
Under review as a conference paper at ICLR 2024

ELASTIC LOAD BALANCING FOR DYNAMIC LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

To reduce the computational and memory costs of Large Language Models
(LLMs), families of training schemes that introduce dynamic training workloads
is emerging. For example, in gradual pruning, the pruning of the parameters
of a model happens during training to reduce resource requirements. However,
one of the side effects of this is that sparsification introduces workload imbal-
ance among workers, which, in turn affects the pipeline parallelism efficiency
in distributed training. Similar issues arise in layer freezing schemes. We pro-
pose load balancing algorithms to adaptively maintain equal compute workloads
among different workers, and also dynamically pack work into fewer workers
while sustaining training throughput. Our solution, DYNPIPE, supports both
single nodes with multi-GPUs and also systems with multi-nodes. Our meth-
ods accelerate the training of dynamic GPT class of models by up to 1.29x in
a single node with 8 A100 GPUs, and 2.54x in a data and pipeline hybrid par-
allelism multi-node setting up to 720 A100 GPUs, over state-of-the art produc-
tion solutions used in training static LLMs. DYNPIPE is available at https:
//anonymous.4open.science/r/DynPipe-CC54

1 INTRODUCTION

Sizes of neural networks used to train LLMs has exponentially grown since the first attention-based
model Vaswani et al. (2017). This growth demands more memory and compute power. Yet, nei-
ther the memory capacity nor the compute capability of a single accelerator increases at the same
rate Sevilla et al. (2022). As a result, high-performance computing centers and cloud providers
use a mix of model and data parallelism for training large models Narayanan et al. (2021). One
of the most commonly used forms of model parallelism in language models is pipeline parallelism,
in which consecutive layers are grouped into stages, with each stage assigned to one accelerator
(worker) Kahira et al. (2021). Input mini-batches are split into micro batches (chunks) to improve
accelerator utilization by overlapping computation in a pipeline fashion Huang et al. (2019); Harlap
et al. (2018); Fan et al. (2021); Li & Hoefler (2021).

In traditional LLMs training schemes, the workload for each pipeline stage is known in advance and
remains static throughout the training. To reduce computational resource requirements, new training
schemes that introduce dynamic training workloads are emerging. This includes: a) gradual pruning
where the parameters of a model are pruned (i.e. sparsified) during training Gale et al. (2019), b)
freeze training where some of the layers of the model are adapatively frozen during training Wang
et al. (2022), c) neural networks where different input samples take different pathways through the
model layers, e.g. gated neural networks Shazeer et al. (2017), sparsely activated Mixture of Experts
(MoEs) Zhou et al. (2022b), Switch Transformers Fedus et al. (2022) etc. Other than computational
efficiency, there is a wide range of reasons that motivate the use of different forms of dynamic
models to improve certain model attributes, such as explainability and generalization. We refer the
reader to the survey by Han et al. (2021) on different forms of dynamic models.

One of the unforeseen side effects of these dynamic models is that they introduce load imbalance in
pipeline parallelism, effectively decreasing the throughput of LLM training Zhou et al. (2022a); He
et al. (2022). For example, Figure 1 (left) shows the maximum idleness of GPUs for GPT language
models with different numbers of layers, where the models are sparsified up to 90%. Load imbalance
increases as the model is pruned further, which reduces pipeline utilization. Load imbalance can
manifest itself as bubbles that appear in the pipeline due to a stalling accelerator waiting to receive
work from its late neighboring worker. At 90% sparsification, the idleness ratio of a pipeline on a

1

https://anonymous.4open.science/r/DynPipe-CC54
https://anonymous.4open.science/r/DynPipe-CC54

Under review as a conference paper at ICLR 2024

Freezing MethodsSparsity Levels
Data Parallelism

0%

20%

40%

60%

80%

100%

Dense 30% 50% 70% 90%

Id
le

ne
ss

 (i
n

%
)

0%

20%

40%

60%

80%

100%

Dense 30% 50% 70% 90%Dense 30% 50% 70% 90% Dense 30% 50% 70% 90%

100%

Bubble ratio ↑ ~1.8x Bubble ratio ↑ ~3x

GPU Idleness % During Gradual Sparsification of LLMs
Hybrid Data + PipelinePipeline Parallelism Only

24 Layers 32 40 48 56 Pipeline

Id
le

ne
ss

 (%
)

GPU Idleness %
in Layer Freezing

0%

20%

40%

60%

80%

100%

Static
Freezing

Egeria AutoFreeze

Id
le

ne
ss

 (i
n

%
)

Bubble ratio ~40%

Figure 1: Idleness percentage of GPUs for a single training iteration of GPT models Radford et al.
(2018) parameterized to have between 24 and 56 layers with two example cases of dynamicity: grad-
ual sparsification and layer freezing. Left: Pipeline parallelism on 8 A100 GPUs using the highest
performing pipeline parallelism scheme known to the authors (Chimera) Li & Hoefler (2021). Due
to load imbalance, we observe almost a two fold increase in idleness at 90% sparsity levels. Note
that idleness at Dense is the inherent pipeline bubbles of a static model. Middle: Idleness percentage
in hybrid parallelism using 720 GPUs (x8 A100 GPUs × 90 nodes): 90-way data + 8-way pipeline
parallelism. Imbalanced pipelines in dynamic models lead to additional stalling in data parallelism
for the allreduce collective used in the gradient exchange after each iteration. Right: Idleness per-
centage in layer freezing on 8 A100 GPUs. State-of-art layer freezing schemes that incorporate load
balancing (Egeria(Wang et al. (2022) and AutoFreeze Liu et al. (2021)) yield ∼40% bubble ratio.

single node with 8 A100 GPUs can be as high as 57%, as shown in Figure 1 (left). Since a pipeline
is only as fast as its slowest stage, load balancing becomes crucial for resource utilization.

To make matters worse, if a pipeline and data parallelism hybrid scheme is used, as is typical in
production-level training of LLMs Narayanan et al. (2021), the bubbles in the unbalanced pipeline
would further penalize the end-to-end training time since they introduce irregular stalling to the
allreduce collective used in data parallelism to average the gradients. Figure 1 (middle) shows
a bubble ratio of more than 90% in hybrid parallelism. In another example involving dynamic
models, Figure 1 (right) illustrates bubble ratios reaching 40% due to the load imbalance attributed to
dynamic layer freezing, even when state-of-the-art solutions for load balancing models with frozen
layers, such as Egeria Wang et al. (2022) and AutoFreeze Liu et al. (2021), are employed.

State-of-the-art production frameworks typically implement a static load balance at the beginning
of training and maintain the same load distribution throughout the training. For instance, Megatron-
LM Shoeybi et al. (2019) evenly distributes all transformer layers across the accelerators. Deep-
Speed Smith (2023) currently offers three partitioning methods for distributing model layers: Uni-
form, which balances the number of layers; param, which balances the number of parameters in
each stage; and regex, which balances layers whose names match a given regex pattern. However,
this approach operates on the assumption that the accelerators’ workloads remain roughly consistent
throughout training. As a result, it fails to address the pipeline stalls introduced by dynamic models,
ultimately leading to a decrease in computational efficiency.

Considering the increasing importance of efficient sparse dynamic models, layer freezing, and other
dynamic training workloads, this work aims to mitigate the pipeline stalls introduced by dynamic
models. We introduce DYNPIPE, an elastic load-balancing framework designed for dynamic models,
to ensure balanced pipeline stages during training. DYNPIPE dynamically redistributes the work-
load among accelerators whenever an imbalance arises during training, consequently enhancing
computational efficiency and leading to cost savings. DYNPIPE incorporates two different dynamic
balancers, both proven to converge to the optimal workload balance among workers. Our experi-

2

Under review as a conference paper at ICLR 2024

ments demonstrate that DYNPIPE incurs negligible overhead and can scale effectively in both: a)
single-node multi-GPU environments and b) multi-node multi-GPU environments typically used for
training LLMs with hybrid parallelism.

DYNPIPE not only enhances performance through dynamic load balancing but also offers the ca-
pability to elastically adapt GPU resources. Specifically, as the total workload decreases during
training due to sparsification, the load balancer consolidates the work onto fewer GPUs –subject
to memory capacity constraints– while maintaining performance. GPUs that are no longer needed
for training can then potentially be released back to the job scheduler. For example, in single-node
multi-GPU systems, Nvidia Multi-Instance GPU (MIG) Nvidia (2023) supports node partitioning
for multi-tenancy. GPUs that have been released can be returned to MIG for allocation to other
tenants. In multi-node environments, cloud schedulers have the ability to acquire released resources
and reassign them to other jobs, often leveraging technologies like elastic Kubernetes Elastic (2023).

DYNPIPE offers a solution that empowers researchers to explore dynamic models and it is the
first work to study pipeline stalls caused by unstructured sparsity during dynamic training.
Research on dynamic models will not deliver practical impact unless there is a platform from
which those models can be made efficient. DYNPIPE provides the essential platform for achiev-
ing efficiency in these models, offering a unique opportunity to support innovative ideas in dynamic
pruning and beyond. Additionally, considering the substantial costs, often tens of millions of dol-
lars, required for each training run of GPT-class models Li (2022); Heim (2022); Morgan (2022),
improving the efficiency of dynamic models can result in significant cost savings.

Finally, we emphasize that DYNPIPE functions as a solution complementing pipelining, pruning,
and layer freezing schemes. It has no impact on model accuracy, as its role is solely to redistribute
workload without interfering with the learning process. DYNPIPE’s load balancing method operates
independently of the pruning or freezing approach, making it compatible with various dynamic
schemes. It can even be applied to models that undergo dynamic changes for reasons other than
sparsification, such as manufacturing variability of computing units Sinha et al. (2022), or those that
involve sparsely activated mixtures of experts Zhou et al. (2022b). In short, our contributions are:

• We introduce DYNPIPE, which enables researchers to explore dynamic models and significantly
improves the end-to-end training efficiency of such models, making their practical application
more feasible. DYNPIPE is orthogonal to the underlying pipeline parallelism, pruning, freezing
schemes; allowing for compatibility with various compute optimization/reduction schemes.

• We propose load balancing algorithms proven to converge to optimal balancing in order to alleviate
the negative effects of dynamic models on pipeline utilization.

• We show the benefits of the framework with a gradual pruning training and layer freezing scenarios
in both single-node and multi-node settings. We further introduce a scheme for reducing the
number of GPUs used during training by re-packing work to fewer GPUs.

• DYNPIPE achieves close to 1.3x speedup over Megatron-LM on a single-node with 8 A100 GPUs,
and more than 2.5x speedup for multi-node hybrid data and pipeline parallelism with up to 720
A100 GPUs. Additionally, the framework achieves an average speedup of 2.3x over the state-of-
the-art layer freezing solution. We demonstrate that the re-packing strategy is proven effective in
reducing the number of GPUs by half while sustaining comparable performance.

2 MOTIVATION AND BACKGROUND

2.1 BUBBLES IN PIPELINE PARALLELISM

There are two types of bubbles in pipeline parallelism: (i) inherent bubbles of the pipeline schedule
(e.g. bubbles in-between forward and backward passes in GPipe Huang et al. (2019)), and (ii)
bubbles introduced by the dynamic models during training (e.g. bubbles introduced by sparsification
during training). We aim to reduce the latter type of bubbles by carefully redistributing the layers
among stages to minimize the workload imbalance in the pipeline. Appendix A elaborates with
analysis of bubbles in pipeline parallelism.

3

Under review as a conference paper at ICLR 2024

2.2 DYNAMIC MODELS

To reduce computational and memory costs, training schemes that introduce dynamic training work-
loads have started to emerge. One of the dynamic training schemes is gradual pruning to reduce the
model size. In a gradual pruning scheme, the number of parameters used changes during training
based on a pruning strategy. If this pruning technique does not prune each layer uniformly (e.g.
global magnitude pruning Hagiwara (1993)), the workload of each stage may be significantly dif-
ferent, which may introduce extra bubbles (stalls) in the pipeline Zhu & Gupta (2017); Frankle &
Carbin (2018); Bellec et al. (2017).

Another emerging dynamic training scheme is freeze training which relies on the idea that some
layers of a network might converge faster than others, and hence can be frozen and excluded from
the model during training Shen et al. (2020). If the frozen layers are not evenly distributed among
accelerators, this can act as a source of imbalance in the pipeline as reported by Shen et al. (2020).

2.3 NEURAL NETWORK PRUNING

The lottery ticket hypothesis states that there exists sub-networks with dense over-parameterized
networks that can be trained to the same accuracy Frankle & Carbin (2018); Gale et al. (2019).
Network pruning is a sparsification procedure that removes a fraction of the parameters to achieve
the same performance with a smaller network. Pruning during training leads to dynamic models.
Appendix B elaborates on the factors that drive pruning: pruning criteria, structure, schedule.

2.4 LAYER FREEZING

The eailer layers of Deep Neural Networks (DNNs) tend to train faster than later layers Wang et al.
(2022). This phenomenon arises from the progression of DNN features, which shift from a generic
understanding to a task-specific one, spanning from the initial to the final layer Yosinski et al. (2014).
Consequently, the front layers of a DNN frequently reach convergence swiftly, whereas the deeper
layers necessitate a substantially more extended training period, a characteristic commonly noted
in both vision and language models [75, 79]. By freezing the state of these early-converged DNN
layers, the computational cost can be reduced without compromising model accuracy Liu et al.
(2021); Wang et al. (2022).

3 DYNPIPE: ELASTIC LOAD BALANCING FOR DYNAMIC LLMS

3.1 OVERVIEW

In this work, we take pipeline parallelism with gradual pruning (sparsification during training) and
layer freezing as two example cases of dynamic models, for which current execution systems in
DNN training are not ready to handle efficiently. Even though we show the efficiency of our load
balancing system for dynamic DNNs with these example cases, they can be a basis for expanding to
other forms of dynamic models, such as MoEs.

Algorithm 1 shows the overall flow of operations of DYNPIPE with gradual pruning. The algorithm
takes as input a model, the number of training iterations, the rank of the accelerator, and several ar-
guments for pruning, balancing, and packing the model’s workloads. We start the training with the
original model and train it until a user-specified pruning region (an iteration range e.g. 3000-7000) is
reached (line 7-8). The model is pruned only if the training is in this pruning region. Once the train-
ing is in the pruning region, the model parameters are gradually pruned every prune freq iteration
(e.g. every 1000 iterations) where prune freq is the frequency of pruning until the sparsity of the
model reaches the given target sparsity (line 9-16). The first iteration after each pruning operation is
used for profiling the time it takes to execute each layer in the pruned model and the memory usage
of all accelerators in the pipeline. Next, DYNPIPE collects the profiling information and decides
on balancing the workload by moving layers across pipeline stages based on the execution times of
individual layers to minimize the pipeline stalls, subject to the constraints of memory capacity per
worker (line 17-20). DYNPIPE also attempts to re-pack the total workload into fewer number of
GPUs if the re-packing feature is enabled by the end user (line 21-23). Once the training is out of
the pruning region, the balanced pipeline continues to execute with the pruned model.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 End-to-end Training of Dynamic LLMs with DYNPIPE

Input: model, train iters, rank
Input: prune args, balance args, pack args

1: prune rat, prune region, prune freq← prune args
2: is load balance, balancer← balance args
3: is pack, num gpus to pack← pack args
4: prune idx← 0
5: prune iter← NULL
6: profile← 0
7: for iter← 0 to train iters do
8: train step(model, profile)
9: if iter in prune region AND iter % prune freq == 0 then

10: g prune(model, prune rat[prune idx], rank) ▷ Algo. 1 in Appendix B
11: prune idx += 1
12: prune iter = iter
13: if is load balance then
14: profile = 1
15: end if
16: end if
17: if is load balance AND iter == prune iter + 1 then
18: load balance(model, balancer) ▷ Algo. 2 in Appendix B
19: profile← 0
20: end if
21: if is pack AND iter == prune iter + 1 then
22: pack workload(model, num gpus to pack) ▷ Algo. 3 in Appendix B
23: end if
24: end for

Figure 2 illustrates the overview of DYNPIPE with all its steps. The implementation of individ-
ual steps of global pruning, layer freezing, load balancing, and re-packing can be found in their
respective sections.

3.2 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in Zhu & Gupta (2017) which
is formulated as:

St = Sf + (Si − Sf)(1−
t− t0
n∆t

)3, t ∈ {t0, t0 +∆t, ..., t+ n∆t} (1)

To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Appendix B elaborates
on the unstructured magnitude pruning scheme we implemented in PyTorch.

3.3 LAYER FREEZING

DYNPIPE sits on top of layer freezing solutions. More specifically, we build on Wang et al. Wang
et al. (2022) Egeria solution by monitoring the rate by which the training loss changes, freezing
layers when they reach the convergence criterion, and drop frozen layers from in both the back
propagation phase and gradient exchange when data parallelism is used. It is important to note that
Egeria periodically updates the reference model (on the CPU) to drive the layer freezing, yet does
not actively try to remedy the load imbalance caused by layer freezing. The effect of load imbalance
is particularly pronounced since earlier layers tend to be more frozen than later layers, i.e. the
layer freezing is not uniformly occurring across the model. In comparison, DYNPIPE load balances
dynamically, and in an orthogonal fashion, the spread of layers on GPUs every time the reference
model that drives the freezing is updated.

5

Under review as a conference paper at ICLR 2024

L1 L2 L3 L4

L5 L6 L7 L8 L8 L7 L6 L5

L4 L3 L2 L1 Find Local Top K

Find Local Top K

Gather

local to
pk

Find Global Top K Scatter Compress
to CSR

indices to keep

Compress
to CSR

indices to keep

Global PruningPipeline

L1 L2 L3 L4

L5 L6 L7 L8 L8 L7

Profiling Imbalanced Pipeline

L6 L5

L4 L3 L2 L1
Gather Profiling

Results
Minimize Workload

Variance
ScatterAll Transfers

P2P Layer
Transfer

P2P Layer
Transfer

Local Transfers
Local Transfers

L1 L2 L3 L5

L6 L7 L8 L7

Balanced Pipeline

L6 L4

L5 L3 L2

L4 L8

L1

Load Balancing

L1 L2 L3 L5 L6 L7 L8 L7

Balanced Pipeline Packed Into Fewer GPUs

L6 L4 L5 L3 L2L4 L8 L1

NO

YES

GPU 0

GPU 1

GPU 0

GPU 1

GPU 0

GPU 1

1 2

3 4

5 5
IF PACK

Train for n iters

Figure 2: Overview of DYNPIPE. The flow in the figure (top to bottom) is repeated until the target
sparsity is reached or training is completed. Each yellow and orange rectangle represents a trans-
former layer (i.e. encoder or decoder layer). The size of a rectangle illustrates the amount of work
in a layer. (1) shows the pipeline before pruning and trains the model for n iterations (2) performs
global gradual pruning, (3) profiles the pipeline to check if there is any imbalance between stages,
(4) performs load balancing based on the profiling results, (5) trains the balanced pipeline until the
next pruning, optionally it reduces the number of resources (GPUs) used in training by re-packing.

3.4 LOAD BALANCING

DYNPIPE implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first is centralized parameter-based partitioning that balances partitions based on the
number of parameters. We also implemented a variant where the same algorithm balances partitions
based on the layer execution times, instead of the number of parameters. The two variants of this
algorithm are built on top of DeepSpeed’s load balancing utility functions for partitioning in model
parallelism Smith (2023). The second algorithm is an iterative decentralized diffusion-based algo-
rithm that aims to minimize the variance between the workload of each rank by attempting to move
layers from overloaded GPUs to underloaded ones in an iterative way. The workload can either be
the layer execution times or the parameter counts as in the centralized partitioning method.

We demonstrate that the two load balancing schemes (used in Algorithm 1) meet the goals for
optimal load balancing by using the following lemmas. lemmas proofs presented in Appendix B.

Lemma 1 A centralized load balancer Lc over N workers satisfies maximum reduction in the im-
balance Ni if and only if Ni reduces the bubble ratio to minimum.

Lemma 2 An iterative decentralized diffusion based load balancer Ld over N workers satisfies
maximum reduction in the imbalance Ni if and only if Ni reduces the bubble ratio to minimum. Also
the load balancer is guaranteed to converge to the maximum reduction in imbalance in the following
number of rounds

O

(
min

{
N2log

(
SN

γ

)
log N,

SN log N

γ

})
where γ ∈ R>0 is the convergence factor and S ∈ R>0 is the total number of stages in the pipeline.

3.5 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of workers
(GPUs) with the purpose of using the available resources more efficiently, i.e. unused resources can
be released. This can be achieved with simple algorithms (in small scale) such as first-fit, best-fit, and
round-robin as well as complex optimization heuristics. Workload re-packing aims to increase GPU
utilization and reduce the overall number of GPUs employed to continue the training process. For
long training schedules that are common in LLM training, workload packing can result in substantial

6

Under review as a conference paper at ICLR 2024

Single-Node in-Training Pruning Performance: 8 A100 GPUs

0

10

20

30

40

50

24 32 40 48 56

To
ke

ns
/s

ec

Number of Layers

Static (Megatron-LM)

Static (DeepSpeed)

DynPipe
(Partition by Time)
DynPipe
(Partition by Param)
DynPipe
(Diffusion by Time)
DynPipe
(Diffusion by Param)

Multi-Node in-Training Pruning Performance: 720 A100 GPUs
(90 Nodes x8 A100 /node): 90-way data parallel + 8-way pipeline

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

24 32 40 48 56

To
ke

ns
/s

ec

Number of Layers

Stat ic (Megatron-LM)

Stat ic (DeepSpeed)

DynPipe
(Part ition by Time)
DynPipe
(Part ition by Param)
DynPipe
(Diffusion by Time)
DynPipe
(Diffusion by Param)

1.25x
1.29x

1.33x
1.37x

1.39x

2.94x
3.02x

3.09x
3.20x

5.67x

Figure 3: Throughput (tokens/sec) of end-to-end training while pruning of GPT models. Speedup is
over the highest among static Megatron-LM and DeepSpeed. Comparison of different load balanc-
ing methods where the target sparsity is 90% in a gradual pruning setting. Left (single-node): Using
8 A100 GPUs. Time-based dynamic load balancers outperform the baseline static load balancers and
dynamic parameter-based load balancers in all model sizes. Right (multi-node): A hybrid of data
and model parallelism is used on 720 GPUs across 90 nodes: inter-node is data parallel and intra-
node is model parallel. Load imbalance in static solutions leads to degradation in performance due
to the effect of the imbalance on the gradient exchange collective in data parallelism.

cost savings. It may also provide improved performance due to reduction in the number of cross-
GPU communication calls, and smaller pipeline bubbles.

We use a first-fit algorithm for workload consolidation. The goal of this algorithm is to reduce
the number of active GPUs (subject to memory capacity constraints). When the combined memory
usage of every pair of GPUs is less than the memory capacity of a single GPU, we migrate the layers
in order to free one of the GPUs. This repeats in an iterative fashion for every two pairs until no
more GPUs can be eliminated. Appendix B elaborates on our algorithm for efficient re-packing.

4 EVALUATION

This section contains empirical results and analysis of DYNPIPE’s effectiveness. Experiments were
mainly conducted on a supercomputer at which each of the compute nodes contains two Intel
Xeon Platinum 8360Y processors, and eight 40GiB NVIDIA A100 GPUs. The GPUs in the same
node communicate with CPUs using PCIe Gen 4 x16 per GPU, and NVSwitch amongst the GPUs
(NVLink3 x12). The compute nodes are connected by 4 Infiniband HDR (200 Gbps). We used
CUDA 11.3, OpenMPI 4.0.5, and PyTorch 1.12 with NCCL 2.9.9 distributed backend.

We train the model on the Wikipedia dataset Foundation (2023). All models used for training have
a sequence length of 512, a hidden size of 1024, 16 attention heads, and the models are trained with
a micro-batch size of 2 and batch size of 64 for 10000 iterations, unless specified otherwise.

We conducted experiments using two dynamic load balancing algorithms, each with two differ-
ent configurations. These algorithms were employed consistently in both the gradual pruning and
layer freezing experiments. The first algorithm, referred to as Partition by Param, is based on a
DeepSpeed Rajbhandari et al. (2020) API. It uses a combination of binary search and linear prob-
ing to determine the optimal partitioning based on the parameter counts of the encoder/decoder
layers. Another variation of this algorithm, called Partition by Time, employs execution times of
encoder/decoder layers as input. The second algorithm is a decentralized iterative diffusion-based
load balancing approach, which iteratively minimizes load variances among accelerators. Similar to
DeepSpeed, this balancer has two variants: Diffusion by Param and Diffusion by Time.

For the multi-node experiments, as we increase the number of GPUs, we also increase the batch size
to fix the number of micro batches to four times the number of GPUs in the pipeline, as suggested
in Huang et al. (2019) to achieve good pipeline utilization.

7

Under review as a conference paper at ICLR 2024

0
20
40
60
80
100

0

10

20

30

15 Nodes
(120 GPUs)

30 Nodes
(240 GPUs)

60 Nodes
(480 GPUs)

120 Nodes
(960 GPUs)

R
ed

uc
tio

n
in

 R
un

tim
e

(%
)

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Multi-node Weak Scaling

Megatron-LM
(Static)

Partition by Time
(DynPipe)

Reduction in Runtime (%)

0

10

20

30

40

50

60

0

2

4

6

8

10

12

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Re-packing Model While Training to Different Number of GPUs

Throughput/# GPUs Throughput (Tokens/Sec)

O
O

M

O
O

M
O

O
M

Re-packing Model While Training to Different Number of GPUs

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers

Figure 4: Left: Gradual pruning weak scaling throughput (tokens/sec) comparison of baseline static
load balancing with Megatron-LM and dynamic load balancing with Partition by Time algorithm of
DYNPIPE. Left y-axis: throughput. Right y-axis: speedup of Partition by Time over Megatron-LM.
Right: Re-packing the layers of gradually pruned GPT models into fewer GPUs as the model gets
smaller. Left Y-axis: throughput/number of GPUs. Right Y-axis: throughput (tokens/sec).

4.1 END-TO-END TRAINING WHILE PRUNING: SINGLE-NODE WITH MULTI-GPUS

We trained GPT models Radford et al. (2018) having different numbers of layers with eight A100
GPUs in a single node. The pruning region starts from iteration 3000 and continues until iteration
7000 and the model is pruned every 1000 iterations until the 90% target sparsity is reached. This
corresponds to sparsity levels of 52%, 79%, and 90% after each pruning step. All other hyperpa-
rameters are the same as Megatron-LM.

Figure 3 (left) presents the throughput of two static and four dynamic load balancers. The first
static balancer, Megatron-LM Shoeybi et al. (2019), evenly distributes layers across accelerators.
The second static balancer, DeepSpeed Microsoft (2023), balances the number of parameters before
training begins. In contrast, the dynamic balancers (Partition by Time, Partition by Param, Diffu-
sion by Time, and Diffusion by Param) redistribute layers after each pruning step. Parameter-based
balancers require profiling after the pruning step for memory usage information, while time-based
balancers require profiling for memory usage and layer execution time information.

As depicted in the figure, the use of layer execution time for dynamic load balancing, such as dif-
fusion or partitioning, consistently outperforms parameter count-based implementations across all
scales. In every scale, execution time-based dynamic balancers surpass the baseline static balancers.
However, parameter-based dynamic balancers occasionally exhibit slowdowns during training, as
seen with Partition by Param. This behavior can be attributed to the fact that as transformer layers
are pruned, parameters in the embedding layer of the first GPU and the post-processing layers of
the last GPU become dominant in terms of parameter counts. This causes parameter count-based
algorithms to overly redistribute the transformer layers of the first and last GPU to other GPUs, often
more than necessary. In summary, time-based load-balancing algorithms consistently achieve
higher throughput in all cases and surpass the baseline static balancers.

4.2 END-TO-END TRAINING WHILE PRUNING: MULTIPLE-NODES WITH MULTI-GPUS

Figure 3 (right) shows the training throughput for the multi-node hybrid parallelism case. As with
the single-node case, using layer execution time for diffusion or partitioning dynamic load balancing
outperforms the parameter count-based implementations in each scale, for up to 2.54x. The speedup
over the static baseline is higher than the case of single-node due to the reduction in stalling exhibited
by the data parallelism allreduce of gradients when the pipeline is balanced.

For multi-nodes with multi-GPUs weak scaling experiments, we trained the GPT models having
different numbers of layers and batch sizes on up to 90 nodes each of which contains 8 A100 GPUs.
The pruning region starts from iteration 30 and continues until iteration 70 and the model is pruned
every 10 iterations until the 90% target sparsity is reached. The pruning and load balancing over-
heads are excluded from the measurements since the number of iterations to do this scaling ex-
periment is not sufficient enough to amortize the overheads; in actual training (1000s to 10,000s
iterations) the pruning and load balancing overheads would be negligible (elaborate overhead anal-
ysis in Appendix D). Figure 4 shows that the pipeline that is dynamically balanced with Partition by

8

Under review as a conference paper at ICLR 2024

0

10

20

30

40

50

24 32 40 48 56

To
ke

ns
/s

ec

Number of Layers

Egeria

DynPipe
(Part ition by Time)

DynPipe
(Part ition by Param)

DynPipe
(Diffusion by Time)

DynPipe
(Diffusion by Param)

Single-Node Layer Freezing Performance: 8 A100 GPUs

1.72x
1.86x

2.07x
2.35x

2.83x

0

10

20

30

40

50

60

0

2

4

6

8

10

12

14

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Re-packing Model While Freezing Layers in-Training to
Different Number of GPUs

Throughput/# GPUs Throughput (Tokens/Sec)

O
O
M

O
O
M

O
O
M

O
O
M

O
O
M

Figure 5: Left: throughput of end-to-end training while freezing layers of GPT models. Comparison
of different balancing types for 8 A100 GPUs in a single node. Right: Re-packing the layers while
freezing layers of GPT models into fewer GPUs as the model gets smaller when layers are frozen.
Left Y-axis: throughput/number of GPUs. Right Y-axis: throughput (tokens/sec).

Time algorithm of DYNPIPE reaches higher throughputs in all scales and it provides speedups over
baseline Megatron-LM up to 2.12x.

4.3 END-TO-END TRAINING WITH LAYER FREEZING: SINGLE-NODE WITH MULTI-GPUS

Figure 5 shows the speedup of using DYNPIPE over Egeria Wang et al. (2022), the state-of-art solu-
tion for layer freezing. We can observe two main things. First, different load balancing algorithms
speedups over static algorithms are mostly the same, mostly due to the same load balancing solu-
tions the different algorithms arrive at when entire layers are frozen. Second, the speedup reported
by DYNPIPE means that more than half of the bubble appearing due to freezing layers can be elimi-
nated, which empirically demonstrates the effectiveness of DYNPIPE.

4.4 RE-PACKING MODELS TO FEWER GPUS

In the re-packing experiments, the training starts with 8 GPUs and after each pruning step, DYNPIPE
attempts to re-pack the total workload into fewer GPUs while satisfying the memory capacity con-
straints. Figure 4 (right) reports the throughput/number of GPUs for each model size where the
model is packed into 6, 4, and 2 GPUs. The 8 GPU setting for each model size serves as a baseline
where there is no re-packing. This measurement also corresponds to the performance per dollar
metric as the cost is directly proportional to the number of GPUs used in training.

We observe that in all model scales (e.g. 24 or 32 layers), re-packing can allow the training to be
continued with fewer GPUs which may result in significant cost savings. For example, in Figure 4,
reducing the GPU count from 8 to 4 results in almost the same throughput while the resource usage
cost is reduced by 50% for 32 layers case. The benefits of re-packing are not limited to the cost
savings. For instance, re-packing from 8 to 6 GPUs in 24 layer setting also increases the throughput,
which results in faster training time. In other words, re-packing the workload into fewer GPUs
after pruning may lead to faster or comparable training time with fewer resources.

Figure 5 (right) shows the re-packing effect for layer freezing experiments. We can observe higher
throughput/#GPUs since layers freezing is more regular than global pruning, i.e. re-packing is more
efficient when entire layers are removed in comparison to pruning some of the layers parameters.

5 CONCLUSION

DYNPIPE is a load-balancing system for dynamic models where the loads of the workers change
during training. DYNPIPE provides better load balance than state-of-the-art static load balancing
approaches, which results in better efficiency and faster end-to-end training time. Empirical results
for LLMs with a gradual pruning and layer freezing in-training show that DYNPIPE significantly
improves the training throughput over the counterparts. We foresee that dynamic models will be
more prominent in the future and dynamic load distribution will be of utmost importance.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Elastic. Elastic cloud on kubernetes (eck), 2023. [Retrieved 22 January 2023].

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 431–445, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022.

Wikimedia Foundation. Wikimedia downloads, 2023. URL https://dumps.wikimedia.
org.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

M. Hagiwara. Removal of hidden units and weights for back propagation networks. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 1, pp.
351–354 vol.1, 1993. doi: 10.1109/IJCNN.1993.713929.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
Fastermoe: Modeling and optimizing training of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’22, pp. 120–134, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450392044. doi: 10.1145/3503221.3508418. URL https:
//doi.org/10.1145/3503221.3508418.

Lennart Heim. Estimating palm’s training cost, Jun 2022. URL https://blog.heim.xyz/
palm-training-cost/.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Albert Njoroge Kahira, Truong Thao Nguyen, Leonardo Bautista-Gomez, Ryousei Takano, Rosa M.
Badia, and Mohamed Wahib. An oracle for guiding large-scale model/hybrid parallel training of
convolutional neural networks. In HPDC, pp. 161–173. ACM, 2021.

Chuan Li. Openai’s gpt-3 language model: A technical overview, Aug 2022. URL https://
lambdalabs.com/blog/demystifying-gpt-3.

Shigang Li and Torsten Hoefler. Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, 2021.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning, 2021.

10

https://dumps.wikimedia.org
https://dumps.wikimedia.org
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418
https://blog.heim.xyz/palm-training-cost/
https://blog.heim.xyz/palm-training-cost/
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3

Under review as a conference paper at ICLR 2024

Microsoft. Microsoft/deepspeed: A deep learning optimization library that makes distributed
training and inference easy, efficient, and effective., 2023. URL https://github.com/
microsoft/deepspeed.

Timothy Prickett Morgan, Dec 2022. URL https://www.nextplatform.com/2022/12/
01/counting-the-cost-of-training-large-language-models/.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Nvidia. Nvidia multi-instance gpu (mig), 2023. URL https://www.nvidia.com/en-us/
technologies/multi-instance-gpu/. [Retrieved 18 January 2023].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2018. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos.
Compute trends across three eras of machine learning. arXiv preprint arXiv:2202.05924, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sheng Shen, Alexei Baevski, Ari S Morcos, Kurt Keutzer, Michael Auli, and Douwe Kiela. Reser-
voir transformers. arXiv preprint arXiv:2012.15045, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D Sinclair, and Shivaram
Venkataraman. Not all gpus are created equal: Characterizing variability in large-scale,
accelerator-rich systems. arXiv preprint arXiv:2208.11035, 2022.

Shaden Smith. Pipeline parallelism, Jan 2023. URL https://www.deepspeed.ai/
tutorials/pipeline/#load-balancing-pipeline-modules.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Efficient dnn training
with knowledge-guided layer freezing. arXiv preprint arXiv:2201.06227, 2022.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp. 3320–3328, Cambridge, MA, USA, 2014. MIT
Press.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing. arXiv preprint
arXiv:2202.09368, 2022a.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice routing. In NeurIPS,
2022b.

11

https://github.com/microsoft/deepspeed
https://github.com/microsoft/deepspeed
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules

Under review as a conference paper at ICLR 2024

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

12

	Introduction
	Motivation and Background
	Bubbles in Pipeline Parallelism
	Dynamic Models
	Neural Network Pruning
	Layer freezing

	DynPipe: Elastic Load Balancing for Dynamic LLMs
	Overview
	Gradual Global Magnitude Pruning
	Layer Freezing
	Load Balancing
	Re-packing Dynamic Models to Fewer Workers

	Evaluation
	End-to-end Training While Pruning: Single-node with Multi-GPUs
	End-to-end Training While Pruning: Multiple-nodes with Multi-GPUs
	End-to-end Training With Layer Freezing: Single-node with Multi-GPUs
	Re-packing Models to Fewer GPUs

	Conclusion

