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Abstract

Diffusion models have demonstrated exceptional performances in various fields of
generative modeling. While they often outperform competitors including VAEs and
GANs in sample quality and diversity, they suffer from slow sampling speed due
to their iterative nature. Recently, distillation techniques and consistency models
are mitigating this issue in continuous domains, but discrete diffusion models have
some specific challenges towards faster generation. Most notably, in the current
literature, correlations between different dimensions (pixels, locations) are ignored,
both by its modeling and loss functions, due to computational limitations. In
this paper, we propose “mixture” models in discrete diffusion that are capable
of treating dimensional correlations while remaining scalable, and we provide a
set of loss functions for distilling the iterations of existing models. Two primary
theoretical insights underpin our approach: first, that dimensionally independent
models can well approximate the data distribution if they are allowed to conduct
many sampling steps, and second, that our loss functions enables mixture models
to distill such many-step conventional models into just a few steps by learning the
dimensional correlations. We empirically demonstrate that our proposed method
for discrete diffusions work in practice, by distilling a continuous-time discrete
diffusion model pretrained on the CIFAR-10 dataset.

1 Introduction

Diffusion models [40, 20, 44] have demonstrated excellent performance in generative modeling,
particularly for continuous data such as images [34, 37, 38], audio [25, 8, 13], and video [18, 21, 5].
Recent advancements in diffusion models often outperform traditional generative models, such as
variational autoencoders (VAEs) [24, 19, 53] and generative adversarial networks (GANs) [16], in
terms of sample quality and the controllability of the generated results. Furthermore, diffusion
models are not limited to learning continuous data; they can also be applied to discrete or categorical
data with some straightforward modifications [22, 2] and offer a promising approach for discrete
generative modeling [17, 29]. Such discrete diffusion models are the main topic of this paper.

A notable drawback of diffusion models, whether continuous or discrete, is that they suffer from slow
sampling speed [50, 52], coming from the iterative nature of their sampling procedure. Although
this feature allows many variants of conditional generations [9, 42, 3, 51], naive sampling schemes
for diffusion models typically require a few thousands of sampling steps. In the continuous case,
there have been various approaches to reduce the number of sampling steps. Earlier attempts include
well-designed forward diffusion processes [41] and the use of fast solvers for stochastic/ordinary
differential equations (SDEs/ODEs) [30, 31, 55]. Another notable approach is knowledge distillation,
which compresses pretrained diffusion models into single- or few-step generative models [32, 39,
33, 54]. An emerging sub-family of distillation is the consistency-type models [45, 43, 23], which
exploit the fact that generated samples via different paths from the same initial noise should coincide.
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Applying such distillation methods to discrete diffusion models for reducing the number of sampling
steps, however, is not straightforward. We claim that this is mainly because current methods are not
designed to capture dimensional correlations in the data distributions, both in terms of modeling
and loss functions. In this paper, we provide evidence for the claim and propose a method called
Di4C (Distilling Discrete Diffusion through Dimensional Correlations) that captures dimensional
correlations to reduce the number of sampling steps. Our contribution is summarized as follows:

• We show that the N -step denoising with the existing dimensionally independent discrete
diffusion models can approximate data distribution in O(1/N) total variation error, together
with the fact that there is a simple two-dimensional example where this bound cannot be
improved (Theorem 1). This underpins the empirical effectiveness of existing discrete
diffusion models with many steps and, at the same time, shows the importance of modeling
dimensional correlations to reduce the number of sampling steps.

• To capture the aforementioned dimensional correlations, we propose Di4C, which distills a
many-step discrete diffusion model (teacher) into a few-step model (student), by introducing
a new set of loss functions compressing the iterative process of the teacher (Section 3.2) and
a “mixture” modeling that can represent dimensional correlations (Section 3.3). In theory,
we prove that the loss functions in Di4C can upper-bound the distance between the output
distributions of the N -step teacher and the student with just one step (Theorem 2). This
result, in combination with Theorem 1, provides an overall theoretical guarantee for Di4C.

• In numerical experiments with the CIFAR-10 dataset [26], we verify that Di4C can actually
substantially improve quantitative evaluations in 10- and 20-step sampling compared to the
pretrained teacher model of Campbell et al. [6].

Outline. Section 2 gives some preliminaries on discrete diffusion models and explains the dimen-
sionality issue in discrete diffusion. We then explain the central idea of Di4C in Section 3 and show
theoretical results in Section 4, which are partially described above as our contribution. We also
provide experimental results with CIFAR-10 in Section 5. In Section 6, we conclude the paper with
some discussions on its limitations and future work.

2 Preliminaries

Discrete diffusion models. Suppose we have a data distribution q0 := qdata on the space X . In
diffusion models [40, 20], we consider a Markov process (xt)0≤t≤T with x0 ∼ q0 and xT ∼ qT ,
where the time t can be either discrete or continuous. In this paper, we follow the notational convention
that qt|s and qs,t represent the true conditional and joint distributions defined by this Markov process,
respectively. This process is designed so that the terminal distribution qT is a tractable distribution.
Our aim is to generate samples approximately from the conditional distribution q0|T (·|xT ) with
xT ∼ qT , which is a generative model for qdata. To this end, we introduce a model or denoiser,
which is represented as ps|t (for s < t), to approximate q0|T (·|xT ).
Our primary interest is in the discrete diffusion models [2, 6], where the space X is a finite set. In
this case, a probability distribution p on X can be regarded as a function p : X → R, and we will
sometimes abuse the notation by treating p as just an ordinary function. We are given a finite set S
and consider a diffusion process over the product space X = SD for a large D. Each state x ∈ X
can thus be written as x = (xd)Dd=1, where xd indicates the entry of x in the d-th dimension. Given a
probability distribution p = p(x) on X , let pd = pd(xd) be its d-th marginal distribution, i.e., the
distribution of xd given x ∼ p. In order to enjoy scalability, the forward process is usually set to be
factorized over dimensions, i.e., qt|s(xt|xs) =

∏D
d=1 q

d
t|s(x

d
t |xds) holds for s < t [17, 6].

Ignorance of dimensional correlations in discrete diffusion models. The common practices in
modeling and training discrete diffusion models lead them to ignore the dimensional correlations
within the data distribution. First, under the aforementioned problem setting, for the sake of scalability,
the denoiser model is usually defined as a product model that satsifies

ps|t(xs|xt) =
D∏
d=1

pds|t(x
d
s |xt), s < t. (1)

2



Namely, the distribution ps|t(·|xt) is dimensionally independent. Second, the commonly used
loss function Es<t,x0,xs,xt∼q0,s,t

[
DKL(qs|0,t(·|x0,xt) ∥ ps|t(·|xt))

]
does not enforce dimensional

correlations, since qs|0,t(·|x0,xt) is dimensionally independent (see Section A for more details). The
capability and limitation of the product modeling is mathematically shown in Theorem 1.

3 Di4C for distilling discrete diffusion models

This section describes our proposed method, Di4C. We first show that the composition of well-trained
discrete diffusion models can represent the dimensional correlation in Section 3.1, and in the later
sections we discuss how to distill the multi-step denoising of a teacher model into a student model
that requires fewer steps. See Section B for more technical details of Di4C.

3.1 Composition of diffusion denoisers for inducing dimensional correlation

We introduce the notion of composition, which plays a significant role in representing the dimensional
correlations to be learned. Consider two general conditional distributions p(x|y) and p̃(y|z) over
finite sets. We define their composition as

p ◦ p̃(x|z) := Ey∼p̃(·|z)[p(x|y)] =
∑
y

p(x|y)p̃(y|z),

where this definition can be extended to the continuous case in a straightforward way. Although this
is just a convolution of two functions, it can be viewed as a composition of denoising operators in the
context of diffusion models. Specifically, given a single-step denoiser ps|t and the finite timesteps
0 = t0 < t1 < · · · < tN = T , we typically use pt0|t1 ◦ · · · ◦ ptN−1|tN (·|xT ) with the terminal noise
xT ∼ qT as a generative sampler.

Notably, the composition can serve as the source of dimensional correlation in discrete diffusion
models. Even if one-step denoisers, ps|u and pu|t (s < u < t), are dimensionally independent,
their composition is generally not. Furthermore, Theorem 1 suggests that this composition applied
to the conventional product model has enough capacity to capture the data distribution including
dimensional correlation. Therefore, compressing the composition of well-trained denoisers into
few-step sampling is a feasible way of learning dimensional correlation.

Let pψ be a pretrained teacher model with product structure and pψ0|t1 ◦ · · · ◦p
ψ
tN−1|tN be a sufficiently

good approximation of q0|T , where 0 < t1 < · · · < tN = T are timesteps. Our aim is to train a
student model pθ that compresses the dimensional correlation learned by the teacher as

pθ0|tn ≈ pψ0|t1 ◦ · · · ◦ p
ψ
tn−1|tn , n = 1, . . . , N. (2)

To achieve this, we propose a set of loss functions to distill dimensional correlation represented by
the compositions of a teacher model in Section 3.2, and we provide a way of modeling pθ that is
capable of representing dimensional correlations in Section 3.3.

3.2 Consistency for distilling dimensional correlation

We present a set of (two) loss functions that take dimensional correlation into account. Consider we
are given a product teacher model, which is denoted as pψ . Let pθ be a general student model (with
enough expressive power; an example is given in Section 3.3) that we want to train based on pψ .

Distillation loss. We first introduce a distillation loss, which forces the student model to be
consistent with the teacher model at time δ (≪ T ):

Ldistil(θ;ψ, rδ, δ) := Exδ∼rδ

[
DKL(p

ψ
0|δ(·|xδ) ∥ p

θ
0|δ(·|xδ))

]
, (3)

where rδ (≈ qδ) is a reference distribution over X at time δ and DKL is the Kullback–Leibler (KL)
divergence. We expect that a single teacher denoising step is enough to estimate x0 from xδ; the
dimensional correlation is mainly incorporated in the following consistency loss (see also Section B.1).
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Consistency loss. We then propose a consistency loss, which allows the student model to learn the
dimensional correlation represented by the composition of teacher denoisers:

Lconsis(θ;ψ, rt, s, u, t) := Ext∼rt

[
DKL(p

θ
s|u ◦ p

ψ
u|t(·|xt) ∥ p

θ
s|t(·|xt))

]
, (4)

where rt is a reference distribution over X at time t approximating qt. While this loss is not
straightforward to compute, we discuss how to approximate it in practice with Monte Carlo or control
variates in Section B.2. Note that the idea of mixing the teacher denoiser and student denoiser in
Lconsis can also be found in the continuous-state setting regarding ODE trajectories [23, Fig. 3], but
our loss is different in that we work on the compositions of conditional probabilities.

As reference distributions rδ and rt, we can either use qt generated from data or the distribution
obtained by applying multiple teacher denoising steps. See Section 4 for their roles and further
theoretical guarantees on Ldistil and Lconsis.

3.3 Mixture models for representing dimensional correlation

As an effective instance to represent correlated multivariate categorical distributions, we propose a
mixture model. We define it as a family of conditional probability distributions that have the following
representation for s < t:

pθs|t(xs|xt) = Eλ
[
pθs|t(xs|xt;λ)

]
, pθs|t(xs|xt;λ) =

D∏
d=1

pθ,ds|t (x
d
s |xt;λ), (5)

where λ is a random variable with an arbitrary distribution. This distribution can be viewed as a
convex mixture of product model indexed by λ. Despite the fact that pθ0|t(x0|xt;λ) is dimensionally
independent for each given point λ, this mixture representation is universal in the following sense:
Proposition 1. For any probability distribution p over SD, there exist a probability distribution π and
a family of product distributions pλ(x) =

∏D
d=1 p

λ,d(xd) indexed by λ satisfying p = Eλ∼π
[
pλ
]
.

Indeed, we have p = Ex∼p[δx], where δx is the delta distribution at x, which is certainly a product
distribution. Although the proof is not very informative, the assertion itself implies that the mixture
model has sufficient expressive power to capture dimensional correlation. It should also be noted that
sampling from this mixture model during the inference has almost no extra computational overhead
compared to the conventional product model, since it just requires sampling of λ.

4 Theoretical analysis

In this section, we present an overall theoretical analysis on our distillation method. In Section 4.1,
we show that the conventional product model (1) can approximate the data distribution if the model’s
marginal is perfectly trained and given many steps, which supports the empirical evidences of existing
works. In Section 4.2, we prove that the proposed objective functions enable the many-step denoising
with a teacher model to be distilled into a few-step student model, provided that the student model
has enough expressive power. The former (Theorem 1) bounds the discrepancy between the data
distribution and many-step teacher denoiser, and the latter (Theorem 2) provides a bound between the
many-step teacher and (few-step) student denoiser. Thus, by combining these two, we can conclude
that a few-step high-quality discrete diffusion model should be obtained if we apply our method to a
well-trained teacher product model and an expressive student model (e.g., mixture model).

4.1 Product models with multi-step sampling can approximate data distribution

We first show that dimensionally independent denoisers with many steps are capable of approximately
recovering the data distribution, which has already been empirically observed in existing studies.
To consider varying the number of denoising steps, let us work on the continuous-time setting. Let
(xt)0≤t≤T follow a continuous-time Markov chain over [0, T ] and the space X = SD with factorized
forward process, i.e., qt|s(xt|xs) =

∏D
d=1 q

d
t|s(x

d
t |xds) for s < t. See Section D for more details.

Theorem 1 shows the capability and limitation of a dimensionally independent sampling scheme called
analytical sampling [46] (a.k.a. Tweedie τ -leaping [29, 36]), where we use a product-model denoiser
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ps|t(xs|xt) =
∏D
d=1 p

d
s|t(x

d
s |xt) approximating the true marginal as pds|t(x

d
s |xt) ≈ qds|t(x

d
s |xt).

Although commonly used, there has been only empirical evidences for the overall efficiency of this
dimensionally independent method. Note that Campbell et al. [6] provides a guarantee for another
dimensionally independent method called τ -leaping1 [6].
Theorem 1 (N -step analytical sampling approximates data, informal). Let qt|s be forward transition
probabilities that factorize as above and ps|t be a product model with the correct marginals, i.e.,
ps|t(xs|xt) =

∏D
d=1 q

d
s|t(x

d
s |xt) for s < t. Then, under some regularity conditions, given timesteps

ti = iT/N for i = 0, . . . , N , we have

dTV

(
q0,Ext∼qT

[
pt0|t1 ◦ pt1|t2 ◦ · · · ◦ ptN−1|tN (·|xT )

])
= O(1/N) , (6)

where dTV denotes the total variation distance.

Moreover, there is an example with |S| = D = 2 such that the left-hand side of (6) is lower-bounded
by c/N with some constant c > 0 for sufficienty large N .

See Theorem 3 for a formal version. Theorem 1 is important as it underpins the use of dimensionally
parallel denoising given sufficient steps, which has been claimed as an advantage of discrete diffusion
over autoregressive models whose sampling is sequential [29]. However, it still requires Ω(1/ϵ) steps
for having a uniform error bound ϵ, according to the latter half of the assertion. We show next that we
can further reduce the number of steps with our loss functions, by distilling the distribution of an
N -step teacher model into a few-step student model by learning dimensional correlations.

4.2 Our loss functions can distill multi-step denoising models

To consider our loss functions, let pψ and pθ respectively be the teacher and student models given in
Sections 3.1 & 3.2. The following statement gives a theoretical guarantee for using the proposed loss
functions at appropriate time and distribution settings.
Theorem 2 (Di4C student approximates N -step teacher). Let 0 = t0 < · · · < tN = T be timesteps
and rT be a probability distribution on X . If we let rtn = ExT∼rT

[
pψtn|tn+1

◦ · · · ◦ pψtN−1|tN (·|xT )
]

for each n, we have

dTV

(
r0,ExT∼rT

[
pθ0|T (·|xT )

])
≤ 1√

2

(
Ldistil(θ;ψ, rt1 , t1)

1/2 +

N−1∑
n=1

Lconsis(θ;ψ, rtn+1 , 0, tn, tn+1)
1/2

)
. (7)

See Section E.1 for the full proof. Note that the right-hand side of inequality (7) becomes zero (so
does the left-hand side) if the student model perfectly learns the composition of the teacher as in
(2), and so learning with these loss functions is feasible in theory if the student model has enough
expressive power. Existing theoretical guarantees in consistency-based distillation of continuous-state
diffusions typically discuss the case when consistency losses are exactly zero [45, 11, 27], and so our
guarantee would be interesting in that it explicitly shows the relationships between the magnitude of
loss functions and the upper bound of the total variation distance between the teacher and student.

Regarding the choice of rt, we should take rT = qT if we would like to combine Theorem 2 with
Theorem 1 to evaluate Di4C’s overall performance against the data distribution. For rt with t < T ,
though we can generate samples xt ∼ rt by using the teacher model, it might be expensive due to
the multi-step inference required. Instead, we can use qt if we have access to data, which is given by
just one-step forward sampling from qt|0(·|x0) with the data x0 ∼ q0. Since rt is an approximation
of qt (Theorem 1), it would not harm the training quality as long as the teacher model is well-trained.

5 Experimental results

In numerical experiments, we adopted the same setting as Campbell et al. [6]: a continuous-time
discrete-state Markov process with the CIFAR-10 image dataset, where the authors share a well-
trained model checkpoint (which we use as a product teacher model pψ) that outperforms previous

1Although sharing the same name, τ -leaping and Tweedie τ -leaping are essentially different.
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discrete-time discrete-state models such as Austin et al. [2]. As in the original paper, we worked
directly with the discrete pixel channel values (0 to 255) on 32×32×3 entries (|S| = 256,D = 3072).

The teacher model pψ has the U-net architecture [20] tailored for discrete input-output, which is fed a
time feature at each up-/down-sampling stage. We combined the teacher model with two sampling
strategies (τ -leaping [6] and analytical sampling [46, 29]; see Sections 4.1 & G.1) and report their
evaluation results as baselines in Table 1. We found the performance of the two sampling schemes to
be very different: 40-step analytical sampling outperforms 1000-step τ -leaping in FID.

To obtain an architecture for our student mixture model (5), we slightly extended the teacher’s
architecture so that it accepts a conditioning with λ (following the uniform distribution over [0, 1]
in this experiment), by imitating the original implementation of time conditioning. In training,
we fine-tuned from the teacher network parameters with additional zero-initialized subnetworks
concerning λ. Note that the inference time of our student model is almost the same as that of the
teacher model thanks to the architecture, and so the NFE is the dominant factor of the sampling speed
among all the methods. See Section G.2 for details of the implementation and training.

Table 1: Comparison of models on CIFAR-10 dataset. NFE corresponds to the number of sampling
steps. The Fréchet inception distance (FID ↓) against the training dataset and the inception score
(IS ↑) are calculated using 50000 generated samples. ∗: reported values from Campbell et al. [6].

NFE 10 NFE 20 NFE 40 NFE 1000

FID IS FID IS FID IS FID IS
pψ + τ -leaping - - - - 315.75 1.66±0.01 8.10∗ 8.74∗

pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09 - -
pθ (ours) 20.64 8.29±0.13 9.77 8.52±0.08 9.66 8.28±0.10 - -

pθ&pψcombined 25.54 8.00±0.11 9.47 8.56±0.14 8.02 8.43 ±0.11 - -

Method

The results are shown in Table 1. The “pθ&pψ combined” model uses the same pθ for just the first half
(from noise to an intermediate state) of the denoising process and uses pψ with analytical sampling for
the rest. We can see that pθ substantially improves the metrics upon the teacher in 10-step sampling,
while the gain of using our method gets smaller as NFE grows. The hybrid model interestingly beats
other models in 20-step FID and shows almost the same 40-step FID with the teacher, while using the
student solely gets worse. We hypothesize that this is because the true denoiser qs|t (s < t) becomes
more “dimensionally independent” as t− s or t is small. The former condition (small t− s) explains
the worse performance gain of the mixture model as NFE grows, and the latter partially explains the
effectiveness of using the combined model. However, we should further consider different forward
diffusion and/or noise schedule to investigate it.

6 Conclusion

In this paper, as the current discrete diffusion models ignore the dimensional correlations that
need to be incorporated for realizing few-step models, we proposed Di4C, a method for distilling
pretrained discrete diffusion models. Di4C provides a set of loss functions for models that can capture
dimensional correlations, an example of which is the mixture model. As a theoretical contribution,
we proved that the existing discrete diffusion models with many steps can indeed recover the data
distribution, even without modeling dimensional correlations. We also proved that such many-step
models can be distilled into few-step ones, if we use the Di4C loss functions with a model that has
enough expressive power, such as a mixture model. In numerical experiments with the CIFAR-10
dataset, we confirmed the efficiency of our framework in 10-step sampling.

However, there are still some problems to be solved. For example, although we can distill many-step
models into one-step ones in theory (Theorem 2), our empirical results only show the improvements
over the same few-step sampling. To address this point, we need to further optimize the architecture
(mainly concerning λ) and training hyperparameters. It is also important to investigate how “dimen-
sionally independent” qs|t is, as mentioned at the end of Section 5, and to clarify the situations in
which dimensional correlations should be considered, rather than just using product models.
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A Ignorance of dimensional correlations in discrete diffusion models

In this section, we discuss the limitations introduced in the latter half of Section 2 in more detail,
namely, the fact that the existing discrete diffusion models as well as the loss functions ignore
dimensional correlations appearing in the data distributions.

Model’s ignorance of dimensional correlation. The product model

ps|t(xs|xt) =
D∏
d=1

pds|t(x
d
s |xt), s < t,

is common if not particularly highlighted [6, Section G], due to the combinatorial explosion of the
product discrete state. Indeed, adopting a product model significantly reduces the output length from
O
(
DS
)

to O(DS) at the cost of representational capacity. This limited expressive power can be
crucial for considering few-step discrete diffusion models. As an extreme example, consider doing
one-step denoising in the case of absorbing-state diffusion [2]; there is no chance we can approximate
a complex distribution by one step when xT is a completely masked sentence (i.e., following a delta
distribution) and p0|T (·|xT ) is dimensionally independent. See Section G.1 for more examples. To
mitigate this issue, we propose a class of model that is capable of treating dimensional correlation in
Section 3.3.

The issue caused by the dimensionally independent modeling has also been pointed out in the context
of continuous-state diffusion models [28]. However, such a modeling in the continuous case (i.e.,
modeling the added noise as a unimodal Gaussian) is empirically less problematic, partially due to
the use of ℓ2 loss and the existence of probability flow ODEs.

Loss function’s ignorance of dimensional correlation. Another potential factor making the
learning of dimensional correlation infeasible in discrete diffusion models is that the existing loss
function is not well prepared for learning dimensional correlation. This common loss is derived as
variational lower bound (VLB) of log-likelihood, which is given by

αEx0,xδ∼q0,δ
[
− log p0|δ(x0|xδ)

]
+ βEs<t,x0,xs,xt∼q0,s,t

[
DKL(qs|0,t(·|x0,xt) ∥ ps|t(·|xt))

]
with α, β > 0 and 0 < δ ≪ 1, where DKL denotes the Kullback–Leibler (KL) divergence (see
Section C). It usually does not force ps|t for t > δ to be dimensionally correlated, due to the product
structure of qs|0,t for s < t given by

qs|0,t(xs|x0,xt) =
qs|0(xs|x0)qt|0,s(xt|x0,xs)

qt|0(xt|x0)
=

D∏
d=1

qs|0(x
d
s |xd0)qt|s(xdt |xds)
qt|0(x

d
t |xd0)

.

An exeption is the auxiliary loss Ex0,xt∼q0,t [− log p0|t(x0|xt)] sometimes added with a very small
coefficient [2, 17], which is still not enough for learning the correlation in practice.

In the continuous-time score-based discrete diffusion, we only need the marginal pds|t(·|xt) or its
equivalent for computing the infinitesimal transition rate [6, 46]. Therefore, the existing training
pipelines cannot learn the dimensional correlation. Note that using a product model with these loss
functions is “scalable” in the sense that DKL(qs|0,t(·|x0,xt) ∥ ps|t(·|xt)) becomes just the sum of
KL divergence over the dimensions.

We addressed this challenge by introducing Lconsis in Section 3.2, which allows a general model to
learn the dimensional correlation produced by the “composition” discussed Section 3.1.

B Training techniques for Di4C

In this section, we review the novel loss functions of Di4C and the mixture model given in Section 3.2
from an algorithmic perspective, and provide a set of techniques to stably train it. Specifically, we
introduce techniques to make the computation of the loss functions scalable through Monte Carlo
integration and control variate methods.

Before going into the details of the training techniques, we introduce two auxiliary loss functions,
which we can use in addition to Ldistil and Lconsis for practical improvements. One is the datapoint
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loss that directly computes the negative log-likelihood with respect to the data distribution [e.g., 2,
Eq. 5], which we can use when we have access to data q0:

Ldata(θ; t) := E(x0,xt)∼q0,t

[
− log pθ0|t(x0|xt)

]
. (8)

The other is the following marginal loss, which is easier to compute, under the assumption that the
teacher model sufficiently learns the true marginal, i.e., pψ,d0|t ≈ qd0|t:

Lmarginal(θ;ψ, rt, t) := Ext∼rt

[
D∑
d=1

DKL(p
ψ,d
0|t (·|xt) ∥ p

θ,d
0|t (·|xt))

]
. (9)

B.1 Surrogate of distillation loss

Since the exact evaluation of Ldistil with a mixture model seems intractable, we consider an upper
bound of L̃distil as a practical alternative:

Ldistil(θ;ψ, rδ, δ) = Exδ∼rδ

[
DKL(p

ψ
0|δ(·|xδ) ∥Eλ[p

θ
0|δ(·|xδ;λ)])

]
≤ Exδ∼rδEλ

[
DKL(p

ψ
0|δ(·|xδ)) ∥ p

θ
0|δ(·|xδ;λ)

]
≤ Eλ,xδ∼rδ

[
D∑
d=1

DKL(p
ψ,d
0|δ (·|xδ) ∥ p

θ,d
0|δ(·|xδ;λ))

]
=: L̃distil(θ;ψ, rδ, δ).

Here, the inequality is given by the convexity of KL divergence (see Proposition 3). The upper bound
L̃distil (and then Ldistil) becomes zero if the student denoiser coincides with the teacher for the time
interval [0, δ], regardless of λ. Therefore, the use of this upper bound is feasible if pθ has enough
expressive power.

B.2 Surrogate of consistency loss

We consider Lconsis in this section. As pθs|u is more “reliable” than pθs|t (since s < u < t), we only
consider the gradient of Lconsis concerning pθs|t and ignore the gradient coming from pθs|u. Therefore,
we conduct stochastic gradient descent on θ with the loss

DKL(p
sg(θ)
s|u ◦ pψu|t(·|xt) ∥ p

θ
s|t(·|xt)) = H(p

sg(θ)
s|u ◦ pψu|t(·|xt), p

θ
s|t(·|xt)) + const., (10)

where sg(·) is the stop-gradient operator [47] and H(p, q) = Ex∼p[− log q(x)] is the cross entropy
between p and q. We hereby ignore the constant term in (10) and consider how to efficiently compute
the cross entropy term.

Most naively, by using finite samples x(1)
s , . . . ,x

(M)
s ∼iid p

sg(θ)
s|u ◦ pψu|t(·|xt) and λ1, . . . , λN ∼iid λ,

we can approximate this cross entropy by two-fold Monte Carlo:

H(p
sg(θ)
s|u ◦ pψu|t(·|xt), p

θ
s|t(·|xt))

≈ − 1

M

M∑
j=1

log pθs|t(x
(j)
s |xt) ≈ − 1

M

M∑
j=1

log

(
1

N

N∑
i=1

pθs|t(x
(j)
s |xt;λi)

)
. (11)

Although the value of each pθs|t(x
(j)
s |xu;λi) =

∏D
d=1 p

θ,d
s|t (x

(j),d
s |xu;λi) can be extremely small

due to the D-fold product, we can exploit the log-sum-exp structure:

log

(
N∑
i=1

pθs|t(x
(j)
s |xt;λi)

)
= log

(
N∑
i=1

exp︸ ︷︷ ︸
log-sum-exp

(
D∑
d=1

log pθ,ds|t (x
(j),d
s |xt;λi)

))
,

which is implemented as a function with some additional stabilization to avoid under/overflows
in some of the common numerical packages including PyTorch. See [4] for details of numerical
properties associated with the log-sum-exp structure.
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Dimensionally independent control variate. Although the naive Monte Carlo sampling with a
sufficiently large sample size can approximate the left-hand side of Eq. (11) well, a small batch can
cause high variance in the evaluation of the expected values. An established way of stabilizing Monte
Carlo integration is to use so-called control variates [15, 35], also known as baseline in reinforcement
learning [49]. To estimate an expectation E[f ], we can subtract another function/random variable g,
called a control variate, whose integral we know or can compute more precisely than Monte Carlo,
and execute the Monte Carlo for f − g, by using the decomposition E[f ] = E[f − g] + E[g]. See
Section F for a more detailed explanation. As a concrete application of this technique, we below
propose the use of a dimensionally independent control variate.

We first exploit the compositional form of psg(θ)s|u ◦ pψu|t(·|xt), which is more informative than x
(j)
s ,

the pure samples in the Monte Carlo approach. We can write it in expectation as follows:

p
sg(θ)
s|u ◦ pψu|t(·|xt) = Eλ,xu∼pψu|t(·|xt)

[
p
sg(θ)
s|u (·|xu;λ)

]
. (12)

To simplify (12), let use denote qη := p
sg(θ)
s|u (·|xu;λ) and q := Eη[qη] with η = (xu, λ). To construct

an efficient control variate given q, we need a function g such that (i) it reasonably approximates
pθs|t(·|xt) and (ii) Ex∼q[g(x)] is easy to compute/approximate. One such example is the product
model defined as

pθs|t(·|xt) :=
D∏
d=1

pθ,ds|t (·|xt), pθ,ds|t (·|xt) := pθ,ds|t (·|xt) = Eλ
[
pθ,ds|t (·|xt;λ)

]
. (13)

We defer the explanation of how (i) and (ii) are satisfied to Section F.1. Given a control variate
pθs|t(·|xt), we can decompose the loss computation:

H(q, pθs|t(·|xt)) = Exs∼q

[
− log pθs|t(xs|xt) + log pθs|t(xs|xt)

]
︸ ︷︷ ︸

Monte Carlo by sampling xs

+Eη
[
H(qη, pθs|t(·|xt))

]
︸ ︷︷ ︸

Monte Carlo by sampling η

. (14)

Here, the first term can be treated similarly to (11), and we approximately compute the second
term by sampling η and using the identityH(qη, pθs|t(·|xt)) =

∑D
d=1H(qη,d, pθ,ds|t (·|xt)) (see (64) in

Section F.1). In this decomposition, we expect that the mixture model explicitly learns the dimensional
correlation with the first term, while the second term stabilizes the overall approximation, as we use
more detailed information on q than just its samples. See also Section F.2 for more background on
how we derive pθ and another possible choice of control variate.

B.3 Auxiliary losses

While we can use a similar Monte Carlo estimate for Ldata (with random samples of x0,xt, λ),
we can regard Lmarginal as a possible control variate for it. Indeed, if the teacher network is well-
trained, we can expect that its marginal approximates the true marginal as pψ,d ≈ qd. Thus, for the
marginal-matching product model pθ given in Eq. (13), we have

Ext∼qt

[
H(q0|t(·|xt), pθ0|t(·|xt))

]
≈ Lmarginal(θ;ψ, qt, t) + const., (15)

where the constant term is independent of θ. We give the derivation of (15) in Appendix F.3. We then
obtain a decomposed formulation of Ldata for given xt ∼ qt as follows, by letting q = q0|t(·|xt) and
s = 0 in Eq. (14) and then using the approximation (15):

Ldata(θ; t) ≈ Lcorr(θ; t) + Lmarginal(θ;ψ, qt, t) + const.,

Lcorr(θ; t) := E(x0,xt)∼q0,t

[
− log pθ0|t(x0|xt) + log pθ0|t(x0|xt)

]
.

Here, Lcorr measures the difference between pθ and pθ and so represents the dimensional correlation
learned by the model pθ. In the actual implementation for the first term Lcorr, we generate x0 ∼ q0
and then xt ∼ qt|0(·|x0), and regard them as samples from (x0,xt) ∼ q0,t, which are required for
conducting Monte Carlo. When combining Ldata and Lmarginal (both as loss and control variate), we
empirically find that mixing as αtLcorr(θ; t)+Lmarginal(θ;ψ, qt, t) with some αt ∈ [0, 1] depending
on t is more efficient than just using constant αt = 0 (pure marginal loss) or αt = 1 (pure data loss).
See Section G for details in this regard.
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C Kullback–Leibler divergence and total variation distance

Let p and q be probability distributions on the same finite set X . The KL divergence DKL and the
total variation distance dTV are defined as follows:

DKL(p ∥ q) :=
∑
x∈X

p(x) log
p(x)

q(x)
, dTV(p, q) := sup

A⊂X
|p(A)− q(A)| = 1

2

∑
x∈X

|p(x)− q(x)|.

Here, in the computation ofDKL, we ignore the term with p(x) = 0 and, if there is an xwith p(x) > 0
and q(x) = 0, we then define DKL(p ∥ q) = 0. These two error criteria between distributions are
bridged by the following inequality (see, e.g., [7]).
Proposition 2 (Pinsker’s inequality). For probability distributions p and q on X , we have

dTV(p, q) ≤
√

1

2
DKL(p ∥ q).

The convexity of KL divergence in the following plays a role in the main body of the paper.
Proposition 3 ([10, Theorem 2.7.2]). DKL(p ∥ q) is convex with respect to the pair (p, q). Namely,
for t ∈ [0, 1] and probability distributions p1, p2, q1, q2 on the same domain, we have

DKL(tp1 + (1− t)p2 ∥ tq1 + (1− t)q2) ≤ tDKL(p1 ∥ q1) + (1− t)DKL(p2 ∥ q2).

We also use the following triangle-like inequality for the total variation distance of compositions.
Proposition 4. For probability distributions p1(·|y), p2(·|y) over X conditioned on y ∈ Y and q1, q2
over Y , we have

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q2 [p2(·|y)]) ≤ Ey∼q1 [dTV(p1(·|y), p2(·|y))] + dTV(q1, q2).

We give its proof in Section E.2.

D Continuous-time Markov chains and Kolmogorov equations

Let us discuss the Kolmogorov forward/backward equations associated with continuous-time Markov
chains. While the arguments below are mostly a reorganization of those given in previous studies
[6, 46], we explicitly track the continuity/nonzero assumptions used in their derivations.

D.1 Kolmogorov equations in the general case

Let us consider a general Markov process over the continuous time interval [0, T ] and a discrete
(finite) state space X , which is called a continuous-time Markov chain [1, 6]. The starting block is
the forward transition rate in a short-time interval. For t < t+ ϵ, assume the following equation for
the infinitesimal forward transition:

qt+ϵ|t(y|x) = δy,x + ϵQt(y, x) + o(ϵ), ϵ > 0, (16)

where δy,x is the Kronecker delta and Qt is a function X × X → R called the transition rate. Here,
for s ≤ t < t+ ϵ, we have

qt+ϵ|s(y|x) =
∑
z

qt+ϵ|t(y|z)qt|s(z|x) =
∑
z

(δy,z +Qt(y, z)ϵ)qt|s(z|x) + o(ϵ)

= qt|s(y|x) + ϵ
∑
z

Qt(y, z)qt|s(z|x) + o(ϵ).

This means that we have ∂+t qt|s(y|x) =
∑
z Qt(y, z)qt|s(z|x), where ∂+t is the right-derivative

regarding t. Under the condition that Qt is continuous over [0, T ] (assume it is continuously extended
to t = T , though it is not necessary right now) and qt|s is continuous over t ∈ [s, T ], qt|s becomes
differentiable over the open interval (from a general fact in analysis [48]) and we have the Kolmogorov
forward equation for t ∈ (s, T ):

∂tqt|s(y|x) =
∑
z

Qt(y, z)qt|s(z|x). (17)
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Now, let us derive the backward equation. For s < s+ ϵ ≤ t, by using (16), we have

qt|s(y|x) =
∑
z

qt|s+ϵ(y|z)qs+ϵ|s(z|x) =
∑
z

qt|s+ϵ(y|z)(δz,x + ϵQs(z, x)) + o(ϵ)

= qt|s+ϵ(y|x) + ϵ
∑
z

qt|s+ϵ(y|z)Qs(z, x) + o(ϵ).

Thus, by additionally assuming the continuity of qt|s for s ∈ [0, T ], we obtain the one-sided derivative
∂+s qt|s(y|x) = −

∑
z qt|s(y|z)Qs(z, x). When combined with the continuity of Qs similarly to the

above argument on the forward equation, it leads to the backward Kolmogorov equation for s ∈ (0, t):

∂sqt|s(y|x) = −
∑
z

qt|s(y|z)Qs(z, x). (18)

To summarize so far, under the assumption that qt|s is continuous for s, t with 0 ≤ s ≤ t ≤ T and
Qt in (16) is continuous over [0, T ], we have the two Kolmogorov equations given by (17) and (18).
Note that all the

∑
z are finite sums because of the finiteness of X .

D.2 Kolmogorov equations for factorized forward processes

Let us now consider the case where X = SD and xt = (xdt )
D
d=1 follows a dimensionally independent

forward process with transition rate Qdt . Namely, suppose

qdt+ϵ|t(y
d|xd) = δyd,xd + ϵQdt (y

d, xd) + o(ϵ) (19)

for each d = 1, . . . , D and t < t+ ϵ. In this case, we have

qt+ϵ|t(y|x) =
D∏
d=1

qdt+ϵ|t(y
d|xd) = δy,x + ϵ

D∑
d=1

Qdt (y
d, xd)δy\d,x\d + o(ϵ) (20)

by simply expanding the product, where x\d ∈ SD−1 is given by omitting the d-th entry of x. From
(20), the transition rate for xt is given by

Qt(y,x) =

D∑
d=1

Qdt (y
d, xd)δy\d,x\d (21)

as in Campbell et al. [6, Proposition 3]. Let us assume the continuity regarding the forward process
in each dimension:
Assumption A. For each d = 1, . . . , D, there exists a function Qdt : S × S → R indexed by
t ∈ [0, T ] satisfying Eq. (19). Furthermore, for any fixed x, y ∈ S, qdt|s(y|x) is continuous over
{(s, t) ∈ [0, T ]d | s ≤ t} and Qdt (y, x) is continuous over [0, T ].

Under this assumption, qt|s and Qt for the original process xt are also continuous since we have
qt|s(y|x) =

∏D
d=1 q

d
t|s(y

d|xd) and (21). Thus, we can apply the argument in Section D.1 to obtain
the Kolmogorov equations (17) & (18).

To consider the time-reversal transition rate, let us further assume the following property for the
forward process:
Assumption B. For any t ∈ [0, T ] and x ∈ SD, qt(x) > 0 holds.

This is satisfied, for instance, when qdata(x) > 0 for all x ∈ SD and qdt|s(y|x) > 0 for all x, y ∈ S
and d. The latter holds true for common forward diffusions such as uniform diffusion and discretized
Gaussian [2].

Under these assumptions, we can show a favorable property of the time-reversal process. This is just
a re-formalization of a well-known fact (e.g., Campbell et al. [6, Proposition 3] and Sun et al. [46,
Proposition 3.2]).
Proposition 5. Under Assumptions A & B, there exists a function Rt : SD × SD → R indexed by
t ∈ (0, T ] such that
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(a) we have qt−ϵ|t(y|x) = δy,x + ϵRt(y,x) + o(ϵ) for ϵ > 0 with t− ϵ ≥ 0, and

(b) Rt(y,x) can be nonzero only if x,y ∈ SD coincide in at least D − 1 entries.

We give its proof in Section E.3. As one can see from the proof, the time-reversal transition rate Rt
is given concretely by Rt(y,x) = Qt(x,y)qt(y)/qt(x) when x ̸= y, and the ratio qt(y)/qt(x) is
treated as a discrete counterpart of the score function [46, 29].

Let us add one more regularity assumption:

Assumption C. For each d = 1, . . . , D and x, y ∈ S, Qdt (y, x) is differentiable for t ∈ (0, T ) and
the derivative ∂tQdt (y, x) can be continuously extended to [0, T ].

Note that usual choices of Qdt regarding t including the time-homogeneous case Qt = Q and the
noise scheduling Qt = β(t)Q with a smooth β [6, 29] satisfy this assumption. Finally, under these
three assumptions, we can formalize Theorem 1 as follows.

Theorem 3. Suppose (xt)0≤t≤T satisfies Assumptions A, B & C. Let ps|t be a product model with
the correct marginals, i.e., ps|t(xs|xt) =

∏D
d=1 q

d
s|t(x

d
s |xt) for s < t. Then, there exists a constant

C > 0 such that, given timesteps ti = iT/N for i = 0, . . . , N , we have

dTV

(
q0,ExT∼qT

[
pt0|t1 ◦ pt1|t2 ◦ · · · ◦ ptN−1|tN (·|xT )

])
≤ C

N
. (22)

Furthermore, there exists an example of (xt)0≤t≤T satisfyingD = |S| = 2 and the same assumptions
such that the left-hand side of (22) is lower-bounded by c/N with some constant c > 0 for sufficiently
large N .

This theorem basically says the min-max convergence rate of the analytical sampling is 1/N . We give
the proof of the first half, i.e., Eq. (22), in Section E.4. For the latter half, we provide the concrete
version in Proposition 6 in the following section.

D.3 A lower bound of Theorem 3

We shall provide an example that yields an Ω(1/N) error between the analytical and true denoisers.
Consider S = {a, b} and D = 2, where the state-space is given by X = {aa, ab, ba, bb} by
omitting parentheses. Consider the (forward) Markov process given by the initial distribution
q0 = (δaa+δbb)/2 and the dimension-wise time-homogeneours transition rateQdt (y, x) = 1/2−δyx
for d = 1, 2 and x, y ∈ S. Under this setting, the forward transition probability is continuous and
satisfies qdt|s(·|0) = Qdt q

d
t|s(·|0) as a vector-valued differential equation, and so we have, for t > s,

∂tq
d
t|s(a|a) = −1

2
qdt|s(a|a) +

1

2
qdt|s(b|a) =

1

2
− qdt|s(a|a).

By solving this, we obtain qdt|s(a|a) =
1
2 (1 + e−(t−s)) for t ≥ s. By symmetry, we generally have

qdt|s(a|a) = qdt|s(b|b) =
1

2
(1 + e−(t−s)), qdt|s(b|a) = qdt|s(a|b) =

1

2
(1− e−(t−s)) (23)

This is a special case of uniform diffusion and clearly satisfies Assumptions A & C. Although the
singularity of q0 violates Assumption B at time zero, we can consider the time interval [δ, T ] for some
δ > 0 instead of [0, T ] to ensure qt > 0. We will, however, work with the singular q0 for simplicity of
computations. The following proposition gives the lower bound discussed in Theorem 3. If necessary,
we can replace T with T + δ and consider x′

t = xt+δ to match the time intervals.

Proposition 6. Let (xt)δ≤t≤T be the Markov process defined above and ps|t be the product model
ps|t(xs|xt) =

∏D
d=1 q

d
s|t(x

d
s |xt) for s < t. If we let N ≥ 2(T − δ)/δ be an integer and ti =

δ + i(T − δ)/N for i = 0, . . . , N be timesteps, then there is a constant c > 0 such that

dTV

(
qδ,ExT∼qT

[
pt0|t1 ◦ pt1|t2 ◦ · · · ◦ ptN−1|tN (·|xT )

])
≥ c

N
. (24)

The proof is given in Section E.5.

16



E Proofs

E.1 Proof of Theorem 2

Proof. For simplicity of notation, let p̃ψtn|T be the denoiser given by the teacher with timesteps
tn < tn+1 < · · · < tN , i.e,

p̃ψtn|T := pψtn|tn+1
◦ · · · ◦ pψtN−1|tN ,

so that we have rtn = ExT∼rT

[
p̃ψtn|T (·|xT )

]
. Note that we can just set p̃ψtN |T (·|x) = p̃ψT |T (·|x) =

δx.

Also, let p0,n := ExT∼rT

[
pθ0|tn ◦ p̃ψtn|T (·|xT )

]
for n = 1, . . . , N , where p0,N is just given by

p0,N = ExT∼rT

[
pθ0|T (·|xT )

]
. We first compare p0,n and p0,n+1 with the consistency loss.

For each 0 < u < t ≤ T , we have

Lconsis(θ;ψ, rt, 0, u, t) = Ext∼rt

[
DKL(p

θ
0|u ◦ p

ψ
u|t(·|xt) ∥ p

θ
0|t(·|xt))

]
≥ DKL

(
Ext∼rt

[
pθ0|u ◦ p

ψ
u|t(·|xt)

] ∥∥∥Ext∼rt

[
pθ0|t(·|xt)

])
from the convexity (Proposition 3). If we let u = tn and t = tn+1 for some 1 ≤ n < N , we can see

Ext∼rt

[
pθ0|u ◦ p

ψ
u|t(·|xt)

]
= ExT

[
pθ0|tn ◦ pψtn|tn+1

◦ p̃ψtn+1|T (·|xT )
]
= p0,n,

and Ext∼rt

[
pθ0|t(·|xt)

]
= p0,n+1 hold. By using Pinsker’s inequality (Proposition 2), we have

dTV(p0,n, p0,n+1) ≤
1√
2
DKL(p0,n ∥ p0,n+1)

1/2 ≤ 1√
2
Lconsis(θ;ψ, rtn+1

, 0, tn, tn+1)
1/2. (25)

From a similar argument, we have

Ldistil(θ;ψ, rt1 , t1) = Ext1∼rt1

[
DKL(p

ψ
0|t1(·|xt1) ∥ p

θ
0|t1(·|xt1))

]
≥ DKL(r0 ∥ p0,1),

and so

dTV(r0, p0,1) ≤
1√
2
DKL(r0 ∥ p0,1)1/2 ≤ 1√

2
Ldistil(θ;ψ, rt1 , t1)

1/2. (26)

By using the triangle inequality of total variation distance, we obtain

dTV(r0, p0,N ) ≤ dTV(r0, p0,1) +

N−1∑
n=1

dTV(p0,n, p0,n+1).

Finally, applying Eqs. (25) and (26) to its right-hand side yields the desired inequality.

E.2 Proof of Proposition 4

Proof. Let us first consider the case of q1 = q2. Then, we have

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q1 [p2(·|y)])

=
1

2

∑
x

∣∣∣∣∣∑
y

p1(x|y)q1(y)−
∑
y

p2(x|y)q1(y)

∣∣∣∣∣ = 1

2

∑
x

∣∣∣∣∣∑
y

(p1(x|y)− p2(x|y))q1(y)

∣∣∣∣∣
≤ 1

2

∑
x

∑
y

|p1(x|y)− p2(x|y)| q1(y) = Ey∼q1 [dTV(p1(·|y), p2(·|y))] , (27)
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where we have used q1 ≥ 0 in the inequality. On the other hand, if p1 = p2, we have

dTV(Ey∼q1 [p2(·|y)] ,Ey∼q2 [p2(·|y)])

=
1

2

∑
x

∣∣∣∣∣∑
y

p2(x|y)q1(y)−
∑
y

p2(x|y)q2(y)

∣∣∣∣∣ = 1

2

∑
x

∣∣∣∣∣∑
y

p2(x|y)(q1(y)− q2(y))

∣∣∣∣∣
≤ 1

2

∑
x

∑
y

p2(x|y)|q1(y)− q2(y)| =
1

2

∑
y

|q1(y)− q2(y)| = dTV(q1, q2), (28)

where we have used p2 ≥ 0 in the inequality and
∑
x p2(x|y) = 1 in the last equality.

By utilizing the usual triangle inequality of dTV and the inequalities (27) & (28), we obtain

dTV(Ey∼q1 [p1(·|y)] ,Ey∼q2 [p2(·|y)])
≤ dTV(Ey∼q1 [p1(·|y)] ,Ey∼q1 [p2(·|y)]) + dTV(Ey∼q1 [p2(·|y)] ,Ey∼q2 [p2(·|y)])
≤ Ey∼q1 [dTV(p1(·|y), p2(·|y))] + dTV(q1, q2),

which is the desired inequality.

E.3 Proof of Proposition 5

Proof. Note that, by Assumption A, qt|s is continuous over {(s, t) ∈ [0, T ]2 | s ≤ t}, and Qt given
by (21) is continuous over [0, T ] and satisfies Eqs. (16)–(18), as mentioned in Section D.2 before
Assumption B.

Now we work under Assumption B. Let us simply write x ∈ X instead of the bold style x ∈ SD in
this paragraph. We follow the argument in Sun et al. [46, Section B.2]. Let us consider the conditional
probability (namely, the true denoiser) qs|t for s ≤ t, which is uniquely determined since qt > 0.
Then, we have

∂sqs|t(y|x) = ∂s
qs(y)qt|s(x|y)

qt(x)
=

(∂sqs)(y)qt|s(x|y) + qs(y)(∂sqt|s)(x|y)
qt(x)

=
1

qt(x)

(
qt|s(x|y)

∑
z

Qs(y, z)qs(z)− qs(y)
∑
w

qt|s(x|w)Qs(w, y)

)
, (29)

where we have used the forward Kolmogorov equation of qt given as

∂tqt(x) =
∑
w

∂tqt|0(x|w)q0(w) =
∑
w

∑
z

Qt(x, z)qt|0(z|w)q0(w) =
∑
z

Qt(x, z)qt(z)

for computing ∂sqs and the backward Kolmogorov equation for computing ∂sqt|s. By taking the limit
s→ t− 0 in (29), we obtain lims→t−0 ∂sqs|t(y|x) = − qt(y)

qt(x)
Qt(x, y) if y ̸= x, given the continuity

of qt|s and Qs. Then, from Taylor’s theorem, we obtain a backward counterpart of (16) for y ̸= x as

qt−ϵ|t(y|x) = ϵ
qt(y)

qt(x)
Qt(x, y) + o(ϵ), ϵ > 0. (30)

Since
∑
y qt−ϵ|t(y|x) = 1 holds always, we also have that qt−ϵ|t(x|x) = 1 + ϵRt,x + o(ϵ) for

the coefficient Rt,x = −
∑
y ̸=x

qt(y)
qt(x)

Qt(x, y). Therefore, we can prove (a) by letting Rt(y, x) =
qt(y)
qt(x)

Qt(x, y) for y ̸= x and Rt(x, x) = Rt,x.

We can see (b) from (21) and the concrete form of Rt.

E.4 Proof of the first half of Theorem 3

We first prove the following auxiliary lemma replacing the o(ϵ) term in the backward transition by
O(ϵ2).
Lemma 1. Under the same setting as in Theorem 3, there is a constant C > 0 such that, for any
t ∈ (0, T ], ϵ ∈ (0, t], and x ∈ X , we have

dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) ≤ Cϵ2. (31)
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Proof. From (29) and Assumption C, qs|t(y|x) for s < t is twice-differentiable with regard to s, and
qt(x)∂sqs|t(y|x) can be represented as a polynomial of the function values of qs, Qs, qt|s, and ∂sQs.
Thus, there is a constant C1 depending on |S|, D, sups,z,wQs(z,w) and sups,z,w ∂s(z,w) such
that ∂2sqs|t(y|x) ≤ C1 for any s, t,y,x (note that qt|s and qs are within [0, 1]).

Now that ∂sqs|t can be continuously extended to s ∈ [0, t] from (29) and Assumption B, for each
t ∈ (0, T ], ϵ ∈ (0, t] and x,y ∈ SD, Taylor’s theorem yields that∣∣qt−ϵ|t(y|x)− δy,x − ϵRt(y,x)

∣∣ = ∣∣∣∣ (∂2sqs|t)(y|x)|s=θ2
ϵ2
∣∣∣∣ ≤ C1

2
ϵ2, (32)

for a certain θ ∈ (t− ϵ, t).

Let us next consider the marginal-matching product model pt−ϵ|t. For each d, if yd ̸= xd, we have

∣∣∣pdt−ϵ|t(yd|x)− ϵRt((y
d,x\d),x)

∣∣∣ =
∣∣∣∣∣∣
∑

y\d∈SD−1

qt−ϵ|t((y
d,y\d)|x)− ϵRt((y

d,x\d),x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y\d

(
qt−ϵ|t((y

d,y\d)|x)− ϵRt((y
d,y\d),x)

)∣∣∣∣∣∣
≤ |S|D−1C1

2
ϵ2, (33)

where the second equality comes from Proposition 5(b) and the inequality is from (32). If yd = xd,
since pdt−ϵ|t(x

d|x) = 1−
∑
yd ̸=xd |pdt−ϵ|t(y

d|x) we can use (33) to obtain∣∣∣∣∣∣pdt−ϵ(xd|x)− 1 + ϵ
∑
yd ̸=xd

Rt((y
d,x\d),x)

∣∣∣∣∣∣ ≤
∑
yd ̸=xd

|pdt−ϵ|t(y
d|x)− ϵRt((y

d,x\d),x)|

≤ |S|DC1

2
ϵ2.

From (33) and this, by defining Rdt : S → R as Rdt (y
d) = Rt((y

d,x\d),x) for yd ̸= xd and
Rdt (x

d) = −
∑
yd ̸=xd R

d
t (y

d), there exists a constant C2 > 0 and a function Ad : S → R (for fixed
t and x) such that

pdt−ϵ|t(y
d|x) = δyd,xd − ϵRdt (y

d) + ϵ2Ad(yd, ϵ), sup
yd∈S, ϵ

∣∣Ad(yd, ϵ)∣∣ ≤ C2. (34)

Therefore, we have

pt−ϵ|t(y|x) =
D∏
d=1

(
δyd,xd − ϵRdt (y

d) + ϵ2Ad(yd, ϵ)
)

= δy,x + ϵ

D∑
d=1

Rdt (y
d)δy\d,x\d + ϵ2P3(ϵ, (δyd,xd , R

d
t (y

d), Ad(yd, ϵ))Dd=1),

where P3 is a certain polynomial of 3D + 1 variables. Note that, if y ̸= x, Rdt (y
d)δy\d,x\d can be

nonzero only if yd ̸= xd and y\d = x\d. In that case, from the definition of Rdt (y
d), we have

pt−ϵ|t(y|x) = ϵRdt (y
d) + ϵ2P3 = ϵRt(y,x) + ϵ2P3. (35)

This equality also holds when y and x differ in more than one entry, since the coefficient of ϵ becomes
zero in such a case, and Rt(y,x) = 0 from Proposition 5(b). Since the inputs for P3 are all bounded,
by combining it with (32), for y ̸= x, we have

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)| ≤ |qt−ϵ|t(y|x)− ϵRt(y,x)|+ |ϵRt(y,x)− qt−ϵ|t(y|x)|

≤ C1

2
ϵ2 + (supP3)ϵ

2 ≤ C4ϵ
2
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for a constant C4 > 0. In particular, we have

dTV(qt−ϵ|t(·|x), pt−ϵ|t(·|x)) =
1

2

∑
y

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)|

=
1

2

∑
y ̸=x

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)|+

∣∣∣∣∣∣1−
∑
y ̸=x

qt−ϵ|t(y|x)− 1 +
∑
y ̸=x

pt−ϵ|t(y|x)

∣∣∣∣∣∣


≤
∑
y ̸=x

|qt−ϵ|t(y|x)− pt−ϵ|t(y|x)| ≤ |S|DC4ϵ
2, (36)

which proves (31).

By using the lemma and Proposition 4, we can prove the theorem.

Proof of Theorem 3. For each i = 0, . . . , N , let us define the compositions

p̃0|t0(·|x) = δx, p̃0|ti := pt0|t1 ◦ · · · ◦ pti−1|ti , i = 1, . . . , N.

Note also that we have qti|T = qti|ti+1
◦ · · · ◦ qtN−1|tN from the Markov property of the reverse

process. Indeed, for s < t < u, we have qu|t(z|y) = qu|s,t(z|x,y) from the Markov property of the
forward process, and so∑

y

qs|t(x|y)qt|u(y|z) =
∑
y

qs,t(x,y)

qt(y)

qt,u(y, z)

qu(z)

=
∑
y

qs,t(x,y)qu|t(z|y)
qu(z)

=
∑
y

qs,t(x,y)qu|s,t(z|x,y)
qu(z)

=

∑
y qs,t,u(x,y, z)

qu(z)
=
qs,u(x, z)

qu(z)
= qs|u(x|z),

where we have implicitly used Assumption B. By using the inequality recursively, we can prove the
aforementioned identity.

We prove the desired estimate by exploiting the compositions. Recall q0 = ExT∼qT
[
q0|tN (·|xT )

]
.

What we want to estimate is dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
). We bound the

distance with the following triangle inequality:

dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
)

≤
N−1∑
i=0

dTV(ExT∼qT
[
p̃0|ti ◦ qti|tN (·|xT )

]
,ExT∼qT

[
p̃0|ti+1

◦ qti+1|tN (·|xT )
]
). (37)

Let us bound each term inside the summation by using Lemma 1 and Proposition 4. First, since
p̃0|ti+1

= p̃0|ti ◦ pti|ti+1
, by letting p1 = p2 = p̃0|ti in Proposition 4, we have

dTV(ExT∼qT
[
p̃0|ti ◦ qti|tN (·|xT )

]
,ExT∼qT

[
p̃0|ti+1

◦ qti+1|tN (·|xT )
]
)

≤ dTV(ExT∼qT
[
qti|tN (·|xT )

]
,ExT∼qT

[
pti|ti+1

◦ qti+1|tN (·|xT )
]
). (38)

Second, since qti+1|tN = qti|ti+1
◦ qti+1|tN , by letting q := q1 = q2 = ExT∼qT

[
qti+1|tN (·|xT )

]
in

Proposition 4 (note that the indices of q1, q2 here are different from time), we have

dTV(ExT∼qT
[
qti|tN (·|xT )

]
,ExT∼qT

[
pti|ti+1

◦ qti+1|tN (·|xT )
]
)

≤ Ex∼q
[
dTV(qti|ti+1

(·|x), pti|ti+1
(·|x))

]
≤ CT 2

N2
, (39)

where we have used (31) and ti+1 − ti = T/N in the last inequality. By combining the estimates
(37)–(39), we obtain

dTV(ExT∼qT
[
q0|tN (·|xT )

]
,ExT∼qT

[
p̃0|tN (·|xT )

]
) ≤

N−1∑
i=0

CT 2

N2
=
CT 2

N
,

which completes the proof with a replacement of the constant factor.
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E.5 Proof of Proposition 6

Proof. Consider the analytical sampler ps|t(zw|xy) = q1s|t(z|x)q
2
s|t(w|y) for s < t. Note that,

because of the symmetry between a and b in q0 and the forward transition, the distributions qt or
those given by the composition of ps|t are also symmetric. Thus, the probability of aa recovers all
the information of the distributions we consider over X .

Let us compute several probabilities regarding qs|t and the analytical sampler through (23). First,
note that q0|t(ab|·) = q0|t(ba|·) = 0. Therefore, we have

q0|t(aa|aa) =
qt|0(aa|aa)q0(aa)

qt(aa)

=
qt|0(aa|aa)q0(aa)

qt|0(aa|aa)q0(aa) + qt|0(aa|bb)q0(bb)
=

1
4 (1 + e−t)2

1
4 (1 + e−t)2 + 1

4 (1− e−t)2
=

(1 + e−t)2

2(1 + e−2t)
,

(40)

q0|t(bb|aa) = 1− q0|t(aa|aa) =
(1− e−t)2

2(1 + e−2t)
, (41)

q0|t(aa|ab) = q0|t(bb|ab) =
1

2
, (42)

where (42) is derived from symmetry.

By using (40)–(42) and the general fact (for Markov processes)

qs|0,t(xs|x0,xt) =
q0,s,t(x0,xs,xt)

q0,t(x0,xt)
=
qs|0(xs|x0)qt|0,s(xt|x0,xs)

qt|0(xt|x0)
=
qs|0(xs|x0)qt|s(xt|xs)

qt|0(xt|x0)

for 0 ≤ s ≤ t, we can compute qs|t(·|aa) for any s ∈ [0, t] as follows:

qs|t(aa|aa) = q0|t(aa|aa)qs|0,t(aa|aa, aa) + q0|t(bb|aa)qs|0,t(aa|bb, aa)

=
(1 + e−t)2

2(1 + e−2t)

1
4 (1 + e−s)2 1

4 (1 + e−(t−s))2

1
4 (1 + e−t)2

+
(1− e−t)2

2(1 + e−2t)

1
4 (1− e−s)2 1

4 (1 + e−(t−s))2

1
4 (1− e−t)2

=
((1 + e−s)2 + (1− e−s)2)(1 + e−(t−s))2

8(1 + e−2t)
=

(1 + e−2s)(1 + e−(t−s))2

4(1 + e−2t)
, (43)

qs|t(bb|aa) = q0|t(aa|aa)qs|0,t(bb|aa, aa) + q0|t(bb|aa)qs|0,t(bb|bb, aa)

=
(1 + e−t)2

2(1 + e−2t)

1
4 (1− e−s)2 1

4 (1− e−(t−s))2

1
4 (1 + e−t)2

+
(1− e−t)2

2(1 + e−2t)

1
4 (1 + e−s)2 1

4 (1− e−(t−s))2

1
4 (1− e−t)2

=
((1− e−s)2 + (1 + e−s)2)(1− e−(t−s))2

8(1 + e−2t)
=

(1 + e−2s)(1− e−(t−s))2

4(1 + e−2t)
, (44)

qs|t(ab|aa) = qs|t(ba|aa) =
1

2
(1− qs|t(aa|aa)− qs|t(bb|aa)) (45)

=
1

2
− (1 + e−2s)((1 + e−(t−s))2 + (1− e−(t−s))2)

8(1 + e−2t)

=
1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)
=

1

4
− e−2s + e−2(t−s)

4(1 + e−2t)
. (46)

We can also compute qs|t(aa|ab) = qs|t(bb|ab) as

qs|t(aa|ab) = q0|t(aa|ab)qs|0,t(aa|aa, ab) + q0|t(bb|ab)qs|0,t(aa|bb, ab)

=
1

2

1
4 (1 + e−s)2 1

4 (1 + e−(t−s))(1− e−(t−s))
1
4 (1 + e−t)(1− e−t)

+
1

2

1
4 (1− e−s)2 1

4 (1 + e−(t−s))(1− e−(t−s))
1
4 (1− e−t)(1 + e−t)

=
((1 + e−s)2 + (1− e−s)2)(1− e−2(t−s))

8(1− e−2t)
=

(1 + e−2s)(1− e−2(t−s))

4(1− e−2t)

=
1

4
+
e−2s − e−2(t−s)

4(1− e−2t)
. (47)
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Let us now compute the probabilities regarding the analytical sampler. To make it simple, let
qs|t(x ∗ |·) := qs|t(xa|·) + qs|t(xb|·) represent marginals; qs|t(∗y|·) is defined similarly. By using
this notation and (43)–(47), we have

ps|t(aa|aa) = qs|t(a ∗ |aa)qs|t(∗a|aa) = qs|t(a ∗ |aa)2 = (qs|t(aa|aa) + qs|t(ab|aa))2

=

(
(1 + e−2s)(1 + e−(t−s))2

4(1 + e−2t)
+

1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)

)2

=

(
2(1 + e−2t) + (1 + e−2s)((1 + e−(t−s))2 − (1 + e−2(t−s)))

4(1 + e−2t)

)2

=

(
(1 + e−2t) + (1 + e−2s)e−(t−s)

2(1 + e−2t)

)2

=

(
(1 + e−(t+s))(1 + e−(t−s))

2(1 + e−2t)

)2

(48)

ps|t(bb|aa) = qs|t(b ∗ |aa)qs|t(∗b|aa) = qs|t(b ∗ |aa)2 = (qs|t(bb|aa) + qs|t(ba|aa))2

=

(
(1 + e−2s)(1− e−(t−s))2

4(1 + e−2t)
+

1

2
− (1 + e−2s)(1 + e−2(t−s))

4(1 + e−2t)

)2

=

(
2(1 + e−2t) + (1 + e−2s)((1− e−(t−s))2 − (1 + e−2(t−s)))

4(1 + e−2t)

)2

=

(
(1 + e−2t)− (1 + e−2s)e−(t−s)

2(1 + e−2t)

)2

=

(
(1− e−(t+s))(1− e−(t−s))

2(1 + e−2t)

)2

(49)

Let us compute the sum of (48) and (49) as we use it later:

ps|t(aa|aa) + ps|t(bb|aa)

=

(
(1 + e−(t+s))(1 + e−(t−s))

2(1 + e−2t)

)2

+

(
(1− e−(t+s))(1− e−(t−s))

2(1 + e−2t)

)2

=
((1 + e−(t+s))(1 + e−(t−s)))2 + ((1− e−(t+s))(1− e−(t−s)))2

4(1 + e−2t)2

=
(1 + e−2t + e−(t+s) + e−(t−s))2 + (1 + e−2t − e−(t+s) − e−(t−s))2

4(1 + e−2t)2

=
(1 + e−2t)2 + (e−(t+s) + e−(t−s))2

2(1 + e−2t)2
=

1

2
+

(e−(t+s) + e−(t−s))2

2(1 + e−2t)2
. (50)

Next, ps|t(aa|ab) is the product of two marginals — qs|t(a ∗ |ab) and qs|t(∗a|ab), which can be
computed as follows:

ps|t(a ∗ |ab) = q0|t(aa|ab)q1s|0,t(a|a, a) + q0|t(bb|ab)q1s|0,t(a|b, a)

=
1

2

1
2 (1 + e−s) 12 (1 + e−(t−s))

1
2 (1 + e−t)

+
1

2

1
2 (1− e−s) 12 (1 + e−(t−s))

1
2 (1− e−t)

=
((1 + e−s)(1− e−t) + (1− e−s)(1 + e−t))(1 + e−(t−s))

4(1− e−2t)

=
(1− e−(t+s))(1 + e−(t−s))

2(1− e−2t)
=

1

2
+
e−(t−s) − e−(t+s)

2(1− e−2t)
,

ps|t(∗a|ab) = ps|t(a ∗ |ba) = ps|t(b ∗ |ab) = 1− ps|t(a ∗ |ab) =
1

2
− e−(t−s) − e−(t+s)

2(1− e−2t)
,

where the latter derivation is from the symmetries of the two dimensions and two characters. By
using these, we have

ps|t(aa|ab) = ps|t(a ∗ |ab)ps|t(∗a|ab) =
1

4
−
(
e−(t−s) − e−(t+s)

2(1− e−2t)

)2

. (51)
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Let us consider iteratively denoising from qT by using ps|t. For an ϵ > 0 and nonnegative integers
n ≤ T/ϵ− 1, define

pϵT := pT , pϵT−(n+1)ϵ := Ex∼pϵT−nϵ

[
pT−(n+1)ϵ|T−nϵ(·|x)

]
, n = 0, 1, . . . .

Our goal is to estimate the difference between pϵT−nϵ and qT−nϵ for each n. Let us fix n and set
t = T − nϵ when computing pϵt−ϵ in terms of pϵt . Because of the symmetry, pϵt(aa) = pϵt(bb) and
pϵt(ab) = pϵt(ba) =

1
2 − pϵt(aa) hold in general. Therefore, by using (50) and (51), we have

pϵt−ϵ(aa) = pt−ϵ|t(aa|aa)pϵt(aa) + pt−ϵ|t(aa|bb)pϵt(bb) + pt−ϵ|t(aa|ab)pϵt(ab) + pt−ϵ|t(aa|ba)pϵt(ba)

= pt−ϵ|t(aa|aa)pϵt(aa) + pt−ϵ|t(bb|aa)pϵt(aa) + 2pt−ϵ|t(aa|ab)
(
1

2
− pϵt(aa)

)
= pt−ϵ|t(aa|ab) + (pt−ϵ|t(aa|aa) + pt−ϵ|t(bb|aa)− 2pt−ϵ|t(aa|ab))pϵt(aa)

=
1

4
− (e−ϵ − e−(2t−ϵ))2

4(1− e−2t)2
+

(
(e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+

(e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa). (52)

To compare it with qt−ϵ, we also compute a similar recurrence equation by replacing p’s with q’s and
using (45)–(47):

qt−ϵ(aa) = qt−ϵ|t(aa|ab) + (qt−ϵ|t(aa|aa) + qt−ϵ|t(bb|aa)− 2qt−ϵ|t(aa|ab))qt(aa)

=
1

4
− e−2ϵ − e−2(t−ϵ)

4(1− e−2t)
+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
qt(aa) (53)

Let us now compute some quantities regarding the coefficients in (52) and (53).

e−2ϵ − e−2(t−ϵ)

1− e−2t
− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

=
(e−2ϵ − e−2(t−ϵ))(1− e−2t)− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

=
(e−2ϵ − e−2(t−ϵ) − e−2(t+ϵ) + e−2(2t−ϵ))− (e−ϵ − e−(2t−ϵ))2

(1− e−2t)2

= − (e−(t−ϵ) − e−(t+ϵ))2

(1− e−2t)2
= − e−2t

(1− e−2t)2
(eϵ − e−ϵ)2, (54)

e−2ϵ + e−2(t−ϵ)

1 + e−2t
− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−2ϵ + e−2(t−ϵ))(1 + e−2t)− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−2ϵ + e−2(t−ϵ) + e−2(t+ϵ) + e−2(2t−ϵ))− (e−ϵ + e−(2t−ϵ))2

(1 + e−2t)2

=
(e−(t−ϵ) − e−(t+ϵ))2

(1 + e−2t)2
=

e−2t

(1 + e−2t)2
(eϵ − e−ϵ)2, (55)

e−2ϵ + e−2(t−ϵ)

1 + e−2t
+
e−2ϵ − e−2(t−ϵ)

1− e−2t

=
(e−2ϵ + e−2(t−ϵ))(1− e−2t) + (e−2ϵ − e−2(t−ϵ))(1 + e−2t)

1− e−4t

= 2 +
2(e−2ϵ − e−2(2t−ϵ))− 2(1− e−4t)

1− e−4t

= 2 +
2(1 + e2(2t−ϵ))

1− e−4t
(e−2ϵ − 1). (56)
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We shall evaluate the difference ∆ϵ
t := qt(aa)− pϵt(aa) by using (52)–(56) as follows:

∆ϵ
t−ϵ = −

(
e−2ϵ − e−2(t−ϵ)

4(1− e−2t)
− (e−ϵ − e−(2t−ϵ))2

4(1− e−2t)2

)
+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
(pϵt(aa) + ∆ϵ

t)

−
(
(e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+

(e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa)

=
e−2t

4(1− e−2t)2
(eϵ − e−ϵ)2 +

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)

)
∆ϵ
t

+

(
e−2ϵ + e−2(t−ϵ)

2(1 + e−2t)
− (e−ϵ + e−(2t−ϵ))2

2(1 + e−2t)2
+
e−2ϵ − e−2(t−ϵ)

2(1− e−2t)
− (e−ϵ − e−(2t−ϵ))2

2(1− e−2t)2

)
pϵt(aa)

=
e−2t

4(1− e−2t)2
(eϵ − e−ϵ)2 +

(
1 +

1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1)

)
∆ϵ
t

+

(
e−2t

2(1 + e−2t)2
− e−2t

2(1− e−2t)2

)
(eϵ − e−ϵ)2pϵt(aa)

=

(
e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

))
(eϵ − e−ϵ)2

+

(
1 +

1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1)

)
∆ϵ
t. (57)

Since pϵt(aa) = pϵt(bb) ≤ 1/2, we have

e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

)
≥ 1

2
min

{
e−2t

2(1 + e−2t)2
,

e−2t

2(1− e−2t)2

}
=

e−2t

4(1− e−2t)2
.

Additionally, as the Taylor series of (eϵ − e−ϵ)2 = e2ϵ + e−2ϵ − 2 is given by
∑∞
k=1

2
(2k)! (2ϵ)

2k, we
especially have (eϵ − e−ϵ)2 ≥ 4ϵ2. Thus, we obtain(

e−2t

2(1 + e−2t)2
pϵt(aa) +

e−2t

2(1− e−2t)2

(
1

2
− pϵt(aa)

))
(eϵ − e−ϵ)2

≥ e−2t

4(1− e−2t)2
· 4ϵ2 =

e−2t

(1− e−2t)2
ϵ2. (58)

Also, since e−2ϵ ≥ 1− 2ϵ, we have

1 +
1 + e2(2t−ϵ)

1− e−4t
(e−2ϵ − 1) ≥ 1− 2(1 + e2(2t−ϵ))

1− e−4t
ϵ ≥ 1− 4

1− e−4t
ϵ. (59)

Suppose we are working on the time interval [δ, T ] for some δ, T > 0. Let us take ϵ ≤ δ/2, then we
have

1− 4

1− e−4t
ϵ ≥ 1− 4

4t
ϵ ≥ 1− ϵ

δ
> 0. (60)

For (58), we have
e−2t

(1− e−2t)2
ϵ2 ≥ e−2tϵ2 ≥ e−2T ϵ2. (61)

By combining (57)–(61), we first see that ∆ϵ
t is nonnegative for all t = T − nϵ by induction on

n = 0, 1, . . . (assuming ϵ ≤ δ/2 and t ∈ [δ, T ]). Then, we obtain the following simple inequality:

∆ϵ
t−ϵ ≥

(
1− ϵ

δ

)
∆ϵ
t + e−2T ϵ2

By recalling that t = T − nϵ, we can rewrite it as(
1− ϵ

δ

)−(n+1)

∆ϵ
T−(n+1)ϵ ≥

(
1− ϵ

δ

)−n
∆ϵ
T−n +

(
1− ϵ

δ

)−(n+1)

e−2T ϵ2.
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Since ∆ϵ
T = 0, we have

∆ϵ
T−nϵ ≥

(
1− ϵ

δ

)n n∑
k=1

(
1− ϵ

δ

)−k
e−2T ϵ2 =

n−1∑
k=0

(
1− ϵ

δ

)k
e−2T ϵ2. (62)

Since n ≤ T/ϵ and (1− 1/x)x is increasing over x > 1, for k = 0, . . . , n− 1, we have

(
1− ϵ

δ

)k
≥
(
1− ϵ

δ

)n
≥
(
1− ϵ

δ

)T/ϵ
=

((
1− ϵ

δ

)δ/ϵ)T/δ
≥

((
1− 1

2

)2
)T/δ

= 2−2T/δ,

where we have exploited the assumption ϵ ≤ δ/2 (so that δ/ϵ ≥ 2). By applying this to (62), we
obtain

∆ϵ
T−nϵ ≥ (21/δe)−2Tnϵ2.

Now, let ϵ = (T − δ)/N for the given N . Since N ≥ 2(T−δ)
δ and so ϵ ≤ δ/2, we have

∆ϵ
δ = ∆ϵ

T−Nϵ ≥ (21/δe)−2TNϵ2 = (21/δe)−2T (T − δ)2

N
.

Finally, as dTV(qδ, p
(T−δ)/N
δ ) ≥ ∆ϵ

δ , the constant c = (21/δe)−2T (T − δ)2 satisfies (24).

F Control variates

When we want to compute an expectation E[f(x)], instead of directly doing the Monte Carlo estimate
1
N

∑N
i=1 f(xi) ≈ E[f(x)], we can find a function g ≈ f such that E[g(x)] is tractable, and then do

the Monte Carlo estimate for the remainder term:

1

N

N∑
i=1

(f(xi)− g(xi)) + E[g(x)] ≈ E[f(x)] . (63)

This left-hand side is still an unbiased estimator of E[f(x)], and ideally has a lower variance than the
vanilla Monte Carlo estimator 1

N

∑N
i=1 f(xi) if g ≈ f is a good function approximation. The role of

g in (63) is called a control variate [15, 35].

F.1 Marginal-matching product model as control variate

We briefly discuss how the product model pθ given in (13) satisfies the following favorable properties
(already shown in Section B.2) for being control variate:

(i) it reasonably approximates pθs|t(·|xt), and

(ii) Ex∼q[g(x)] is easy to compute/approximate.

For the point (i), note that pθ is defined as the product model having the same marginal as pθ.
Since dimensionally independent modeling (when combined with multi-step sampling) works as
in Theorem 1, pθ should approximate pθ to a certain degree; see also Lemma 1 for quantitative
understanding. The remainder pθ − pθ can then be regarded as the dimensional correlation captured
by pθ, with which we conduct a usual Monte Carlo integration.

Regarding (ii), given a product distribution p(x) =
∏D
d=1 p

d(xd) over X = SD, we can indeed
compute H(q, p) by a Monte Carlo integral using samples of η as

H(q, p) = Exs∼q[− log p(xs)] = EηExs∼qη [− log p(xs)]

= Eη[H(qη, p)] = Eη

− D∑
d=1

∑
xds∈S

qη(xds) log p
d(xds)

 . (64)

While it still requires Monte Carlo with η to estimate this, it utilizes the product structure of each qη
and p for exactly computing H(qη, p). Thus, we heuristically expect it to be more accurate than the
Monte Carlo estimate using samples from q.
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F.2 Derivations of dimension-wise computable control variates for mixture model

Convex upper bound as control variate. To simplify the notation and situation, suppose we
are given probability distributions q = Eη[qη] and pθ = Eλ

[
pθ,λ

]
, where qη and pθ,λ are product

distributions, i.e., we have

qη(x) =

D∏
d=1

qη,d(xd), pθ,λ(x) =

D∏
d=1

pθ,λ,d(xd).

By letting H be the (cross) entropy, we want to minimize

DKL(q∥pθ) = H(q, pθ)−H(q) = Ex∼q
[
− log pθ(x)

]
− Ex∼q[− log q(x)] .

Since q is fixed, we simply want to minimize

H(q, pθ) = Ex∼q
[
− log pθ(x)

]
= EηEx∼qη

[
− log pθ(x)

]
with regard to θ. However, it might have a high variance when we only sample x ∼ q and execute
Monte Carlo. One option is using the following upper bound ike negative ELBO given by Jensen’s
inequality (convex inequality) as a control variate:

− log pθ(x) = − logEλ
[
pθ,λ(x)

]
≤ Eλ

[
− log pθ,λ(x)

]
.

Indeed, its expectation regarding x ∼ q is dimension-wise computable as

Ex∼qEλ
[
− log pθ,λ(x)

]
= EηEx∼qηEλ

[
− log pθ,λ(x)

]
= EηEλEx∼qη

[
− log pθ,λ(x)

]
= EηEλ

D∑
d=1

Exd∼qη,d
[
− log pθ,λ,d(xd)

]
= EηEλ

[
−

D∑
d=1

∑
xd

qη,d(xd) log pθ,λ,d(xd)

]
,

which does not require Monte Carlo sampling of x. Overall, we can decompose the computation as

H(q, pθ) = Ex∼q
[
− log pθ(x) + Eλ

[
log pθ,λ(x)

]]︸ ︷︷ ︸
Monte Carlo approximation

+Ex∼qEλ
[
− log pθ,λ(x)

]︸ ︷︷ ︸
dim-wise computable

.

Marginal control variate. The previous convex upper bound seems good, but since

Ex∼qEλ
[
− log pθ,λ(x)

]
= Eλ

[
H(q, pθ,λ)

]
≥ inf

λ
H(q, pθ,λ),

it might be a very loose bound (we want the mixture to outperform the best product distribution pθ,λ).
To make it more practical, we can consider its dimension-wise tractable lower bound as follows:

Ex∼qEλ
[
− log pθ,λ(x)

]
= Eη

D∑
d=1

Exd∼qη,dEλ
[
− log pθ,λ,d(xd)

]
≥ −Eη

D∑
d=1

Exd∼qη,d logEλ
[
pθ,λ,d(xd)

]
,

which is given by Jensen’s inequality as well. Therefore, if we define the product distribution

pθ(x) =

D∏
d=1

pθ,d(xd), pθ,d(xd) = Eλ
[
pθ,d(xd)

]
,

we have Ex∼qEλ
[
− log pθ,λ(x)

]
≤ Ex∼q

[
− log pθ(x)

]
and this alternative is also dimension-wise

computable. Since pθ and pθ coincides in each one-dimensional marginal, the difference between
these two can be regarded as the result of dimensional correlation.

Therefore, we propose the following decomposition, which is also discussed in Section B.2:

H(q, pθ) = Ex∼q
[
− log pθ(x) + log pθ(x)

]︸ ︷︷ ︸
Monte Carlo approximation

+Ex∼q
[
− log pθ(x)

]︸ ︷︷ ︸
dim-wise computable

.
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F.3 Product teacher model as control variate

For two models with the same marginals, we have the following proposition:
Proposition 7. Let q, q̃ be probability distributions on X = SD with the same marginals qd = q̃d.
Then, for a product distribution p(x) =

∏
d p

d(xd) over X , we have H(q, p) = H(q̃, p).

Proof. It suffices to prove H(q, p) can be computed only by using the marginals qd. Indeed, we have

Ex∼q[log p(x)] = Ex∼q

[
D∑
d=1

log pd(xd)

]
=

D∑
d=1

Ex∼q
[
log pd(xd)

]
=

D∑
d=1

∑
xd

qd(xd) log pd(xd),

and it yields the desired conclusion.

From this proposition, under pψ,d0|t ≈ qd0|t and the fact that pθ is a product model, we have

Ext∼qt

[
H(q0|t(·|xt), pθ0|t(·|xt))

]
≈ Ext∼qt

[
H(pψ0|t(·|xt), p

θ
0|t(·|xt))

]
.

Since H(p1, p2) = DKL(p1 ∥ p2) +H(p2, p2) this right-hand side can be rewritten as

Ext∼qt

[
H(pψ0|t(·|xt), p

θ
0|t(·|xt))

]
= Ext∼qt

[
DKL(p

ψ
0|t(·|xt) ∥ p

θ
0|t(·|xt)))

]
+ const.,

where the constant term is independent of θ. Since the KL divergence between two product dis-
tributions decomposes into the sum of the KL divergence between each marginal, we obtain the
approximation (15).

G Experimental details

G.1 Sampling schemes

In the experiments, we use the following two sampling schemes when evaluating the already trained
product teacher model.

τ -leaping. In Campbell et al. [6], the authors first approximate the infinitesimal transition rate by
using each marginal pψ,d0|t . Indeed, the transition rate can be represented only with qd0|t and does not
require the joint conditional distribution [6, Proposition 3]. After estimating the transition rate, they
conduct a dimensionally parallel sampling method called τ -leaping [14] coming from computational
chemistry. Simply put, τ -leaping is a sort of generalization of the Euler method for solving the
backward SDE, exploiting the ordinal structure of S. We omit the corrector steps; the τ -leaping in
Table 1 corresponds to τLDR-0 in Campbell et al. [6].

Analytical sampling. Although the τ -leaping (or Euler method) is efficient with a large NFE, we
find that it deteriorates when we reduce the NFE seemingly due to the discretization error. The
analytical sampling [46], which is simply a parallel exact sampling of each dimension given as

qds|t(x
d
s |xt) =

∑
xd0

qds|0,t(x
d
s |xd0, xdt )qd0|t(x

d
0|xt) ≈

∑
xd0

qds|0,t(x
d
s |xd0, xdt )p

ψ,d
0|t (x

d
0|xt), (65)

does not suffer so much from the discretization. This is also mentioned in Gu et al. [17] as a fast
inference strategy, though they do not discuss dimensional correlations.

Note that these schemes are both dimensionally independent in the sense of (1) while not explicitly
modeling ps|t. Indeed, the dimensional independence is ubiquitous even when modeling ps|t implic-
itly. First, the reparametrization ps|t(xs|xt) =

∑
x0
p0|t(x0|xt)qs|0,t(xs|x0,xt) [2, 17], also used

in analytical sampling, is dimensionally independent, provided that p0|t(·|xt) is given by a product
model and the forward diffusion is dimensionally independent. Second, we can apparently avoid the
heuristic in the above modeling through the estimation of the transition rate in the continuous-time
discrete diffusion [6, Proposition 3], but the existing sampling schemes of xs given xt in continuous-
time settings including τ -leaping [6] and the Euler-based method [46, 29] are still dimensionally
independent.
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Sampling in the actual experiment given an NFE N is as follows: We first set the timesteps 0 =
t0 < t1 < · · · < tN = 1, with ti = 0.01 + 0.99 × i−1

N−1 for i ≥ 1. Given a terminal noise
xtN , we sample xti with our pti|ti+1

iteratively for i = N − 1, N − 2, . . . , 1. Finally, we sample
x0 ∈ argmax pψ0|t1(·|xt1) when using the teacher product model and x0 ∈ argmax pθ0|t1(·|xt1 ;λ)
with a random λ when using the student mixture model.

G.2 Implementation and training

As explained in Section 5, the state-space has D = 3 × 32 × 32 dimensions, and each dimension
has 256 possibilities of pixel values which corresponds to S = {0, . . . , 255}. The forward diffusion
process is defined through a discretized Gaussian transition rate with T = 1 [6, Section E].

All the models are based on the implementation explained in Campbell et al. [6, Section H.2], where
pψ0|t is parameterized with a U-net [20] that has feature resolutions from 32× 32 to 4× 4. Since the
output of the original U-net architecture [20] is a D-dimensional sequence (in SD) rather than D
marginal distributions, Campbell et al. [6] adjusted the network so that it first outputs a Gaussian
distribution over the real line for each marginal and then normalized it to obtain a distribution over S .
The time t in their implementation is passed to a transformer-based positional embedding, and this
embedding is fed to the up-/down-sampling layers of the U-net after passing through SiLU-activated
linear layers [12]. See Campbell et al. [6, Section H.2] and their GitHub repository for more details on
the original implementation. All the models output the estimation of q0|t, and we conduct denoising
from time t to time s by using the dimension-wise analytical sampling (65), except for the τ -leaping
benchmark in Table 1.

The only change we made on the architecture is the insertion of λ. We sample λ from the uniform
distribution over [0, 1], so we can basically use the same embedding architecture as the time t. For
the down-sampling layers, the embedding of λ is concatenated with the time embedding, and then
fed to the linear layers. After the linear layers, similarly to the time embedding, it is added to the
latent vector of the image. For the up-sampling layers, we concatenate the embeddings of λ, t, and
the pixel-wise average of the 4× 4 resolution latent tensor, and the remaining process is the same as
for the down-sampling layers.

Since our model is an expansion of the original model for pψ, we trained (finetuned) our student
model pθ from the checkpoint of pψ . The bias terms and the final layers concerning the embeddings
of λ are zero-intialized, and the rest are randomly intialized following the default setting of the
original model.

For training, we followed the original setting in terms of the use of Adam optimizer and the learning
rate 2 × 10−4 as well as other hyperparameters. The two primary differences in training are loss
functions and the training steps/minibatch size (due to the Monte Carlo for λ). For the former point,
we basically used

Ldistil(θ;ψ, qδ, δ) + Lconsis(θ;ψ, qt, 0, t−∆t, t) + αtLcorr(θ; t) + Lmarginal(θ;ψ, qt, t),

with techniques described in Section B. Additional details are as follows.

• Sampling from qδ and qt is based on the same sample of x0 ∼ q0.

• δ = 0.01 with probability 1/2; otherwise δ is taken uniformly from [0.01, 0.02].

• ∆t is sampled from a log-uniform distribution over [0.001, 0.01]; t is then sampled uniformly
from [0.01 + ∆t, 1].

• We can use several αt as in the ablation study in the following section. In the main model
pθ given in Table 1, we used the following sigmoid-based function as αt:

g(t) =
1

1 + exp(10− 20t)
. (66)

Regarding the training steps/minibatch details, the original teacher model checkpoint had been trained
for 2M steps, where each step uses 128 images from the CIFAR-10 dataset as a minibatch. We
stopped all the trainings in 320K steps (without warm-ups). Each step uses a minibatch of 128/L
images from the CIFAR-10 dataset, where L is a batch size for λ in the Monte Carlo estimates; we
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set M = N = L in (11). L = 16 is adopted in our model in Table 1, while the ablation study in the
following section compares various choices of L.

Finally, for evaluation, we measured FID and IS with the PyTorch-based implementation2 following
Campbell et al. [6].

G.3 Ablation study

Table 2: Ablation study on αt and the use of control variates.

NFE 10 NFE 20 NFE 40

FID IS FID IS FID IS
pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09

αt = 0 26.23 8.02±0.09 11.55 8.59±0.07 9.01 8.65±0.14

αt = 0, w/o CV 44.09 6.79±0.10 26.16 7.54±0.10 22.20 7.72±0.08

αt = 1 24.14 7.54±0.08 12.30 8.06±0.07 10.32 8.14±0.10

αt = 1, w/o CV 26.92 8.12±0.08 13.77 8.57±0.14 10.59 8.66±0.05

αt = t 24.21 8.10±0.11 10.85 8.55±0.08 9.27 8.51±0.10

αt = g(t) (see (66)) 22.77 8.19±0.08 10.07 8.54±0.12 9.01 8.42±0.11

Method

As an ablation study, we compared several loss functions, mainly changing αt, which controls the
degree of dimensional correlations we aim to learn from datapoints. We also investigate whether the
use of control variates is effective. The results are shown in Table 2, where “w/o CV” means that the
control variates are not used in training. The efficiency of control variates is consistent, while αt = 0
and αt = 1 have pros and cons. Non-constant functions of αt work better, partially matching the
hypothesis discussed at the end of Section 5.

Table 3: Ablation study on the Monte Carlo sample size of λ.

NFE 10 NFE 20 NFE 40

FID IS FID IS FID IS
pψ + analytical 32.61 7.59±0.10 12.36 8.55±0.13 8.01 8.77±0.09

L = 2 27.29 8.00±0.01 11.42 8.67±0.12 8.94 8.64±0.09

L = 4 24.94 8.05±0.14 10.66 8.60±0.11 8.90 8.59±0.07

L = 8 22.77 8.19±0.08 10.07 8.54±0.12 9.01 8.42±0.11

L = 16 20.64 8.29±0.13 9.77 8.52±0.08 9.66 8.28±0.10

L = 32 20.25 8.28±0.13 9.93 8.44±0.10 9.91 8.26±0.13

L = 64 19.26 8.13±0.10 10.13 8.26±0.11 10.59 8.02±0.15

Method

Additionally, we compared different batch-sizes of λ in Table 3 (also see the end of the previous
section). The non-constant αt = g(t) is used in all the setteings. L in the table represents the batch
size of λ in Monte Carlo sampling. There is a certain trade-off between FID and IS in 10- or 20-step
sampling; we can expect better FID with larger L (smaller data batch) while smaller L tends to result
in better IS.

2https://github.com/w86763777/pytorch-image-generation-metrics, which got renamed from
pytorch-gan-metrics to pytorch-image-generation-metrics.
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