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Abstract

Current speech encoding pipelines often rely on001
separate processing pipelines between text and002
audio, not fully leveraging the inherent overlap003
between these modalities for understanding hu-004
man communication. Language models excel005
at capturing semantic meaning from text that006
can complement the additional prosodic, emo-007
tional, and acoustic cues from speech. This008
work bridges the gap by proposing WhiSPA009
(Whisper with Semantic-Psychological Align-010
ment), a novel audio encoder trained with a011
contrastive student-teacher learning objective.012
Using over 500k speech segments from mental013
health audio interviews, we evaluate the utility014
of aligning Whisper’s audio embeddings with015
text representations from an SBERT encoder016
and text-based assessments of psychological di-017
mensions: emotion and personality. Over self-018
supervised and downstream mental health tasks,019
WhiSPA surpasses state-of-the-art speech mod-020
els, achieving an average error reduction of021
73.4% on the segment-level self-supervised ob-022
jective and 83.8% on 11 psychological down-023
stream tasks. WhiSPA demonstrates that cross-024
modal alignment can increase the amount of025
text-semantic and psychological information026
captured in audio-only encoder models.027

1 Introduction028

Human communication is inherently multimodal,029

combining semantic, prosodic, and psychological030

cues to convey meaning. However, AI integration031

of modalities is often fragmented (Lazaro et al.,032

2021; Gu et al., 2017), limiting models’ ability033

to encode both acoustic and semantic dimensions.034

Speech models excel at capturing prosodic features035

but lack the nuanced semantic understanding of the036

text that language models provide (Soubki et al.,037

2024; Sriram et al., 2017).038

To bridge this gap, we introduce an audio en-039

coding model, WhiSPA (Whisper with Semantic040

and Psychological Alignment), by attempting to041

Figure 1: The goal of WhiSPA is to align Whisper’s
(speech-based) representations to better capture the se-
mantic and psychological characteristics of communi-
cations that are currently best captured from text-based
language models. Our approach enables speech-based
models to enrich audio representations, which already
capture prosodic cues, with stronger semantic and psy-
chological dimensions.

address the semantic and psychological representa- 042

tion disparity between Whisper-based representa- 043

tions and text-based LLMs. We align a pre-trained 044

speech transcription model, Whisper (Radford 045

et al., 2022), with latent dimensions from SBERT 046

(Reimers and Gurevych, 2019) and language-based 047

models of psychological attributes (V Ganesan 048

et al., 2022; Park et al., 2014), intended to carry 049

deeper semantic and psychological dimensions. 050

Such alignment not only reduces computational 051

and memory inefficiencies (from not needing to run 052

a second LLM encoder on the transcripts from an 053

audio model), but also enables a unified understand- 054

ing of cross-modal dependencies between speech 055

and language models which are often trained on 056

much larger corpora. 057

While text-based language models effectively 058

capture semantics and some degree of human af- 059

fective information, audio inherently contains addi- 060
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tional acoustic information. For example, prosodic061

elements such as tone of voice and pause duration062

can alter the meaning or better convey affective063

(i.e. as pertaining to human emotion or tone) as-064

pects of language — transforming a statement into065

a question, conveying sarcasm instead of sincerity,066

or shifting a serious remark into insincere humour.067

Without cross-modal integration, language models,068

while semantically robust, remain incomplete in069

representing the full spectrum of human expres-070

sions (Zhang et al., 2023; Lian et al., 2023). Still,071

since text is derivable from speech, speech should072

intrinsically be mappable to the same rich semantic073

embeddings from language models, making an ad-074

ditional encoder redundant. By addressing this gap,075

our work streamlines the speech analysis pipeline076

and enhances its usability.077

Contributions. We hypothesize that aligning text078

and audio latent spaces can significantly improve079

audio-based representations. We test this hypothe-080

sis and make the following specific contributions:081

(1) We propose and train a novel audio encoder,082

WhiSPA (Whisper with Semantic and Psychologi-083

cal Alignment), which demonstrates significantly084

greater performance on both speech-to-text self-085

supervised tasks and downstream psychological086

tasks; (2) We systematically evaluate variants on087

the proposed alignment architecture, finding (a)088

aligning with text-based representations of both089

semantics and psychological features drastically090

improves audio representations, (b) aligning with091

emotional and personality factors result in SotA092

person-level psychological assessments, (c) a con-093

trastive learning objective results in a superior point094

of convergence for encoding semantic and psycho-095

logical dimensions of audio, and finally, (d) for096

downstream tasks, we found marginal benefit in097

adding SBERT representations to WhiSPA, sug-098

gesting that WhiSPA already captures nearly all099

the information provided by its text-based teacher100

model.101

WhiSPA integrates acoustics with language-102

derived semantics and psychological features, en-103

abling a more context-aware multimodal AI system104

to encode semantic and psychological dimensions105

from speech.106

2 Background107

Transformer architectures have revolutionized nat-108

ural language processing (NLP) (Vaswani et al.,109

2017), enabling significant advances in speech pro-110

cessing and cross-modal learning by setting new 111

benchmarks for understanding language and multi- 112

modal data. 113

Speech Recognition. Whisper, OpenAI’s state- 114

of-the-art automatic speech recognition (ASR) 115

model, was pre-trained on 680, 000 hours of mul- 116

tilingual, multitask audio data. Leveraging an 117

encoder-decoder architecture, it performs speech 118

transcription and translation (Radford et al., 2022). 119

Its autoregressive decoder predicts the next most 120

probable token while attending to prior tokens and 121

cross-attending to the audio representations from 122

the encoder. Whisper’s intermediary layers encode 123

high-level audio representations, capturing both 124

phonetic and semantic content, enabling contex- 125

tual understanding beyond sound patterns (Radford 126

et al., 2022). 127

The encoder processes Mel filterbank representa- 128

tions into embeddings encapsulating rich acoustic 129

and linguistic features, such as phonemes, intona- 130

tion, and broader context. The decoder refines this 131

understanding, generating text even in ambiguous 132

or noisy conditions. This capability mirrors human 133

speech perception, where phonetic accuracy and 134

contextual understanding are seamlessly integrated 135

(Radford et al., 2022). 136

Audio Encoders. Audio-specific models like 137

Wav2Vec have advanced the encoding of au- 138

dio signals into high-dimensional representations. 139

Wav2Vec (Schneider et al., 2019), developed by 140

Facebook AI, introduced a framework for learning 141

latent features from raw audio using convolutional 142

neural networks (CNNs) and self-supervised con- 143

trastive loss, achieving meaningful representations 144

generalizable across tasks. 145

Wav2Vec 2.0 (Baevski et al., 2020) improved on 146

this with a masked prediction objective inspired by 147

BERT (Devlin et al., 2019), enabling better mod- 148

elling of long-range dependencies in audio. With 149

proper fine-tuning, its transformer-based architec- 150

ture and contrastive loss enable state-of-the-art re- 151

sults in speech-processing tasks, especially emo- 152

tion recognition (Baevski et al., 2020). 153

Semantics. Language models prioritize semantic 154

understanding through contextual mechanisms. For 155

instance, BERT employs bidirectional attention to 156

consider both preceding and succeeding tokens, 157

learning fine-grained contextual representations 158

through a masked language modelling objective 159

(Devlin et al., 2019). Sentence-BERT (SBERT) ex- 160
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tends BERT by mapping input sentences into dense161

vector spaces with a Siamese network, enabling162

semantic similarity comparisons via metrics like163

cosine similarity (Reimers and Gurevych, 2019).164

However, SBERT is limited to textual data and165

cannot capture affective or prosodic nuances inher-166

ent to spoken language (Mohebbi et al., 2021). This167

limitation underscores the need for multimodal ap-168

proaches that integrate speech and text modalities169

to bridge the semantic and affective gaps in com-170

munication (Zhang et al., 2023; Lian et al., 2023).171

Multimodal Learning. Cross-modal alignment172

embeds data from different modalities into shared173

spaces to capture their relationships. Techniques174

like contrastive learning align related inputs (e.g.,175

audio and text segments) while separating unre-176

lated pairs (Ye et al., 2022). Efforts to align text and177

audio include SpeechBERT (Chuang et al., 2020),178

which adapted BERT’s framework to paired speech-179

text data, and SLAM (Speech-Language Aligned180

Models) (Bapna et al., 2022), which optimized joint181

embedding spaces to improve downstream tasks182

like speech recognition and audio-text retrieval.183

Similarly, models like HuBERT (Hsu et al., 2021)184

have shown promise in bridging text and audio185

through hierarchical feature learning. However,186

many models struggle with capturing prosodic and187

affective nuances, often focusing heavily on seman-188

tic alignment.189

3 Data & Tasks190

Audio Datasets. We utilize two psychological,191

mental health-focused datasets for training and192

evaluation: WTC-Segments (WTC) (Kjell et al.,193

2024) and HiTOP-Segments (HiTOP) (Kotov194

et al., 2022). WTC recordings were completed by195

patients in a clinic for WTC responders who came196

for a health monitoring visit. HiTOP interviews197

were completed by outpatients with psychiatric di-198

agnoses who were recruited by the study team to199

complete a research interview. Both datasets con-200

sist of paired audio-text data, ensuring alignment201

between spoken content and its corresponding tex-202

tual transcription.203

From its source, WTC was curated from ∼6204

minute interview recordings, on average, of pa-205

tients responding to both personal and general ques-206

tions in a structured manner (Kjell et al., 2024).207

Contrarily, HiTOP followed a semi-structured for-208

mat, where patients described experiences on set209

topics while also organically conversing with the210

Dataset WTC HiTOP

Total Segment Duration (min) 15,087 28,460
Mean Segment Duration (s) 5.86 2.99
Total Audio Segments 154,586 571,420
Total Participants 1,396 524

Table 1: Audio dataset metadata (after preprocessing
and filtering for participant-only speech).

interviewer. Once filtered for audio segments 211

solely spoken by patients, interviews generally 212

ranged from 45 to 90 minutes, yielding a vo- 213

luminous and broadened set of audio segments 214

(Kotov et al., 2022). The recordings were di- 215

arized using NVIDIA NeMo and transcribed with 216

openai/whisper-large-v2. 217

Psychological Assessments. For each dataset, 218

psychological measures were collected for each 219

user. For WTC, each subject completed the self- 220

reported PTSD CheckList (PCL), yielding scores 221

for four specific subscales: Re-experiencing (REX), 222

Avoidance (AVO), Negative Alterations in Mood 223

(NAM), Hyperarousal (HYP). For HiTOP, trained 224

interviewers provided ratings for the following six 225

psychopathology scales: Internalizing (INT), Dis- 226

inhibition (DIS), Antagonism (ANT), Somatoform 227

(SOM), Thought-Disorder (THD), and Detachment 228

(DET) (Kotov et al., 2022, 2024). 229

To evaluate the encoding ability of WhiSPA 230

for any given audio segment, we manually anno- 231

tate a small subset from both datasets for valence 232

and arousal dimensions expressed in their speech. 233

Three random audio segments containing more 234

than 5 uttered words from each user were sam- 235

pled from each dataset and were annotated by two 236

individuals with a background in psychology us- 237

ing the affective circumplex scale. This resulted in 238

300 audio segments, equally split between the two 239

datasets. 240

Self-Supervised PsychEmb. For each audio/text 241

pair in our datasets, we extract theoretically de- 242

rived psychological features using pre-trained lex- 243

ica (V Ganesan et al., 2022), which we refer to 244

as PsychEmb. PsychEmb broadly covers three do- 245

mains of psychological constructs measured at dif- 246

ferent temporal granularity: (a) states, which re- 247

flect the emotional condition of the person at a 248

point in time; (b) dispositions, which are slightly 249

more stable than states and reflect the tendencies 250

of humans to behave in certain ways and finally 251

(c) the traits, which are long term stable charac- 252
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Figure 2: Diagram of WhiSA and WhiSPA training procedure involving a student-teacher model paradigm. Whisper
(left) is semantically aligned to the ground truth embeddings encoded by SBERT (right). When PsychLex’s
dimensions are included in the alignment function, the WhiSPA framework semantically and psychologically aligns
the corresponding embeddings with contrastive loss criteria.

teristics (Park et al., 2014). The ten dimensions253

of PsychEmb are Valence (VAL), Arousal (ARO),254

Openness (OPE), Consciousness (CON), Extraver-255

sion (EXT), Agreeableness (AGR), Neuroticism256

(NEU), Anger (ANG), Anxiety (ANX), and De-257

pression (DEP), each represented with scalar val-258

ues. Once the self-supervised PsychEmb dimen-259

sions were extracted for each segment across both260

datasets, we perform a 80:10:10 (train/val/test)261

split.262

4 Methodology263

Model Architecture. We begin with264

Whisper-tiny pre-trained encoder-decoder265

model (Radford et al., 2022) as our initial point266

prior to alignment. As seen in the Whisper267

(Student) portion of Figure 2, once the last268

non-padding token is predicted (<EOT>), we apply269

a mean pooling layer to the last hidden state of270

Whisper’s decoder yielding a singular represen-271

tation for the input audio. This representation is272

then pooled using a learnable dense layer, and the273

output serves as our embedding during alignment.274

This aggregated representation is aligned to the275

pooled representations from pre-trained SBERT276

for semantic alignment and the PsychEmb’s277

dimensions for psychological alignment. We278

denote the pre-trained Whisper results in the paper279

with Whisper-384, referring to the number of280

hidden dimensions. 281

4.1 Alignment Objective 282

The alignment objective aims to improve the se- 283

mantic and psychological information encoded in 284

Whisper (student) with the help of the representa- 285

tions from a strong text encoding teacher model 286

like SBERT and PsychEmb. In this work, we ex- 287

plore two suitable candidate objective functions to 288

align speech representations with text, which are 289

described below in detail. 290

4.1.1 Cosine Similarity Loss (CS) 291

The success of the cosine similarity-based approach 292

in building geometrically robust representations in 293

SBERT motivated its use as an alignment objective 294

in this work. We apply cosine similarity loss to 295

the pooled audio embeddings and pooled SBERT 296

embeddings1, given by the following equation: 297

LCS =
∑
i∈I

LCS
i (1) 298

LCS
i = 1− sim(Ai,Ti)

where sim(Ai,Ti) =
Ai ·Ti

||Ai|| ||Ti||

where i ∈ I ≡ {1...N} refers to the index of 299

audio/text pair in a batch of N samples. Ai refers 300

1SBERT version: all-MiniLM-L12-v2
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to the source audio embedding, Ti refers to its cor-301

responding target text embedding, and sim() com-302

putes the cosine similarity between audio and text303

embeddings which produces a scalar value between304

[−1, 1]. This loss can also be interpreted as the co-305

sine diversity of the two embeddings. To align the306

embedding spaces, we aim to maximize the cosine307

similarity between corresponding embedding pairs308

(Reimers and Gurevych, 2019; Sanh et al., 2020),309

and hence decrease LCS .310

4.1.2 Noise Contrastive Estimation Loss311

(NCE)312

The Noise Contrastive Loss (Equation 2) is opti-313

mized to increase the cosine similarity between a314

pair of audio embedding and its corresponding text315

embedding while simultaneously increasing the316

differentiation between the audio embedding and317

randomly sampled text embedding in that batch (Ye318

et al., 2022).319

LNCE =
∑
i∈I

LNCE
i (2)320

LNCE
i = − log

exp(sim(Ai,Ti)/τ)∑
b∈B(i) exp(sim(Ai,Tb)/τ)

where LNCE
i refers to contrastive loss criteria321

in which pairwise cosine similarities are calculated322

for each audio embedding with all text embeddings323

in that batch. Hence, there is only one positive324

text embedding that pairs with an audio embed-325

ding, while the remaining text embeddings from the326

batch serve as contrastive samples. Let B(i) ∈ I,327

where B(i) represents all other SBERT text em-328

beddings in the batch such that Tb ̸= Ti (Ye et al.,329

2022; Chen et al., 2020; Khosla et al., 2021). The330

variable Tb denotes the index of an arbitrary, nega-331

tive SBERT text embedding sample and τ , temper-332

ature, represents a trainable scalar parameter which333

is set to a default of 0.1.334

4.2 Whisper Semantically Aligned335

(WhiSA-384)336

WhiSA leverages a student-teacher model337

paradigm (Hinton et al., 2015; Sanh et al., 2020)338

to align Whisper’s audio-based embeddings with339

SBERT’s text-based embeddings, which serve as340

the teacher model. SBERT encodes corresponding341

text sentences into semantically rich embedding342

vectors, which serve as T in the above equations343

during training. Whisper’s embeddings (A in344

the above equations), derived from its decoder’s345

last hidden state, are aligned to these SBERT 346

embeddings using the loss functions described 347

above. This process is aimed at WhiSA to learn 348

robust semantic representations directly from 349

audio inputs by minimizing the cosine distance 350

between Whisper and SBERT embeddings as 351

shown in Figure 2. 352

4.3 Adding Psychological Alignment 353

(WhiSPA) 354

WhiSPA extends the WhiSA framework by aug- 355

menting PsychEmb dimensions into Whisper’s. 356

While maintaining the semantic alignment objec- 357

tive, WhiSPA injects the PsychEmb dimensions 358

into the SBERT embeddings under two settings: (1) 359

with replacement: We adopted a naive strategy of 360

replacing the first ten dimensions of SBERT’s em- 361

bedding with the PsychEmb dimensions to main- 362

tain the same number of latent dimensions be- 363

tween both models. We use WhiSPA-384r to 364

refer to this. (2) with projection: We concate- 365

nate the PsychEmb dimensions to the text embed- 366

ding from SBERT. Consequently, this requires a 367

384× 10 learnable projection matrix, P , to trans- 368

form Whisper embeddings of dimensionality 384 369

to 394, which is then transformed using a TanH 370

activation. This model goes by the name WhiSPA- 371

394. To address the numerical instability issues 372

from modelling the PsychEmb dimensions in its 373

absolute range, we standardize and scale them to 374

match their distribution to that of SBERT’s embed- 375

dings. Refer to Appendix subsection A.2 for more 376

information on training. 377

5 Results & Discussion 378

We consider two popular speech models as base- 379

lines, Wav2Vec 2.0 (Baevski et al., 2020) and 380

whisper-tiny (Radford et al., 2022), which are re- 381

ferred to as Wav2Vec-768 and Whisper-384 respec- 382

tively. We measured the effectiveness of these em- 383

beddings by computing Pearson correlation coef- 384

ficient (r) and mean squared error (mse) over a 385

10-fold cross-validated ridge regression model for 386

each task. For each model variant in Table 2, we 387

encode audio segments for each participant and 388

aggregate them with a statistical mean to represent 389

person-level embeddings for tasks in Table 3. 390

Alignment improved the models’ ability to cap- 391

ture psychological dimensions from language. 392

We evaluated the speech-based models’ ability 393

to capture the psychological dimensions of lan- 394
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Dataset Speech Model
Traits States Dispositions

OPE CON EXT AGR NEU VAL ARO ANG ANX DEP

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse

HiTOP

Wav2Vec-768 .61 .15 .60 .15 .59 .13 .47 .11 .59 .14 .40 .001 .49 .001 .34 .04 .42 .02 .48 .04
Whisper-384 .74 .11 .80 .08 .69 .10 .76 .06 .78 .08 .71 .001 .82 .000 .53 .03 .61 .01 .65 .03
WhiSA-384 .71∗ .11 .81∗ .08 .70∗ .10 .77∗ .06 .78∗ .08 .73∗ .001 .83∗ .000 .59† .03 .61 .01 .61† .04
WhiSPA-384r .74∗ .11 .83† .07 .70∗ .10 .79† .05 .79† .07 .78† .000 .85† .000 .59† .03 .61† .01 .66∗ .03
WhiSPA-394 .72∗ .11 .83† .07 .72∗ .09 .79† .05 .82† .07 .76† .000 .84∗ .000 .62† .03 .65† .01 .63∗ .03

WTC

Wav2Vec-768 .26 .56 .45 .59 .21 .69 .31 .48 .25 .68 .24 .004 .47 .006 .14 .23 .00 .16 .17 .16
Whisper-384 .57 .43 .70 .37 .68 .38 .64 32 .67 .40 .56 .003 .82 .002 .54 .16 .46 .13 .45 .13
WhiSA-384 .70† .31 .82† .24 .75† .32 .76† .23 .77† .30 .67† .002 .85† .002 .66† .13 .61† .10 .61† .10
WhiSPA-384r .71† .29 .82† .24 .74† .30 .76† .20 .76† .27 .68† .002 .85† .002 .67† .01 .61† .09 .61† .09
WhiSPA-394 .72† .28 .83† .22 .76† .29 .79† .19 .79† .26 .70† .002 .86† .002 .69† .11 .64† .09 .66† .09

Table 2: Pearson r correlations and mean squared errors for self-supervised prediction of person-level af-
fect/personality scores with audio models (10-fold cross-validation with ridge regression). Bold indicates the
best metric for the psychological scale in the respective dataset. ↑ implies higher is better. ↓ implies lower is
better. ∗ indicates statistically significant (p < .05) predictions compared to Wav2Vec-768. † indicates statistically
significant (p < .05) predictions compared to Whisper-384.

Audio Model
WTC HiTOP

PCL REX AVO NAM HYP INT DIS ANT SOM THD DET

r(↑) mse(↓) r mse r mse r mse r mse r mse r mse r mse r mse r mse r mse

Wav2Vec-768 .23 128.44 .19 11.87 .15 3.93 .21 10.68 .20 16.62 .37 .20 .36 .23 .22 .12 -.02 .24 .21 .11 .11 .22
Whisper-384 .23 128.85 .21 11.77 .06 4.00 .19 10.87 .23 16.41 .39 .19 .33 .24 .33 .11 .07 .23 .28 .11 .29 .20
WhiSA-384 .29† 119.68 .27† 11.26 .19† 3.90 .26† 10.12 .28† 15.56 .55† .16 .53† .19 .43† .10 .22† .23 .37† .10 .33† .18
WhiSPA-384r .34† 119.24 .30† 11.23 .17 3.88 .31† 10.08 .32† 15.54 .56† .15 .53† .19 .42† .10 .23∗ .22 .39† .10 .39† .19
WhiSPA-394 .35† 118.91 .30† 11.18 .20 3.85 .32† 10.09 .32† 15.48 .57† .15 .54† .19 .43† .10 .22† .22 .37† .10 .38† .19

Table 3: Pearson r correlations for predicting self-reported/annotated person-level psychological scales with audio
models (10-fold cross-validation with ridge regression). Bold indicates the best metric for the psychological scale
in the respective dataset. ↑ implies higher is better. ↓ implies lower is better. ∗ indicates statistically significant
(p < .05) predictions compared to Wav2Vec-768. † indicates statistically significant (p < .05) predictions compared
to Whisper-384.

guage by comparing our models’ predictions to395

PsychEmb derived values at the segment level.396

As summarized in Table 2, we found that both397

semantic (WhiSA) and psychological alignments398

(WhiSPA) significantly outperformed traditional399

speech-based models (Wav2Vec and Whisper)400

across all ten dimensions on both metrics. Com-401

pared to Whisper, which was evidently a stronger402

baseline than Wav2Vec2 (Avg∆ = 36 Pearson403

points for WTC & 21 points for HiTOP), Our se-404

mantic alignment method showed a marked im-405

provement in performance, with an average of 11 in406

Pearson points for WTC and 2 in HiTOP. A paired407

t-test was used to confirm that all improvements408

over Wav2Vec and all improvements over Whisper,409

except for 4 outcomes in HiTOP, were statistically410

significant (p < .05). This result highlighted our411

alignment methods improved the speech model’s412

ability to capture psychological dimensions in lan-413

guage (PsychEmb).414

Between semantic and semantic-psychological415

alignment, the latter offered marginally better per-416

formance than the former, increasing by 1-5 Pear-417

son points on both datasets. Interestingly, deriving418

(a) Before Alignment (b) After Alignment

Figure 3: Bivariate KDE contour plot of dimensionally
reduced speech/text embeddings with PCA. Speech rep-
resentations in blue. Text representations in red.

psychological estimates from semantic dimensions 419

(WhiSPA-394) was consistently better than the re- 420

placement (WhiSPA-384r) of 10 semantic dimen- 421

sions with PsychEmb dimension. This shows the 422

importance of curating the semantic dimensions 423

before replacing them with different embeddings. 424

We also observed that the alignment increased 425

the overlap between the latent space of the speech 426

and text embeddings, as shown in Figure 3. Before 427

alignment (Figure 3a), speech and text embeddings 428
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Model Loss Self-Supervision Tasks Downstream Tasks

Pearson r (↑) MSE (↓) Pearson r (↑) MSE (↓)

WhiSA-384 CS .72 .11 .34 15.26
NCE .72 .11 .36 14.63

WhiSPA-384r CS .72 .12 .34 15.08
(with replacement) NCE .73 .11 .36 14.68

WhiSPA-394 CS .72 .11 .34 15.21
(with projection) NCE .74 .10 .37 14.59

Table 4: Comparison of loss functions on self-supervised and downstream tasks. The reported Pearson r’s and
MSE’s are averaged across all outcomes. Bold indicates the best metric when comparing loss functions across
different models. ↑ implies higher is better. ↓ implies lower is better.

show distinct contours with very little overlap in429

their dense regions, highlighting a clear modality430

gap and a lack of shared contextual meaning. After431

alignment (Figure 3b), the contours exhibit greater432

overlap, indicating a unified embedding space with433

reduced variance. Figure 3 demonstrates that the434

alignment process effectively bridges the semantic435

gap between the two modalities.436

Semantic-Psychological alignment is SotA for437

person-level psychological assessments. Ta-438

ble 3 shows that the improvements brought by439

our aligned models over traditional models were440

preserved even when evaluated on a spectrum441

of downstream psychological assessment tasks.442

In particular, the alignment showed a stark in-443

crease in capturing deeper psychological condi-444

tions such as Internalizing (≥ 16 Pearson points)445

and Disinhibition (≥ 20 Pearson points) from446

very long durations of speech data. Consistent447

with behaviours exhibited with PsychEmb dimen-448

sions, in Table 2, semantic-psychological align-449

ment from semantically-derived psychological di-450

mensions (WhiSPA-394) performed the best, fol-451

lowed by semantic-psychological alignment from452

replacement (WhiSPA-384r) and finally semantic-453

only alignment (WhiSA-384). For these tasks,454

we averaged the segment-level representations of455

the interview audio file to produce a person-level456

embedding. These embeddings were used to per-457

form 10-fold cross-validation with a ridge regres-458

sion model, and its performance was measured459

using Pearson correlation coefficient (r) and mean460

squared error (mse).461

The success of WhiSPA-394 can be attributed to462

its integration of psychological feature alignment,463

which complements semantic alignment by explic-464

itly encoding affective dimensions such as valence465

and arousal. The improvements in outcomes like466

INT and DIS further support this interpretation 467

since these constructs often rely on subtle vocal 468

cues, such as pause distribution, pitch variability, 469

and vocal tone as established by prior works (Kotov 470

et al., 2024). WhiSPA-394 is better equipped to 471

model due to its expanded embedding space. By 472

injecting dimensions with psychological relevance 473

into the alignment process, the model bridges the 474

gap between the prosodic information in speech 475

and the textual semantics used to train baseline 476

models like WhiSA. This dual alignment likely en- 477

hances the model’s ability to capture both the what 478

(semantic content) and the how (affective delivery) 479

of speech, enabling more accurate predictions of 480

psychological scales. 481

Contrastive loss criteria led to richer represen- 482

tations of audio. Investigation of the choice of 483

alignment objective towards performance (Table 4) 484

revealed that Noise Contrastive Estimation (NCE) 485

consistently produced a better-aligned model than 486

cosine similarity (CS). NCE outperforms CS Equa- 487

tion 1 across all models, likely because NCE op- 488

timizes for discriminative learning, encouraging 489

more separation between positive and negative sam- 490

ples in the embedding space. This enhances the 491

model’s ability to encode nuanced semantic and 492

psychological cues, as reflected in WhiSPA-394’s 493

better alignment and task performance. When com- 494

paring WhiSPA-394 and WhiSPA-384, we notice 495

the recurring trend with NCE granting a greater 496

optima during alignment than CS as exemplified in 497

Table 4. However, WhiSPA-384 holds its ground 498

in HiTOP, achieving comparable correlations. This 499

suggests that WhiSPA-394’s architecture may gen- 500

eralize well to diverse datasets but thrives in highly 501

semantic and affective audio contexts like WTC. 502

All results noted in Table 2 and Table 3 were from 503

models trained with NCE. 504
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PCL HiTOP VAL

Model INT DIS THD (segment)

SBERT-384 .36 .54 .55 .40 .47
Whisper-384 .23 .39 .33 .28 .38
WhiSA-384 .29 .55 .53 .37 .50*
WhiSPA-384r .34 .56* .53 .39 .53*
WhiSPA-394 .35 .57* .54 .37 .51*

WhiSPA-394 .36 .58* .56 .39 .52*& SBERT-384

Table 5: Pearson r correlations for predicting psycho-
logical measures (10-fold cross-validation with ridge
regression). Acoustic VAL was regressed on the seg-
ment level for 300 human-annotated segments from
WTC and HiTOP. Higher is Better. Bold indicates the
highest correlation for each measure. * indicates sta-
tistically significant (p < .05) predictions compared to
SBERT-384.

WhiSPA captures semantic features of its505

text-based teacher without needing additional506

SBERT representations. Adding SBERT rep-507

resentations to WhiSPA offers little benefit, as it508

already captures nearly all the information from its509

teacher model. The results in Table 5 underscore510

the slight increase in correlations after adding text-511

based embeddings from SBERT-384 with WhiSPA,512

as seen in the last row. WhiSPA, trained through513

a student-teacher alignment paradigm, appears to514

achieve a semantic and psychological optimum dur-515

ing convergence. This is evident in its substantial516

performance gains over Whisper, which lacks the517

semantic and psychological depth provided by lan-518

guage models.519

Notably, WhiSPA-394 demonstrates clear im-520

provements in specific measures such as INT and521

VAL, with gains of +3 and +6 Pearson points, re-522

spectively, when compared to SBERT-384. While523

these increments may seem marginal, they sub-524

stantiate our claim that WhiSPA-394 effectively525

captures nearly all the information encoded by its526

text-based teacher model, SBERT-384. Further,527

when WhiSPA-394 representations are augmented528

with SBERT embeddings, the downstream task per-529

formance exhibits statistically insignificant gains,530

suggesting minimal benefit.531

Ultimately, these findings highlight an important532

observation: The potential of cross-modal align-533

ment may be constrained by the representational534

efficacy of the teacher model. The marginal re-535

turns from text-based augmentation indicate that536

WhiSPA has already learned to encode the criti-537

cal semantic and psychological cues provided by538

its teacher, reflecting the success of the alignment 539

process. 540

6 Conclusion 541

Our findings demonstrate that WhiSPA effectively 542

integrates semantic and psychological information 543

from speech, enhancing state-of-the-art audio rep- 544

resentations for psychological and mental health 545

assessments. By aligning Whisper’s audio em- 546

beddings with SBERT’s text embeddings enriched 547

with psychological features, we found not only con- 548

sistent improvement for ten self-supervised tasks 549

but also significantly greater accuracies over 11 550

downstream person-level psychological tasks as 551

compared to modern audio models. Finally, we 552

found little benefit in adding SBERT to WhiSPA 553

embeddings. This suggests that the cross-modal 554

alignment objective we employed affords audio- 555

encoder-decoder models like Whisper the advan- 556

tages of text-only transformer-LMs that have been 557

trained on much larger datasets than audio founda- 558

tion models. We see this as part of a growing body 559

of work to create holistic multi-modal foundation 560

models that result in a richer and more authentic 561

representation of human communication. 562

7 Limitations 563

Currently, WhiSPA’s training scope idealizes lex- 564

ically derived psychological features, which can 565

negatively impact its ability to discern acoustic 566

information. Although we have shown drastic im- 567

provements in yielding semantically contextual au- 568

dio embeddings, it begs the question of how much 569

more affectively contextual the embeddings can be 570

for psychological predictions and emotion recogni- 571

tion tasks. This would require injecting psycholog- 572

ical features that are not only lexically derived but 573

also acoustically–since acoustics and vocal prosody 574

are known to convey more affect (Low et al., 2020). 575

Subsequently, since the alignment procedure 576

places equal weight on all dimensions of embed- 577

ding, the semantic dimensions outnumber the psy- 578

chological dimensions. This is likely resulting in 579

the convergence of WhiSPA on a semantic similar- 580

ity optima. Potentially, we would like to explore 581

a multi-objective weighted loss criteria where pa- 582

rameters can be tuned for placing higher priority 583

on affect over semantics in some cases. 584
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8 Ethical Implications585

The multimodal WhiSPA model holds significant586

potential for improving mental healthcare assess-587

ments by providing rich insights into individuals’588

states of mind through speech analysis. However,589

multimodal approaches increase ethical consider-590

ations due to the richer and more diverse forms591

of personally identifiable information (PII) they592

capture compared to unimodal models. In addi-593

tion to text content, the WhiSPA model processes594

acoustic and prosodic features — including tone595

of voice, speech patterns, and emotional expres-596

sions — which can inadvertently reveal sensitive597

details like gender, ethnicity, emotional state, and598

health conditions. This expanded data scope raises599

the risk of re-identification, making it essential to600

implement stringent data security and handling, in-601

cluding compliance with privacy regulations such602

as GDPR and HIPAA.603

Security & Privacy. Moreover, the potential for604

misuse or unauthorized exploitation of such de-605

tailed multimodal data necessitates robust ethical606

guidelines for its storage, processing, and applica-607

tion. Transparency in how these models are trained608

and used is critical to building trust among clini-609

cians and patients. Finally, ongoing efforts to miti-610

gate algorithmic biases and ensure fairness are im-611

portant, as errors in multimodal assessments could612

disproportionately impact vulnerable populations613

or lead to incorrect diagnoses if not carefully man-614

aged.615

The WTC and HiTOP recordings took place in a616

clinical setting at the Stony Brook WTC Health and617

Wellness Program. Each participant gave informed618

consent and was fully informed about the study,619

that it was voluntary to take part, and that they had620

the right to withdraw at any time without giving a621

reason or that it would affect their treatment. After622

the interview, participants were debriefed (for more623

details about the WTC data collection, see (Kjell624

et al., 2024); for more details about the HiTOP625

data, see (Kotov et al., 2022, 2024). The studies626

and data uses were approved by the Institutional627

Review Board at an undisclosed university for pri-628

vacy reasons.629

Software. Adhering to the ideals of open and630

reproducible science, we will make the WhiSPA631

software code base, along with the trained models632

and secure dimensional representations of the data,633

openly available. These representations strictly634

comply with established security protocols, ensur- 635

ing that no individual can be identified nor any 636

anonymity safeguard compromised. Nevertheless, 637

direct access to the underlying data remains re- 638

stricted in accordance with privacy and security 639

measures. 640

Additionally, AI-based tools were employed 641

throughout the project to assist in code develop- 642

ment and report formulation, including the use of 643

ChatGPT and other similar consumer generative 644

AI. Such integration aligns with established best 645

practices and guidelines, ensuring that the techni- 646

cal accuracy, integrity, and scientific rigour of the 647

work remain uncompromised while benefiting from 648

enhanced efficiency and streamlined workflows. 649
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responder participants and clinicians. Each record-796

ing is annotated with the outcomes derived from797

the HiTOP structured interview, which includes a798

standardized set of questions designed to assess799

a comprehensive set of mental health dimensions,800

including aspects of internalizing (e.g., questions801

about distress and fear), dis-inhibited externalizing802

(e.g., questions about substance abuse and antiso-803

cial behaviours) and more.804

Outcomes in HiTOP The HiTOP outcomes were805

derived from the structured clinical interview (Ro-806

man and Meyer, 2024), where we used the total807

score of the six dimensions including: i) internal-808

izing (INT; e.g., dysphoria, lassitude), ii) disinhib-809

ited externalizing (DIS; e.g., alcohol use, drug use),810

iii) antagonistic externalizing (ANT; e.g., atten-811

tion seeking, callousness), iv) somatoform (SOM;812

e.g., conversion, somatization), v) thought disorder813

(THD; e.g., psychotic and disorganized thought pat-814

terns), vi) detachment (DET; e.g., intimacy avoid-815

ance, suspiciousness)816

Figure 4: Standardized distributions of PsychEmb di-
mensions for each segment across both datasets. The
distribution of WTC is shown in blue. The distribution
of WTC is shown in red.

A.1.2 WTC. 817

In the WTC dataset, participants were recorded in 818

a private room during their clinical visit while re- 819

sponding to questions displayed on a screen as part 820

of an automated clinical interview. These questions 821

prompted participants to reflect on both positive 822

(e.g., What are three things you currently look for- 823

ward to the most?) and negative aspects of their 824

lives across different time frames (past, present, 825

and future). Topics included general life experi- 826

ences (e.g., the best and worst experiences, chal- 827

lenges, and support systems) and significant events 828

such as COVID-19 and 9/11 (e.g., How does 9/11 829

affect you now?). A full list of the questions is 830

provided in (Kjell et al., 2024). 831

To enhance generalizability, the questions were 832

designed to be broad and used everyday language, 833

avoiding clinical jargon or references to specific 834

symptoms. Instructions on the screen advised par- 835

ticipants not to read the questions aloud and to aim 836

for at least 60 seconds of response time per ques- 837

tion. Throughout the development phase, the ques- 838

tions were refined over three iterations to improve 839

engagement and elicit more detailed responses. 840

However, for the evaluation phase, the same set 841

of questions was used for all participants. On av- 842

erage, recordings for those who met a threshold of 843

at least 150 words lasted 7.5 minutes (SD = 4.1; 844

range = 1.1 to 43.0 minutes). 845

The data, from its source, totalled 1437 partic- 846

ipants (Female = 7%, Male = 93%; Mean age = 847

57.9, SD = 8.0 years; 14.5%). 848

Outcomes in WTC The PCL score and subscales 849

were derived from the PTSD CheckList (PCL) 850

(Blanchard et al., 1996), which consists of 17 items 851

designed to measure the severity of PTSD symp- 852

toms according to the Diagnostic and Statistical 853

Manual of Mental Disorders, Fourth Edition (DSM- 854

IV) criteria. Participants rate their experiences over 855

the past month using a scale from 1 (not at all) to 5 856

(extremely). We calculated both the overall score 857

(PCL) and scores for the four subscales. These 858

subscales are Re-experiencing (REX; e.g., intru- 859

sive thoughts related to trauma), Avoidance (AVO; 860

e.g., evading trauma-related thoughts), Emotional 861

Numbing (NAM; e.g., difficulty recalling aspects 862

of the trauma), and Hyperarousal (HYP; e.g., dis- 863

turbances in sleep patterns). Reliability, as mea- 864

sured by Cronbach’s alpha, was acceptable across 865

all scales ( .70). 866
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A.2 Training867

The research done for devising WhiSPA’s frame-868

work resulted from iterations of tweaking and test-869

ing architectures, loss criteria, parameters, and hy-870

perparameters.871

For the methodology presented in this paper,872

we provide the following configurations for repro-873

ducibility:874

Pooling: MEAN . Learning Rate: 1 × 10−5.875

Weight Decay: 1 × 10−2. Temperature (τ ): 0.1.876

Batch Size: 900. Number of Epochs: 50. Number877

of workers (CPU cores): 16. These configurations878

result in a total average training time of ∼ 20 hours.879

We discovered that the efficacy of Equation 2880

highly depends on the batch size. It should be881

stated that larger batch sizes allow for greater de-882

grees of repulsion and attraction in the cross-modal883

embedding space. While training WhiSA and884

WhiSPA, we utilized a batch size of 900 and dis-885

tributed them across 3 NVIDIA RTX A6000 de-886

vices with 48GB of VRAM each.887

Additionally, we use open-source licensed pre-888

trained models from HuggingFace. Our program-889

matic implementation for deep learning is done890

with PyTorch. When it comes to evaluation, we891

utilize Differential Language Analysis Tool Kit892

(DLATK) for correlating regression results across893

specified groups (i.e., user_id or segment_id)894

Figure 5: Distributions of psychological features stan-
dardized and scaled to the distribution of SBERT’s mean
embedding value before augmentation for WhiSPA
alignment training.

Cosine similarity is sensitive to the relative mag-895

nitudes of the vectors being compared. If the added896

ten dimensions of psychological features have a897

very different scale or distribution from SBERT em-898

beddings, they could dominate or skew the cosine 899

similarity computation. Once either loss function 900

is applied, (1) or (2), WhiSPA embeddings remain 901

semantically aligned with SBERT while also en- 902

coding meaningful affective cues for downstream 903

tasks. 904

Figure 6: Pearson r correlation heatmap of SBERT-
384’s mean embedding. This visual displays the corre-
lations of SBERT’s 384 dimensions with each of the 10
PsychEmb dimensions.

During the training of WhiSPA, we experi- 905

mented with identifying which dimensions of the 906

teacher-model, SBERT, have the lowest correla- 907

tions with PsychEmb dimensions to replace those 908

dimensions. We decided that this approach may 909

lead to statistical biases when training, and so 910

we naively replaced the first 10 dimensions. One 911

should note that the set of 10 dimensions to replace 912

in SBERT can be chosen arbitrarily since our study 913

experimented with this. 914

A.3 Annotations 915

Please note that the annotators were expert psychol- 916

ogists and co-authors. 917

The documentation accompanying the iHiTOP 918

interview dataset was utilized to report the cover- 919

age of its domains, demographic information, and 920

other relevant details. The dataset’s focus on struc- 921

tured psychological interviews and its linguistic 922

properties were described in the paper to contex- 923

tualize its relevance to this research. This infor- 924

mation was presented to ensure transparency and 925

reproducibility. The WTC dataset assessed PTSD 926

symptom severity and related constructs, including 927

anxiety and depression, using English-language 928

data from WTC emergency responders in the Stony 929

Brook Health Program. Linguistic features such as 930
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RoBERTa-large embeddings, n-grams, and LDA931

topics were used to analyze behavioural patterns932

alongside closed-vocabulary features like pronouns933

and death-related terms (LIWC-22). The develop-934

ment dataset included 1,437 participants, and the935

prospective dataset included 346, with a mean age936

of 58 years, predominantly male (93% and 91%,937

respectively) and white (54% and 49%). The analy-938

sis emphasized language markers of stress, anxiety,939

and trauma while reflecting on participants’ ex-940

periences of 9/11. Ethical safeguards, including941

IRB approval, informed consent, and automated942

anonymization, ensured compliance. While com-943

prehensive in its linguistic and demographic scope,944

the study was limited to English speakers and WTC945

responders, constraining generalizability.946

Figure 7: Annotator’s affective circumplex visual grid
for the task of manually annotating acoustic segments
of speech from both datasets.
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