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Abstract

Transformers have reached remarkable suc-001
cess in sequence modeling. However, these002
models have efficiency issues as they need003
to store all the history token-level represen-004
tations as memory. We present Memformer,005
an efficient neural network for sequence mod-006
eling, that utilizes an external dynamic mem-007
ory to encode and retrieve past information.008
Our model achieves linear time complexity and009
constant memory space complexity when pro-010
cessing long sequences. We also propose a011
new optimization scheme, memory replay back-012
propagation (MRBP), which promotes long-013
range back-propagation through time with a014
significantly reduced memory requirement. Ex-015
perimental results show that Memformer has016
achieved comparable performance compared017
against the baselines by using 8.1x less memory018
space and 3.2x faster on inference. Analysis019
of the attention pattern shows that our external020
memory slots can encode and retain important021
information through timesteps.022

1 Introduction023

Memory plays a fundamental role in human cogni-024

tion. Humans perceive and encode sensory infor-025

mation into a compressed representation stored in026

neurons, and later we effectively retrieve the stored027

information to accomplish various tasks. The for-028

mation of memory involves complex cognitive pro-029

cesses. Modeling and studying the behavior of030

human memory is still a challenging research prob-031

lem in many areas.032

Many researchers have attempted to incorpo-033

rate memory systems in artificial neural networks.034

Early works like recurrent neural networks (RNN)035

(Rumelhart et al., 1988) including LSTM (Hochre-036

iter and Schmidhuber, 1997) and GRU (Chung037

et al., 2014) model temporal sequences with their038

internal compressed state vector as memory. How-039

ever, they are limited in preserving the long-term040

information due to the memory bottleneck. To al-041

leviate this limitation, more powerful memory net- 042

work architectures such as Neural Turing Machine 043

(NTM) (Graves et al., 2014), Differential Neural 044

Computer (DNC) (Graves et al., 2016) have been 045

proposed by leveraging a large external dynamic 046

memory. Unfortunately, due to their complex mem- 047

ory interaction mechanism, they are not widely 048

used for down-stream tasks at present. 049

More recently, Vaswani et al. (2017) propose 050

Transformer by discarding the use of recurrence 051

and memory. Instead, it computes all the O(N2) 052

paired dependencies in a sequence with self- 053

attention (Bahdanau et al., 2015). Transform- 054

ers have achieved great success in various natu- 055

ral language processing tasks. Nevertheless, the 056

quadratic computation complexity can be costly. 057

Some works try to address the limitations of self- 058

attention, including Reformer, Sparse Transformer, 059

Longformer, Linformer (Child et al., 2019; Kitaev 060

et al., 2020; Wang et al., 2020), etc. They success- 061

fully reduce the complexity of self-attention and 062

thus enable processing longer sequences. However, 063

most of them still require linear memory space 064

complexity. 065

Transformer-XL (Dai et al., 2019) re-introduces 066

the concept of memory and recurrence. It caches 067

each layer’s hidden states of self-attention into a 068

fixed-size queue and re-uses them in the later at- 069

tention computation. However, the memory as 070

raw hidden states cannot effectively compress high- 071

level information. Thus, Transformer-XL in prac- 072

tice needs a massive memory size to perform well, 073

and spends huge computation in using its mem- 074

ory. Compressive Transformer (Rae et al., 2020) 075

improves upon Transformer-XL by further com- 076

pressing its memories into fewer vectors via a com- 077

pression network. However, as mentioned in the pa- 078

pers, both Transformer-XL and Compressive Trans- 079

former discard the information from the distant 080

past, which causes a theoretical maximum tempo- 081

ral range given the fixed memory size. 082
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Inspired by the previous external memory net-083

works, we propose Memformer, which incorporates084

a fixed-size external dynamic memory combined085

with the recent Transformer architecture. Mem-086

former interacts with its external dynamic mem-087

ory through the memory reading and writing mod-088

ules. Also, we introduce a forgetting mechanism089

to improve the effectiveness of memorizing new090

information. By utilizing recurrence and a fixed-091

size memory, our model has a theoretically infi-092

nite temporal range of memorization and implies a093

linear computation complexity and constant mem-094

ory space complexity. As the traditional back-095

propagation through time (BPTT) has an unafford-096

able memory cost in our model, we introduce a097

new optimization scheme, memory replay back-098

propagation (MRBP), to significantly reduce the099

memory cost in training recurrent neural networks100

with large size of memory representations.101

We evaluate Memformer on the autoregressive102

image generation and language modeling task. Ex-103

perimental results show that Memformer performs104

on par with Transformer and Transformer XL with105

large memory size, while being much more effi-106

cient in terms of computation speed and memory107

space consumption. We also conduct an analysis108

showing that Memformer can retain information109

for an extended period.110

2 Related Work111

This section introduces some recent research direc-112

tions that aim to alleviate the quadratic cost of self-113

attention. Moreover, we analyze their assumptions114

and limitations under the autoregressive setting to115

provide a broader view of these models.116

2.1 Sparse Attention117

One influential direction is to replace the full self-118

attention with sparse attention patterns to speed119

up the computation. Child et al. (2019) proposed120

Sparse Transformer, using a block sparse atten-121

tion pattern to reduce the computation complexity122

to O(N
√
N). Later, Longformer (Beltagy et al.,123

2020) and Big Bird (Zaheer et al., 2020) further124

explored this direction and proposed an even more125

sparse attention pattern to reduce the cost toO(N).126

They introduced global tokens to encode the infor-127

mation from the entire sequence and kept the self-128

attention to the closest k tokens and the global to-129

kens to achieve linear complexity. Although linear130

sparse attention’s theoretical soundness is proven131

for bidirectional encoders, it does not hold for the 132

decoder. The main reason is that the global to- 133

kens cannot leak information to the future tokens 134

in the autoregressive setting, where all the tokens 135

can only see their previous tokens. Thus, linear 136

sparse attention cannot guarantee a token to see its 137

all past tokens. Only Sparse Transformer here with 138

O(N
√
N) complexity can theoretically cover all 139

the past tokens for the sequence generation. 140

2.2 Linear Attention 141

Another direction is focusing on improving the 142

softmax operation in the self-attention. Linformer 143

(Wang et al., 2020) reduced the complexity to 144

O(N) by projecting the entire sequence to a con- 145

stant size of keys and values, but this method 146

has not been applied to autoregressive decoding. 147

Performer (Choromanski et al., 2020) and Linear 148

Transformer (Katharopoulos et al., 2020) used a 149

linear dot-product of kernel feature maps to replace 150

softmax. However, for Linear Transformer under 151

the autoregressive setting, it needs to compute the 152

cumulative summation to aggregate the history in- 153

formation. This assumption is too strong if the 154

input sequence is long and the length is not fixed. 155

After thousands of steps, the numerical values can 156

become very large due to the summation, causing 157

overflow and gradient instability. 158

2.3 Recurrence and Memory 159

Applying recurrence and memory to Transformers 160

is an orthogonal direction comparing to the effi- 161

cient attention approaches. If the memory size is 162

constant, recurrence enables the model to have con- 163

stant memory complexity during inference. There 164

are mainly two works exploring this direction. 165

Transformer-XL (Dai et al., 2019) used relative 166

positional encoding and consisted of a segment- 167

level recurrence mechanism to encode beyond a 168

fixed-length context. Compressive Transformer 169

(Rae et al., 2020) extended from Transformer-XL 170

by further compressing the previous cached hid- 171

den states to achieve a longer context. However, 172

using past hidden states as memory would cause 173

a theoretical maximum temporal range of context, 174

meaning that a token is not guaranteed to see all 175

the past tokens. Thus, in practice, Transformer-XL 176

and Compressive Transformer need huge memory 177

size to achieve good performance. 178
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Figure 1: Memformer overall architecture for the en-
coder (left) and decoder (right). Transformer encoder
is responsible to interact with the memory. Sequence
modeling is achieved by predicting the next segment
conditioned to the current segment and memory.

2.3.1 Dynamic Memorization179

Within the scope of memory networks, there are180

dynamic memorization techniques. Different from181

Transformer-XL which stores the token-level his-182

tory representations as memory, dynamic memo-183

rization does not have a theoretical upper bound for184

the temporal range. Neural Turing Machine (NTM)185

(Graves et al., 2014) and Differential Neural Com-186

puter (DNC) (Graves et al., 2016) are two early187

models that can control external memory resources188

to achieve long-lasting memory. However, their189

complex memory mechanisms cause them to be190

slow and unstable during training. In this work,191

we propose a dynamic memorization mechanism192

to achieve more efficient memory representations.193

3 Methods194

In this section, we first formalize the segment-level195

sequence modeling. Then, we present the memory196

reading and writing modules. Finally, we explain197

the memory replay back-propagation (MRBP) al-198

gorithm used for training.199

3.1 Segment-level Sequence Modeling200

Given a sequence of N tokens x1, x2, . . . , xN , an201

standard language model learns the joint probabil-202

ity of the sequence by taking the product of each 203

token’s probability conditioned to the previous to- 204

kens, which is defined as: 205

P (x) =
∏
t

P (xt|x<t) 206

When we have a large external memory sys- 207

tem to store the history information, we cannot 208

afford to interact with memory for every token. 209

The workaround is to process a long sequence 210

at the segment level. We can split a sequence 211

into T segments and each segment has L tokens: 212

st = {xt,1, xt,2, . . . xt,L}. 213

Because a bidirectional encoder is better at ex- 214

tracting word representations, we apply a Trans- 215

former encoder-decoder here. The encoder’s role is 216

to encode the segment st and inject the information 217

into the memory Mt, while it also retrieves past 218

information from the previous timestep’s memory 219

Mt−1. The encoder’s final output will be fed into 220

the decoder’s cross attention layers to predict the 221

token probabilities of the next timestep’s segment 222

st+1 with standard language modeling. 223

Mt = Encoder(st,Mt−1) 224

P (st|s<t) =
∏

n=1:L

PDecoder(xt,n |xt,<n,Mt−1) 225

P (x) =
∏

t=1:T

PModel(st|s<t) 226

At each timestep, given a segment as the input, 227

the model needs to continue that segment by gener- 228

ating the next text segment, and the generated seg- 229

ment will be fed back into the model again. Since 230

the memory stores all the past information, we can 231

autoregressively generate all the token segments 232

in a sequence. In this fashion, we can model the 233

entire long sequence. 234

Figure 1 shows the overall architecture of Mem- 235

former. We will further explain each component 236

and the implementation in the following sections. 237

3.2 External Dynamic Memory Slots 238

External dynamic memory (EDM) is a data struc- 239

ture that stores high-level representations of past 240

inputs. “Dynamic” means that the model interac- 241

tively encodes and retrieves the information from 242

memory in a recurrent manner. This contrasts with 243

static memory design, where the memory is stored 244

statically and does not change during the inference. 245

In our design, we allocate a constant k number of 246

vectors as the external dynamic memory. At each 247
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Figure 2: Memory Reading. The input sequence x
attends over all the memory slots to retrieve the history
information.

timestep t, we can have Mt = [m0
t ,m

0
t , . . . ,m

k
t ].248

For each sample in the batch, they have separate249

memory representations. Therefore, similar to250

RNN during inference, the memory consumption251

will be constant no matter how long the input se-252

quence is. We name it memory slots because each253

slot is working individually to have different repre-254

sentations. The following sections will explain how255

the model manages to read and write this memory.256

3.3 Memory Reading257

For each input segment sequence, the model needs258

to read the memory to retrieve relevant past infor-259

mation. We leverage the cross attention to achieve260

this function:261

Qx,KM , VM = xWQ,MtWK ,MtWV (1)262

Ax,M = MHAttn(Qx,KM ) (2)263

Hx = Softmax(Ax,M )VM (3)264

MHAttn refers to Multi-Head Attention. Mem-265

ory slot vectors are projected into keys and values,266

and the input sequence x is projected into queries.267

Then the input sequence’s queries attend over all268

the memory slots’ key-value pairs to output the fi-269

nal hidden states. This enables the model to learn270

the complex association of the memory. Figure 2271

shows the illustration.272

Memory reading occurs multiple times as ev-273

ery encoder layer incorporates a memory reading274

module. This process ensures a higher chance of275

successfully retrieving the necessary information276

from a large memory.277

3.4 Memory Writing278

Memory writing involves a slot attention module279

to update memory information and a forgetting280

method to clean up unimportant memory informa-281

tion. Contrary to memory reading, memory writing282

only happens at the last layer of the encoder. This 283

helps to store the high-level contextual represen- 284

tations into the memory. In practice, we append 285

some classification tokens to the input sequence to 286

better extract the sequence representations. 287

Figure 3: Memory Writing. Each memory slot attends
over itself and the input sequence representations to
produce the next timestep’s memory slot.

3.4.1 Update via Memory Slot Attention 288

Figure 3 shows how memory is updated with the 289

current segment’s information. Each slot is sepa- 290

rately projected into queries and keys. The segment 291

token representations are projected into keys and 292

values. Slot attention means that each memory slot 293

can only attend to itself and the token representa- 294

tions. Thus, each memory slot cannot write its own 295

information to other slots directly, as memory slots 296

should not be interfering with each other. 297

Qmi ,Kmi = miWQ,m
iWK (4) 298

Kx, Vx = xWK , xWV (5) 299

A′
mi =MHAttn(Qmi , [Kmi ;Kx]) (6) 300

When we compute the final attention scores, we 301

divide the raw attention logits with a temperature 302

τ (τ < 1). This operation sharpens the attention 303

distribution, which makes the writing focusing on 304

fewer slots or token outputs. 305

Ami =
exp(A′

i/τ)∑
j exp(A

′
j/τ)

(7) 306

Finally, the next timestep’s memory is collected 307

with by attention. 308

mi
t+1

′
= Softmax(Ax,M ) [mi

t;Vx] (8) 309

The attention mechanism helps each memory slot 310

to choose to whether preserve its old information 311

or update with the new information. 312
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Figure 4: Illustration of forgetting. Memory slot ma is
easy to be forgotten, while mb is hard to be forgotten.

3.4.2 Implementation of Memory Writer313

Since each memory slot stores the information in-314

dependently, we design a special type of sparse315

attention pattern. Each slot in the memory can only316

attend over itself and the encoder outputs. It aims317

to preserve the information in each slot longer over318

the time horizon. When a slot only attends itself319

during writing, the information will not be changed320

in the next timestep.321

3.4.3 Forgetting Mechanism322

Forgetting is crucial for learning as it helps to filter323

out trivial and temporary information to memorize324

more important information. LSTM introduces the325

forget gate (Gers et al., 2000) to reset its mem-326

ory state, and the forget gate is proven to be the327

most important component in the LSTM (van der328

Westhuizen and Lasenby, 2018).329

In this work, we introduce a forgetting mecha-330

nism called Biased Memory Normalization (BMN),331

specifically designed for our slot memory represen-332

tations. We normalize the memory slots for every333

step to prevent memory weights from growing in-334

finitely and maintain gradient stability over long335

timesteps. To help forget the previous information,336

we add a learnable vector vbias to it. Also, naturally337

the initial state vibias is after normalization.338

mi
t+1 ← mi

t+1 + vibias339

mi
t+1 ←

mi
t+1

||mi
t+1||

340

mi
0 ←

vibias

||vibias||
341

In Figure 4, we illustrate the forgetting mecha-342

nism with the learnable bias vector vbias. Because343

of the normalization, all memory slots will be pro-344

jected onto a sphere distribution. Here, we demon-345

strate with a 2D sphere for simplicity.346

vbias here controls the speed and the direction347

of forgetting. When adding vbias to the memory348

Algorithm 1: Memformer Update
Input: rollout=[xt, xt+1, . . . , xT ]: a

list containing previous
inputs
memories=[Mt,Mt+1, . . . ,MT ]:
memory from the previous

▷ Initialize a list for
back-propagation

1 replayBuffer = [Mt]
▷ Forward pass & no gradient

2 for t = t, t+ 1, . . . , T − 1 do
3 Mt+1, _ = Model(xt, Mt)
4 replayBuffer.append(Mt+1)
5 end
▷ Backward pass with gradient

6 ∇Mt+1 = 0
7 for t = T, T − 1, . . . , t+ 1, t do

▷ Recompute
8 Mt+1, Ot = Model(xt, Mt)
9 loss = floss(Ot)

10 loss.backward()
11 Mt+1.backward(∇Mt+1)
12 ∇Mt+1 = ∇Mt

13 end
▷ Update and pop the oldest
memories

14 memories = replayBuffer
15 memories.pop()

slot, it would cause the memory to move along 349

the sphere and forget part of its information. If a 350

memory slot is not updated for many timesteps, it 351

will eventually reach the terminal state T unless 352

the new information is injected. The terminal state 353

is also the initial state, and it is learnable. 354

The speed of forgetting is controlled by the mag- 355

nitude of vbias and the cosine distance between 356

m′
t+1 and vbias. For example, mb is nearly opposite 357

to the terminal state, and thus would be hard to 358

forget its information. ma is closer to the terminal 359

state and thus easier to forget. 360

3.5 Memory Replay Back-Propagation 361

Memformer relies on the external memory to pro- 362

cess a sequence. At inference time, there is no addi- 363

tional memory cost because of the fixed-size mem- 364

ory design. Nevertheless, during training, it would 365

require back-propagation through time (BPTT) so 366

that the memory writer network can be trained to 367

retain long-term information. The problem with 368
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traditional BPTT is that it unrolls the entire compu-369

tational graph during the forward pass and stores370

all the intermediate activations. This process would371

lead to impractically huge memory consumption372

for Memformer.373

A favorable existing approach to eliminate this374

problem is gradient checkpointing (Chen et al.,375

2016). The algorithm can significantly reduce the376

memory cost of a large neural network. However,377

the standard gradient checkpointing still needs to378

compute all the nodes in the computational graph379

and store unnecessary activations during the for-380

ward pass. We propose Memory Replay Back-381

Propagation (MRBP), a more efficient variant of382

gradient checkpointing, by replaying the mem-383

ory at each timestep to accomplish gradient back-384

propagation over long unrolls.385

The algorithm takes an input with a roll-386

out xt, xt+1, . . . , xT and the previous memories387

Mt,Mt+1, . . . ,MT if already being computed.388

MRBP only traverses the critical path in the compu-389

tational graph during the forward pass and recom-390

putes the partial computational graph for the local391

timestep during the backward pass. It then obtains392

each timestep’s memory and stores those memories393

in the replay buffer. The full algorithm is described394

in Algorithm 1. The experiments of memory cost395

reduction with MRBP is in the Appendix A.396

4 Experiments397

4.1 Computation and Memory Cost398

We experimented the computation and memory399

cost of Vanilla Transformer, Transformer-XL, and400

Memformer. For Vanilla Transformer, it has to in-401

crease the input sequence length to encode more402

tokens. Its cost is O(N2) where N is the sequence403

length. Transformer-XL and Memformer use mem-404

ory to store the history information, and the input405

sequence length is a constant value. Thus, their406

computation complexity is O(N).407

As a trade-off, for both Transformer-XL and408

Memformer, the memory size is then an important409

factor to affect the capacity of storing the history410

information. Transformer-XL stores the past hid-411

den states for all layers as memory. If L is the412

number of layers, and K is the memory size, then413

the memory cost is O(K × L). Memformer only414

stores K vectors as memory with cost O(K).415

To better illustrate the difference, Figure 5 shows416

the number of FLOPs (floating-point operations)417

versus sequence length (left) and the GPU mem-418

ory consumption versus memory size on the ac- 419

tual models (right). The sequence length is in- 420

creased from 128 to 8, 192. Here, Memformer and 421

Transformer-XL had the same number of param- 422

eters. From the figure, Vanilla Transformer has 423

the largest computation cost growth. Memformer’s 424

costs grew linearly with the sequence length and 425

achieved better efficiency than Transformer-XL. 426

Then, we compared the GPU memory consump- 427

tion. We tested the memory size ranging from 64 428

to 2, 048, with a batch size 16 for better visibil- 429

ity of memory cost difference. Transformer-XL’s 430

memory consumption grew rapidly with the mem- 431

ory size, while Memformer is more efficient with 432

large memory size. In large memory size setting, 433

Memformer uses 8.1x less memory space. 434

4.2 Autoregressive Image Generation 435

Model #FLOPs (B) Perplexity ↓

LSTM 52.5 1.698
Transformer Decoder 41.3 1.569
Transformer-XL

memory=56 5.6 1.650
memory=224 15.6 1.618
memory=784 49.1 1.611

Memformer
4 encoder+8 decoder 5.0 1.555

Memformer Ablation
2 encoder+6 decoder

memory=64 3.9 1.594
memory=32 3.9 1.600
memory=16 3.9 1.604
memory=1 3.9 1.627

4 encoder+4 decoder 3.6 1.628
w/o memory 1.8 1.745
temperature=1.0 3.9 1.612
w/o forgetting 3.9 1.630
w/o multi-head 3.9 1.626

Table 1: Results for autoregressive image generation.
Our method only takes about 10% FLOPs of the best
Transformer-XL model.

Recent research (Ramesh et al., 2021) demon- 436

strates the approach of treating an image as a long 437

sequence for image generation. Thus, we evalu- 438

ated our model on the MNIST (LeCun and Cortes, 439

2010) image generation task with sequence model- 440

ing. Each image of size 28× 28 was reshaped into 441

a sequence of 784 tokens, and the 8-bit gray-scale 442

was turned to a 256 vocabulary size. 443

For the baselines, LSTM had 4 layers and 512 444

hidden size. Transformer Decoder had 8 layers 445
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Figure 5: Comparison of the number of FLOPs and GPU memory consumption for Vanilla Transformer, Transformer-
XL, and Memformer.

and could take all the 784 tokens as the input.446

Transformer-XL had 8 layers. All the models had447

the same 128 hidden size, 4 attention heads, 32448

head size, and 256 feedforward size. Memformer449

was tested with default memory size 64. The de-450

fault memory writer temperature was set to 0.25.451

We also conducted ablation studies to examine the452

contribution of various components.453

Model #FLOPs (B) PPL ↓

Transformer-XL base
memory=1600 250 23.95
memory=1024 168 23.67
memory=512 94 23.94
memory=256 58 25.39
memory=128 39 25.60
memory=32 26 27.22

Compressive Transformer
memory= 512 compress=512 172 23.23

Memformer
4 encoder + 16 decoder 54 22.74

Memformer Ablation
4 encoder + 12 decoder 48 23.91
memory=512 35 23.30
w/o memory 31 25.57

Table 2: Experimental results on language modeling.
Our method is 3.2 times faster here.

Table 1 shows the experimental results. We re-454

port median from three trials. Our Memformer455

with 4 layers of encoder and 8 layers of decoder456

achieved the best performance (1.555), while only457

using nearly 10% of FLOPs compared to the best458

Transformer XL baseline with memory size of459

784 (1.611). Its performance was even better than460

the Transformer Decoder with the entire input se-461

quence. We hypothesized that this observation was462

due to the extra parameters from the 4 layers of en-463

coder. Therefore, we conducted an ablation study464

by having various numbers of encoder and decoder 465

layers. If we reduce the number of decoder layers 466

in Memformer (4 encoder+4 decoder), the perfor- 467

mance dropped as shown (1.628). Results indi- 468

cated that the number of decoder layers was im- 469

portant for the performance. Overall, Memformer 470

outperformed Transformer-XL with a much lower 471

computation cost. 472

The performance increased as the memory size 473

increased. Moreover, when we completely re- 474

moved the memory, Memformer performed terribly, 475

signifying the importance of the encoded informa- 476

tion in the memory. Other components such as 477

forgetting mechanism, memory writer temperature, 478

multi-head attention were proven to contribute to 479

the final performance as well. 480

4.3 Language Modeling 481

We also conducted experiments on WikiText-103 482

(Merity et al., 2017), which is a long-range lan- 483

guage modeling benchmark. It contains 28K ar- 484

ticles with an average length of 3.6K tokens per 485

article. Due to the limitation of computational re- 486

sources, we are unable to experiment on the more 487

recent PG19 (Rae et al., 2020) dataset. To study 488

the computation cost and memory efficiency, we 489

test with Transformer-XL base with 16 layers, 512 490

hidden size, 2, 048 feedforward size, 64 head size, 491

and 8 heads. The details are in the Appendix. 492

Memformer has the same hidden size, feedfor- 493

ward size, head size, and number of heads. We 494

also re-implement a version of Compressive Trans- 495

former of the same size as there is no official imple- 496

mentation. The memory length is set to 512, and 497

the compressive memory length is 512. The com- 498

pression ratio is 4. The target sequence length for 499

all models was set to 128. We test the performance 500

under various memory sizes. 501
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Table 2 summarizes the results on WikiText-103502

test set. We report the number of inference FLOPs503

(billions) and perplexity median from three trials.504

As Transformer-XL’s memory size increased, the505

perplexity dropped as expected, but the the num-506

ber of FLOPs grew quickly because the attention507

length was also increased. The perplexity stopped508

decreasing after we increased the memory size to509

1, 600. We suspect that since the average num-510

ber of tokens in WikiText-103 is 3, 600, a larger511

memory size would bring noises and hence did not512

further improve the performance compared to a513

smaller memory size (1, 024). Compressive Trans-514

former achieves slightly better performance with515

extra FLOPS compared to Transformer XL with516

memory size 1024.517

Memformer with 4 encoders, 16 decoders, and518

1, 024 memory size achieved the best performance.519

It required much less computation cost (54) and520

performed much better than Transformer-XL with521

1, 024 memory size, supporting that Memformer522

has a more efficient memory representation.523

In the ablation studies, to compensate for the ex-524

tra number of encoder layers, we reduced the num-525

ber of decoder layers to 12. The final performance526

was close to Transformer-XL, but Memformer used527

a much smaller number of FLOPs. Also, memory528

size was important for Memformer, as the perfor-529

mance dropped after the memory size is reduced530

to 512. When we completely removed the memory531

module by removing the memory writer and mem-532

ory reading cross attention, the perplexity increased533

to 25.57, which is similar to Transformer-XL with534

a memory size of 128.535

4.3.1 Memory Writer Analysis536

Figure 6: Visualization of three types of memory slots.

It is interesting to interpret how memory writer537

updates the memory slots. We analyzed the atten-538

tion outputs from the memory writer. We roughly539

categorized the memory slots into three different540

types and visualized three examples with normal-541

ized attention values in Figure 6.542

We picked the memory slot m250, m300 , and543

m355. During the middle of processing a docu- 544

ment, around 60% to 80% of the memory slots are 545

like m300. Their attention focused on themselves, 546

meaning that they were not updating for the current 547

timestep. This suggests that the memory slots can 548

carry information from the distant past. 549

For the second type, the memory slot m250 had 550

some partial attention over itself and the rest of 551

attention over other tokens. This type of memory 552

slots is transformed from the first type of memory 553

slots, and at the current timestep they aggregate 554

information from other tokens. 555

The third type of memory slot looks like m355. It 556

completely attended to the input tokens. At the be- 557

ginning, nearly all memory slots belong to this type, 558

but later only 5% to 10% of the total memory slots 559

account for this type. We also found that the forget- 560

ting vector’s bias for m355 had a larger magnitude 561

(3.20) compared to some other slots (1.15), sug- 562

gesting that the information was changing rapidly 563

for this memory slot. 564

Figure 7: Visualization of the memory writer’s attention.

To better understand how the slot m355 update 565

its information, we visualized its attention on an 566

example input sequence in Figure 7. It shows that 567

this slot learned a compressed representation of the 568

sentence by attending over some named entities and 569

verbs, which is consistent with human cognition. 570

5 Conclusion 571

We presented Memformer, an autoregressive model 572

which utilizes an external dynamic memory to 573

efficiently process long sequences with a linear 574

time complexity and constant memory complex- 575

ity. Along with Memformer, we introduced a 576

new optimization scheme, Memory Replay Back- 577

propagation, which enables training recurrent neu- 578

ral networks with large memory. Experimental 579

results showed that Memformer achieved compa- 580

rable performance with great efficiency, and was 581

able to preserve information from the distant past. 582

With the enhanced memory capacity, we believe 583

that Memformer can spark interesting works that 584

rely on recurrence and autoregressive modeling, 585

which will benefit tasks such as dialog and interac- 586

tive systems. 587
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A MRBP Efficiency Test697

In this section, we test MRBP’s efficiency by comparing against the standard back-propagation through698

time (BPTT) and the standard gradient checkpointing (GC) algorithm. This algorithm is useful for699

Memformer to reduce memory requirement because of the back-propagation through several timesteps.700

We use the Memformer model and set all the hyper-parameters to be the same.701

Method GPU Memory (MB) Speed (relative)

BPTT 16,177 x1.00
GC 9,885 x0.48
MRBP 7,229 x0.90

Table 3: Memory Replay Back-Propagation performance comparison. Evaluation speed is based on seconds per
sample. BPTT means back-propagation through time. GC means gradient checkpointing.

The back-propagation through time (BPTT) approach is the fastest because it does not need re-702

computation. However, it costs the most amount of memory due to unrolling the entire computational703

graph. While gradient checkpointing can save huge amount of memory, it is much slower than the704

other two methods (x0.48). In contrast, our MRBP saves more GPU memory with only slight speed705

degeneration (x0.90).706

B Training Details707

Image Generation Language Modeling

batch size 256 128
warm-up steps 1,000 1,0000
learning rate 1e-3 1e-3
dropout 0.1 0.1
memory length 8 1,024
temperature 0.25 0.125
time horizon 8 8
weight decay 0.01 0.01
max gradient norm 1.0 1.0
training steps 10,000 150,000

Table 4: Training Details

We trained our model on NVIDIA V100 16GB and 2080Ti 11GB. The training for image generation708

took about one day on one GPU. The training for language modeling took approximately four days on709

four GPUs.710

C Effects of Time Horizon and Memory Size711

We test how the time horizon for back-propagation affects the performance. We test on a smaller712

Memformer model for the efficiency. The results are shown in Figure 8a. We vary the back-propagation713

time horizon from 1 to 32. When the time horizon is set to 1, back-propagation cannot pass gradients714

through memory to the previous timestep. Thus, we observe the performance is the worst when the time715

horizon is 1. As we increase the time horizon, the model achieves better perplexity scores. When the time716

horizon is increased to 32, we observe the marginal improvement on perplexity is almost gone. A large717

memory size ideally helps to store more information. From Table 8b, we can see a huge improvement718

when increasing the memory size from 1 to 8. Furhter increasing the memory size has a smaller effects on719

the performance, and we suspect that this is due to the size of the model.720
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(a) Effects of different time horizons (b) Effects of different memory sizes

Figure 8: Effects of different configurations. (a) shows the effects of changing time horizon. (b) shows the effects of
changing memory size.

Figure 9: Memory Writer’s Attention

D Implementation of Memory Writer 721

Memory Slot Attention in Figure 9 produces the next timestep’s memory Mt+1. This module takes 722

the inputs of the previous timestep’s memory Mt and the encoder’s final hidden states. It then projects 723

the memory into queries, keys, and values, while the encoder outputs are into keys and values. Since 724

each memory slot should not be interfering with other memory slots, we design a special type of sparse 725

attention pattern. Thus, each slot in the memory can only attend over itself and the encoder outputs. This 726

is to preserve the information in each slot longer over the time horizon. For example, if one slot only 727

attends itself, then the information in that slot will not change in the next timestep. 728
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