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Abstract

Diffusion models have established new state of
the art in a multitude of computer vision tasks,
including image restoration. Diffusion-based in-
verse problem solvers generate reconstructions
of exceptional visual quality from heavily cor-
rupted measurements. However, in what is
widely known as the perception-distortion trade-
off, the price of perceptually appealing recon-
structions is often paid in declined distortion
metrics, such as PSNR. Distortion metrics mea-
sure faithfulness to the observation, a crucial re-
quirement in inverse problems. In this work, we
propose a novel framework for inverse problem
solving, namely we assume that the observation
comes from a stochastic degradation process that
gradually degrades and noises the original clean
image. We learn to reverse the degradation pro-
cess in order to recover the clean image. Our
technique maintains consistency with the origi-
nal measurement throughout the reverse process,
and allows for great flexibility in trading off per-
ceptual quality for improved distortion metrics
and sampling speedup via early-stopping. We
demonstrate the efficiency of our method on dif-
ferent high-resolution datasets and inverse prob-
lems, achieving great improvements over other
state-of-the-art diffusion-based methods with re-
spect to both perceptual and distortion metrics1.

1. Introduction
Diffusion models (DMs) are powerful generative models
capable of synthesizing samples of exceptional quality by
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reversing a diffusion process that gradually corrupts a clean
image by adding Gaussian noise. DMs have been ex-
plored from two perspectives: Denoising Diffusion Prob-
abilistic Models (DDPM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) and Score-Based Models (Song & Ermon,
2020a;b), which have been unified under a general frame-
work of Stochastic Differential Equations (SDEs) (Song
et al., 2020). DMs have established new state of the art in
image generation (Dhariwal & Nichol, 2021; Saharia et al.,
2022; Ramesh et al., 2022; Rombach et al., 2022), audio
(Kong et al., 2020) and video synthesis (Ho et al., 2022).
Recently, there has been a push to broaden the notion of
Gaussian diffusion, such as extension to other noise distri-
butions (Deasy et al., 2021; Nachmani et al., 2021; Okhotin
et al., 2023). In the context of image generation, there has
been work to generalize the corruption process, such as
blur diffusion (Lee et al., 2022; Hoogeboom & Salimans,
2022), inverse heat dissipation (Rissanen et al., 2022) and
arbitrary linear corruptions (Daras et al., 2022) with Bansal
et al. (2022) questioning the necessity of stochasticity in
the generative process all together. However, these are gen-
eral frameworks for unconditional image generation and
are not readily applicable for image reconstruction. The
key challenge introduced by the inverse problem setting
is the strong requirement for producing final images that
are consistent with the observation. This adds a significant
layer of complexity that requires novel solutions both in
theory and algorithm design.

In inverse problems, one wishes to recover a signal x from
a noisy observation y = A(x) + z where A is typically
non-invertible. The unconditional score function learned
by DMs has been successfully leveraged to solve inverse
problems without any task-specific training (Kadkhodaie &
Simoncelli, 2021; Jalal et al., 2021; Saharia et al., 2021) re-
sulting in reconstructions with exceptional perceptual qual-
ity. However, these methods underperform in distortion
metrics, such as PSNR and SSIM (Chung et al., 2022a)
due to the so called perception-distortion trade-off (Blau &
Michaeli, 2018). Authors in Delbracio & Milanfar (2023)
observe that in their framework, the total number of restora-
tion steps controls the perception-distortion trade-off, with
less steps yielding results closer to the minimum distor-
tion estimate. Similar observation is made in Whang et al.
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Figure 1. Overview of our method: measurement acquisition is modeled as a gradual degradation and noising of an underlying clean
ground truth signal via a Stochastic Degradation Process. We reconstruct the clean image from noisy measurements by learning to
reverse the degradation process. Our technique allows for obtaining a variety of reconstructions with different perceptual quality-
distortion trade-offs, all in a single sampling trajectory.

(2022) in the context of blind image deblurring, where au-
thors additionally propose to average multiple reconstruc-
tions for improved distortion metrics. Authors in Kawar
et al. (2022a) report that, the amount of noise injected at
each timestep controls the trade-off between reconstruction
error and image quality.

Beyond image quality, a key requirement imposed on re-
constructions is data consistency, that is faithfulness to
the original observation. In the context of diffusion-based
solvers, different methods have been proposed to enforce
consistency between the generated image and the corre-
sponding observations. These methods include alternat-
ing between a step of unconditional update and a step of
projection (Song et al., 2021b; Chung & Ye, 2022; Chung
et al., 2022c) or other correction techniques (Chung et al.,
2022a;b; Song et al., 2023a) to guide the diffusion pro-
cess towards data consistency. Another line of work pro-
poses diffusion in the spectral space of the forward oper-
ator, achieving high quality reconstructions, however re-
quires costly singular value decomposition (Kawar et al.,
2021; 2022a;b). Song et al. (2023b) uses pseudo-inverse
guidance to incorporate the model into the reconstruction
process. All of these methods utilize a pre-trained score
function learned for a standard diffusion process that sim-
ply adds Gaussian noise to clean images. Recently, there
has been some work on extending Gaussian diffusion by
incorporating the image degradation into the score-model
training procedure. A recent example is Welker et al.
(2022) proposing adding an additional drift term to the
forward SDE that pulls the iterates towards the corrupted
measurement and demonstrates high quality reconstruc-
tions for JPEG compression artifact removal. A blend-
ing parametrization (Heitz et al., 2023; Delbracio & Mi-
lanfar, 2023) has been proposed that defines the forward

process as convex combinations between the clean image
and corrupted observation. Liu et al. (2023) leverages
Schrödinger bridges for image restoration, a nonlinear ex-
tension of score-based models defined between degraded
and clean distributions. Yue et al. (2024) defines a Markov
chain between the distributions of high and low-resolution
images in the forward process by shifting their residual for
image super-resolution. Even though these methods utilize
degraded-clean image pairs for training, they do not explic-
itly leverage the forward operator for score-model training.

In this paper, we propose a novel framework for solv-
ing inverse problems using a generalized notion of dif-
fusion that mimics the corruption process that pro-
duced the observation. We call our method Dirac:
Denoising and Incremental Reconstruction with Assured
data-Consistency. As the forward model and noising pro-
cess are directly incorporated into the framework, our
method maintains data consistency throughout the reverse
diffusion process, without any additional steps such as pro-
jections. Furthermore, we make the key observation that
details are gradually added to the posterior mean estimates
during the sampling process. This property imbuesDirac
with great flexibility: by leveraging early-stopping we can
freely trade off perceptual quality for better distortion met-
rics and sampling speedup or vice versa. We provide the-
oretical analysis on the accuracy and limitations of our
method that are well-supported by empirical results. Our
experiments demonstrate state-of-the-art results in terms of
both perceptual and distortion metrics with fast sampling.

2. Background
Diffusion models – DMs are generative models based on
a corruption process that gradually transforms a clean im-
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age distribution q0 into a known prior distribution which is
tractable, but contains no information of data. The corrup-
tion level, or severity as we refer to it in this paper, is in-
dexed by time t and increases from t = 0 (clean images) to
t = 1 (pure noise). The typical corruption process consists
of adding Gaussian noise of increasing magnitude to clean
images, that is qt(xt|x0) ∼ N (x0, σ

2
t I), where x0 ∼ q0 is

a clean image, and xt is the corrupted image at time t. By
learning to reverse the corruption process, one can generate
samples from q0 by sampling from a simple noise distribu-
tion and running the learned reverse diffusion process from
t = 1 to t = 0.

DMs have been explored along two seemingly different tra-
jectories. Score-Based Models (Song & Ermon, 2020a;b)
attempt to learn the gradient of the log likelihood and use
Langevin dynamics for sampling, whereas DDPM (Sohl-
Dickstein et al., 2015; Ho et al., 2020) adopts a varia-
tional inference interpretation. More recently, a unified
framework based on SDEs (Song et al., 2020) has been
proposed. Namely, both Score-Based Models and DDPM
can be expressed via a Forward SDE in the form dx =
f(x, t)dt+ g(t)dw with different choices of f and g. Here
w denotes the standard Wiener process. This SDE is re-
versible (Anderson, 1982), and the Reverse SDE can be
written as

dx = [f(x, t)− g2(t)∇x log qt(x)]dt+ g(t)dw̄, (1)

where w̄ is the standard Wiener process, where time flows
in the reverse direction. The true score ∇x log qt(x) is ap-
proximated by a neural network sθ(xt, t) from the tractable
conditional distribution qt(xt|x0) by minimizing

Et∼U [0,1],(x0,xt)

[
w(t) ∥sθ(xt, t)−∇xt

qt(xt|x0)∥2
]
,

(2)
where (x0,xt) ∼ q0(x0)qt(xt|x0) and w(t) is a weighting
function.

Diffusion Models for Inverse problems – Our goal is to
solve a noisy inverse problem

ỹ = A(x0) + z, z ∼ N (0, σ2I), (3)

with ỹ,x0 ∈ Rn and A : Rn → Rn. That is, we are
interested in solving a reconstruction problem, where we
observe a measurement ỹ that is known to be produced by
applying a non-invertible mapping A to a ground truth sig-
nal x0 and is corrupted by additive noise z. We refer to A
as the degradation, and A(x0) as a degraded signal. Our
goal is to recover x0 as faithfully as possible, which can be
thought of as generating samples from the posterior distri-
bution q(x0|ỹ). Diffusion models have emerged as useful
priors enabling sampling from the posterior based on (1).
Using Bayes rule, the score of the posterior can be writ-
ten as ∇x log qt(x|ỹ) = ∇x log qt(x) + ∇x log qt(ỹ|x),

where the first term can be approximated using score-
matching as in (2). On the other hand, the second term can-
not be expressed in closed-form in general, and therefore a
flurry of activity emerged recently to circumvent comput-
ing the likelihood directly.

3. Method
In this work, we propose a novel perspective on solving ill-
posed inverse problems. In particular, we assume that our
noisy observation ỹ results from a process that gradually
applies more and more severe degradations to an underly-
ing clean signal.

3.1. Degradation severity

To define severity more rigorously, we appeal to the intu-
ition that given two noiseless, degraded signals y and y+

of a clean signal x0, then y+ is corrupted by a more se-
vere degradation than y, if y contains all the information
necessary to find y+ without knowing x0.
Definition 3.1 (Severity of degradations). A mappingA+ :
Rn → Rn is a more severe degradation than A :
Rn → Rn if there exists a surjective mapping GA→A+ :
Image(A)→ Image(A+). That is,

A+(x0) = GA→A+
(A(x0)) ∀x0 ∈ dom(A).

We call GA→A+
the forward degradation transition func-

tion from A to A+.

Take image inpainting as an example (Fig. 2) and let At

denote a masking operator that sets pixels to 0 within a
centered box, where the box side length is l(t) = t · W ,
where W is the image width and t ∈ [0, 1]. Assume that
we have an observation yt′ = At′(x0) which is a degrada-
tion of a clean image x0 where a small center square with
side length l(t′) is masked out. Given yt′ , without having
access to the complete clean image, we can find any other
masked version of x0 where a box with at least side length
l(t′) is masked out. Therefore every other masking oper-
ator At′′ , t′ < t′′ is a more severe degradation than At′ .
The forward degradation transition function GAt′→At′′ in
this case is simply At′′ . We also note here, that the re-
verse degradation transition function HAt′′→At′ that re-
covers At′(x0) from a more severe degradation At′′(x0)
for any x0 does not exist in general.

3.2. Deterministic and stochastic degradation processes

Using this novel notion of degradation severity, we can de-
fine a deterministic degradation process that gradually re-
moves information from the clean signal via more and more
severe degradations.
Definition 3.2 (Deterministic degradation process). A de-
terministic degradation process is a differentiable mapping
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x0 yt′ = At′(x0) Gt′→t′′
can be determined

?

yt′′ = At′′(x0) A1(x0)

Severity
1

Figure 2. Severity of degradations: We can always find a more
degraded image yt′′ from a less degraded version of the same
clean image yt′ via the forward degradation transition function
Gt′→t′′ , but not vice versa.

A : [0, 1]× Rn → Rn that has the following properties:

1. Diminishing severity: A(0,x) = x

2. Monotonically degrading: ∀t′ ∈ [0, 1) and t′′ ∈ (t′, 1]
A(t′′, ·) is a more severe degradation than A(t′, ·).

We use the shorthand A(t, ·) = At(·) and GAt′→At′′ =
Gt′→t′′ for the underlying forward degradation transition
functions for all t′ < t′′. Our deterministic degradation
process starts from a clean signal x0 at time t = 0 and
applies degradations with increasing severity over time. If
we choose A(1, ·) = 0, then all information in the original
signal is destroyed over the degradation process. One can
sample easily from the forward process, that is the process
that evolves forward in time, starting from a clean image x0

at t = 0. A sample from time t can be computed directly
as yt = At(x0).

In order to account for measurement noise, one can com-
bine the deterministic degradation process with a stochastic
noising process that gradually adds Gaussian noise to the
degraded measurements.

Definition 3.3 (Stochastic degradation process (SDP)).
yt = At(x0) + zt, zt ∼ N (0, σ2

t I) is a stochastic degra-
dation process if At is a deterministic degradation pro-
cess, t ∈ [0, 1], and x0 ∼ q0(x0) is a sample from the
clean data distribution. We denote the distribution of yt as
qt(yt) ∼ N (At(x0), σ

2
t I).

A key contribution of our work is looking at a noisy, de-
graded signal as a sample from the forward process of an
underlying SDP, and considering the reconstruction prob-
lem as running the reverse process of the SDP backwards in
time in order to recover the clean sample. Recent works on
generative frameworks that redefine the standard Gaussian
diffusion process fit into our formulation naturally. In par-
ticular, Soft Diffusion (Daras et al., 2022) uses a stochas-
tic degradation process with linear forward model, that is
At(·) = At, without an assumption on the monotonic-
ity of the degradation. The requirement for monotonicity
does not necessarily arise in image generation, as there
is no notion of data consistency. Cold Diffusion (Bansal

et al., 2022) on the other hand uses a deterministic degrada-
tion process (without the requirement on monotonicity) be-
tween arbitrary distributions to achieve image generation.

Our formulation interpolates between degraded and clean
image distributions through a severity parametrization that
requires an analytical form of A(·). An alternative ap-
proach (Delbracio & Milanfar, 2023; Heitz et al., 2023) is
to parametrize intermediate distributions as convex combi-
nations of corresponding pairs of noisy and clean samples
as yt = tỹ+(1−t)x0, t ∈ [0, 1], also referred to as blend-
ing (Heitz et al., 2023). In our framework, this formulation
can be thought of as a deterministic degradation process
At(x0; ỹ) = tỹ+(1−t)x0 conditioned on ỹ. However, as
the underlying degradation operator is not leveraged in this
formulation, we cannot develop theoretical guarantees on
data consistency of the reconstruction. Moreover, we ob-
serve improved noise robustness using the proposed SDP
formulation. For a more detailed comparison we refer the
reader to Appendix F.

3.3. SDP as a stochastic differential equation

We can formulate the evolution of our degraded and noisy
measurements yt as an SDE:

dyt = Ȧt(x0)dt+

√
d
dt
σ2
t dw,

where we use the notation Ȧt(·) to indicate derivative with
respect to time t. This is an example of an Itô-SDE, and for
a fixed x0 the above process is reversible, where the reverse
diffusion process is given by

dyt =

(
Ȧt(x0)dt−

(
d
dt
σ2
t

)
∇yt

log qt(yt)

)
dt

+

√
d
dt
σ2
t dw̄.

One would solve the above SDE by discretizing it (for ex-
ample Euler-Maruyama), approximating differentials with
finite differences:

yt−∆t = yt +At−∆t(x0)−At(x0)︸ ︷︷ ︸
incremental reconstruction

− (σ2
t−∆t

− σ2
t )∇yt

log qt(yt)︸ ︷︷ ︸
denoising

+
√

σ2
t − σ2

t−∆t
z, (4)

where z ∼ N (0, I). The update in (4) lends itself to an
interesting interpretation. One can look at it as the combi-
nation of a small, incremental reconstruction and denoising
steps. In particular, assume that yt = At(x0) + zt and let

R(t,∆t;x0) := At−∆t(x0)−At(x0). (5)
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Then, the first term yt +R(t,∆t;x0) = At−∆t(x0) + zt
will reverse a ∆t step of the deterministic degradation
process, equivalent in effect to the reverse degradation
transition function Ht→t−∆t. The second term is anal-
ogous to a denoising step in standard diffusion, where
a slightly less noisy version of the image is predicted.
However, before we can simulate the reverse SDE in (4)
to recover x0, we face two obstacles. First, we do not
know the score of qt(yt). This is commonly tackled by
learning a noise-conditioned score network that matches
log qt(yt|x0) which we can easily compute. We are also
going to follow this path. Second, we do not know
At−∆t(x0) and At(x0) for the incremental reconstruction
step, since x0 is unknown to us when reversing the degra-
dation process.

3.4. Denoising - learning a score network

To run the reverse SDE, we need the score of the noisy,
degraded distribution ∇yt log qt(yt), which is intractable.
However, we can use the denoising score matching frame-
work to approximate the score. In particular, instead of
the true score, we can easily compute the score for the
conditional distribution, when the clean image x0 is given
as ∇yt log qt(yt|x0) = At(x0)−yt

σ2
t

. During training, we
have access to clean images x0 and can generate any de-
graded, noisy image yt using our SDP formulation yt =
At(x0) + zt. Thus, we learn an estimator of the condi-
tional score function sθ(yt, t) by minimizing

Lt(θ) = E(x0,yt)

[∥∥∥∥sθ(yt, t)−
At(x0)− yt

σ2
t

∥∥∥∥2
]
, (6)

where (x0,yt) ∼ q0(x0)qt(yt|x0). One can show that the
well-known result of Vincent (2011) applies to our SDP
formulation, and thus by minimizing the objective in (6),
we can learn the score ∇yt

log qt(yt) (see details in Ap-
pendix A.1).

We parameterize the score network as

sθ(yt, t) =
At(Φθ(yt, t))− yt

σ2
t

, (7)

that is given a noisy and degraded image as input,the model
predicts the underlying clean image x0. Other parametriza-
tions are also possible, such as predicting zt or (equiv-
alently) predicting At(x0). However, as pointed out in
Daras et al. (2022), this might lead to learning the image
distribution only locally, around degraded images. Further-
more, in order to estimate the incremental reconstruction
R(t,∆t;x0), we not only need to estimate At(x0), but
other functions of x0, and thus estimating x0 directly gives
us more flexibility. Rewriting (6) with the new parametriza-

tion leads to

L(θ) = Et,(x0,yt)

[
w(t) ∥At(Φθ(yt, t))−At(x0)∥2

]
,

(8)
where t ∼ U [0, 1], (x0,yt) ∼ q0(x0)qt(yt|x0) and typical
choices in the diffusion literature for the weights w(t) are
1 or 1/σ2

t . Intuitively, the neural network receives a noisy,
degraded image, along with the degradation severity, and
outputs a prediction x̂0(yt) = Φθ(yt, t) such that the de-
graded ground truth At(x0) and the degraded prediction
At(x̂0(yt)) are consistent.

3.5. Incremental reconstructions

Given an estimator of the score, we still need to approxi-
mateR(t,∆t;x0) from (5) in order to run the reverse SDE
in (4). That is we have to estimate how the degraded im-
age changes if we slightly decrease the degradation sever-
ity. As we parameterize our score network in (7) to learn a
representation of the clean image manifold directly, we can
estimate the incremental reconstruction term as

R̂(t,∆t;yt) = At−∆t(Φθ(yt, t))−At(Φθ(yt, t)). (9)

One may consider this a look-ahead method (see alternative
formulations in Appendix I), since we use yt with degra-
dation severity t to predict a less severe degradation of the
clean image ”ahead” in the reverse process. This becomes
more obvious when we note, that our score network al-
ready learns to predict At(x0) given yt due to the train-
ing loss in (8). However, even if we learn the true score
perfectly via (8), there is no guarantee that At−∆t(x0) ≈
At−∆t(Φθ(yt, t)). The following result provides an upper
bound on the approximation error.

Theorem 3.4. Let R̂(t,∆t;yt) from (9) denote
our estimate of the incremental reconstruction,
where Φθ(yt, t) is trained on the loss in (8).
Let R∗(t,∆t;yt) = E[R(t,∆t;x0)|yt] denote
the MMSE estimator of R(t,∆t;x0). Assume,
that the degradation process is smooth such that
∥At(x) − At(x

′)∥ ≤ L
(t)
x ∥x − x′∥, ∀x,x′ ∈ Rn and

∥At(x)−At′(x)∥ ≤ Lt|t− t′|, ∀t, t′ ∈ [0, 1], ∀x ∈ Rn.
Further assume that the clean images have bounded
entries x0[i] ≤ B, ∀i ∈ (1, 2, ..., n) and that
the error in our score network is bounded by
∥sθ(yt, t)−∇yt log qt(yt)∥ ≤ ϵt

σ2
t
, ∀t ∈ [0, 1]. Then,

∥R̂(t,∆t;yt)−R∗(t,∆t;yt)∥ ≤
(L(t)

x + L(t−∆t)
x )︸ ︷︷ ︸

degr. smoothness

√
nB︸ ︷︷ ︸

data

+ 2Lt︸︷︷︸
scheduling

∆t︸︷︷︸
algorithm

+ 2ϵt︸︷︷︸
optimization

.

The first term in the upper bound suggests that smoother
degradations are easier to reconstruct accurately. The sec-
ond term indicates two crucial points: (1) sharp variations
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in the degradation with respect to time leads to potentially
large estimation error and (2) the error can be controlled by
choosing a small enough step size in the reverse process.
Scheduling of the degradation over time is a design param-
eter, and Theorem 3.4 suggests that sharp changes with re-
spect to t should be avoided. Finally, the error grows with
less accurate score estimation, however with large enough
network capacity, this term can be driven close to 0.

The main contributor to the error in Theorem 3.4 stems
from the fact that consistency under less severe degra-
dations, that is At−∆t(Φθ(yt, t)) ≈ At−∆t(x0), is not
enforced by the loss in (8). To this end, we propose a
novel loss function, the incremental reconstruction loss,
that combines learning to denoise and reconstruct simul-
taneously:

LIR(∆t,θ) =

Et,(x0,yt)

[
w(t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
, (10)

where τ = max(t − ∆t, 0), t ∼ U [0, 1], (x0,yt) ∼
q0(x0)qt(yt|x0). It is clear, that minimizing this loss di-
rectly improves our estimate of the incremental reconstruc-
tion in (9). We find that if Φθ has large enough capacity,
minimizing the incremental reconstruction loss in (10) also
implies minimizing (8), and thus the true score is learned
(denoising is achieved). Furthermore, we show that (10)
is an upper bound to (8) (Appendix A.3). By minimiz-
ing (10), the model learns not only to denoise, but also to
perform small, incremental reconstructions of the degraded
image such that At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). There
is however a trade-off between incremental reconstruction
performance and learning the score: we are optimizing an
upper bound to (8) and thus it is possible that the score esti-
mation is less accurate. We expect incremental reconstruc-
tion loss to work best in scenarios where the degradation
may change rapidly with respect to t and hence a network
trained to estimateAt(x0) from yt may become inaccurate
when predicting At−∆t(x0) from yt.

3.6. Data consistency

Data consistency is a crucial requirement on generated im-
ages when solving inverse problems. That is, we want to
obtain reconstructions that are consistent with our original
measurement under the degradation model. More formally,
we define data consistency as follows in our framework.

Definition 3.5 (Data consistency). Given a determinis-
tic degradation process At(·), two degradation severities
τ ∈ [0, 1] and τ+ ∈ [τ, 1] and corresponding degraded im-
ages yτ ∈ Rn and yτ+ ∈ Rn, yτ+ is data consistent with
yτ under At(·) if ∃x0 ∈ X0 such that Aτ (x0) = yτ and
Aτ+(x0) = yτ+ , where X0 denotes the clean image mani-
fold. We use the notation yτ+

d.c.∼ yτ .

Simply put, two degraded images are data consistent, if
there is a clean image which may explain both under the
deterministic degradation process. As our proposed tech-
nique is directly trained to reverse a degradation process,
enforcement of data consistency is built-in without apply-
ing additional steps, such as projection. The following the-
orem guarantees that in the ideal case, data consistency
is maintained in each iteration of the reconstruction algo-
rithm. Proof is provided in Appendix A.4.
Theorem 3.6 (Data consistency over iterations). As-
sume that we run the updates in (4) with sθ(yt, t) =
∇yt

log qt(yt), ∀t ∈ [0, 1] and R̂(t,∆t;yt) =
R(t,∆t;x0), x0 ∈ X0. If we start from a noisy degraded
observation ỹ = A1(x0)+z1, x0 ∈ X0, z1 ∼ N (0, σ2

1I)
and run the updates in (4) for τ = 1, 1−∆t, ...,∆t, 0, then

E[ỹ] d.c.∼ E[yτ ], ∀τ ∈ [1, 1−∆t, ...,∆t, 0].

3.7. Perception-distortion trade-off

Diffusion models generate synthetic images of exceptional
quality, almost indistinguishable from real images to the
human eye. This perceptual image quality is typically eval-
uated on features extracted by a pre-trained neural net-
work, resulting in metrics such as Learned Perceptual Im-
age Patch Similarity (LPIPS)(Zhang et al., 2018) or Fréchet
Inception Distance (FID)(Heusel et al., 2017). In image
restoration however, we are often interested in image dis-
tortion metrics that reflect faithfulness to the original im-
age, such as Peak Signal to Noise Ratio (PSNR) or Struc-
tural Similarity Index Measure (SSIM) when evaluating the
quality of reconstructions. Interestingly, distortion and per-
ceptual quality are fundamentally at odds with each other,
as shown in the seminal work of Blau & Michaeli (2018).
As diffusion models tend to favor high perceptual quality, it
is often at the detriment of distortion metrics (Chung et al.,
2022a).

As shown in Figure 3, we empirically observe that in the re-
verse process of Dirac, the quality of reconstructions with
respect to distortion metrics initially improves, peaks fairly
early in the reverse process, then gradually deteriorates.
Simultaneously, perceptual metrics such as LPIPS demon-
strate stable improvement for most of the reverse process.
More intuitively, the algorithm first finds a rough recon-
struction that is consistent with the measurement, but lacks
fine details. This reconstruction is optimal with respect to
distortion metrics, but visually overly smooth and blurry.
Consecutively, image details progressively emerge during
the rest of the reverse process, resulting in improving per-
ceptual quality at the cost of deteriorating distortion met-
rics. Therefore, our method provides an additional layer
of flexibility: by early-stopping the reverse process, we
can trade-off perceptual quality for better distortion met-
rics. Adjusting the early-stopping parameter tstop allows us
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Figure 3. Perception-distortion trade-off on CelebA-HQ deblurring: distortion metrics initially improve, peak fairly early in the reverse
process, then gradually deteriorate, while perceptual metrics improve. We plot the mean of 30 trajectories (±std shaded) starting from
the same measurement.

to obtain distortion- and perception-optimized reconstruc-
tions depending on our requirements.

3.8. Degradation scheduling

In order to deploy our method, we need to define how
the degradation changes with respect to severity t follow-
ing the properties specified in Definition 3.3. That is, we
have to determine how to interpolate between the iden-
tity mapping A0(x) = x for t = 0 and the most severe
degradation A1(·) for t = 1. Theorem 3.4 suggests that
sharp changes in the degradation function with respect to t
should be avoided. Here, we leverage a principled method
of scheduling using a greedy algorithm to select a set of
degraded distributions, such that the maximum distance be-
tween consecutive distributions is minimized. Details can
be found in Appendix C.

Finally, we find that adding a guidance term similar to that
used in DPS (Chung et al., 2022a) slightly improves recon-
structions, however it is not necessary for maintaining data
consistency. For more details, we refer the reader to Ap-
pendix B. A summary of Dirac is shown in Algorithm 1.

4. Experiments
Experimental setup – We evaluate our method on CelebA-
HQ (256× 256) (Karras et al., 2018) and ImageNet (256×
256) (Deng et al., 2009). For competing methods that re-
quire a score model, we use pre-trained SDE-VP mod-
els. For Dirac, we train models from scratch using the
NCSN++(Song et al., 2020) architecture. As the pre-
trained score-models for competing methods have been
trained on the full CelebA-HQ dataset, we test all meth-
ods for fair comparison on the first 1k images of the FFHQ

(Karras et al., 2019) dataset. For ImageNet experiments,
we sample 1 image from each class from the official vali-
dation split to create disjoint validation and test sets of 1k
images each. We only train our model on the train split of
ImageNet.

We investigate two degradation processes of very differ-
ent properties: Gaussian blur and inpainting. In all cases,
Gaussian noise with σ1 = 0.05 is added to the measure-
ments in the [0, 1] range. We use standard geometric noise
scheduling with σmax = 0.05 and σmin = 0.01 in the SDP.
For Gaussian blur, we use a kernel size of 61, with standard
deviation of wmax = 3. We vary the standard deviation of
the kernel between wmax(strongest) and 0.3 (weakest) to
parameterize the severity of Gaussian blur in the degrada-
tion process, and use the scheduling method described in
Appendix C to specify At. For inpainting, we generate

a smooth mask in the form
(
1− f(x;wt)

maxx f(x;wt)

)k

, where
f(x;wt) denotes the density of a zero-mean isotropic
Gaussian with standard deviation wt that controls the size
of the mask and k = 4 for sharper transition. We set
w1 = 50 for CelebA-HQ/FFHQ inpainting and 30 for Ima-
geNet inpainting. More details on the experimental setting
and operators can be found in Appendix E.

We compare our method against DDRM (Kawar et al.,
2022a), a well-established diffusion-based linear inverse
problem solver; DPS (Chung et al., 2022a), a recent, state-
of-the-art diffusion technique for noisy inverse problems;
SwinIR (Liang et al., 2021), a state-of-the-art transformer-
based supervised image restoration model; PnP-ADMM
(Chan et al., 2016), a reliable traditional solver with learned
denoiser; and ADMM-TV, a classical optimization tech-
nique. For more details see Appendix J. To evaluate per-
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Algorithm 1 Dirac

Input: ỹ: noisy observation, Φθ: score network, At(·):
degradation function, ∆t: step size, σt: noise std at
time t, ηt: guidance step size, ∀t ∈ [0, 1], tstop: early-
stopping parameter
N ← ⌊1/∆t⌋
y ← ỹ
for i = 1 to N do
t← 1−∆t · i
if t ≤ tstop then

break {Early-stopping}
end if
z ∼ N (0, σ2

t I)
x̂0 ← Φθ(y, t) {Predict posterior mean}
yr ← At−∆t(x̂0)−At(x̂0) {Incremental
reconstruction}
yd ← −

σ2
t−∆t−σ2

t

σ2
t

(At(x̂0)− y) {Denoising}
yg ← (σ2

t−∆t − σ2
t )∇y∥ỹ −A1(x̂0)∥2 {Guidance}

y ← y + yr + yd + ηtyg +
√
σ2
t − σ2

t−∆tz

end for
Output: y {Alternatively, output x̂0 (see Appendix D)}

formance, we use PSNR and SSIM as distortion metrics
and LPIPS and FID as perceptual quality metrics.

Deblurring – We train our model on LIR(∆t = 0,θ),
as we observed no significant difference in using other in-
cremental reconstruction losses, due to the smoothness of
the degradation (see ablation in Appendix H). We show
results on our perception-optimized (PO) reconstructions,
tuned for best LPIPS and our distortion-optimized (DO)
reconstructions, tuned for best PSNR on a separate vali-
dation set via early-stopping (see Fig. 3). Our results, sum-
marized in Table 1 (left side), demonstrate superior per-
formance compared with other diffusion methods in terms
of both distortion and perceptual metrics. Our DO model
closely matches the distortion quality of SwinIR, a strong
non-diffusion baseline known to outperform other diffu-
sion solvers in terms of distortion metrics (Chung et al.,
2022a). Visual comparison in Figure 6 reveals that DDRM
produces reliable reconstructions, similar to our DO im-
ages, but they often lack detail. In contrast, DPS produces
detailed images, similar to our PO reconstructions, but of-
ten with hallucinated details inconsistent with the measure-
ment. Finally, we demonstrate the robustness of Dirac to
test-time perturbations in the forward operator and noise
level in Appendix G.

Inpainting – We train our model on LIR(∆t = 1,θ), as
we see improvement in reconstruction quality as ∆t is in-
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Figure 4. Left: Data consistency in FFHQ inpainting. ϵdc :=
∥ỹ −A1(x̂0(yt))∥2 measures how consistent is the clean image
estimate with the measurement. We expect ϵdc to approach the
noise floor σ2

1 = 0.0025 in case of perfect data consistency. We
plot ϵ̄dc the mean over the validation set. Dirac maintains data
consistency throughout the reverse process. Right: Data consis-
tency is not always achieved with DPS.
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Figure 5. Number of reverse diffusion steps vs. perceptual qual-
ity. Dirac produces reconstructions of high quality even with a
low number of neural function evaluations (NFEs).

creased. We hypothesize that this is due to sharp changes
in the inpainting operator with respect to t, which can be
mitigated by the incremental reconstruction loss according
to Theorem 3.4. Ablations on the effect of ∆t in the in-
cremental reconstruction loss can be found in Appendix H.
We tuned models to optimize FID, as it is more suitable
than pairwise image metrics to evaluate generated image
content. Our results in Table 1 shows best performance in
most metrics, followed by DDRM. Fig. 6 (right) shows,
that our method generates high quality images even when
limited context is available.

Data consistency – Consistency between reconstructions
and the measurement is crucial in inverse problem solv-
ing. Our proposed method has the additional benefit of
maintaining data consistency throughout the reverse pro-
cess, as shown in Theorem 3.6 in the ideal case, however
we empirically validate this claim. Figure 4 (left) shows
the evolution of ϵdc := ∥ỹ −A1(x̂0(yt))∥2, where x̂0(yt)
is the clean image estimate at time t (Φθ(yt, t) for our
method). Since ỹ = A1(x0) + σ2

1 , we expect ϵdc to ap-

8



DiracDiffusion: Denoising and Incremental Reconstruction

Figure 6. Visual comparison of reconstructions: Gaussian blur (left) and inpainting (right). More samples in Appendix K.

Deblurring Inpainting

Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Dirac-PO (ours) 26.67 0.7418 0.2716 53.36 25.41 0.7595 0.2611 39.43
Dirac-DO (ours) 28.47 0.8054 0.2972 69.15 26.98 0.8435 0.2234 51.87
DPS (Chung et al., 2022a) 25.56 0.6878 0.3008 65.68 21.06 0.7238 0.2899 57.92
DDRM (Kawar et al., 2022a) 27.21 0.7671 0.2849 65.84 25.62 0.8132 0.2313 54.37
SwinIR (Liang et al., 2021) 28.53 0.8070 0.3048 72.93 24.46 0.8134 0.2660 59.94
PnP-ADMM (Chan et al., 2016) 27.02 0.7596 0.3973 74.17 12.27 0.6205 0.4471 192.36
ADMM-TV 26.03 0.7323 0.4126 89.93 11.73 0.5618 0.5042 264.62

Deblurring Inpainting

Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Dirac-PO (ours) 24.68 0.6582 0.3302 53.91 26.36 0.8087 0.2079 34.33
Dirac-DO (ours) 25.76 0.7085 0.3705 83.23 28.92 0.8958 0.1676 38.25
DPS (Chung et al., 2022a) 21.51 0.5163 0.4235 52.60 22.71 0.8026 0.1986 34.55
DDRM (Kawar et al., 2022a) 24.53 0.6676 0.3917 61.06 25.92 0.8347 0.2138 33.71
SwinIR (Liang et al., 2021) 25.07 0.6801 0.4159 84.80 26.87 0.8490 0.2161 45.69
PnP-ADMM (Chan et al., 2016) 25.02 0.6722 0.4565 98.72 18.14 0.7901 0.2709 101.25
ADMM-TV 24.31 0.6441 0.4578 88.26 17.60 0.7229 0.3157 120.22

Table 1. Experimental results on the FFHQ (top) and ImageNet (bottom) test splits.

proach σ2
1 in case of perfect data consistency. We observe

that our method, without applying guidance, stays close to
the noise floor throughout the reverse process, while other
techniques approach data consistency only close to t = 1.
In case of DPS, we observe that data consistency is not
always satisfied (see Figure 4, right), as DPS only guides
the iterates towards data consistency, but does not directly
enforce it. As our technique reverses an SDP, our inter-
mediate reconstructions are always interpretable as degra-
dations of varying severity of the same underlying image.
This property allows us to early-stop the reconstruction and
still obtain consistent reconstructions.

Sampling speed – Dirac requires low number of reverse
diffusion steps for high quality reconstructions leading to
fast sampling. Figure 5 compares the perceptual quality
at different number of reverse diffusion steps for diffusion-
based solvers. Our method typically requires 20−100 steps
for optimal perceptual quality, and shows the most favor-
able scaling in the low-NFE (Neural Function Evaluations)
regime. Due to early-stopping we can trade-off perceptual

quality for better distortion metrics and even further sam-
pling speed-up. We obtain acceptable results even with as
low as a single step of reconstruction.

5. Conclusions and Limitations
We propose a novel framework for solving inverse prob-
lems by reversing a stochastic degradation process. Our
solver can flexibly trade off perceptual image quality for
more traditional distortion metrics and sampling speedup.
Moreover, we show both theoretically and empirically that
our method maintains consistency with the measurement
throughout the reverse process. Dirac produces reconstruc-
tions of exceptional quality in terms of both perceptual and
distortion-based metrics, surpassing comparable state-of-
the-art methods on multiple high-resolution datasets and
image restoration tasks. The main limitation of our method
is that a model needs to be trained from scratch for each in-
verse problem, whereas other diffusion-based solvers lever-
age pretrained score networks.
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Impact Statement
This paper presents work that leverages diffusion models.
Diffusion models are powerful generative models capable
of synthesizing highly realistic images that can be difficult
to distinguish from real photographs. Such techniques can
be abused by bad actors to fabricate misinformation or oth-
erwise misleading content. Moreover, deep learning-based
image reconstruction algorithms are known to hallucinate,
that is output features that appear realistic but are incon-
sistent with the ground truth. Therefore, it is imperative
to practice an abundance of caution when deploying such
techniques in safety-critical applications.
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tailed denoising score matching. arXiv preprint
arXiv:2112.09788, 2021.

Delbracio, M. and Milanfar, P. Inversion by direct iteration:
An alternative to denoising diffusion for image restora-
tion. arXiv preprint arXiv:2303.11435, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255. Ieee, 2009.

Dhariwal, P. and Nichol, A. Diffusion Models Beat GANs
on Image Synthesis. arXiv preprint arXiv:2105.05233,
2021.

Heitz, E., Belcour, L., and Chambon, T. Iterative
α -(de)blending: a minimalist deterministic diffusion
model. arXiv preprint arXiv:2305.03486, 2023.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising Diffusion Proba-
bilistic Models. arXiv preprint arXiv:2006.11239, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. arXiv preprint
arXiv:2204.03458, 2022.

Hoogeboom, E. and Salimans, T. Blurring diffusion mod-
els. arXiv preprint arXiv:2209.05557, 2022.

Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A. G.,
and Tamir, J. Robust compressed sensing mri with deep
generative priors. Advances in Neural Information Pro-
cessing Systems, 34:14938–14954, 2021.

Kadkhodaie, Z. and Simoncelli, E. Stochastic solutions for
linear inverse problems using the prior implicit in a de-
noiser. Advances in Neural Information Processing Sys-
tems, 34:13242–13254, 2021.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
Growing of GANs for Improved Quality, Stability, and
Variation. arXiv:1710.10196 [cs, stat], 2018.

10



DiracDiffusion: Denoising and Incremental Reconstruction

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4401–4410, 2019.

Kawar, B., Vaksman, G., and Elad, M. Snips: Solving
noisy inverse problems stochastically. Advances in Neu-
ral Information Processing Systems, 34:21757–21769,
2021.

Kawar, B., Elad, M., Ermon, S., and Song, J. De-
noising diffusion restoration models. arXiv preprint
arXiv:2201.11793, 2022a.

Kawar, B., Song, J., Ermon, S., and Elad, M. Jpeg artifact
correction using denoising diffusion restoration models.
arXiv preprint arXiv:2209.11888, 2022b.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthe-
sis. arXiv preprint arXiv:2009.09761, 2020.

Lee, S., Chung, H., Kim, J., and Ye, J. C. Progressive
deblurring of diffusion models for coarse-to-fine image
synthesis. arXiv preprint arXiv:2207.11192, 2022.

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L.,
and Timofte, R. SwinIR: Image restoration using Swin
Transformer. arXiv:2108.10257, 2021.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A.,
Nie, W., and Anandkumar, A. I 2I SB: Image-to-image
schrodinger bridge. arXiv preprint arXiv:2302.05872,
2023.

Nachmani, E., Roman, R. S., and Wolf, L. Denoising diffu-
sion gamma models. arXiv preprint arXiv:2110.05948,
2021.

Okhotin, A., Molchanov, D., Arkhipkin, V., Bartosh,
G., Alanov, A., and Vetrov, D. Star-shaped denois-
ing diffusion probabilistic models. arXiv preprint
arXiv:2302.05259, 2023.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rissanen, S., Heinonen, M., and Solin, A. Generative
modelling with inverse heat dissipation. arXiv preprint
arXiv:2206.13397, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J.,
and Norouzi, M. Image Super-Resolution via Iterative
Refinement. arXiv:2104.07636 [cs, eess], 2021.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J.,
Denton, E., Ghasemipour, S. K. S., Ayan, B. K., Mah-
davi, S. S., Lopes, R. G., et al. Photorealistic text-to-
image diffusion models with deep language understand-
ing. arXiv preprint arXiv:2205.11487, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference
on Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, B., Kwon, S. M., Zhang, Z., Hu, X., Qu, Q., and
Shen, L. Solving inverse problems with latent diffu-
sion models via hard data consistency. arXiv preprint
arXiv:2307.08123, 2023a.

Song, J., Meng, C., and Ermon, S. Denoising diffu-
sion implicit models. In International Conference on
Learning Representations, 2021a. URL https://
openreview.net/forum?id=St1giarCHLP.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Repre-
sentations, 2023b.

Song, Y. and Ermon, S. Generative Modeling
by Estimating Gradients of the Data Distribution.
arXiv:1907.05600 [cs, stat], 2020a.

Song, Y. and Ermon, S. Improved Techniques for Training
Score-Based Generative Models. arXiv:2006.09011 [cs,
stat], 2020b.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse
problems in medical imaging with score-based genera-
tive models. arXiv preprint arXiv:2111.08005, 2021b.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Welker, S., Chapman, H. N., and Gerkmann, T. Driftrec:
Adapting diffusion models to blind image restoration
tasks. arXiv preprint arXiv:2211.06757, 2022.

Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis,
A. G., and Milanfar, P. Deblurring via stochastic refine-
ment. In Proceedings of the IEEE/CVF Conference on

11

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP


DiracDiffusion: Denoising and Incremental Reconstruction

Computer Vision and Pattern Recognition, pp. 16293–
16303, 2022.

Yue, Z., Wang, J., and Loy, C. C. Resshift: Efficient diffu-
sion model for image super-resolution by residual shift-
ing. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and
Wang, O. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 586–595, 2018.

12



DiracDiffusion: Denoising and Incremental Reconstruction

Appendix

A. Proofs
A.1. Denoising score-matching guarantee

Just as in standard diffusion, we approximate the score of the noisy, degraded data distribution ∇yt
qt(yt) by matching

the score of the tractable conditional distribution ∇yt
qt(yt|x0) via minimizing the loss in (8). For standard Score-Based

Models with At = I, the seminal work of Vincent (2011) guarantees that the true score is learned by denoising score-
matching. More recently, Daras et al. (2022) points out that this result holds for a wide range of corruption processes, with
the technical condition that the SDP assigns non-zero probability to all yt for any given clean image x0. This condition is
satisfied by adding Gaussian noise. For the sake of completeness, we include the theorem from Daras et al. (2022) updated
with the notation from this paper.

Theorem A.1. Let q0 and qt be two distributions in Rn. Assume that all conditional distributions, qt(yt|x0), are supported
and differentiable in Rn. Let:

J1(θ) =
1

2
Eyt∼qt

[
∥sθ(yt, t)−∇yt

log qt(yt)∥2
]
, (11)

J2(θ) =
1

2
E(x0,yt)∼q0(x0)qt(yt|x0)

[
∥sθ(yt, t)−∇yt

log qt(yt|x0)∥2
]
. (12)

Then, there is a universal constant C (that does not depend on θ) such that: J1(θ) = J2(θ) + C.

The proof, that follows the calculations of Vincent (2011), can be found in Appendix A.1. of Daras et al. (2022). This
result implies that by minimizing the denoising score-matching objective in (12), the objective in (11) is also minimized,
thus the true score is learned via matching the tractable conditional distribution qt(yt|x0) governing SDPs.

A.2. Theorem 3.4.

Assumption A.2 (Lipschitzness of degradation). Assume that ∥At(x)−At(y)∥ ≤ L
(t)
x ∥x−y∥, ∀x,y ∈ Rn, ∀t ∈ [0, 1]

and ∥At′(x)−At′′(x)∥ ≤ Lt|t′ − t′′|, ∀x ∈ Rn, ∀t′, t′′ ∈ [0, 1].

Assumption A.3 (Bounded signals). Assume that each entry of clean signals x0 are bounded as x0[i] ≤ B, ∀i ∈
(1, 2, ..., n).

Lemma A.4. Assume yt = At(x0)+zt with x0 ∼ q0(x0) and zt ∼ N (0, σ2
t I) and that Assumption A.2 holds. Then, the

Jensen gap is upper bounded as ∥E[At′(x0)|yt]−At′(E[x0|yt])∥ ≤ L
(t′)
x
√
nB, ∀t, t′ ∈ [0, 1].

Proof.

∥E[At′(x0)|yt]−At′(E[x0|yt])∥
(1)
≤

∫
∥At′(x0)−At′(E[x0|yt])∥ p(x0|yt)dx0

(2)
≤

√∫
∥At′(x0)−At′(E[x0|yt])∥2 p(x0|yt)dx0

≤ L(t′)
x

√∫
∥x0 − E[x0|yt]∥2 p(x0|yt)dx0

(3)
≤ L(t′)

x

√∫
∥x0∥2 p(x0|yt)dx0

≤ L(t′)
x

√∫
nB2p(x0|yt)dx0 = L(t′)

x

√
nB

Here (1) and (2) hold due to Jensen’s inequality, and in (3) we use the fact that E[x0|yt] is the minimum mean-squared
error (MMSE) estimator of x0, thus we can replace it with 0 to get an upper bound.

Theorem. 3.4 Let R̂(t,∆t;yt) = At−∆t(Φθ(yt, t)) − At(Φθ(yt, t)) denote our estimate of the incremental recon-
struction, where Φθ(yt, t) is trained on the loss in (13). Let R∗(t,∆t;yt) = E[R(t,∆t;x0)|yt] denote the MMSE
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estimator of R(t,∆t;x0). If Assumptions A.3 and A.2 hold and the error in our score network is bounded by
∥sθ(yt, t)−∇yt log qt(yt)∥ ≤ ϵt

σ2
t
, ∀t ∈ [0, 1], then

∥R̂(t,∆t;yt)−R∗(t,∆t;yt)∥ ≤ (L(t)
x + L(t−∆t)

x )
√
nB + 2Lt∆t+ 2ϵt.

Proof. First, we note that due to Tweedie’s formula,

E[At(x0)|yt] = yt + σ2
t∇yt

log qt(yt).

Since we parameterized our score model as

sθ(yt, t) =
At(Φθ(yt, t))− yt

σ2
t

,

the assumption that ∥sθ(yt, t)−∇yt
log qt(yt)∥ ≤ ϵt

σ2
t

, is equivalent to

∥At(Φθ(yt, t))− E[At(x0)|yt]∥ ≤ ϵt. (13)

By applying the triangle inequality repeatedly, and applying Lemma A.4 and (13)∥∥∥R̂(t,∆t;yt)−R∗(t,∆t;yt)
∥∥∥

= ∥(At−∆t(Φθ(yt, t))−At(Φθ(yt, t)))− (E[At−∆t(x0)|yt]− E[At(x0)|yt])∥
≤ ∥At−∆t(Φθ(yt, t))− E[At−∆t(x0)|yt]∥+ ∥At(Φθ(yt, t))− E[At(x0)|yt]∥
≤ ∥At−∆t(Φθ(yt, t))−At−∆t(E[x0|yt]) +At−∆t(E[x0|yt])− E[At−∆t(x0)|yt]∥+ ϵt

≤ ∥At−∆t(Φθ(yt, t))−At−∆t(E[x0|yt])∥+ L(t−∆t)
x

√
nB + ϵt

≤ ∥At−∆t(Φθ(yt, t))−At(Φθ(yt, t))∥+ ∥At(Φθ(yt, t))−At(E[x0|yt])∥
+ ∥At(E[x0|yt])−At−∆t(E[x0|yt])∥+ L(t−∆t)

x

√
nB + ϵt

≤ ∥At(Φθ(yt, t))−At(E[x0|yt])∥+ 2Lt∆t+ L(t−∆t)
x

√
nB + ϵt

≤ ∥At(Φθ(yt, t))− E[At(x0)|yt]∥+ ∥E[At(x0)|yt]−At(E[x0|yt])∥
+ 2Lt∆t+ L(t−∆t)

x

√
nB + ϵt

≤ 2Lt∆t+ (L(t−∆t)
x + L(t)

x )
√
nB + 2ϵt.

We note that the appearance of Lt in the upper bound provides a possible explanation why masking diffusion models
are significantly worse in image generation than models relying on blurring, as observed in Daras et al. (2022). Masking
leads to sharp jumps in pixel values at the border of the inpainting mask, thus Lt can be arbitrarily large. This can be
compensated to a certain degree by choosing a very small ∆t (very large number of sampling steps), which has also been
observed in Daras et al. (2022).

A.3. Incremental reconstruction loss guarantee

Assumption A.5. The forward degradation transition function Gt′→t′′ for any t′, t′′ ∈ [0, 1], t′ < t′′ is Lipschitz continu-
ous: ∥Gt′→t′′(x)− Gt′→t′′(y)∥ ≤ LG(t

′, t′′)∥x− y∥, ∀t′, t′′ ∈ [0, 1], t′ < t′′, ∀x,y ∈ Rn.

This is a very natural assumption, as we don’t expect the distance between two images after applying a degradation to grow
arbitrarily large.

Proposition A.6. If the model Φθ(yt, t) has large enough capacity, such thatLIR(∆t,θ) = 0 is achieved, then sθ(yt, t) =
∇yt log qt(yt), ∀t ∈ [0, 1]. Otherwise, if Assumption A.5 holds, then we have

L(θ) ≤ max
t∈[0,1]

(LG(τ, t))LIR(∆t,θ). (14)
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Proof. We denote τ = max(0, t−∆t). First, if LIR(∆t,θ) = 0, then

Aτ (Φθ(yt, t)) = Aτ (x0)

for all (x0,yt) such that qt(x0,yt) > 0. Applying the forward degradation transition function to both sides yields

Gτ→t(Aτ (Φθ(yt, t))) = Gτ→t(Aτ (x0)),

which is equivalent to
At(Φθ(yt, t)) = At(x0).

This in turn means that L(θ) = 0 and thus due to Theorem A.1 the score is learned.

In the more general case,

L(θ) = Et,(x0,yt)

[
wt ∥At(Φθ(yt, t))−At(x0)∥2

]
= Et,(x0,yt)

[
wt ∥Gτ→t(Aτ (Φθ(yt, t)))− Gτ→t(Aτ (x0))∥2

]
≤ Et,(x0,yt)

[
wtLG(τ, t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
≤ max

t∈[0,1]
(LG(τ, t))Et,(x0,yt)

[
wt ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
= max

t∈[0,1]
(LG(τ, t))LIR(∆t,θ)

This means that if the model has large enough capacity, minimizing the incremental reconstruction loss in (10) also implies
minimizing (8), and thus the true score is learned (denoising is achieved). Otherwise, the incremental reconstruction loss
is an upper bound on the loss in (8). Training a model on (10), the model learns not only to denoise, but also to perform
small, incremental reconstructions of the degraded image such that At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). There is however
a trade-off between incremental reconstruction performance and learning the score: as Proposition A.6 indicates, we are
optimizing an upper bound to (8) and thus it is possible that the score estimation is less accurate. We expect our proposed
incremental reconstruction loss to work best in scenarios where the degradation may change rapidly with respect to t and
hence a network trained to accurately estimate At(x0) from yt may become inaccurate when predicting At−∆t(x0) from
yt. This hypothesis is further supported by our experiments in Section 4. Finally, we mention that in the extreme case
where we choose ∆t = 1, we obtain a loss function purely in clean image domain.

A.4. Theorem 3.6

Lemma A.7 (Transitivity of data consistency). If yt+
d.c.∼ yt and yt++

d.c.∼ yt+ with t < t+ < t++, then yt++
d.c.∼ yt.

Proof. By the definition of data consistency yt++
d.c.∼ yt+ ⇒ ∃x0 : At++(x0) = yt++ and At+(x0) = yt+ . On the other

hand, yt+
d.c.∼ yt ⇒ ∃x′

0 : At+(x
′
0) = yt+ and At(x

′
0) = yt. Therefore,

yt++ = At++(x0) = Gt+→t++(At+(x0)) = Gt+→t++(yt+) = Gt+→t++(At+(x
′
0)) = At++(x′

0).

By the definition of data consistency, this implies yt++
d.c.∼ yt.

Theorem. 3.6. Assume that we run the updates in (4) with sθ(yt, t) = ∇yt
log qt(yt|x0), ∀t ∈ [0, 1] and R̂(t,∆t;yt) =

R(t,∆t;x0), x0 ∈ X0. If we start from a noisy degraded observation ỹ = A1(x0) + z1, x0 ∈ X0, z1 ∼ N (0, σ2
1I) and

run the updates in (4) for τ = 1, 1−∆t, ...,∆t, 0, then we have

E[ỹ] d.c.∼ E[yτ ], ∀τ ∈ [1, 1−∆t, ...,∆t, 0]. (15)
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Proof. Assume that we start from a known measurement ỹ := yt = At(x0) + zt at arbitrary time t and run reverse
diffusion from t with time step ∆t. Starting from t = 1 that we have looked at in the paper is a subset of this problem.
Starting from arbitrary yt, the first update takes the form

yt−∆t = yt +At−∆t(Φθ(yt, t))−At(Φθ(yt, t))

− (σ2
t−∆t − σ2

t )
At(Φθ(yt, t))− yt

σ2
t

+
√
σ2
t − σ2

t−∆tz

= At(x0) + zt +At−∆t(Φθ(yt, t))−At(Φθ(yt, t))

− (σ2
t−∆t − σ2

t )
At(Φθ(yt, t))−At(x0)− zt

σ2
t

+
√

σ2
t − σ2

t−∆tz

Due to our assumption on learning the score function, we haveAt(Φθ(yt, t)) = At(x0) and due to the perfect incremental
reconstruction assumption At−∆t(Φθ(yt, t)) = At−∆t(x0). Thus, we have

yt−∆t = At−∆t(x0) +
σ2
t−∆t

σ2
t

zt +
√

σ2
t − σ2

t−∆tz.

Since z and zt are independent Gaussian, we can combine the noise terms to yield

yt−∆t = At−∆t(x0) + zt−∆t, (16)

with zt−∆t
∼ N (0,

[(
σ2
t−∆t

σt

)2

+ σ2
t − σ2

t−∆t

]
I). This form is identical to the expression on our original measurement

ỹ = yt = At(x0) + zt, but with slightly lower degradation severity and noise variance. It is also important to point out
that E[yt]

d.c.∼ E[yt−∆t]. If we repeat the update to find yt−2∆t, we will have the same form as in (16) and E[yt−∆t]
d.c.∼

E[yt−2∆t]. Due to the transitive property of data consistency (Lemma A.7), we also have E[yt]
d.c.∼ E[yt−2∆t], that is data

consistency is preserved with the original measurement. This reasoning can be then extended for every further update using
the transitivity property, therefore we have data consistency in each iteration.

B. Guidance
So far, we have only used our noisy observation ỹ = A1(x0)+z1 as a starting point for the reverse diffusion process, how-
ever the measurement is not used directly in the update in (4). We learned the score of the prior distribution∇yt

log qt(yt),
which we can leverage to sample from the posterior distribution qt(yt|ỹ). In fact, using Bayes rule the score of the posterior
distribution can be written as

∇yt log qt(yt|ỹ) = ∇yt log qt(yt) +∇yt log qt(ỹ|yt), (17)

where we already approximate ∇yt
log qt(yt) via sθ(yt, t). Finding the posterior distribution analytically is not possible,

and therefore we use the approximation qt(ỹ|yt) ≈ qt(ỹ|Φθ(yt, t)), from which distribution we can easily sample from.
Since qt(ỹ|Φθ(yt, t)) ∼ N (A1(Φθ(yt, t)), σ

2
1I), our estimate of the posterior score takes the form

s′θ(yt, t) = sθ(yt, t)− ηt∇yt

∥ỹ −A1(Φθ(yt, t))∥2

2σ2
1

, (18)

where ηt is a hyperparameter that tunes how much we rely on the original noisy measurement. Even though we do not need
to rely on ỹ after the initial update for our method to work, we observe small improvements by adding the above guidance
scheme to our algorithm.

For the sake of simplicity, in this discussion we merge the scaling of the gradient into the step size parameter as follows:

s′θ(yt, t) = sθ(yt, t)− η′
t∇yt∥ỹ −A1(Φθ(yt, t))∥2 (19)

We experiment with two choices of step size scheduling for the guidance term η′t:

• Standard deviation scaled (constant): ηt = η 1
2σ2

1
, where η is a constant hyperparameter and σ2

1 is the noise level on
the measurements. This scaling is justified by our derivation of the posterior score approximation, and matches (19).
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Figure 7. Effect of guidance step size on best reconstruction in terms of LPIPS. We perform experiments on the CelebA-HQ validation
set on the deblurring task.
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Figure 8. Results of degradation scheduling from Algorithm 2. Left: Gaussian blur with kernel std wt on CelebA-HQ. Center: inpainting
with Gaussian mask with kernel width wt on CelebA-HQ. Right: inpainting with Gaussian mask on ImageNet.

• Error scaled: ηt = η 1
∥ỹ−A1(Φθ(yt,t))∥ , which has been proposed in Chung et al. (2022a). This method attempts to

normalize the gradient of the data consistency term.

In general, we find that constant step size works better for deblurring, whereas error scaling performed slightly better for
inpainting experiments, however the difference is minor. Figure 7 shows the results of our ablation study on the effect
of ηt. We perform deblurring experiments on the CelebA-HQ validation set and plot the mean LPIPS (lower the better)
with different step size scheduling methods and varying step size. We see some improvement in LPIPS when adding
guidance to our method, however it is not a crucial component in obtaining high quality reconstructions, or for maintaining
data-consistency.

C. Degradation Scheduling
When solving inverse problems, we have access to a noisy measurement ỹ = A(x0) + z and we would like to find the
corresponding clean image x0. In order to deploy our method, we need to define how the degradation changes with respect
to severity t following the properties specified in Definition 3.3. That is, we have to determine how to interpolate between
the identity mappingA0(x) = x for t = 0 and the most severe degradationA1(·) = A(·) for t = 1. Theorem 3.4 suggests
that sharp changes in the degradation function with respect to t should be avoided, however a more principled method of
scheduling is needed.

In the context of image generation, Daras et al. (2022) proposes a scheduling framework that splits the path between
the distribution of clean images D0 and the distribution of pure noise D1 into T candidate distributions Di, i ∈
[1/T, 2/T, ..., T−1

T ]. Then, they find a path through the candidate distributions that minimizes the total path length, where
the distance between Di and Dj is measured by the Wasserstein-distance. However, for image reconstruction, instead
of distance between image distributions, we are more interested in how much a given image degrades in terms of image

17



DiracDiffusion: Denoising and Incremental Reconstruction

quality metrics such as PSNR or LPIPS. Therefore, we replace the Wasserstein-distance by a notion of distance between
two degradation severities d(ti, tj) := Ex0∼D0 [M(Ati(x0),Atj (x0))], whereM is some distortion-based or perceptual
image quality metric that acts on a corresponding pair of images.

We propose a greedy algorithm to select a set of degradations from the set of candidates based on the above notion of
dataset-dependent distance, such that the maximum distance is minimized. That is, our scheduler is not only a function of
the degradationAt, but also the data. The intuitive reasoning to minimize the maximum distance is that our model has to be
imbued with enough capacity to bridge the gap between any two consecutive distributions during the reverse process, and
thus the most challenging transition dictates the required network capacity. In particular, given a budget of m intermediate
distributions on [0, 1], we would like to pick a set of m interpolating severities S such that

S = argmin
T

max
i

d(ti, ti+1), (20)

where T = {t1, t2, ..., tm|ti ∈ [0, 1], ti < ti+1 ∀i ∈ (1, 2, ...,m)} is the set of possible interpolating severities with
budget m. To this end, we start with S = {0, 1} and add new interpolating severities one-by-one, such that the new point
splits the interval in S with the maximum distance. Thus, over iterations the maximum distance is non-increasing. We also
have local optimality, as moving a single interpolating severity must increase the maximum distance by the construction
of the algorithm. Finally, we use linear interpolation in between the selected interpolating severities. The technique is
summarized in Algorithm 2, and we refer the reader to the source code for implementation details.

The results of our proposed greedy scheduling algorithm are shown in Figure 8, where the distance is defined based on the
LPIPS metric. In case of blurring, we see a sharp decrease in degradation severity close to t = 1. This indicates, that LPIPS
difference between heavily blurred images is small, therefore most of the diffusion takes place at lower blur levels. On the
other hand, we find that inpainting mask size is scaled almost linearly by our algorithm on both datasets we investigated.

D. Note on the Output of Dirac

In the ideal case, σ0 = 0 and A0 = I. However, in practice due to geometric noise scheduling (e.g. σ0 = 0.01), there is
small magnitude additive noise expected on the final iterate. Moreover, in order to keep the scheduling of the degradation
smooth, and due to numerical stability in practice A0 may slightly deviate from the identity mapping close to t = 0 (for
example very small amount of blur). Thus, even close to t = 0, there may be a gap between the iterates yt and the posterior
mean estimates x̂0 = Φθ(yt, t). Due to these reasons, we observe that in some experiments taking Φθ(yt, t) as the final
output yields better reconstructions. In case of early stopping, taking x̂0 as the output is instrumental, as an intermediate
iterate yt represents a sample from the reverse SDP, thus it is expected to be noisy and degraded. However, as Φθ(yt, t)
always predicts the clean image, it can be used at any time step t to obtain an early-stopped prediction of x0.

E. Experimental Details
Datasets – We evaluate our method on CelebA-HQ (256 × 256) (Karras et al., 2018) and ImageNet (256 × 256) (Deng
et al., 2009). For CelebA-HQ training, we use 80% of the dataset for training, and the rest for validation and testing. For
ImageNet experiments, we sample 1 image from each class from the official validation split to create disjoint validation
and test sets of 1k images each. We only train our model on the official train split of ImageNet. We center-crop and resize
ImageNet images to 256× 256 resolution. For both datasets, we scale images to [0, 1] range.

Comparison methods – We compare our method against DDRM (Kawar et al., 2022a), the most well-established
diffusion-based linear inverse problem solver; DPS (Chung et al., 2022a), a very recent, state-of-the-art diffusion tech-
nique for noisy and possibly nonlinear inverse problems; PnP-ADMM (Chan et al., 2016), a reliable traditional solver with
learned denoiser; and ADMM-TV, a classical optimization technique. Furthermore, we perform comparison with InDI
(Delbracio & Milanfar, 2023) in Section F. More details on comparison methods can be found in Section J.

Models – For Dirac, we train new models from scratch using the NCSN++(Song et al., 2020) architecture with 67M
parameters for all tasks except for ImageNet inpainting, for which we scale the model to 126M parameters. For compet-
ing methods that require a score model, we use pre-trained SDE-VP models2 (126M parameters for CelebA-HQ, 553M
parameters for ImageNet). The architectural hyper-parameters for the various score-models can be seen in Table 2.

2CelebA-HQ: https://github.com/ermongroup/SDEdit
ImageNet: https://github.com/openai/guided-diffusion
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Algorithm 2 Greedy Degradation Scheduling

Input: M: pairwise image dissimilarity metric, X0: clean samples, At: unscheduled degradation function, N : number of
candidate points, m: number of interpolation points
ts← (0, 1

N−1 ,
2

N−1 , ...,
N−2
N−1 , 1) {N candidate severities uniformly distributed over [0, 1]}

S ← (1, N) {Array of indices of output severities in ts}
dmax ← Distance(ts[1], ts[N ]) {Maximum distance between two severities in the output array}
estart ← 1 {Start index of edge with maximum distance}
eend ← N {End index of edge with maximum distance}
for i = 1 to m do
s← FindBestSplit(estart, eend, dmax)
Append(S, s)
dmax, estart, eend ← UpdateMax(S)

end for
Output: S

function Distance
Input: ti and tj {Find distance between degradation severities ti and tj}

d← 1
|X0|

∑
x∈X0

M(Ati(x),Atj (x))

Output: d
end function

function FindBestSplit
Input: estart, eend, dmax {Split edge into two new edges with minimal maximum distance}

MaxDistance← dmax

for j = estart + 1 to eend − 1 do
d1 ← Distance(ts[estart], ts[j])
d2 ← Distance(ts[j], ts[eend])
if max(d1, d2) < MaxDistance then
MaxDistance← max(d1, d2)
Split← j

end if
end for

Output: Split
end function

function UpdateMax
Input: S

MaxDistance← 0
for i = 1 to |S| − 1 do
estart ← S[i]
eend ← S[i+ 1]
d← Distance(ts[estart], ts[eend])
if d > MaxDistance then

MaxDistance← d
NewStart← estart
NewEnd← eend

end if
end for

Output: MaxDistance,NewStart,NewEnd
end function
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Dirac(Ours)

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

model channels 128 128 128 256
channel mult [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 4, 4]
num res blocks 2 2 2 2
attn resolutions [16] [16] [16] [16]
dropout 0.1 0.1 0.1 0.0
Total # of parameters 67M 67M 67M 520M

DDRM/DPS

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

model channels 128 256 128 256
channel mult [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4]
num res blocks 2 2 2 2
attn resolutions [16] [32, 16, 8] [16] [32, 16, 8]
dropout 0.0 0.0 0.0 0.0
Total # of parameters 126M 553M 126M 553M

Table 2. Architectural hyper-parameters for the score-models for Dirac (top) and other diffusion-based methods (bottom) in our experi-
ments.

Training details – We train all models with Adam optimizer, with learning rate 0.0001 and batch size 32 on 8× Titan RTX
GPUs, with the exception of the large model used for ImageNet inpainting experiments which we trained on 8× A6000
GPUs. We only use exponential moving averaging for this large model. We train for approximately 10M examples seen
by the network. For the weighting factor w(t) in the loss, we set w(t) = 1

σ2
t

in all experiments.

Degradations – We investigate two degradation processes of very different properties: Gaussian blur and inpainting, both
with additive Gaussian noise. In all cases, noise with σ1 = 0.05 is added to the measurements in the [0, 1] range. We
use standard geometric noise scheduling with σmax = 0.05 and σmin = 0.01 in the SDP. For Gaussian blur, we use a
kernel size of 61, with standard deviation of wmax = 3 to create the measurements. We change the standard deviation
of the kernel between wmax (strongest) and wmin = 0.3 (weakest) to parameterize the severity of Gaussian blur in the
degradation process, and use the scheduling method described in Section C to specify At. In particular, we set

Ablur
t (x) = CΨtx,

where CΨt is a matrix representing convolution with the Gaussian kernel Ψt. The degradation level is parameterized by the
standard deviation of Ψt, and scheduled between wmax = 3.0 at t = 1 and wmin = 0.3 at t = 0. We keep an imperceptible
amount of blur for t = 0 to avoid numerical instability with very small kernel widths. For inpainting, we generate a smooth

mask in the form Mt =
(
1− f(x;wt)

maxx f(x;wt)

)k

, where f(x;wt) denotes the density of a zero-mean isotropic Gaussian with
standard deviation wt that controls the size of the mask and k = 4 for sharper transition. That is, the degradation process
is defined as

Ainpaint
t (x) = Mtx.

We set w1 = 50 for CelebA-HQ/FFHQ inpainting and 30 for ImageNet inpainting, and set M0 = I in all experiments.
We determine the schedule of wt for t ∈ (0, 1) using Algorithm 2.

Evaluation method – To evaluate performance, we use PSNR and SSIM as distortion metrics and LPIPS and FID as
perceptual quality metrics. For the final reported results, we scale and clip all outputs to the [0, 1] range before computing
the metrics. We use validation splits to tune the hyper-parameters for all methods, where we optimize for best LPIPS in the
deblurring task and for best FID for inpainting. As the pre-trained score-models for competing methods have been trained
on the full CelebA-HQ dataset, we test all methods for fair comparison on the first 1k images of the FFHQ (Karras et al.,
2019) dataset. The list of test images for ImageNet can be found in the source code.

Sampling hyperparameters – The settings are summarized in Table 3. We tune the reverse process hyper-parameters on
validation data. For the interpretation of ’guidance scaling’ we refer the reader to the explanation of guidance step size
methods in Section B. In Table 3, ’output’ refers to whether the final reconstruction is the last model output (posterior mean
estimate, x̂0 = Φθ(yt, t)) or the final iterate yt.
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PO Sampling hyper-parameters

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

∆t 0.02 0.02 0.005 0.01
tstop 0.25 0.0 0.0 0.0
ηt 0.5 0.2 1.0 0.0
Guidance scaling std std error -
Output x̂0 x̂0 yt yt

DO Sampling hyper-parameters

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

∆t 0.02 0.02 0.005 0.01
tstop 0.98 0.7 0.995 0.99
ηt 0.5 1.5 1.0 0.0
Guidance scaling std std error -
Output x̂0 x̂0 x̂0 x̂0

Table 3. Settings for perception optimized (PO) and distortion optimized (DO) sampling for all experiments on test data.

Deblurring Inpainting

Method LPIPS(↓) FID(↓) LPIPS(↓) FID(↓)
Blending (InDI (Delbracio & Milanfar, 2023)) 0.2604 56.27 0.2424 54.08
Dirac-PO (ours) 0.2716 53.36 0.2626 39.43

Table 4. Comparison with blending schedule on the FFHQ test
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Figure 9. Robustness experiment: we simulate a mis-
match between train and test noise levels (FFHQ test
split, deblurring). Dirac is more robust to perturba-
tions in measurement noise variance.

F. Comparison with Blending
Our proposed method interpolates between degraded and clean distributions via a SDP. A parallel line of work (Delbracio
& Milanfar, 2023; Heitz et al., 2023) considers an alternative formulation in which the intermediate distributions are convex
combinations of degraded-clean image pairs, that is yt = tỹ + (1 − t)x0. We compare the InDI (Delbracio & Milanfar,
2023) formulation to Dirac on the FFHQ dataset (Table 4). We observe comparable results on the deblurring task, however
the blending parametrization is not suitable for inpainting as reflected by the large gap in FID. To see this, we point out
that in Dirac t directly parametrizes the severity of the degradation, that is our model learns a continuum of reconstruction
problems with smoothly changing difficulty. On the other hand, blending missing pixels with the clean image does not
offer a smooth transition in terms of reconstruction difficulty: for any 0 ≤ t < 1 the reconstruction of x0 from yt becomes
trivial. Furthermore, as our model is trained on a wide range of noise levels due to the SDP formulation, we observe
improved robustness to test-time perturbations in measurement noise compared to the blending formulation (Fig. 9).

G. Robustness Ablations
Degradation severity – We evaluate robustness of Dirac against test-time perturbations in the forward process for Gaussian
blur. In particular, suppose that the standard deviation of the Gaussian blur kernel is perturbed with a multiplicative factor
of k (i.e., wperp = kwmax). We pick k ∈ [0.6, 0.8, 1.0, 1.2, 1.4] and plot the change in distortion (SSIM) and perception
(LPIPS) metrics on the FFHQ test split (see Figure 10) using our perception-optimized model. We observe that, as is
the case for other supervised methods, reconstruction performance degrades (in terms of both distortion and perception
metrics) when the degradation model is significantly changed. Nevertheless, we observe that the performance of Dirac
is almost unchanged under blur kernel standard deviation reductions of up to 20%, which is a significant perturbation.
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Figure 10. Effect of Gaussian blur kernel width perturbation on the FFHQ test set for the deblurring task. The change in the LPIPS
metric (left) together with the SSIM metric (right) is shown.

We hypothesize that the robustness of Dirac to forward model shifts is due to fact that the model is trained on a range of
degradation severities in the input. Furthermore, we observe that distortion metrics, such as SSIM, degrade less gracefully
in the increased severity direction, while perception metrics, such as LPIPS, behave in the opposite manner. We expect
our distortion optimized model to be more robust in terms of distortion metric degradation when the forward model is
perturbed.

Measurement noise– We test the robustness of Dirac against perturbations of measurement noise variance com-
pared to the training setup. We evaluate our perception-optimized model, trained under measurement noise with
σ = 0.05, on the FFHQ test split on the gaussian deblurring task with measurement noise standard deviations in
σ = [0.0, 0.02, 0.04, 0.05, 0.06, 0.08]. Our model demonstrates great performance when the nosie level is decreased with
improved performance in terms of LPIPS compared to the training setting (see Figure 9). For higher noise variances, the
performance of Dirac degrades more gracefully than other similar techniques such as InDI (Delbracio & Milanfar, 2023)
(see more discussion in Appendix F).

H. Incremental Reconstruction Loss Ablations
We propose the incremental reconstruction loss, that combines learning to denoise and reconstruct simultaneously in the
form

LIR(∆t,θ) = Et,(x0,yt)

[
w(t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
, (21)

where τ = max(t−∆t, 0), t ∼ U [0, 1], (x0,yt) ∼ q0(x0)qt(yt|x0). This loss directly improves incremental reconstruc-
tion by encouraging At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). We show in Proposition A.6 that LIR(∆t,θ) is an upper bound
to the denoising score-matching objective L(θ). Furthermore, we show that given enough model capacity, minimizing
LIR(∆t,θ) also minimizes L(θ). However, if the model capacity is limited compared to the difficulty of the task, we
expect a trade-off between incremental reconstruction accuracy and score accuracy. This trade-off might not be favorable
in tasks where incremental reconstruction is accurate enough due to the smoothness properties of the degradation (see
Theorem 3.4). Here, we perform further ablation studies to investigate the effect of the look-ahead parameter ∆t in the
incremental reconstruction loss.

Deblurring – In case of deblurring, we did not find a significant difference in perceptual quality with different ∆t settings.
Our results on the CelebA-HQ validation set can be seen in Figure 11 (left). We observe that using ∆t = 0 (that is
optimizingL(θ)) yields slightly better reconstructions (difference in the third digit of LPIPS) than optimizing with ∆t = 1,
that is minimizing

LIR(∆t = 1,θ) := LX0

IR(θ) = Et,(x0,yt)

[
w(t) ∥Φθ(yt, t)− x0∥2

]
. (22)
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Figure 11. Effect of incremental reconstruction loss step size on the CelebA-HQ validation set for deblurring (left) and inpainting (mid-
dle). Visual comparison of inpainted samples is shown on the right.

This loss encourages one-shot reconstruction and denoising from any degradation severity, intuitively the most challenging
task to learn. We hypothesize, that the blur degradation used in our experiments is smooth enough, and thus the incremental
reconstruction as per Theorem 3.4 is accurate. Therefore, we do not need to trade off score approximation accuracy for
better incremental reconstruction.

Inpainting – We observe very different characteristics in case of inpainting. In fact, using the vanilla score-matching
loss L(θ), which is equivalent to LIR(∆t,θ) with ∆t = 0, we are unable to learn a meaningful inpainting model. As
we increase the look-ahead ∆t, reconstructions consistently improve. We obtain the best results in terms of FID when
minimizing LX0

IR(θ). Our results are summarized in Figure 11 (middle). We hypothesize that due to rapid changes in the
inpainting operator, our incremental reconstruction estimator produces very high errors when trained onL(θ) (see Theorem
3.4). Therefore, in this scenario improving incremental reconstruction at the expense of score accuracy is beneficial. Figure
11 (right) demonstrates how reconstructions visually change as we increase the look-ahead ∆t. With ∆t = 0, the reverse
process misses the clean image manifold completely. As we increase ∆t, reconstruction quality visually improves, but the
generated images often have features inconsistent with natural images in the training set. We obtain high quality, detailed
reconstructions for ∆t = 1 when minimizing LX0

IR(θ).

I. Further Incremental Reconstruction Approximations
In this work, we focused on estimating the incremental reconstruction

R(t,∆t;x0) := At−∆t(x0)−At(x0) (23)

in the form
R̂(t,∆t;yt) = At−∆t(Φθ(yt, t))−At(Φθ(yt, t)), (24)

which we call the look-ahead method. The challenge with this formulation is that we use yt with degradation severity t to
predict At−∆t(x0) with less severe degradation t−∆t. That is, as we discussed in the paper Φθ(yt, t) does not only need
to denoise images with arbitrary degradation severity, but also has to be able to perform incremental reconstruction, which
we address with the incremental reconstruction loss. However, other methods of approximating (23) are also possible,
with different trade-offs. The key idea is to use different methods to estimate the gradient of At(x0) with respect to the
degradation severity, followed by first-order Taylor expansion to estimate At−∆t(x0).

Small look-ahead (SLA) – We use the approximation

At−∆t(x0)−At(x0) ≈ ∆t · At−δt(x0)−At(x0)

δt
, (25)

where 0 < δt < ∆t to obtain

R̂SLA(t,∆t;yt) = ∆t · At−δt(Φθ(yt, t))−At(Φθ(yt, t))

δt
. (26)

The potential benefit of this method is that At−δt(Φθ(yt, t)) may approximate At−δt(x0) much more accurately than
At−∆t(Φθ(yt, t)) can approximate At−∆t(x0), since t− δt is closer in severity to t than t−∆t. However, depending on
the sharpness of At, the first-order Taylor approximation may accumulate large error.
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Look-back (LB) – We use the approximation

At−∆t(x0)−At(x0) ≈ At(x0)−At+∆t(x0), (27)

that is we predict the incremental reconstruction based on the most recent change in image degradation. Plugging in our
model yields

R̂LB(t,∆t;yt) = At(Φθ(yt, t))−At+∆t(Φθ(yt, t)). (28)

The clear advantage of this formulation over (24) is that if the loss in (8) is minimized such that At(Φθ(yt, t)) = At(x0),
then we also have

At+∆t(Φθ(yt, t)) = Gt→t+∆t(At(Φθ(yt, t))) = Gt→t+∆t(At(x0)) = At+∆t(x0).

However, this method may also accumulate large error if At changes rapidly close to t.

Small look-back (SLB)– Combining the idea in SLA with LB yields the approximation

At−∆t(x0)−At(x0) ≈ ∆t · At(x0)−At+δt(x0)

δt
, (29)

where 0 < δt < ∆t. Using our model, the estimator of the incremental reconstruction takes the form

R̂SLB(t,∆t;yt) = ∆t · At(Φθ(yt, t))−At+δt(Φθ(yt, t))

δt
. (30)

Compared with LB, we still have At+δt(Φθ(yt, t)) = At+δt(x0) and the error due to first-order Taylor-approximation is
reduced, however potentially higher than in case of SLA.

Incremental Reconstruction Network – Finally, an additional model ϕθ′ can be trained to directly approximate the
incremental reconstruction, that is ϕθ′(yt, t) ≈ R(t,∆t;x0). All these approaches are interesting directions for future
work.

J. Comparison Methods
For all methods, hyperparameters are tuned based on first 100 images of the folder "00001" for FFHQ and tested on the
folder "00000". For ImageNet experiments, we use the first samples of the first 100 classes of ImageNet validation split
to tune, last samples of each class as the test set.

J.1. DPS

We use the default value of 1000 NFEs for all tasks. We make no changes to the Gaussian blurring operator in the official
source code. For inpainting, we copy our operator and apply it in the image input range [0, 1]. The step size ζ ′ is tuned via
grid search for each task separately based on LPIPS metric. The optimal values are as follows:

1. FFHQ Deblurring: ζ ′ = 3.0

2. FFHQ Inpainting: ζ ′ = 2.0

3. ImageNet Deblurring: ζ ′ = 0.3

4. ImageNet Inpainting: ζ ′ = 3.0

As a side note, at the time of writing this paper, the official implementation of DPS3 adds the noise to the measurement
after scaling it to the range [−1, 1]. For the same noise standard deviation, the effect of the noise is halved as compared to
applying in [0, 1] range. To compensate for this discrepancy, we set the noise std in the official code to σ = 0.1 for all DPS
experiments which is the same effective noise level as σ = 0.05 for our experiments.

3https://github.com/DPS2022/diffusion-posterior-sampling
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J.2. DDRM

We keep the default settings ηB = 1.0, η = 0.85 for all of the experiments and sample for 20 NFEs with DDIM (Song
et al., 2021a). For the Gaussian deblurring task, the linear operator has been implemented via separable 1D convolutions
as described in D.5 of DDRM (Kawar et al., 2022a). We note that for blurring task, the operator is applied to the reflection
padded input. For Gaussian inpainting task, we set the left and right singular vectors of the operator to be identity (U =
V = I) and store the mask values as the singular values of the operator. For both tasks, operators are applied to the image
in the [−1, 1] range.

J.3. PnP-ADMM

We take the implementation from the scico library. Specifically the code is modified from the sample notebook4. We set
the number of ADMM iterations to be maxiter=12 and tune the ADMM penalty parameter ρ via grid search for each
task based on LPIPS metric. The values for each task are as follows:

1. FFHQ Deblurring: ρ = 0.1

2. FFHQ Inpainting: ρ = 0.4

3. ImageNet Deblurring: ρ = 0.1

4. ImageNet Inpainting: ρ = 0.4

The proximal mappings are done via pre-trained DnCNN denoiser with 17M parameters.

J.4. ADMM-TV

We want to solve the following objective:

argmin
x

1

2
∥y −A1(x)∥22 + λ∥Dx∥2,1

where y is the noisy degraded measurement,A1(·) refers to blurring/masking operator and D is a finite difference operator.
∥Dx∥2,1 TV regularizes the prediction x and λ controls the regularization strength. For a matrix A ∈ Rm×n, the matrix
norm ∥.∥2,1 is defined as:

∥A∥2,1 =

m∑
i=1

√√√√ n∑
j=1

A2
ij

The implementation is taken from scico library where the code is based on the sample notebook5. We note that for
consistency, the blurring operator is applied to the reflection padded input. In addition to the penalty parameter ρ, we need
to tune the regularization strength λ in this problem. We tune the pairs (λ, ρ) for each task via grid search based on LPIPS
metric. Optimal values are as follows:

1. FFHQ Deblurring: (λ, ρ) = (0.007, 0.8)

2. FFHQ Inpainting: (λ, ρ) = (0.02, 0.2)

3. ImageNet Deblurring: (λ, ρ) = (0.007, 0.5)

4. ImageNet Inpainting: (λ, ρ) = (0.02, 0.2)

4https://github.com/lanl/scico-data/blob/main/notebooks/superres_ppp_dncnn_admm.ipynb
5https://github.com/lanl/scico-data/blob/main/notebooks/deconv_tv_padmm.ipynb
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J.5. InDI

In order to ablate the effect of degradation parametrization, we match the experimental setup as closely as possible to
Dirac setting on CelebA-HQ. We train the same model as used for Dirac from scratch. As InDI does not leverage diffusion
directly, we train on a weighted ℓ2 loss, where wt =

1
t2+ϵ instead of 1/σ2

t -weighting in our method. We adjust the learning
rate to account for the resulting difference in scale. We use our degradation scheduling method from 2 to schedule t. For
inference, we set ∆t = 0.05.

K. Further Reconstruction Samples
Here, we provide more samples from Dirac reconstructions on the test split of CelebA-HQ and ImageNet datasets. We
visualize the uncertainty of samples via pixelwise standard deviation across n = 10 generated samples. In experiments
where the distortion peak is achieved via one-shot reconstruction, we omit the uncertainty map.
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Figure 12. Distortion and Perception optimized deblurring results for the CelebA-HQ dataset (test split). Uncertainty is calculated over
n = 10 reconstructions from the same measurement.

27



DiracDiffusion: Denoising and Incremental Reconstruction

Measurement DO - Sample 1 DO - Sample 2 PO - Sample 1 PO - Sample 1 PO Uncertainty Target

0

0.2

0.4

0.6

0.8

1

Figure 13. Distortion and Perception optimized inpainting results for the CelebA-HQ dataset (test split). Uncertainty is calculated over
n = 10 reconstructions from the same measurement. For distortion optimized runs, images are generated in one-shot, hence we don’t
provide uncertainty maps.
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Figure 14. Distortion and Perception optimized deblurring results for the ImageNet dataset (test split). Uncertainty is calculated over
n = 10 reconstructions from the same measurement.
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Figure 15. Distortion and Perception optimized inpainting results for the ImageNet dataset (test split). Uncertainty is calculated over
n = 10 reconstructions from the same measurement. For distortion optimized runs, images are generated in one-shot, hence we don’t
provide uncertainty maps.
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