as a result of the corresponding zero-mean
Gaussian prior over model parameters. This provides a computationally efficient approach, but as mentioned
earlier provides overconfident outcomes as there is no measure of uncertainty. Thus, it is used as an initial
starting point for subsequent approaches.

The MC dropout, Gal & Ghahramani (2016) was implemented to compute an approximation of variational
inference by randomly dropping units in the model to prevent overfitting (with a dropout probability
of p=0.3). However, even though it was easy to implement, it has been known to not provide the best
representation of model uncertainty.

Deep Ensembles, Lakshminarayanan et al. (2017) utilises multiple independently trained baseline
MAP models, while computationally more expensive, typically outperform MC dropout, whose weight
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configurations tend to be less diverse Durasov et al. (2021). We trained 5 models, each initialized and
trained from scratch on the same training data. All three of these approaches were trained over 20 epochs
and with a learning rate of lr = 1e − 3 using stochastic gradient descent (SGD) and a batch size of 64. All
subsequent models trained and discussed utilised the same batch size of 64.

SWAG provides a structured and more rigorous approach to Bayesian approximation. Here, SWAG
computes multiple weights when training using SGD and uses the mean and covariance of the collected
weights to estimate a Gaussian distribution; samples from this distribution are used to provide scalable yet
high-quality uncertainty estimates Maddox et al. (2019). We used the baseline MAP model at 10 epochs as
the initial starting MAP point. However, even with a better approximation, SWAG is centered around the
MAP estimate and thus may still not capture model diversity. We therefore extended the approach through
Multi-SWAG, which utilises an ensemble of SWAG models Wilson & Izmailov (2020) to improve posterior
coverage and improve prediction uncertainty with a more diverse posterior. Both SWAG and Multi-SWAG
utilised a learning rate of lr = 1e − 2.

The last comparative approach implemented was the mixture of Laplace approximations Eschenhagen
et al. (2021), applied to the baseline of ensemble MAP models to represent the complexity of the posterior
distribution using multiple local optima in the loss landscape. This approach allows a more accurate quan-
tification of uncertainty using the multimodal nature of the posterior. A smaller noise perturbation was used
(0.01) on model parameters, as higher values created very noisy and destabilised predictions.

4.2 Results

To investigate the relative performance of lbMALA against the Bayesian SOTA approaches for fine-grained
ID versus OOD detection, the entropy values, reflecting epistemic uncertainty, were used to classify samples
as ID or OOD. For a well-estimated posterior distribution, we would expect our ability to detect distorted
samples of either kind as being OOD, to increase with increasing level of distortion. We illustrate our
performance on ID vs OOD performance, quantified using the Area Under the Curve (AUC) metric, for
various distortions in Figure 4, with CNN results in the top row and ResNet18 on the bottom row. Finally,
all log entropy plots over the ID and OOD test sets across all distortions are represented in Appendix A.

We note that while all the tested methods show the desired trend of increased AUC for ID vs OOD classifi-
cation as the distortion level increases, our lbMALA performs consistently well across both distortion types
and backbones.

5 Discussion

Quantification of epistemic uncertainty is critical in many applications, such as the OOD detection problem
tackled here. Many Bayesian approaches rely on posterior approximations based on posterior samples, and
are therefore sensitive to the fact that typical sets of very high-dimensional distributions can fall far from the
posterior modes. As a result, these samples do not represent sets of optimal parameters for the task at hand.
Our proposed lbMALA approach, which utilizes sampling within a restricted space around MAP estimates,
will generate samples closer to the MAP, which are more likely to be optimal for the ID datasets. These
samples should yield stronger differences between ID and OOD samples. The results presented in Figure 4
confirm this assumption, as lbMALA has a more consistent and reliable performance across both backbones.
In particular, the Figures suggest that entropy-based measures assist in identifying OOD cases of increasing
complexity, where the distortions are increasingly pronounced but the digit itself is still recognisable.

Differences to existing methods. We compared lbMALA to a range of popular and recent methods
for epistemic uncertainty quantification on our entropy-based fine-grained ID vs OOD detection task. MC
dropout and Ensembles are well-known and widely used methods for epistemic uncertainty quantification.
Despite providing only discrete support, they are both able to separate ID and OOD data in a fine-grained
manner. However, their performance is not consistent between the 3 different distortions, as illustrated in

9



Under review as submission to TMLR

0.20

0.30

00.40

0.50

0.60

0.70

0.80

0.90

1.00
AUC for Thick OOD Case AUC for Swel OOD Case AUC for Thin OOD Case AUC for Frac OOD Case

Distortion
A
U

C
AU

C

A
U

C

A
U

C
AU

C

AU
C

A
U

C

0.00

0.10

A
U

C

1 2 3
Distortion

1 2 3

Baseline (MAP)
MC Dropout
lbMALA
Ensemble
SWAG
Multi-SWAG
Mixtures Laplace

Distortion
1 2 3

Distortion
1 2 3

0.20

0.30

00.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00

0.10

Baseline (MAP)
MC Dropout
lbMALA
Ensemble
SWAG
Multi-SWAG
Mixtures Laplace

AUC for Thick OOD Case AUC for Swel OOD Case AUC for Thin OOD Case AUC for Frac OOD Case

Distortion
1 2 3

Distortion
1 2 3

Distortion
1 2 3

Distortion
1 2 3

Figure 4: The AUC performance for the CNN (top) and ResNet18 (bottom) architectures across all methods
for fine-grained ID and OOD separation for (from left to right) Thickening, Swelling, Fractures, and Thinning
datasets for 5 random seed initialisations for reliability.

Figure 4. For instance, while MC Dropout for the CNN architecture performed best for the Thickening
dataset, it comes out as consistently worst on all distortions using the ResNet18 backbone, see Figure 4.

For the Thinning dataset in Figure 4, the Baseline MAP model exhibits a sharp deterioration in AUC
performance. This may indicate that the ResNet18 architecture assigns high softmax scores to an incorrect
class, leading to a reduced entropy value.

For the CNN backbone, lbMALA came out consistently top or second for the Thickening distortion. It
gets more competition for the ResNet18 backbone, where SWAG and Ensemble also perform well. Interest-
ingly, while lbMALA demonstrates consistently strong performance, the other methods vary more in their
performance across backbones – in particular, as we expect the (fine-tuned) ResNet18 to represent a more
over-fitted model than the simpler CNN.

Limitations. lbMALA does exhibit some limitations, such as the high computational costs for the two-
step gradient evaluation (first proposing and then accepting a sample). While this is manageable for simpler
problems like digit classification or lightweight architectures, it could impact more complex problems. We
learn, however, from lbMALA’s positive performance, that the typicality problem is real and affects
the performance of epistemic uncertainty quantification. This is critical knowledge and a necessary
starting point for developing more efficient methods whose solutions are not limited to the typical set.

Need for fine-grained OOD detection. In this paper, we have introduced a notion of fine-grained ID vs
OOD detection, including a validation benchmark based on the Morpho-MNIST toolkit. This is a contrast
to the standard validation schemes found in uncertainty quantification papers, where the performance of
OOD detection is often demonstrated by showing that methods can recognize that data comes from an
entirely different dataset – e.g., MNIST version Fashion-MNIST. We stress that fine-grained OOD detection
is of crucial importance, e.g. in healthcare AI Cui & Wang (2022) where "typical" model failure does not
come as a clear breakdown on obviously incorrect data – but rather as somewhat reduced performance
on underrepresented population groups or disease subtypes. Often, these somewhat reduced performances
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are only visible when aggregating performances across an entire group, which is rarely done in everyday
practice. As a result, fine-grained OOD detection is important for warning users of a potential decrease in
the reliability of the model.

6 Conclusion

Ensuring more robust discrimination between ID and OOD data is fundamental for developing reliable deep
learning models, more so for applications in high-risk settings where misclassification of samples may have a
pronounced impact.

In this paper, we propose lbMALA, a Bayesian approach utilising a reflective boundary condition to enhance
the ability to localise the approximation of the posterior weight configurations. To evaluate the performance
of the method, various comparative SOTA approaches were implemented on the problem of fine-grained ID
and OOD detection. Our analysis demonstrated promising outcomes with the novelty of lbMALA outper-
forming SOTA in terms of reliability and consistency across OOD datasets to separate data on a finer scale,
as reflected by the AUC values through logistic regression analysis.

However, even with the noticeable improvements, some limitations require further exploration to determine
the impact on computational costs and performance on more complex datasets. Nevertheless, it would be
valuable to apply the lbMALA approach to a larger dataset or a more complex domain (medical applications)
to explore further and evaluate its benefit for reliable uncertainty quantification.

7 Impact statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential
societal consequences of our work, one of which we would like to emphasise. If the uncertainty estimates of
our predictions are inaccurate and users trust them, it could mislead users and impact their work.
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A Appendix

In this appendix, we provide all the detailed log softmax entropy graphs for each of the methods discussed
in this paper.

A.1 Illustrations ID vs OOD

Figure 5: All log softmax entropy distributions indicating the ID and OOD datasets (Thickening, Swelling,
Thinning, and Fracture datasets respectively) across all implemented methods for the CNN architecture.

Figure 6: All log softmax entropy distributions indicating the ID and OOD datasets (Thickening, Swelling,
Thinning, and Fracture datasets respectively) across all implemented methods for the ResNet18 architecture.
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