
Published as a conference paper at ICLR 2022

NEURAL MODELS FOR OUTPUT-SPACE INVARIANCE
IN COMBINATORIAL PROBLEMS

Yatin Nandwani∗, Vidit Jain∗, Mausam & Parag Singla
Department of Computer Science, Indian Institute of Technology Delhi, INDIA
{yatin.nandwani, vidit.jain.cs117, mausam, parags}@cse.iitd.ac.in

ABSTRACT

Recently many neural models have been proposed to solve combinatorial puzzles1

by implicitly learning underlying constraints using their solved instances, such2

as sudoku or graph coloring (GCP). One drawback of the proposed architectures,3

which are often based on Graph Neural Networks (GNN) (Zhou et al., 2020), is4

that they cannot generalize across the size of the output space from which variables5

are assigned a value, for example, set of colors in a GCP, or board-size in sudoku.6

We call the output space for the variables as ‘value-set’. While many works have7

demonstrated generalization of GNNs across graph size, there has been no study8

on how to design a GNN for achieving value-set invariance for problems that9

come from the same domain. For example, learning to solve 16× 16 sudoku after10

being trained on only 9× 9 sudokus, or coloring a 7 colorable graph after training11

on 4 colorable graphs. In this work, we propose novel methods to extend GNN12

based architectures to achieve value-set invariance. Specifically, our model builds13

on recently proposed Recurrent Relational Networks (RRN) (Palm et al., 2018).14

Our first approach exploits the graph-size invariance of GNNs by converting a15

multi-class node classification problem into a binary node classification problem.16

Our second approach works directly with multiple classes by adding multiple17

nodes corresponding to the values in the value-set, and then connecting variable18

nodes to value nodes depending on the problem initialization. Our experimental19

evaluation on three different combinatorial problems demonstrates that both our20

models perform well on our novel problem, compared to a generic neural reasoner.21

Between two of our models, we observe an inherent trade-off: while the binarized22

model gives better performance when trained on smaller value-sets, multi-valued23

model is much more memory efficient, resulting in improved performance when24

trained on larger value-sets, where binarized model fails to train.25

1 INTRODUCTION26

The capability of neural models to perform symbolic reasoning is often seen as a step towards the27

framework for unified AI, i.e., building end-to-end trainable system for tasks, which need to combine28

low level perception with high level cognitive reasoning (Kahneman, 2011). While neural networks29

are naturally excellent at perception, they are increasingly being developed for high-level reasoning30

tasks, e.g., solving SAT (Selsam et al., 2019; Amizadeh et al., 2019a;b), neural theorem proving31

(Rocktäschel et al., 2015), differentiable ILP (∂ILP) (Evans & Grefenstette, 2018), playing blocks32

world (Dong et al., 2019), solving sudoku (Wang et al., 2019). Our work follows this literature for33

solving combinatorial puzzles – in particular, the methods that implicitly incorporate the rules in their34

weights by training over some of its solved instances, e.g. Recurrent Relational Networks (RRN)35

(Palm et al., 2018). Such models assume a fixed value-set, i.e., the set from which variables are36

assigned values is assumed to be constant during training and testing. This is a significant limitation,37

since it may not always be possible to generate sufficient training data for similar large problems38

in which variables take values from a bigger value-set (Najafian et al., 2018). It is also a desirable39

goal since as humans, we often find it natural to generalize to problems of unseen variable and value40

sizes, once we know how to solve similar problems of a different size, e.g., we may solve a 12× 1241

∗Equal contribution. Work done while at IIT Delhi. Current email: vidit.jain@alumni.iitd.ac.in

1

Published as a conference paper at ICLR 2022

sudoku after learning to solve a 9× 9 sudoku. We note that graph based models have been shown to42

generalize well on varying graph sizes, e.g., finding a satisfying solution of a CNF encoding of a CSP43

with 100 Boolean-variables, after training on CNF encodings of CSPs with only 40 Boolean-variables44

(Selsam et al., 2019). However, the model trained using CNF encoding of Boolean-CSPs cannot be45

used directly for a non-Boolean CSP in which variables take value from a different (larger) value-set.46

In response, we study value-set invariance in combinatorial puzzles from the same domain. To47

formally define a similar puzzle with variables taking values from a different value-set, we make use48

of Lifted CSP (Joslin & Roy, 1997), a (finite) first-order representation that can be ground to CSPs of49

varying variable and value-set sizes. We note that even though we use Lifted CSPs to define value-set50

invariance, its complete specification is assumed to be unknown. Specifically, we do not have access51

to the constraints of the CSP, and thus neural SAT solvers like NeuroSAT (Selsam et al., 2019) can not52

be used. While training, we only assume access to solved instances along with their constraint graph.53

We define our problem as: given solved instances and corresponding constraint graph of an unknown54

ground CSP with a value-set of size k, can we learn neural models that generalize to instances of55

the same lifted CSP, but with a different value-set of size k′ (typically k′ > k)? An example task56

includes training a model using data of 9× 9 Sudoku, but testing on a 12× 12 or a 16× 16 Sudoku.57

We build our solution using RRNs as the base architecture. They run GNN on the constraint graph,58

and employ iterative message passing in a recurrent fashion – the nodes (variables) are then decoded59

to obtain a solution. We present two ways to enhance RRNs for value-set invariance.60

Binarized Model: Our first model converts a multi-class classification problem into a binary classifi-61

cation problem by converting a multi-valued variable into multiple Boolean variables, one for each62

value in the value-set. The binarized constraint graph gets defined as: if there is an edge between two63

variables in original constraint graph, there are k edges between Boolean nodes corresponding to64

the same value and the same two variables in the new graph. In addition, all k Boolean variables,65

corresponding to a multi-valued variable, are connected with each other. This model naturally66

achieves value-set invariance. At test time, a larger value-set just results in a larger graph size. All67

GNN weights are tied, and because all the variables in the binarized model are Boolean, embeddings68

for binary values ‘0’ and ‘1’, trained at training time, are directly applicable at test time.69

Multi-valued Model: Our second model directly operates on the given multi-valued variables and the70

corresponding constraint graph, but introduces a value node for every value in the value-set. Each71

pre-assigned (unassigned) variable node is connected to that (respectively, every possible) value node.72

The challenge in this model is initializing value nodes at test time when k′ > k. We circumvent73

this problem by training upfront k′ or more value embeddings by randomly sub-selecting a k sized74

subset during each learning iteration. This random sub-selection exploits the symmetry of value-set75

elements across instances. During test time, k′ of the learned embeddings are used.76

We perform extensive experimental evaluation on puzzles generated from three different structured77

CSPs: Graph Coloring (GCP), Futoshiki, and Sudoku. We compare two of our models with an78

NLM (Dong et al., 2019) baseline – a generic neural reasoner, which either fails to scale or performs79

significantly worse for most test sizes used in our experiments. We also compare our two models80

along the axes of performance and scalability and discuss their strengths and weaknesses.81

2 RELATED WORK82

This paper belongs to the broad research area of neural reasoning models, in which neural models83

learn to solve pure reasoning tasks in a data-driven fashion. Some example tasks include theorem84

proving (Rocktäschel et al., 2015; Evans & Grefenstette, 2018), logical reasoning (Cingillioglu &85

Russo, 2019), probabilistic logic reasoning (Manhaeve et al., 2018), classical planning (Dong et al.,86

2019), probabilistic planning in a known MDP (Tamar et al., 2017; Bajpai et al., 2018), and our focus87

– combinatorial problems that are instances of an unknown constraint satisfaction problem.88

There are two main research threads within neural CSPs and SAT. First thread builds neural models89

for problems where the CSP constraints or SAT clauses are explicitly provided to the model. For90

example, NeuroSAT (Selsam et al., 2019) and PDP (Amizadeh et al., 2019b) assume that the CSP91

is expressed in a Conjunctive (or Disjunctive) Normal Form. Similarly, Circuit-SAT (Amizadeh92

et al., 2019a) uses the knowledge of exact constraints to convert a CSP into a Boolean Circuit. This93

research has similarities with logical reasoning models like DeepProbLog (Manhaeve et al., 2018),94

2

Published as a conference paper at ICLR 2022

and DeepLogic (Cingillioglu & Russo, 2019), which require human designed rules for reasoning. Our95

work belongs to the second thread where the constraints or clauses are not provided explicitly, and96

only some underlying structure (e.g., Sudoku grid cell connectivity) is given along with training data.97

The intention is that the model not only learns to reason for the task, but also needs to learn the implicit98

semantics of each constraint. SATNET (Wang et al., 2019) falls in this category – it formulates a99

learnable low-rank Semi-definite Program (SDP) relaxation for a given MAXSAT problem trained100

via solved SAT problems. Similarly, Recurrent Relational Networks (RRN) (Palm et al., 2018) use101

recurrent message passing graph neural network to embed the variables of the unknown CSP, and the102

relationship between them, in a latent vector space and finally assign a value to each variable based103

on its embedding. Both these works assume a fixed number of variables that remains unchanged104

across training and test. While we build on RRNs, we substantially extend the formalism to study105

value-set invariance. Formally, our work can be seen as solving a (finite) first-order formulation of the106

CSP, called Lifted CSP (Joslin & Roy, 1997), which can be grounded to CSPs with varying number107

of variables and values. To our knowledge, there is relatively limited prior work on neural models108

that can generalize to variable-sized instances of an underlying first order reasoning task – one related109

approach builds neural models for First-order MDPs (Garg et al., 2020).110

Finally, there has been a long history of work dedicated to learning rules or constraints from training111

data using Inductive Logic Programming (Lavrac & Raedt, 1995; Friedman et al., 1999). Evans &112

Grefenstette (2018) propose differentiable neural relaxation of ILP (∂ILP). Neural Logic Machines113

(NLM) (Dong et al., 2019) is another framework that learns lifted rules, shown to be more scalable114

than ∂ILP. It allows learning of first-order logic rules expressed as Horn Clauses over a set of115

predicates. Learning of first-order rules makes NLM amenable to transfer over different CSP sizes116

(Nandwani et al., 2021), and are thus directly comparable to our work. The main challenge of such117

approaches is that they fail to scale to the size of the problems considered in this work. In our118

experiments, we compare our methods against both deep and shallow versions of NLM. Note that our119

work relies on the assumption that GNNs generalize across graph sizes. Yehudai et al. (2021) study120

the scenarios under which this assumption may not hold. We discuss the details in the appendix.121

3 PRELIMINARIES AND PROBLEM DEFINITION122

A combinatorial puzzle can be thought of as a grounded CSP and to formally define a puzzle from123

the same domain but a larger value-set, we resort to the notion of ‘Lifted CSPs’ that represent an124

abstraction over multiple ground CSPs of the same type. A lifted CSP does not include a specific125

set of variables and values; instead, it operates in terms of variable and value references that can126

be instantiated with all ground variables and values in a ground CSP. This makes them amenable127

to instantiate CSPs or puzzles with varying number of variables as well as values. We define a128

Lifted CSP LC as a three tuple 〈P,R, C〉. P is a set of predicates: a predicate p ∈ P represents129

a Boolean function from the set of its arguments, which are variable references. Similarly, R is130

a set of relations over value space – a r ∈ R reprents a Boolean function over arguments that131

are value references. A predicate (or a relation) with its arguments is called an atom. C is a set132

of lifted constraints, constructed by applying logical operators to atoms – they are interpreted as133

universally quantified over all instantiations of variable and value references. Finally, Lifted CSP134

uses a special unary function Value, whose argument is a variable reference and evaluates to a value135

reference. As an example, a lifted CSP for Sudoku may have a P ={Nbr} for whether two cells are136

in same row, column or box,R = {Neq}, representing two values are unequal, and a lifted constraint:137

Nbr(c1, c2)→ Neq(Value(c1), Value(c2)).138

A lifted CSP LC yields a ground CSP C, given a set of variables O, and a set of values V , and a139

complete instantiation of all predicates and relations over this set (e.g., in Sudoku, the number of140

cells, possible values, and which cells are neighbors and which are not). The ground constraints are141

constructed by instantiating lifted constraints over all variables and values. A (satisfying) solution, y,142

of a CSP refers to a complete specification of Value: O → V function, such that all the constraints143

are satisfied. We are often given a partial (satisfying) solution, x – an assignment of values to a subset144

of variables Õ ⊆ O and the goal is to output y, such that y agrees with x for the subset Õ.145

Given a ground CSP C, the Constraint Graph, GC = (NC , EC), is constructed by having each146

variable in the CSP represent a node in the graph and introducing an edge between two nodes nC1 , n
C
2147

iff the corresponding variables appear together in some constraint. The edges in the constraint graph148

3

Published as a conference paper at ICLR 2022

are typed based on the identity of the lifted constraint from which it comes. Note that there could149

be multiple edges between nodes nC1 , n
C
2 in GC , if these nodes appear together in more than one150

constraint. We embed the knowledge about relations between values in V in the form of another151

graph, called Relation Graph, GR = (NR, ER), where there is a node for every value in the set V ,152

and there is a (directed) edge between nodes corresponding to vl, v′l depending on whether r(vl, vl′)153

is true or not, for every r ∈ R. Similar to GC , this graph can also have multi-edges between two154

pairs of nodes, if more than one relationship holds between the corresponding values.155

Problem Definition: To achieve value-set invariance, our goal is to train a model MΘ on training156

data from an unknown ground CSP C (with variables O and value-set V) obtained from an unknown157

lifted CSP LC , and test it on an arbitrary ground CSP C ′ from the same lifted CSP (with variables158

O′ and value-set V ′), where |V| 6= |V ′|. Formally, we are given training data D as a set of tuples159

{((xi, GCi),yi)}Mi=1, along with a relationship graph GR encoding relations between values in the160

value-set V . Here, ith instance denotes a partial and corresponding complete solution for Ci. We note161

that explicit form of the constraints in Ci or LC are not available, only the graphs are given to the162

model. Our goal is to learn model MΘ, such that given graphs GC′ and GR′ , and a partial solution163

x′ (for CSP C ′) : MΘ(x′) = y′, only if y′ is a corresponding complete solution for x′. Note that in164

one of our models, we will additionally assume that max |V ′|, denoted as kmax, is known to us at165

training time, which we argue is a benign assumption for most practical applications.166

4 MODELS DESCRIPTION167

Figure 1: An example Futoshiki Puzzle of
size 3 × 3 and the corresponding graphs. A
value of −1 indicates an unassigned vari-
able. Black and red edges are Constraint
and Relation edges respectively. The digits
5, 7, 1 in square boxes represent a random 3-
permutation of kmax, used in multi-valued
model for initialization of node embeddings.

We propose two models for value-set invariance: the168

Binarized Model, and the Multi-valued Model. In169

each case, we assume the training data is provided in170

the formD = ({(xi, GCi),yi}Mi=1, GR) as described171

in Section 3. Let V and V ′ denote the value-sets at172

train and test time, with cardinality k, k′, respectively.173

For each model, we first present a high level intu-174

ition, followed by description of: (a) Construction of175

Message Passing Graph (b) Message Passing Rules176

(c) Loss Computation, and finally (d) Prediction on177

a problem with larger value-set.178

4.1 BINARIZED MODEL179

Intuition behind our Binarized Model comes directly180

from the ‘sparse encoding’ of a discrete CSP into a181

SAT formula (de Kleer, 1989; Walsh, 2000), in which182

assignment of a value v ∈ V to any variable x[j] ∈183

O is encoded by a Boolean variable that represents184

x[j] == v. Such an encoding converts a single multi-185

valued variable into multiple Boolean valued variables.1 We convert a Constraint Graph (fig. 1)186

with nodes representing multi-valued variables (yellow nodes), into a Binary Graph (fig. 1) with187

Boolean nodes (blue nodes). This creates a |NC | × k grid of Boolean nodes, with a row representing188

a variable, a column representing a value and a grid cell (a Boolean node) representing assignment of189

a particular value to a particular variable. Such a graph can easily represent relationship between the190

values as well (horizontal red edges), thereby encapsulating the information present in the Relation191

Graph (fig. 1). We use this Binary Graph for message passing.192

Construction of Message Passing Graph: We denote the Message Passing Graph (MPG) by193

G = (N,E) with the set of nodes N and set of edges E, constructed as follows: Nodes: For each194

node nCj ∈ NC in the Constraint Graph (fig. 1, yellow nodes), we construct k binary valued nodes,195

denoted as nj,1, nj,2 · · ·nj,k in N (blue nodes in Binary Graph). Edges: We construct two categories196

of edges in G. The first category of edges are directly inherited from the edges of the constraint197

graph GC (black vertical edges), with k copies created due to binarization. Edge type is same as in198

the original constraint graph and is denoted by q. Formally, for every edge, eC (j,j′) ∈ EC , where199

1There is an alternative encoding scheme called ‘compact encoding’. It is discussed in the appendix

4

Published as a conference paper at ICLR 2022

eC (j,j′).type = q, we introduce k edges denoted as eq(jl,j′l), i.e., there is an edge between every pair200

of nodes, nj,l and nj′,l, 1 ≤ l ≤ k. We refer to them as Constraint Edges. The second category of201

edges encode the information from the Relationship Graph GR into the MPG, with |NC | copies of it202

created, one for each variable. For every edge eR(l,l′) ∈ ER with edge type r, create an edge er(jl,jl′)203

with type r between every pair of binary nodes nj,l and nj,l′ , 1 ≤ j ≤ |NC | (e.g., red edges encoding204

less-than relation between value pairs (1, 2), (2, 3) and (1, 3)). We refer to them as Relational Edges.205

Recurrent Message Passing: Once MPG has been constructed, we follow recurrent message206

passing rules, with weights shared across layers, similar to RRNs (Palm et al., 2018) with some207

differences. For each node nj,l in the graph, we maintain a hidden state ht(nj,l), which is updated at208

each step t based on the messages received from its neighbors. This hidden state is used to compute209

the probability of a binary node taking a value of 1. Since we use sparse encoding, only the node with210

maximum probability amongst the k binary nodes nj,l; 1 ≤ l ≤ k, corresponding to multi-valued211

variable x[j], is assigned a value 1, at the end of message passing. We give the details of message212

passing and state update function in appendix. Next, we discuss how the nodes are initialized before213

message passing starts, followed by the details of loss computation.214

Initialization: Irrespective of the size of value-set V or verticesNC , there are 3 learnable embeddings215

(u[0], u[1] and u[−1]) for initialization: two for binary values 0 and 1, and one for value −1 repre-216

senting unassigned nodes. All k nodes corresponding to an unassigned variable x[j] are initialized217

with u[−1], i.e., whenever x[j] is NULL (yellow nodes with −1), u0(nj,l) = u[−1],∀vl ∈ V , where218

u0 represents initial embedding function. On the other hand, if x[j] is preassigned a value vl̂, then219

u0(nj,l) = u[0],∀vl 6= vl̂, and u0(nj,̂l) = u[1]. E.g., variable corresponding to the binary nodes in220

1st row has a preassigned value of ‘3’, consequently, binary nodes in 1st and 2nd column of the 1st221

row are initialized with u[0], and binary node in the 3rd column of 1st row, which corresponds to222

assignment ‘x[1] = 3’, is initialized with u[1]. Lastly, the hidden state, h0(nj,l), of each node, nj,l,223

is initialized as a 0 vector, ∀j,∀vl.224

Loss Computation: The Binary Cross Entropy (BCE) loss for each node nj,l is computed w.r.t. its225

target, ỹ[j, l], which is defined as 1 whenever y[j] = l and 0 otherwise. At each step t ∈ {1 . . . T},226

we can compute the probability Pr(nj,l.v = 1; Θ) of classifying a node nj,l as 1 by passing its227

hidden state through a learnable scoring function s, i.e., Prt(nj,l.v = 1; Θ) = σ(s(ht(nj,l))),228

where σ is the standard Sigmoid function. Here, nj,l.v denotes the value that node nj,l can229

take and belongs to the set {0, 1}. Loss at step t is the average BCE loss across all the nodes:230
1
|N |

∑
nj,l∈N ỹ[j, l] logPrt(nj,l.v = 1; Θ) + (1− ỹ[j, l]) logPrt(nj,l.v = 0; Θ). Like Palm et al.231

(2018), we back-propagate through the loss at every step t ∈ {1 . . . T} as it helps in learning a con-232

vergent message passing algorithm. During training, the objective is to learn the 3 initial embeddings233

u[−1], u[0], u[1], functions used in message passing and state update, and the scoring function s.234

Prediction on a problem with larger size of value-set: While testing, let the constraint and relation235

graph beGC′ andGR′ with n′ and k′ nodes respectively. Let x′ be a partial solution, with n′ variables236

x′[j], each taking a value from value-set V ′ of size k′. As described above, we create a graph G′ with237

n′k′ nodes, run message passing for T steps, and for each variable x′[j], compute the k′ probabilities,238

one for each of the k′ nodes nj,l∀l ∈ V ′ corresponding to the variable x′[j], which is assigned the239

value corresponding to maximum probability, i.e., ŷ[j] = arg maxl∈V′ PrT (nj,l.v = 1; Θ).240

4.2 MULTI-VALUED MODEL241

Multi-valued model differs from the binarized model by avoiding binarization of nodes, and instead242

explicitly adding Value Nodes in the message passing graph, one for each value in the value-set.243

The message graph consists of two components: (a) A Graph G = (N,E) to represent constraints244

inherited from the constraint graph GC = (NC , EC) (b) A Graph G̃ = (Ñ, Ẽ) to represent relations245

inherited from the relationship graph GR = (NR, ER). We refer to G as Constraint Message Passing246

Graph (CMPG), and G̃ as Relationship Message Passing Graph (RMPG). Message passing on247

RMPG first generates desired number of embeddings (upto kmax), one for each of the value nodes.248

This is followed by message passing on CMPG which uses the embeddings of the value nodes249

generated by RMPG and computes embeddings for each variable node. Finally, the variable nodes250

are classified based on the similarity of their embedding with the embeddings of the value nodes251

5

Published as a conference paper at ICLR 2022

computed by RMPG. Learning to generate upto kmax embeddings from training samples with only252

k(< kmax) values in the value-set is the main technical challenge that we address in this model.253

Construction of CMPG: Nodes: For each node nCj ∈ NC in the constraint graph, we construct254

a k-valued node, denoted as nj ∈ N . Total number of such nodes constructed is |NC |. We refer255

to these as Variable Nodes (yellow nodes in Multi-Valued Graph in fig. 1). Additionally, for each256

value vl ∈ V in the value-set, we create a node, denoted as nvl ∈ N . Total number of such nodes257

constructed is |V|. We refer to these as Value Nodes (orange nodes). Edges: For every edge,258

eC (j,j′) ∈ EC , where eC (j,j′).type = q, we introduce an edge denoted as eq(j,j′) with type q. These259

edges are directly inherited from the constraint graph. We refer to these as Constraint Edges (black260

edges). Additionally, to indicate the pre-assignment of values to the variables in x, we introduce new261

edges connecting value nodes to appropriate variable nodes. Whenever x[j] = vl, add an edge, ea(j,l)262

between variable node nj and value node nvl (blue edges). If x[j] is NULL, i.e., unassigned, then add263

k edges, eā(j,l),∀vl ∈ V , connecting the variable node nj with all k value nodes nvl (e.g., green edges264

connecting orange value node ‘2’ to all ‘-1’ variable nodes). We refer to them as Assignment Edges.265

Construction of RMPG: Nodes: For each value vl ∈ V , create a node denoted as ñvl ∈ Ñ (purple266

nodes in Relation Graph in fig. 1). Total number of such nodes constructed is |V|. We refer to these267

as Value Nodes. Edges: For every pair of value nodes, ñvl and ñvl′ , introduce an edge ẽr(l,l′) with type268

r if r(vl, vl′) holds based on the relationship graph GR, i.e., eR(l,l′) ∈ ER with edge label r (red269

edges). These edges are defined for relations that exist between values in the value-set.270

Achieving Value-set Invariance: A key question arises here: why do we need to construct a separate271

RMPG (G̃)? Why not embed relevant edges in CMPG (G), as done for the binarized model? The272

answer lies in realizing that we represent each value in the value-set explicitly in the multi-valued273

model, unlike the binarized model. Hence, our model needs to learn representation for each of them274

in the form of value node embeddings. Further, to generalize we need to learn as many embeddings275

as there are values in the largest test value-set, i.e., kmax = max |V ′|. We achieve this by randomly276

sub-selecting a k-sized set from {1 . . . kmax} and permuting the chosen subset for each training277

example in a given mini-batch, and then computing the ‘relationship-aware’ embeddings from this278

permuted subset through message passing in RMPG. The ‘relationship-aware’ embeddings are then279

used to initialize the value nodes (orange nodes) during message passing in CMPG. For instance,280

if the permutation obtained is {w1, · · · , wl, · · · , wk}, where ∀l, 1 ≤ wl ≤ kmax, then embedding281

for the value node ñvl in G̃ is initialized by wth
l learnable embedding (e.g., purple nodes for values282

‘1’, ‘2’, and ‘3’ are initialized by the 5th, 7th, and 1st learnable embedding, respectively). After283

message passing on G̃, the ‘relationship-aware’ embedding of ñvl (purple node) is used to initialize284

the embedding for value node nvl (orange node) in G. This elegant process is able to train all the kmax285

embeddings by simply using the training data corresponding to V , and the corresponding relationship286

information. Since these relationship aware embeddings need to be pre-computed before they can be287

passed to the downstream constraint processing, we construct two different message passing graphs,288

one for computing relationship-aware embeddings and one for constraint handling.289

Recurrent Message Passing on RMPG: Rules of message passing and hidden state updates at290

every step t are similar to RRN in Palm et al. (2018) and defined in detail in the appendix. After291

updating the hidden states for total T̃ steps, the final embeddings, h̃T̃ (ñvl) ∀vl ∈ V , are used as292

‘relationship-aware’ embeddings for initializing the input features (embeddings) of the nodes in293

CMPG G. We now discuss the initialization of the value nodes before message passing in RMPG.294

Initialization: There are a total of kmax learnable embeddings, ũ[l′], 1 ≤ l′ ≤ kmax, out of which any295

k are randomly chosen for initializing the nodes in RMPG. e.g., ũ[5], ũ[7], ũ[1] are chosen to initialize296

the purple value nodes ‘1’,‘2’, and ‘3’ in Relation Graph in fig. 1. Formally, for each input x, select297

a k-permutation, Px, of kmax. Initialize the embedding of ñvl in G̃ with ũ[Px[l]], ∀l ∈ {1 . . . k}.298

Initialize the hidden state, h̃0(ñvl), ∀ñvl ∈ Ñ with a 0 vector.299

Recurrent Message Passing on CMPG: Message passing on CMPG updates the hidden state,300

ht(nj), of each variable node nj for a total of T (t ≤ T) steps using the messages received from its301

neighbors. The details are similar to message passing in binarized model and are discussed in the302

appendix. Below we describe the initialization of node embeddings followed by computation of loss.303

6

Published as a conference paper at ICLR 2022

Table 1: Futoshiki: Mean (Std. dev.) of Board and Pointwise accuracy on different board sizes. MV
and BIN correspond to Multi-valued Model and Binarized Model, respectively.

Board Accuracy
6 7 8 9 10 11 12

NLM15 73.37 (1.34) 56.98 (1.47) 48.71 (1.96) 44.16 (1.72) 37.54 (2.74) 32.50 (2.84) -
NLM30 85.72 (0.39) 69.61 (0.57) 63.52 (1.20) 60.73 (1.29) 55.94 (0.85) - -
MV 99.62 (0.18) 90.18 (2.38) 71.58 (4.66) 54.85 (6.89) 38.51 (5.62) 24.18 (4.49) 11.97 (5.54)
BIN 99.86 (0.01) 97.92 (1.27) 93.39 (4.08) 89.39 (6.03) 83.48 (10.7) 76.14 (15.83) 68.15 (22.08)

Pointwise Accuracy
NLM15 96.72 (0.16) 93.9 (0.26) 93.43 (0.26) 93.86 (0.28) 94.07 (0.29) 94.29 (0.31) -
NLM30 97.88 (0.05) 95.32 (0.10) 95.09 (0.14) 95.48 (0.08) 95.68 (0.03) - -
MV 99.91 (0.03) 98.84 (0.24) 97.09 (0.46) 96.07 (0.60) 95.17 (0.53) 94.52 (0.41) 93.99 (0.60)
BIN 99.97 (0.00) 99.63 (0.13) 99.02 (0.37) 98.60 (0.47) 98.23 (0.68) 97.85 (0.98) 97.66 (1.31)

Initialization: We initialize the embedding of value nodes (orange nodes), nvl in G, using the304

final ‘relationship-aware’ embeddings, h̃T̃ (ñvl), of ñvl (purple nodes) in G̃. The variable nodes305

that are preassigned a value (non-zero yellow nodes) in x, are initialized by the embedding of306

the corresponding value node, i.e., if x[j] = l, then nj is initialized with the ‘relationship-aware’307

embedding, h̃T̃ (ñvl), of ñvl . The embedding of nodes corresponding to the unassigned variables308

(‘-1’ yellow nodes) are initialized by the average, (1/k)
∑

vl∈V h̃T̃ (ñvl), of all ‘relationship-aware’309

embeddings. Initialize hidden state h0(nj) of each variable node nj with a 0 vector.310

Loss Computation: For each variable represented by node nj, the ground truth value y[j] acts311

as the target for computing standard Cross Entropy Loss. The probabilities over V are computed312

as follows: At step t, a scoring function, s, computes a score, s(ht(nj), ht(nvl)), for assigning313

a value vl ∈ V to a variable nj based on the hidden state of corresponding value and variable314

nodes. For each variable node, a Softmax converts these scores into probabilities over the values315

vl ∈ V , i.e., Pr(nj.v = vl) = Softmax(s(ht(nj), ht(n
v
l))), ∀vl ∈ V , where, nj.v ∈ V denotes316

the value that node nj can take. Loss at step t is nothing but the average over variable nodes:317

Lt = − 1
|N |

∑
nj∈N logPr(nj.v = y[j]). To ensure that the multi-valued model learns different318

embeddings for each value in the value-set, we add an auxiliary loss term, corresponding to the total319

pairwise dot product (similarity) of any two embeddings, before and after message passing in G̃. We320

call it Orthogonality Loss. Its weight, α, is a hyper-parameter.321

Prediction on a problem with larger size of value-set: For a puzzle with larger value-set, V ′, a322

bigger RMPG is created, whose k′ nodes are initialized with the (learnt) first k′ embeddings. Unlike323

training, we always choose first k′ embeddings to avoid randomness during testing. Prediction is324

made using the probabilities at the last step T , i.e., ŷ[j] = arg maxvl∈V′ Pr(nj.v = vl).325

Relative Comparison: In the binarized model, the constructed graph G has k|NC | nodes and at326

least k|EC |+ |NC |k(k − 1)/2 edges due to binarization. This increases the graph size by a factor of327

at least k. As a result, we soon hit the memory limits of a GPU while training the binarized model328

with bigger problems. The model also needs significantly more inference time due to its bigger size.329

On the other hand, multi-valued model, while being compact in terms of its representation, needs to330

learn additional embeddings, for a speculative size of value-set during testing. This poses additional331

requirement on the model both in terms of representation, and learning, possibly affecting the quality332

of generalization. While this is a simple analytical understanding of the possible merits of the two333

models, we examine experimentally the impact of these issues on real datasets.334

5 EXPERIMENTS335

The goal of our experiments is to evaluate the effectiveness of our two proposed methods for achieving336

value-set invariance. We compare our models with a generic neural constraint learner, NLM (Dong337

et al., 2019). 2 We experiment on datasets generated from Lifted CSPs of three different puzzles, viz.,338

Sudoku, Futoshiki, and Graph Coloring (ref. Table 5 in appendix for details). We train each model on339

data generated from a fixed value-set, and test on instances generated from larger value-sets.340

2Our aim is not to directly compete with SOTA SAT solvers, which are much more scalable than neural
methods. Refer to appendix for a discussion on comparison with them as well as neural SAT solvers.

7

Published as a conference paper at ICLR 2022

5.1 TASK DESCRIPTION AND DATASETS341

Futoshiki: This is a number puzzle in which we have to place numbers {1 . . . k} on a k × k grid,342

such that no two cells in a row or column contain the same number. In addition, there may be343

an ordering constraint between two cells, which needs to be honored in the final solution. The344

input has some of the grid cells already filled with a number and the task is to complete the grid,345

respecting the additional ordering constraint where ever it exists. We train our model on 6×6 puzzles,346

with the percentage of missing cells varying uniformly between 28− 70%. We test our models on347

puzzles with board size ranging between 6× 6 to 12× 12, with the same percentage of missing cells.348

Table 2: GCP: Mean (Std. dev.) of coloring and pointwise
accuracy on graphs with different chromatic number.

Board Accuracy
4 5 6 7

NLM24 81.34 (5.93) 70.78 (7.45) 71.25 (8.35) 73.20 (7.58)
MV 97.80 (0.03) 97.72 (0.37) 94.03 (2.54) 72.21 (11.17)
BIN 99.09 (0.07) 96.69 (2.61) 95.7 (4.04) 94.35 (4.82)

Pointwise Accuracy
NLM24 99.47 (0.13) 98.58 (0.34) 97.95 (0.54) 97.26 (0.68)
MV 99.96 (0.00) 99.89 (0.00) 99.50 (0.23) 96.22 (1.55)
BIN 99.96 (0.01) 99.85 (0.03) 99.76 (0.08) 99.48 (0.16)

Graph Coloring (GCP): In this task349

we are given a partially colored graph350

along with the number of colors k, and351

the objective is to color rest of the352

nodes using k colors such that no two353

adjacent nodes have the same color.354

We train our model on randomly gen-355

erated 4−colorable graphs, and test356

on k′−colorable graphs, with k′ ∈357

{4, 5, 6, 7}. Training data has graphs358

with graph order varying uniformly be-359

tween 40− 120, and percentage of masked nodes vary uniformly between 28− 70%.360

Sudoku: We randomly select 10, 000 training queries from the 9 × 9 dataset introduced in Palm361

et al. (2018). Our test set has k′ × k′ puzzles, with k′ ∈ {10, 12, 15, 16}. Data generation process is362

similar to Futoshiki, with the distribution of missing cells varying between 30− 68% depending on363

the board size. Instead of backtracking, solution validity is checked through the GSS library (Pieters,364

2019). Please see appendix for more details on data generation process for all three tasks.365

5.2 EXPERIMENTAL SETUP & BASELINES366

Table 3: Sudoku: Mean (Std. dev.) of board and pointwise accuracy on
different board-sizes. Both models trained on 9× 9 puzzles

Board Accuracy
9 10 12 15 16

MV 92.78 (0.08) 99.65 (0.15) 88.30 (6.08) 29.33 (13.71) 19.70 (14.03)
BIN 99.13 (0.14) 99.91 (0.04) 99.63 (0.10) 63.05 (45.71) 27.31 (23.81)

Pointwise Accuracy
MV 98.52 (0.05) 99.96 (0.02) 99.43 (0.26) 97.03 (0.71) 96.30 (0.90)
BIN 99.87 (0.02) 99.99 (0.00) 99.96 (0.01) 95.55 (6.60) 88.39 (14.25)

In both our models, nodes367

are initialized with learn-368

able 96 dimensional em-369

beddings. In multi-valued370

model, kmax = 12, 7, and371

16 embeddings are learnt372

for Futoshiki, GCP, and Su-373

doku respectively. Message374

passing on G in binarized375

model runs for 32 steps. Message passing on RMPG, G̃ and CMPG, G in the multi-valued model376

runs for T̃ = 1 and T = 32 steps respectively. The message passing functions in both the models are377

3 layer MLPs, similar to those in RRN, with a difference that there is a separate function for each378

edge type. In both the models, a layer normalized LSTM cell with hidden dimension 96 acts as state379

update functions. All models are trained on K40 GPU nodes with 12GB memory. We take simple380

average of model weights stored at multiple points (Izmailov et al., 2018). All checkpoints obtained381

after flattening of the learning curve are selected for computing average. See appendix for details.382

Baseline: For Futoshiki, we train two versions of NLM by varying depth: the number of Logic383

Machines that are stacked on top of each other. Like (Nandwani et al., 2021), we train one 30 layer384

deep NLM model with residual connections for Futoshiki, but unlike them, we assume access to385

constraint graph, which we provide as a binary predicate input to the model. NLM with 30 depth386

could not fit puzzles with board-size greater than 10 within 12GB memory of K40 GPU. Hence, we387

train another version by reducing the depth to 15. For GCP, we train a model with depth 24. For388

Sudoku, on increasing depth beyond 14, we could not fit even one 9× 9 train sample within GPU389

memory. Note that the maximum depth chosen for the graph experiments reported in (Dong et al.,390

2019) is 8. This is because they work with much smaller graphs (up to maximum 50 nodes), whereas391

smallest graph in Futoshiki has 63 = 216 binary nodes, warranting creation of much deeper models.392

Evaluation Metrics: We report two metrics: board accuracy and point-wise accuracy. In the former,393

we consider output of the model as correct only if it satisfies the underlying CSP, whereas in the later,394

8

Published as a conference paper at ICLR 2022

we give partial credit even for assigning some of the variables correctly. See Appendix for details.395

For each setting, we report the mean and standard deviation over three runs by varying random seed.396

5.3 RESULTS AND DISCUSSION397

Table 4: Sudoku: Mean (Std. dev.) of board and pointwise
accuracy of models fine-tuned on 24 board-size

Board Accuracy
15 16 24 25

MV 91.03 (3.25) 90.39 (3.49) 54.57 (21.25) 43.77 (14.42)
BIN 63.05 (45.71) 27.31 (23.81) 0.0 (0.0) 0.0 (0.0)

Pointwise Accuracy
MV 99.43 (0.16) 99.46 (0.15) 99.30 (0.12) 99.10 (0.09)
BIN 95.55 (6.60) 88.39 (14.25) 7.85 (0.63) 7.44 (0.43)

We report the accuracies over differ-398

ent sizes of value-set for Futoshiki,399

GCP and Sudoku in Table 1, 2, and400

3, respectively. We first observe that401

NLM fails to train on Sudoku, and402

its performance is worse than one or403

both of our models for all experimen-404

tal settings in Futoshiki and GCP. As405

expected, in Futoshiki, NLM model with depth 30 fails to run on board sizes 11 and 12 and depth406

15 model fails to run on size 12. Note that both NLM and our binarized model work by binarizing407

the underlying puzzle, but we observe that binarized model shows significantly better generalization408

across value-sets. We note that NLM performs decently well for GCP even for the test graphs with409

chromatic number k′ = 7. We attribute this to the fact that in our test data for k′ = 7, graphs are410

relatively small, with max 80 graph nodes, resulting in total 560 binary objects in NLM, which is411

similar to the max 400 binary objects that it trains over (k=4, max 100 nodes).412

Comparison between binarized model and multi-valued model: We first observe that both our413

models achieve similar performance on the value-set over which they are trained. We observe414

that the standard deviation of the board accuracy increases significantly as the size of value-set415

increases, whereas the pointwise accuracy is relatively stable. This is due to the high sensitivity of416

the board accuracy to pointwise accuracy: even if a single variable is incorrectly assigned in a puzzle,417

its contribution towards board accuracy goes to 0, whereas it still contributes positively towards418

pointwise accuracy. When trained on small sizes, binarized model shows better generalization. But419

as the problem size increases, the computational graph for binarized model fails to fit in the available420

GPU memory and thus its performance degrades. On the other hand, multi-valued model being421

memory efficient, scales much better. To demonstrate this, Table 4 reports the performance of multi-422

valued model further finetuned on sudoku puzzles of board-size 24, and tested on board-sizes varying423

between 15 and 25. We couldn’t finetune the binarized model as its computational graph doesn’t fit in424

the GPU. The binarized model trained on puzzles of board-size 9 gives 0.0 board accuracy on size 24425

and 25. The performance of multi-valued model is better than binarized model not only on board-size426

25, but also on board-sizes smaller than 24. This also demonstrates that the poor performance of the427

same multi-valued model trained on smaller board-size is not due to any lack of representation power,428

but due to difficulty in learning additional embeddings: when training k′ embeddings from puzzles429

of board-size k, multi-valued model never gets to see all k′ value embeddings together. Moreover,430

the different combinations of k out of k′ embeddings increase exponentially with (k′ − k), making431

it further difficult to train. To validate this, we train a multi-valued model with only 7 learnable432

embeddings for Futoshiki and observe that the board accuracy on 7 board-size increases to 97.82%433

(at par with binarized model) from 90.18% which is achieved when trained with 12 embeddings.434

(a) Runtime

(b) Memory

Figure 2: Resource: Futoshiki

Computational complexity: In fig. 2, for the two models, we com-435

pare the average inference time and the GPU memory occupied by436

a batch of 32 Futoshiki puzzles over value-sets of varying sizes. As437

expected, the multi-valued model is much more efficient, both in438

terms of time and memory.439

6 CONCLUSION AND FUTURE WORK440

We have looked at the novel problem of value-set invariance in com-441

binatorial puzzles, formally defined using lifted CSPs and proposed442

two different neural solutions extending RRNs. Our experiments443

demonstrate the superior performance of our models compared to444

an existing neural baseline. We discuss the relative strengths and445

weaknesses of our proposed models. Future work includes solving446

more complicated CSPs, and scaling to even larger sizes.447

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT448

We thank IIT Delhi HPC facility3 for computational resources. We thank anonymous reviewers for449

their insightful comments and suggestions that helped in further improving our paper. Mausam is450

supported by grants from Google, Bloomberg, 1MG and Jai Gupta chair fellowship by IIT Delhi.451

Parag Singla is supported by the DARPA Explainable Artificial Intelligence (XAI) Program with452

number N66001-17-2-4032. Both Mausam and Parag Singla are supported by the Visvesvaraya Young453

Faculty Fellowships by Govt. of India and IBM SUR awards. Any opinions, findings, conclusions or454

recommendations expressed in this paper are those of the authors and do not necessarily reflect the455

views or official policies, either expressed or implied, of the funding agencies.456

ETHICS STATEMENT457

In its current form, our work is primarily a technical contribution, with no immediate ethical458

consequences. Our work develops the line of recent research in which constraint reasoning is carried459

out through neural architectures. We believe that neural approaches for symbolic reasoning will go a460

long way in creating an integrated AI system. This is because an integrated system requires not only461

perceptual, but also high-level reasoning. Neural approaches will provide a uniform vocabulary so462

that both these forms of reasoning can interact with each other, improving performance of the overall463

system.464

As more AI systems start to be used in critical applications such as healthcare, law, and disaster465

management, it is important that they honor the safety and accountability constraints set up by domain466

experts. Their ability to perform high-level reasoning enables them to honor such constraints more467

effectively. Thus, our line of work, in the long run, could have significant positive ethical implications.468

We see no obvious negative implications of our work.469

REPRODUCIBILITY STATEMENT470

To ensure reproducibility, we have discussed the dataset creation process and provided model471

architecture details in Section 5.1 and Section 5.2, respectively. We provide the details of the exact472

hyper-parameters, computational resources used, and additional experimental details in the appendix.473

We also make our code publicly available at https://github.com/dair-iitd/output-space-invariance.474

REFERENCES475

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An476

unsupervised differentiable approach. In 7th International Conference on Learning Representations,477

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019a. URL https:478

//openreview.net/forum?id=BJxgz2R9t7.479

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. PDP: A general neural framework for480

learning constraint satisfaction solvers. CoRR, abs/1903.01969, 2019b. URL http://arxiv.481

org/abs/1903.01969.482

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly483

learning to align and translate. In 3rd International Conference on Learning Representations,484

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL485

http://arxiv.org/abs/1409.0473.486

Aniket Bajpai, Sankalp Garg, and Mausam. Transfer of deep reactive policies for MDP planning. In487

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information488

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10988–489

10998, 2018.490

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for graph491

classification extrapolations. In Proceedings of the 38th International Conference on Machine492

3http://supercomputing.iitd.ac.in

10

https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
http://arxiv.org/abs/1903.01969
http://arxiv.org/abs/1903.01969
http://arxiv.org/abs/1903.01969
http://arxiv.org/abs/1409.0473

Published as a conference paper at ICLR 2022

Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139, pp. 837–851, 2021. URL493

http://proceedings.mlr.press/v139/bevilacqua21a.html.494

Nuri Cingillioglu and Alessandra Russo. Deeplogic: Towards end-to-end differentiable logical495

reasoning. In Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning496

with Knowledge Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA,497

March 25-27, 2019., Stanford University, Palo Alto, California, USA, March 25-27, 2019, volume498

2350 of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL http://ceur-ws.org/499

Vol-2350/paper21.pdf.500

Johan de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of the 11th International501

Joint Conference on Artificial Intelligence. Detroit, MI, USA, August 1989, pp. 290–296, 1989.502

URL http://ijcai.org/Proceedings/89-1/Papers/046.pdf.503

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic504

machines. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,505

LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?506

id=B1xY-hRctX.507

Michael D. Ernst, Todd D. Millstein, and Daniel S. Weld. Automatic sat-compilation of planning508

problems. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,509

IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, pp. 1169–1177, 1997. URL http:510

//ijcai.org/Proceedings/97-2/Papers/055.pdf.511

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. J. Artif. Intell.512

Res., 61:1–64, 2018. doi: 10.1613/jair.5714. URL https://doi.org/10.1613/jair.513

5714.514

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.515

In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99,516

Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pp. 1300–1309, 1999. URL517

http://ijcai.org/Proceedings/99-2/Papers/090.pdf.518

Sankalp Garg, Aniket Bajpai, and Mausam. Symbolic network: Generalized neural policies for519

relational mdps. In Proceedings of the 37th International Conference on Machine Learning, ICML520

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,521

pp. 3397–3407. PMLR, 2020.522

Kazuo Iwama and Shuichi Miyazaki. Sat-variable complexity of hard combinatorial problems. In In523

Proceedings of the World Computer Congress of the IFIP, pp. 253–258, 1994.524

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wil-525

son. Averaging weights leads to wider optima and better generalization. In Proceedings of the526

Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, Cali-527

fornia, USA, August 6-10, 2018, pp. 876–885, 2018. URL http://auai.org/uai2018/528

proceedings/papers/313.pdf.529

David Joslin and Amitabha Roy. Exploiting symmetries in lifted csps. In The 14th National530

Conference on Artificial Intelligence (AAAI), pp. 197–202. AAAI Press, 1997.531

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.532

Nada Lavrac and Luc De Raedt. Inductive logic programming: A survey of european research.533

AI Commun., 8(1):3–19, 1995. doi: 10.3233/AIC-1995-8101. URL https://doi.org/10.534

3233/AIC-1995-8101.535

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De536

Raedt. Deepproblog: Neural probabilistic logic programming. In Advances in Neu-537

ral Information Processing Systems 31: Annual Conference on Neural Information Pro-538

cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.539

3753–3763, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/540

dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html.541

11

http://proceedings.mlr.press/v139/bevilacqua21a.html
http://ceur-ws.org/Vol-2350/paper21.pdf
http://ceur-ws.org/Vol-2350/paper21.pdf
http://ceur-ws.org/Vol-2350/paper21.pdf
http://ijcai.org/Proceedings/89-1/Papers/046.pdf
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
https://openreview.net/forum?id=B1xY-hRctX
http://ijcai.org/Proceedings/97-2/Papers/055.pdf
http://ijcai.org/Proceedings/97-2/Papers/055.pdf
http://ijcai.org/Proceedings/97-2/Papers/055.pdf
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.5714
http://ijcai.org/Proceedings/99-2/Papers/090.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
https://doi.org/10.3233/AIC-1995-8101
https://doi.org/10.3233/AIC-1995-8101
https://doi.org/10.3233/AIC-1995-8101
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html

Published as a conference paper at ICLR 2022

Mehrab Najafian, Mohammad Hesam Tadayon, and Morteza Esmaeili. Construction of strongly542

mutually distinct sudoku tables and solid sudoku cubes by cyclotomic cosets. IEEE Transactions543

on Games, PP:1–1, 11 2018. doi: 10.1109/TG.2018.2880953.544

Yatin Nandwani, Deepanshu Jindal, Mausam, and Parag Singla. Neural learning of one-of-many545

solutions for combinatorial problems in structured output spaces. In International Conference on546

Learning Representations (ICLR), 2021.547

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In Advances in548

Neural Information Processing Systems 31: Annual Conference on Neural Information Processing549

Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 3372–3382, 2018. URL550

http://papers.nips.cc/paper/7597-recurrent-relational-networks.551

Laurent Perron and Vincent Furnon. Or-tools, 2019. URL https://developers.google.552

com/optimization/.553

Bart Pieters. Generic sudoku solver. https://github.com/bartp5/gss, 2019.554

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge555

into embeddings for relation extraction. In NAACL HLT 2015, The 2015 Conference of the556

North American Chapter of the Association for Computational Linguistics: Human Language557

Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pp. 1119–1129, 2015. URL558

http://aclweb.org/anthology/N/N15/N15-1118.pdf.559

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill.560

Learning a SAT solver from single-bit supervision. In 7th International Conference on Learning561

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL562

https://openreview.net/forum?id=HJMC_iA5tm.563

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In564

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI565

2017, Melbourne, Australia, August 19-25, 2017, pp. 4949–4953, 2017.566

Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards567

scale-invariant graph-related problem solving by iterative homogeneous gnns. In568

NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/569

b64a70760bb75e3ecfd1ad86d8f10c88-Abstract.html.570

Toby Walsh. SAT v CSP. In Principles and Practice of Constraint Programming - CP 2000, 6th571

International Conference, Singapore, September 18-21, 2000, Proceedings, volume 1894 of Lecture572

Notes in Computer Science, pp. 441–456. Springer, 2000. doi: 10.1007/3-540-45349-0_32. URL573

https://doi.org/10.1007/3-540-45349-0_32.574

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and575

logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th International576

Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,577

volume 97 of Proceedings of Machine Learning Research, pp. 6545–6554. PMLR, 2019. URL578

http://proceedings.mlr.press/v97/wang19e.html.579

Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local structures580

to size generalization in graph neural networks. In Proceedings of the 38th International Conference581

on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139, pp. 11975–11986,582

2021. URL http://proceedings.mlr.press/v139/yehudai21a.html.583

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,584

Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.585

AI Open, 1:57–81, 2020.586

12

http://papers.nips.cc/paper/7597-recurrent-relational-networks
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://github.com/bartp5/gss
http://aclweb.org/anthology/N/N15/N15-1118.pdf
https://openreview.net/forum?id=HJMC_iA5tm
https://proceedings.neurips.cc/paper/2020/hash/b64a70760bb75e3ecfd1ad86d8f10c88-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b64a70760bb75e3ecfd1ad86d8f10c88-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b64a70760bb75e3ecfd1ad86d8f10c88-Abstract.html
https://doi.org/10.1007/3-540-45349-0_32
http://proceedings.mlr.press/v97/wang19e.html
http://proceedings.mlr.press/v139/yehudai21a.html

Published as a conference paper at ICLR 2022

A APPENDIX587

2 RELATED WORKS588

Generalization of GNNs across graph size: Our work relies heavily on the assumption that GNNs589

generalize across size. Here we briefly discuss the works that question the same. The existing set of590

papers (and results) in this line of research can be broadly divided into two sub-classes. The first set591

of results talk about the representation power of GNNs to handle various graph sizes. The second set592

of results talk about learnability issues with GNNs under varying train/test distributions. We look at593

some of the results below and try to explain why GNNs in our case are able to generalize well, both594

in terms of representation power, as well as learnability.595

Representation Power: We hypothesize that there are two design choices that are helping us gain596

good representation power: 1. Ability to create a deep network without blowing up the number of597

parameters because of weight tying across layers, and 2. Preassigned class labels to some of the598

variables which act as node features and help in breaking the symmetry. We argue it on the basis of599

Theorem 4.2 in Yehudai et al. (2021), which proves that there exists a (d+ 3) layered GNN that can600

distinguish between nodes having different local structure, which is quantified via d-patterns that601

can be thought of as a generalization of node degree to d-hop neighborhood. Hence, to be able to602

distinguish between nodes on the basis of a GNN, all we need to do is ensure that different nodes603

have different d-patterns. This can be achieved in 2 ways: 1. By increasing d, e.g. two nodes may604

have the same degree and hence the same 1-pattern, but their neighbors may have different degrees,605

which will lead to different 2-pattern for these two nodes. 2. By assigning node features, e.g. two606

nodes may have the same degree, but their neighbors may have different node features, leading to607

a different 1-pattern for them as d-pattern also takes initial node features into account. In addition,608

Tang et al. (2020) also argue that one way of increasing the representation power of GNNs is by609

increasing their depth, and it achieves the same by proposing IterGNN that applies the same GNN610

layer for an adaptive number of iterations depending on the input graph. This is equivalent to tying611

the weights of different layers as in RRNs, as well as in our models.612

Learnability: With respect to learnability, Yehudai et al. (2021) prove the existence of a ‘bad’ local613

minima that overfits on train data but fails on test samples that have unseen d-patterns. Our test614

dataset clearly has unseen d-patterns (e.g. nodes in 16 x 16 sudoku have different degrees than nodes615

in 9 x 9 sudoku), but our models still generalize. We note that Yehudai et al. (2021) only talks about616

the existence of some bad local minima, but does not rule out the possibility of the existence of other617

good local minima, which could generalize well, despite differences in local structure between train618

and test sets. This goes into the whole learnability argument, and whether we can find such not-so-bad619

local minimas (which presumably exist since the possibility has not been ruled out). One aspect that620

possibly comes to our rescue is that, unlike most GNN architectures, our design is recurrent in nature,621

i.e., parameters are tied across different GNN layers as inspired by Palm et al. (2018). Parameter622

tying assumption, possibly helps us in learnability, since the recurrence can be seen as a form of623

regularization, avoiding overfitting (or getting stuck in bad local minima). Exploring this further is a624

direction for future work.625

In addition to Yehudai et al. (2021), Bevilacqua et al. (2021) deal with varying train/test distributions626

by proposing a size invariant representation of graphs. Their approach focuses on graph classification627

tasks, and is limited to creating size invariant representations for the entire graph. The theoretical628

claims presented in their paper primarily focus on the limitation of standard GNN based formulations629

for generalizing across sizes for graph classification tasks. On the other hand, we are interested in630

learning representations for each node in the graph for node classification, and it is not clear how the631

claims, as well as techniques proposed in the paper, extend to our setting.632

4 MODELS DESCRIPTION633

4.1 BINARIZED MODEL634

Recurrent Message Passing635

There are two categories of edges in the Message Passing Graph: Constraint Edges and Relation636

Edges. Each edge inherits an edge type, either from Constraint Graph, or Relation Graph. We denote637

13

Published as a conference paper at ICLR 2022

the set of all constraint edge types as Q, and the set of all relational edge types as R. We now describe638

the details of message passing and hidden state update equations.639

Edge Dependent Message Passing: The nodes communicate their current hidden state via the640

messages sent to their neighbouring nodes across the edges. The message depends not only on641

the current state of the sender and receiver, but also on the edge type across which the mes-642

sage is sent. Specifically, for each edge type, z, there is a separate message passing func-643

tion, fz , with z ∈ (Q ∪ R) where Q and R are the set of all constraint edge types and re-644

lation edge types respectively. We compute the message for each edge ez(j1l1,j2l2) ∈ E as:645

mt

[
ez(j1l1,j2l2)

]
= fz (ht (nj1,l1) , ht (nj2,l2)) ,∀ez(j1l1,j2l2) ∈ E, z ∈ (Q ∪R).646

Hidden State Update: For each node, the incoming messages on the edges of the same type647

are aggregated by taking their weighted average. The weights, at, are computed using Bahdanau648

Attention (Bahdanau et al., 2015) over constraint edges, whereas messages across relation edges are649

simply averaged: mt,z[nj,l1] =
∑

ez
(jl1,j2l2)

∈E at[e
z
(jl1,j2l2)]mt[e

z
(jl1,j2l2)] , ∀z ∈ (Q ∪R)650

Finally, all messages, mt,z[nj,l]∀z ∈ (Q ∪R), are concatenated to create the input, mt[nj,l] for each651

node, nj,l. The hidden state at step t is updated by the following state update function to generate652

the state ht+1(nj,l): ht+1(nj,l) = g (ht(nj,l),mt[nj,l], u0(nj,l)) ,∀nj,l ∈ N . See Figure 3 for an653

illustration of edge dependent message passing and state update at a given step t.654

4.2 MULTI-VALUED MODEL655

There are two separate message passing graphs in multi-valued model: RMPG and CMPG. RMPG656

contains edges encoding the relationship between the values. Each edge has an associated edge type657

representing the relationship it encodes. We denote the set of all edge types in RMPG as R. In658

CMPG, there are two categories of edges: Constraint Edges and Assignment Edges. Further, each659

edge may have an associated edge type. The set of all constraint edge types is denoted as Q, and the660

set of assignment edge types (edges from orange value nodes to yellow variable nodes in fig. 1) is661

denoted as A. Finally, the initial embedding of a variable node nj is denoted as u0(nj).662

We now describe the message passing rules and hidden state update equations.663

Recurrent Message Passing (on RMPG)664

Message Passing Update: At step t, update the hidden state, h̃t(ñvl), of each of the value nodes in665

G̃, by the concatenation, mt[ñ
v
l], of average messages, mr

t [ñvl], received across edges of type r ∈ R:666

h̃t+1(ñvl) = g̃(h̃t(ñ
v
l),mt[ñ

v
l], ũ[Px[l]]), where g̃ is the hidden state update function. Like (Palm667

et al., 2018), it always takes the initial embedding, ũ[Px[l]], of the value node ñvl as one of the inputs.668

Notice that the message, mr
t [ñvl], is the average of the messages, fr(h̃t(ñ

v
l), h̃t(ñ

v
l′)) ∀ ẽ

r
(l,l′) ∈ Ẽ,669

where fr is the message passing function for edge type r ∈ R. The hidden states are updated for670

T̃ steps and the final embeddings, h̃T̃ (ñvl) ∀vl ∈ V , are used as ‘relationship-aware’ embeddings671

for initializing the input features (embeddings) of both variable nodes, nj, and value nodes, nvl in G672

(orange and yellow nodes respectively in Multi-Valued Graph in fig. 1).673

Recurrent Message Passing (on CMPG)674

Message Passing Update: At step t, similar to binarized model, each variable node receives675

messages from its neighbors, that are aggregated based on the edge type. For each node, the676

aggregated messages, mt,z[nj], for different edge types, z ∈ (Q ∪A), are stacked to create, mt[nj],677

which updates the hidden state as: ht+1(nj) = g (ht(nj),mt[nj], u0(nj)) ,∀nj ∈ N .678

679

680

Discussion on an alternate Encoding Scheme681

As discussed in section 4.1, the main intuition for our binarized modelcomes from ‘sparse encoding’682

of an integer CSP to a SAT. In addition to ‘sparse encoding’, there is another way of converting683

integer CSP into SAT, called ‘compact encoding’ (Ernst et al., 1997; Iwama & Miyazaki, 1994), in684

which each Boolean SAT variable represents a single bit of the integer value that a CSP variable can685

take. The final assignment of a CSP variable is given by the integer represented by the log k Boolean686

14

Published as a conference paper at ICLR 2022

Figure 3: Hidden State Update at time-step t: We take a toy graph with 3 nodes, {a, b, c}, and 2
edge-types, {q, r}, to illustrate edge-dependent message passing and hidden state update of node b.
First, messages along the four edges are calculated as an edge-type dependent function of the sender
and receiver hidden state using fq and fr. Next, the incoming messages are aggregated by edge-type
(e.g., using attention based mechanism or simple averaging), and the outputs are concatenated to
obtain the final message, mt−1[b]. The hidden state of node b is updated by function g which takes
the previous hidden state ht−1(b), the incoming message mt−1[b], and the initial embedding of the
node as its input.

15

Published as a conference paper at ICLR 2022

SAT variables corresponding to that variable. Motivated by the ‘compact encoding’, one can construct687

another model: instead of a one-hot encoding which requires k nodes (one for each value in V) for688

each variable, create log k binary valued nodes for each variable and assign a value v ∈ V to the689

variable based on the integer represented by log k bits corresponding to it. This results in a graph with690

|NC | log k nodes for a CSP with |NC | variables and k classes, instead of |NC |k nodes in the binarized691

model, and brings it closer to the graph size of |NC |+ k created in multi-valued model. However,692

such an approach failed to generalize across the size of the value-set in our experiments. In addition,693

such an encoding has a limitation in its representational capability. It can not encode the relationship694

between the values effectively. For example, in k × k Futoshiki, we have an ordinal relationship695

between the k values representing the numerical numbers 1 to k. In our proposed approaches, we696

encode this by adding appropriate relational edges between nodes representing different values in V .697

In the binarized model, it is done for each variable separately, whereas, in the multi-valued model, it698

is done in the RMPG. In absence of an explicit node for a value in this encoding scheme, it is not699

clear how to represent such a relationship.700

5 EXPERIMENTS701

Discussion on comparison with SAT Solvers: In this work, we are interested in creating (and702

learning) a neural solver for symbolic tasks, instead of using a symbolic algorithm like SAT solver.703

Such an approach has many benefits, e.g., because of being differentiable, it can be used seamlessly704

in a unified framework requiring both perception as well as reasoning, e.g. visual sudoku; neural705

models have been shown to be resistant to varying amount of noise in the data as well, which purely706

logical (SAT style) solvers may not be able to handle. As is the case with other papers in this line of707

work e.g (Selsam et al., 2019; Amizadeh et al., 2019a), at this point our main motivation is scientific.708

We are interested in understanding to what extent neural reasoners can generalize across varying709

sizes of the value-set in train and test domains. Instead of comparing with an industrial SAT Solver,710

perhaps a fair comparison would be with a generic state-of-the-art neural SAT solver e.g., CircuitSAT711

(Amizadeh et al., 2019a), NeuroSAT (Selsam et al., 2019). Both of these papers observe that there is a712

long way to go before they can compete with industrial SAT solvers. In fact, both of these approaches713

experiment with much smaller problem instances. CircuitSAT uses a model trained on k-SAT-3-10714

problems (k-SAT with 3 to 10 Boolean variables) for coloring graphs with number of nodes ranging715

between 6 to 10, and achieves a meager 27% performance and NeuroSAT fails to solve any of the716

problems in the coloring dataset used by CircuitSAT (section 5.2 in Amizadeh et al. (2019a)). On717

the other hand, the smallest of the problems in our dataset has 40 nodes (GCP) and the largest has718

253(= 25, 625) nodes (in 25 × 25 Sudoku), and hence we do not expect the generic neural SAT719

solvers to scale up to our problem sizes.720

Table 5: Dataset details

Task Train Test
k #(Vars.) Mask (%) #(Missing Vars.) k’ #(Vars.) Mask (%) #(Missing Vars.)

Futoshiki 6 36 28-70 10-25 {6,7,8,9,10,11,12} 36-144 28-70 10-93
GCP 4 40-100 28-70 12-70 {4,5,6,7} 40-150 28-70 12-105

Sudoku 9 81 58-79 47-64 {9,10,12,15,16} 81-256 30-68 47-148
Sudoku finetune 24 576 30-70 173-403 {15,16,24,25} 225-625 30-70 68-314

5.1 TASK DESCRIPTION AND DATASETS721

We experiment on datasets generated from Lifted CSPs of three different puzzles, viz., Sudoku,722

Futoshiki, and Graph Coloring. In addition, we fine-tune our multi-valued model for Sudoku on 8000723

puzzles of size 24 and test it on puzzles of different board sizes. Table 5 contains the details of both724

train and test data for the different experiments. Below we describe the three tasks and their datasets725

in detail.726

Futoshiki: We train our model on 6 × 6 puzzles, with the percentage of missing cells varying727

uniformly between 28− 70%. We test our models on puzzles with board size ranging between 6× 6728

to 12× 12, with the same percentage of missing cells. The number of ordering constraints is twice729

the board size. To generate data, we first randomly generate a completely filled k × k board and then730

randomly mask m% of the cells. We search for its all possible completions using backtracking to731

16

Published as a conference paper at ICLR 2022

Table 6: Test Data statistics for all three tasks

k #Puzzles #(Variables) #(Missing Variables) Mask (%)
Futoshiki

6 4100 36 10-25 28-70
7 4091 49 14-34 29-70
8 3578 64 19-44 30-70
9 3044 81 24-56 30-70

10 2545 100 30-66 30-66
11 2203 121 36-82 30-68
12 1882 144 43-93 30-65

GCP
4 9102 40-150 12-105 28-70
5 9102 40-150 12-105 28-70
6 6642 40-120 12-84 28-70
7 3362 40-80 12-56 28-70

Sudoku
9 18000 81 47-64 58-79
10 2317 100 30-62 30-62
12 1983 144 43-84 30-58
15 1807 225 67-128 30-57
16 1748 256 76-148 30-58
24 1000 576 172-289 30-50
25 1000 625 187-314 30-50

ensure that it has only one solution. Finally, we insert ordering constraints between 2k randomly732

picked pairs of adjacent cells. The entire process is repeated by varying k and m to generate both the733

test and train dataset.734

The training data consists of 12, 300 puzzles on 6 x 6 board size with the percentage of missing735

variables varying between 28− 70%. The exact details of the testing data for different board sizes736

are provided in Table 6. We note that it becomes increasingly difficult to find puzzles with unique737

solution as the board size increases. Therefore, we are forced to reduce the maximum percentage of738

masked (unassigned) cells with increasing board size.739

GCP: The training data for Graph Coloring Problem consists of around 25 thousand 4-colorable740

graphs with graph order varying uniformly between 40 − 120, and the percentage of unassigned741

(masked) variables varying uniformly between 28− 70% depending on the graph order. The exact742

details of the testing data for different chromatic number (value-set size) are provided in Table 6.743

To create non-trivial problems for the dataset, we always attempt to color graphs with the smallest744

possible number of colors, i.e., the chromatic number of the graph. We follow Erdős–Rényi (ER)745

model to generate random graphs. It takes number of nodes, n, and an edge probability, p, as input,746

and adds an edge independent of the other edges with probability p. We note that to sample a graph747

with n nodes and a given chromatic number k, we need to carefully adjust the range from which edge748

probability p is sampled. The exact range from which p is sampled uniformly for each chromatic749

number k and a range of nodes n is given in Table 7. We use a CSP solver (Perron & Furnon, 2019)750

to determine the chromatic number of a given graph, which becomes a bottleneck while generating751

graphs with higher chromatic number. As a result, we were not able to generate graphs with more752

than 80 nodes for chromatic number 7, in a reasonable amount of time.753

Sudoku: The training data consists of 10 thousand 9 x 9 puzzles randomly selected from the dataset754

introduced in (Palm et al., 2018). For standard 9 × 9 board, we use the same test data as used in755

RRN (Palm et al., 2018) 4. The test data for the board-sizes between 10 and 16 is generated using756

the methodology similar to Futoshiki. Instead of backtracking, solution validity and uniqueness is757

checked through the GSS library (Pieters, 2019). The exact details of the testing data for different758

board sizes are provided in Table 6. For the experiment where we fine-tune our models on 24× 24759

puzzles, both the train and test data for board size 24 and 25 are generated following the methodology760

4Available at: https://data.dgl.ai/dataset/sudoku-hard.zip

17

Published as a conference paper at ICLR 2022

Table 7: Range for p for given k and n for GCP data generation

aaaaaaaaaa
k

n
40-55 56-70 71-80 81-100 101-130 131-150

4 (0.1, 0.2) (0.05, 0.1) (0.05, 0.1) (0.05, 0.1) (0.02, 0.05) (0.02, 0.05)
5 (0.2, 0.25) (0.1, 0.2) (0.1, 0.2) (0.075, 0.12) (0.075, 0.1) (0.05, 0.075)
6 (0.2, 0.25) (0.15, 0.25) (0.17, 0.2) (0.15, 0.18) (0.12, 0.16) -
7 (0.325, 0.375) (0.275, 0.325) (0.22, 0.3) - - -

similar to Futoshiki. In this setup, we were not able to verify the uniqueness of solution through GSS761

library as it doesn’t scale to such large sizes.762

Solution Multiplicity in GCP Dataset and larger board-size puzzles of Sudoku: An input query763

in GCP may have more than one solution, out of which only one is given at train time. But the764

network may discover a new valid solution, and computing loss of the discovered solution w.r.t. the765

given solution may unnecessarily penalize the model. To avoid this, we algorithmically verify if a766

prediction is a valid coloring or not, and compute loss w.r.t. to this discovered solution, instead of the767

given one. This is equivalent to solving a One-of-Many Learning problem (Nandwani et al., 2021)768

with all possible colorings given at training time. The same phenomenon of solution multiplicity769

exists for Sudoku puzzles of size 24 and 25, as verifying the uniqueness of puzzles on such large770

board-size became computationally infeasible.771

5.2 EXPERIMENTAL SETUP AND BASELINES772

Evaluation Metrics: We report two metrics: board accuracy and point-wise accuracy for all our773

experiments. In the former, we consider output of the model as correct only if it satisfies the774

underlying CSP, whereas in the later, we give partial credit even for assigning some of the variables775

correctly. We formally define it below:776

Pointwise accuracy: Let Yx be the set of possible solutions for an input x with k variables, and let ŷ777

be the model’s prediction. Pointwise accuracy of the prediction ŷ with respect to the solution y ∈ Yx,778

denoted as, PointAcc(y, ŷ), is defined to be the fraction of variables that match between the y and779

ŷ: PointAcc(y, ŷ) = 1
k

∑k
i=1 1{y[i] == ŷ[i]}, where 1{.} is the indicator function.780

Given above, we define pointwise accuracy for a prediction ŷ of an input x with respect to a solution781

set Yx to be the maximum among the pointwise accuracy with respect to each of the solutions in the782

set Yx. Mathematically, PointAcc(Yx, ŷ) = maxy∈YxPointAcc(y, ŷ).783

For Sudoku and Futoshiki, since there is a unique solution, we can easily compute pointwise accuracy784

as the target set Yx is singleton. For the GCP task, whenever the model returns a valid coloring,785

pointwise accuracy is 1, otherwise, in the absence of access to complete Yx, we report a lower bound786

by performing a local search, using Google’s OR-Tools 5, for a valid coloring closest to the model787

prediction. Same is true for sudoku puzzles on 24 and 25 board size.788

Why care about point-wise accuracy? In our settings, the generalization problem can be hard,789

especially when there is a large difference between the sizes of the value-sets for the train and test790

domains. Given that we are defining a novel task, and it is important to measure progress even when791

problems are hard, we compare the two models using a simpler metric (pointwise accuracy) as well,792

in addition to board accuracy. This additional metric can help us detect progress, and also compare793

the relative performance of underlying models.794

Computational resources: All models are trained on K40 GPUs with 12 GB memory, available on795

an HPC cluster.796

Hyperparameters: The list below enumerates the various hyperparameters with a brief description797

and the values chosen.798

1. Batch Size: For each task, we selected the maximum batch size that can be accommodated799

in 12GB GPU memory. Refer to Table 8 for details.800

5https://developers.google.com/optimization

18

Published as a conference paper at ICLR 2022

Table 8: Hyperparameters for different models and tasks

Model Batch Size Weight Decay Orthogonality
Loss Factor

Edge
Dropout

Futoshiki

MV 64 0.0001 0.01 0.1
BIN 16 0.0001 - 0.1

NLM15 4 0.0001 - -
NLM30 2 0.0001 - -

GCP

MV 64 0.0001 0.01 0.1
BIN 16 0.0001 - 0.1

NLM24 1 0.0001 - -

Sudoku

MV 28 0.0001 0.01 0.1
BIN 3 0.0001 - 0.1

Table 9: Training cost of different models in terms of number of epochs, gradient updates and clock
time

Model Batch
Size

Training Data
Size

Gradient
Updates #Epochs Time per

Epoch (min)
Total Time

(Hours)

Futoshiki

MV 64 12,300 60,000 312 5 25
BIN 16 12,300 37,500 49 26 21

NLM15 4 12,300 155,000 50 34 43
NLM30 2 12,300 232,500 38 87 66

GCP

MV 64 25,010 80,000 205 10 33
BIN 16 25,010 40,000 26 39 17

NLM24 1 25,010 260,000 10 213 37

Sudoku

MV 28 10,000 162,000 454 9 68
BIN 3 10,000 168,000 50 74 63

2. Optimizer: To minimize the loss, we use Adam optimizer with learning rate 0.0002. As in801

the original RRN paper, we chose a weight decay factor of 1E-4.802

3. Orthogonality Loss Factor: To ensure that the multi-valued model learns different em-803

beddings for each value in the value-set, we add an auxiliary loss term, corresponding to804

the total pairwise dot product of any two embeddings, before and after message passing805

on the Relation Message Passing Graph (RMPG), G̃. Its weight, α, was chosen amongst806

{0.01, 0.1, 0.5} by cross validating on a devset for Futoshiki, and then fixed afterwards for807

all our experiments.808

4. Edge Dropout: While collating the messages from the edges of the same type, we drop809

10% of the messages, as done in RRN. Dropout is used in the Message Passing Graph810

(MPG) of the binarized model, and the Constraint Message Passing Graph (CMPG) of the811

multi-valued model.812

Model Averaging: As suggested in (Izmailov et al., 2018), to reduce the variance of our model813

performance, we take simple average of model weights stored at multiple points. All checkpoints814

beyond a point when the learning curve flattened are selected for computing the average.815

Training Time: Table 9 enumerates the exact training cost, in terms of total training epochs, number816

of gradient updates, and clock time, for all three tasks and for both our models as well as the baseline817

19

Published as a conference paper at ICLR 2022

NLM model. Note that while a multi-valued model may have fewer parameters, and results in a818

much smaller graph and inference time for a given problem, its training time could still be higher,819

especially in terms of total training epochs and number of gradient updates. However, because of its820

memory efficiency, we can keep a much larger batch size during training, and because of its speed821

efficiency, each update is much faster. As a result, the overall clock time comes out to be comparable822

to the binary model for the two of our tasks, i.e. Futoshiki and Sudoku, and it is within 2x for GCP,823

even though the number of epochs is much higher.824

20

	Introduction
	Related Work
	Preliminaries and Problem Definition
	Models Description
	Binarized Model
	Multi-valued Model

	Experiments
	Task Description and Datasets
	Experimental Setup & Baselines
	Results and Discussion

	Conclusion and Future Work
	Appendix

