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Abstract
This study develop Multi-Lingual Audio Deepfake Detection Corpus (MLADDC)1

to boost the ADD research. Existing datasets suffer from several limitations, in2

particular, they are limited to one or two languages. Proposed dataset contains 203

languages, which have been released in 4 Tracks (6 - Indian languages, 14 - Interna-4

tional languages, 20 languages half-truth data, and combined data). Moreover, the5

proposed dataset has 4×105 files (1,125+ hours) of data, which makes it one of the6

largest datasets. Deepfakes in MLADDC have been produced using advanced DL7

methods, such as HiFiGAN and BigVGAN. Another novelty lies in its sub-dataset,8

that has partial deepfakes (Half-Truth). We compared our dataset with various9

existing datasets, using cross-database method. For comparison, we also proposed10

baseline accuracy of 68.44%, and EER of 40.9% with MFCC features and CNN11

classifier (14 languages track only) indicating technological challenges associated12

with ADD task on proposed dataset.13

1 Introduction14

Deepfakes are artificially generated fake media using deep learning (DL) methods. Recent study15

found that deepfakes are challenging to detect even for human listeners, however, machines can16

do better job in their detection [1]. Audio Deepfake Detection (ADD) system needs a statistically17

meaningful dataset to be able to train a reliable model. There exist several datasets for ADD task18

(to be discussed in sub-Section 1.1), however, they suffer with several limitations. One of the key19

limitations is number of languages used in dataset, i.e., most of the datasets are restricted to a single20

language (English), or a few number of languages. Thus, multi-lingual dataset is needed to obtain an21

generalized model for ADD. Our proposed dataset has 4 × 105 files and has 20 languages, which22

have been released in 4 tracks (sub-dataset {Indian Languages - T1}, super-dataset {International23

Languages - T2}, half-truth generated audio files {20 Languages - T3}, and {combined dataset24

- T4 (T1 + T2 + T3)}). We employed Generative Adversarial Networks (GANs) for deepfake25

generation because unlike conventional neural networks that are trained on supervised tasks (such26

as classification or regression), GANs are unsupervised, and specialize in learning to generate new27

data. They involve a generator and a discriminator competing against each other, which is different28

from a single network architectures. On the other hand, while autoencoders compress and reconstruct29

input data, GANs generate completely new data. In audio, Variational Autoencoders (VAEs) are30

often used for tasks, such as speech generation, but GANs can produce sharper and more realistic31

outputs, although they can be more difficult to train [2]. Recurrent models, such as RNNs or LSTMs32

are typically used for sequential tasks, such as audio classification or speech recognition. GANs, on33

the other hand, focus more on data generation and style transfer rather than sequential prediction.34

WaveNet models are typically used for high quality audio synthesis and are based on autoregressive35

models. GANs comparatively offer a faster generation process as they do not require sequential36

processing. To our best knowledge and belief, this is the first study of its kind that proposes the37

corpus, which contains both the real and the corresponding fake utterances of each speaker w.r.t. the38

same text material used for the recordings. This study offers the following novelty :39

• HiFi-GAN and BigVGAN are used for deepfake audio generation,40



• Multi-lingual deepfake audio generation,41

• Multi-lingual half-truth audio generation,42

• Semi-supervised learning for fake audio generation.43

1.1 Related Work44

Previously a few datasets have been proposed, which also have been released in various tracks. The45

most popular among them is Fake or Real (FoR) dataset [3], which has been released in 4 parts,46

and has around 69K files. Deepfakes in FoR dataset have been generated by 7 different types of47

TTS models, and has a total of 33 types of different speakers. Another interesting dataset has been48

proposed in ADD 2022 [4] and ADD 2023 challenge [5], which generated deepfakes from various49

unknown algorithms. WaveFake dataset uses MelGAN in order to generate deepfakes from Mel50

spectrogram of raw audio [6]. In-the-wild consist of around 30K files, generated from 19 different51

types of TTS models, which is also restricted to English language only. In [7], authors proposed a52

multi-lingual dataset, however, it is restricted to spoofing tasks only as audio are generated via TTS,53

and audio were unable to maintain speaker / language-specific characteristics. MLAAD generated54

spoofed audio using 54 TTS models and 21 different architectures. Other datasets, such as Half-Truth55

Audio Detection (HAD) dataset [8], employ LPCNet vocoder to generate deepfake and provides56

around 160K files. On the other hand, GANs have been used for various speech-based applications,57

and also for image-based applications [9, 10, 11].58

2 Proposed Methodology59

Study reported in [12] proposed WaveNET; the core autoregressive architecture of WaveNET was60

obtained by deleted convolutional layers, where the current audio sample is sequentially conditioned61

based on the previous samples to predict the probability distribution of the current one to capture62

the complex dependencies of the prior sample of waveform. The limitation of this autoregressive63

architecture was that it could not grasp patterns of future audio samples. Real-time synthesis was64

challenging since it generated each audio sample sequentially, although optimization and paralleliza-65

tion techniques have been developed. This gap created inconsistencies and unnatural artifacts in the66

generated speech. To minimize these limits, flow-based speech synthesizers are used as the teacher67

network to train the student network, where student network use the maximum likelihood to reduce68

the difficulty of the training model [13]. Also, flow-based models can capture complicated long-term69

dependencies, but again, flow-based models take enormous computational resources compared to70

autoregressive architectures, where a few parameters can be trained with a constrained number of71

resources. GAN-based speech synthesizers [14, 15, 16, 17, 18, 19, 20] solves the issue of the stability72

of the large scale training, and training inference speed over the previous two architectures. GAN73

consists of two neural networks, namely, the Generator (G) and the Discriminator (D), that are trained74

together in a competitive process. G creates synthetic data (such as images, videos, or audio) from75

random noise, while the D tries to distinguish between real data and the data produced by the G. As76

they train, the G gets better at creating realistic data, and the D improves at identifying fake data. Even-77

tually, the G becomes so skilled that the fake data is nearly indistinguishable from real data. In [21],78

authors proposed WaveGAN, which relies on the intermediate representation of Mel spectrogram, but79

the generated speech was a very low level of the speech as compared to the state-of-the-art methods80

and also faced issues with stability due to the early GANs applications. MelGAN [17] enhanced the81

quality of synthesized speech by generating more natural and lifelike sounds, building upon work82

of WaveNet [12]. However, the production of artifacts in the high frequency samples leading to83

compresion. Study in [20] proposed Parallel WaveGAN, which supports parallel synthesis, such as84

flow-based models, and Kong et al. [18] proposed the HiFiGAN, which provides high quality and fast85

inference by reducing the artifacts issue in the generated speech samples, thereby motivating us to use86

HiFi-GAN for generating deepfake signals. Also, in some cases, both architectures cannot perform87

well for the unseen data. Hence, study in [19] proposed BigVGAN to focus on the scaling the model88

and generate the diverse speech output for the various conditions. Further, BigVGAN successfully89

captures and handles the diverse range of voice styles and languages with minimal fine-tuning and90

pushes the boundary of speech synthesis by setting its standards, which makes it a best approximation91

to generate deepfakes. GANs are ideal for deepfake generation because they excel in producing92

highly realistic synthetic data. Their ability to learn complex distributions from real-world data allow93

them to generate convincing, high quality deepfakes that are difficult to differentiate from authentic94

(real) audio.95

2.1 HiFi-GAN96

We employed HiFiGAN for generating deepfake due to its ability to produce high quality and high-97

fidelity audio. It utilizes two discriminators: (1) Multi-Period Discriminator (MPD), and (2)98
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Multi-Scale Discriminator (MSD) at different temporal resolutions, ensuring that the generated99

waveform is both perceptually convincing and closely aligned with real-world data. For multilingual100

deepfake generation, efficiency of HiFi-GAN in synthesizing clear and natural-sounding speech across101

various languages makes it well-suited for applications requiring fast and real-time generation. The102

model can generalize the diverse linguistic sounds while maintaining clarity, making it advantageous103

for deepfake involving speech in multiple languages.104

The major advantage of employing HiFi-GAN is its speed of inference without sacrificing quality. It105

is designed for efficient generation, which allows for real-time vocoding, crucial in practical deepfake106

systems, where performance is the key. Additionally, it maintains low computational cost compared107

to the traditional GANs, offering a balance between quality and speed, which is valuable when108

working with multiple languages and large datasets.109

2.2 BigVGAN110

The autoregressive-based speech synthesizer produces the natural speech, one sample at a time111

[22, 23]. In the real-time scenario, it is very slow due to the sequential generation of the samples.112

However, this sequential nature is also less scalable for long-term speech generation. In such cases, the113

artifacts are produced during the inference due to the limited capabilities of latent space exploration.114

Overcoming this flow-based synthesizer comes with parallel processing in training and inference.115

Which increased the scalability and control over the input data distribution. It has become very116

complex in large-scale training because of the sequence of invertible transformations (flows) that map117

data to a latent space and back. As model scales, the architecture of the flow layers and sensitivity to118

these hyperparameters can increase, making training more complex and time-consuming.119

Built on the strengths of HiFi-GAN by scaling up its architecture, making it even more suitable120

for generating deepfake audio files in a variety of languages. BigVGAN achieves higher fidelity121

than its’ HiFiGAN counterpart by incorporating a more robust and flexible architecture that allows122

for better handling of complex audio features. This results in superior audio quality, especially for123

tasks involving nuanced sounds, emotions, and intricate speech patterns across multiple languages.124

The larger model capacity enables BigVGAN to deliver state-of-the-art performance for deepfakes,125

ensuring more realistic and coherent results even for difficult-to-synthesize languages.126

One of BigVGAN’s primary advantages is its improved generalization, meaning it can handle unseen127

data and new languages more effectively. This makes it ideal for multi-lingual deepfake generation,128

where the diversity of languages might pose challenges. Its use of advanced training techniques helps129

ensure that the model doesn’t overfit on specific language characteristics and can adapt to the varied130

structures and sounds of different languages. The high-fidelity output it provides can be particularly131

valuable for applications requiring premium quality deepfake audio.132

2.3 Data Generation133

We employed the HiFiGAN [18] and BigVGAN [19] pre-trained models (PTE), θHiFi−GAN ,134

θBigV GAN , which are available publicly in order to generate deepfakes. Both the model were135

selected after examining their ability to generate deepfakes. HiFiGAN and BigVGAN were trained136

on VCTK[24] and LibriTTS[25] corpus with 14M and 112M parameters, respectively. As DL models137

focus more on shape of signal rather than amplitude of signal, and generalization of model over unseen138

data, the issue of volume normalization was observed on deepfakes, which was further normalized139

via similar method employed in [8]. In Algorithm 1, XData represent the dataset (combination of140

the train, test, and valid sets), V.Norm. represents normalization of volume w.r.t. the original files141

to ensure consistency and naturalness of deepfake audio. XD serves as the input to the PTE model,142

while ŶD denotes the corresponding output obtained from the model. The weight normalization143

process is denoted by Wnorm, which ensures that the model parameters are appropriately chosen144

throughout the process.145

3 Details of MLADCC146

This Section presents details of proposed dataset structure and its design. Due to the limited language147

resources, we were unable to collect real audio samples data manually. Alternatively, in this study,148

we propose a dataset in which we generated 160k deepfake samples of 80k real utterances, which149

were collected from the VoxLingua107 dataset [26], which is one of the most popular and largest150

open source multilingual dataset for Spoken Language Identification (SLID) task. VoxLingua107151

was formed by recording utterances from 107 different languages and data from 6628 hours. Limited152

to storage resources, authors could not create a dataset for more than 20 languages, namely, Sanskrit,153

Hindi, Bengali, Tamil, Gujarati, Punjabi, Arabic, Mandarin Chinese, English, French, Finnish,154

German, Indonesian, Japanese, Portuguese, Russian, Spanish, Swedish, Urdu, and Vietnamese.155
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Algorithm 1 Inference with PTE, HiFiGAN, and BigVGAN.
1: XData V. Norm. RawData(Train,Test,V alid)

2: Device←θHiFi−GAN (PTEHiFi−GAN ),
3: Device←θBigV GAN (PTEBigV GAN ),
4: for each XD ∈ {XData} do
5: Device← (XD)

6: ŶD[]input/PTEfθ(XD)

7: Save(ŶD, XD)
8: end for
9: θ′HiFi−GAN , θ′BigV GAN ←Wnorm(θHiFi−GAN , θBigV GAN ),

10: for each Data ∈ {training, testing, validation} do
11: Goutput ŶD ← fθ′(XD)

12: Path{(Ŷ Training, Ŷ Test, Ŷ V alid}← Save(Goutput)
13: end for

Average of 11.35 hours of data was selected from each language on basis of time duration statistics.156

Comprising 20 languages in the MLADDC, it is also robust to dialects. The total number of utterances157

in the proposed dataset is 4× 105 files (8× 104 real, 16× 104 deepfake, and 16× 104 half-truth),158

making it one of the largest datasets among currently available open source datasets in the ADD159

literature. Dataset statistics and demo is publicly available at 1.160

3.1 Real Data161
First, we collected all the real audio samples available from the VoxLingua107 dataset (open source162

and freely available) [26]. We labeled them into 5 classes based on the audio duration of particular163

samples, namely, A (0-5 seconds), B (5-10 seconds), C (10-15 seconds), D (15-20 seconds), and E164

(> 20 seconds). After that, we selected 1,000 random samples (except in Sanskrit class) from each165

class collectively to form a dataset of total of 225.13 hours (80,000 audio samples) of real data. We166

eliminated the issue due to audio sample size dependencies by selecting the variable length audio. In167

order to generalize sampling rate to 16 kHz, all audio of VoxLingua107 were resampled to 16 kHz168

before generating deepfake from it. The resampling process was carried out in order to generalize the169

dataset.170

3.2 Fake Data171
We use the model based on HiFi-GANs and BigVGANs to generate 16 × 104 (8 × 104 for each)172

deepfakes from the real signal (described in sub-Section 2.1 and 2.2), which resulted into total 450.26173

hours of deepfake data. We employed to process the real audio and generate the deepfake audio of the174

same speaker with the same utterance spoken in the original samples. Both HiFi-GAN and BigVGAN175

generated deepfake illustrate properties similar to those of real signals. Due to their perfect generation176

(i.e., high perceptual similarity), these generated deepfakes are extremely difficult to distinguish by177

human listners. As the dataset is generated by sophisticated ML / DL methods, it also aims to fool178

the humans as well as ADD system.179

3.3 Half-Truth Data180

We generated total of 16 × 104 partially fake files (i.e., Half-truth), out of which 8 × 104 fake181

audio were generated using BigVGAN, and another 8× 104 audio generated from HiFi-GAN. For182

generating Half-Truth audio, we selected real audio from each languages and then, mapped the183

corresponding deepfake generated via HiFi-GAN. We replaced around one second of real audio with184

deepfakes (once HiFi, and then BigV), which resulted into total 450.26 hours of half-truth data. Time185

of replacement was chosen randomly, and data statistics were noted. We did not replace a particular186

word from audio signal, rather replace an random portion of signal, which may be even an half187

word, because if we replace only word and not an random phase of speech, the systems based on188

tokenization can easily tokenize the sentence into words, and detect deepfake words easily. On the189

other hand, if the word is half fake and half true, we believe that even the models trained based on190

tokenization will not be able to detect the difference between deepfake vs. real. More mathematics191

and detailed analysis on half-truth can be found on [27].192

4 Experimental Results193

4.1 Baseline Results194

Experiments are performed using two baseline features, i.e., MFCC, and LFCC using existing well195

known pattern classifiers, such as BiLSTM, CNN, BiGRU, and ResNet-50. Details and codes related196

1https://speech007.github.io/MLADDC_Nips/

4

https://speech007.github.io/MLADDC_Nips/


Figure 1: Illustration of generation of half-truth data.

to features employed and classifiers used can be found on Appendix A. Results indicate very large197

EER (≈ 50%) and around, so most of the audio files were classified as deepfake (i.e., more false198

alarm) due to bias training of model on MLADDC dataset. Almost every audio was predicted as199

deepfake and only a few real audio were predicted correctly. It can be observed from Table 1, when200

we move on to critically generated dataset, i.e., from T1 to T2, the number of language increases,201

and accuracy drop can be observed due to increase in complexity of dataset. Moreover, it can also202

be observed that not even skip connection-based model (ResNet-50) is able to detect generated203

deepfakes, proving the superiority of crucially generated deepfakes.

Table 1: Comparison of Results on three trackes T1, T2, and T3 of MLADDC (C* ->Classifiers, TA
->Testing Accuracy, EER ->Equal Error Rate).

Feat. C* T1 T2 T3
TA EER TA EER TA P

{1} 68 43.7 67.36 47.9 58.01 58.78
{2} 66.66 50 68.44 40.9 56.94 56.87
{3} 66.29 48.9 67.06 48.91 57.54 58.28LFCC

{4} 44.88 50 33.39 50.9 47.14 57.05
{1} 73.43 32.6 66.66 50 56.86 56.89
{2} 69.16 41.5 66.66 50 56.86 56.89
{3} 68.86 42.4 66.66 50 56.86 56.89MFCC

{4} 51.81 50.2 66.66 50 56.86 56.89
{1} ->BiLSTM {2} ->CNN {3} ->BiGRU {4} ->ResNet-50

204
4.2 Cross-Database Evaluation205

We observed cross-dataset evaluation on a few of the existing dataset, inorder to prove superiority206

of the dataset proposed. For this task, we examined results on three popular open-source deepfake207

datasets, namely, FoR [3], In-The-Wild [28], and ASVSpoof [29]. Not every dataset is an open-source208

dataset, which is another limitation for performing cross-database evaluation in this study. Table209

2 denoted the accuracies obtained when the existing datasets are self-testing (training and testing210

on existing data), and MLADDC Testing (training on existing dataset, and testing on MLADDC).211

Results of cross training (training on MLADDC, and testing on other datasets) can be found on212

Appendix B.
Table 2: Results (Accuracy in %) on Cross-Database Scenario using MFCC as feature and BiLSTM
as classifier.

Fetures Train dataset Self Testing MLADDC Testing (T2)
FoR 65.75 37.31
ITW 66.67 33.33MFCC

ASVSpoof 91.98 33.84
FoR 84.61 56.23
ITW 99.02 59.19LFCC

ASVSpoof 95.6 33.34

213 5 Summary and Conclusions214

This study proposed an novel multi-lingual dataset, in which deepfakes are generated by using215

HiFiGAN, and BigVGAN. It also includes half-truth audio. Proposed dataset is one of the largest216

dataset for ADD, as well as HAD tasks, with an total duration of 1125+ hours and 4× 105 files in217

total. We also conducted baseline experiments in order to evaluate efficiency of dataset. In order to218

prove superiority of proposed dataset, we also trained model on various existing datasets, and tested219

on proposed dataset. We in future plan to release dataset challenge, for both deepfake detection and220

half-truth detection. Current limitations of study include training of HiFiGAN, and BigVGAN, which221

has been done on LJspeech, and VCTK corpus, which are only English language. Our future plan is to222

retrain GANs modes on multi-lingual dataset to generate more realistic deepfakes, thereby resulting223

into an open research challenge. Additionally, we plan to expand our approach by incorporating a224

range of classifiers, specifically Transformer-based BERT and XLNet. These models, with advanced225

attention mechanisms, are suitable to handle lengthy sequences, which is essential for deepfake226

detection. This will allow in-depth analysis of multilingual phonetic classification and temporal227

anomalies for deepfake detection across multilingual.228
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Appendix A306

Experimental Setup307

We employed two different types of features, and four different types of features for conducting308

experiments in this study. All the features selected were optimized in terms of dimensions. We also309

aim to analyze the effect of static vs. dynamic features.310

Features Used311

1. MFCC: Mel-Frequency Cepstral Coefficients (MFCCs) are widely used features in speech312

processing that capture the short-term power spectrum of a sound. MFCCs are derived by313

mapping the Fourier transform of a signal onto the mel scale, which approximates human314

auditory perception, emphasizing frequencies that humans are more sensitive to. The process315

typically involves dividing the speech signal into overlapping frames, applying a window316

function, performing a Fourier transform, mapping to the mel scale, taking the logarithm,317

and finally applying the Discrete Cosine Transform (DCT) to obtain the coefficients. We318

extracted MFCCs with a dimension of 20, the process captures the most essential features319

of the speech signal over each frame, frame length was taken as 25 ms with 50 % overlap,320

preserving the important phonetic details while reducing data redundancy.321

2. LFCC: The spectral characteristics of audio signals are represented by linear frequency322

cepstral coefficients (LFCC). They are produced by applying a Fourier transform to the audio323

frames and visualizing the spectrum on a linear frequency scale. The energy distribution324

across multiple frequencies in a signal is captured by LFCC. They are often used for voice325

and audio processing tasks including speech recognition, music analysis, and most recently326

voice anti-spoofing. In contrast to MFCC, which uses a logarithmic Mel scale, a linear327

perspective on the frequency content is provided by LFCC.328

Classifier Used329

1. CNN: For this study, we employed CNN as pattern classifier because it captures spatial and330

temporal dependencies in the audio signals.The CNN architecture was built with a sigmoidal331

activation layer, and 3 ReLU activation layers. CNN consists of five convolution blocks332

and three fully-connected layers. Each layer is made up of 2-D convolution layers, a ReLU333

activation layer, and a batch normalization layer. At the end of each layer, max-pooling is334
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used to downsample feature maps. The final dense layer has a single unit with a sigmoid335

activation function, producing a binary classification output (0 or 1) that indicates whether336

the input belongs to class 0 or 1. Learning rate was taken as 0.003 and optimizer was chosen337

to be Adam. Input shape was taken to 20 x time_series x 1. Learning rate was selected as338

0.003, with batch-size of 64. Adams optimizer were used for this paper.339

2. ResNet50: ResNet contains four blocks within each block. The first block has three340

convolutional layers, followed by four, six, and three convolutional layers, respectively.341

Batch normalization and ReLU activation functions are applied after each convolutional342

layer. After the main blocks, there is a global average pooling layer that reduces the spatial343

dimen- sions of the feature maps. This is followed by a fully-connected layer with a softmax344

activation function, which produces the final output probabilities for different classes. This345

architecture is also known as ResNet-50.346

3. BiLSTM: Bidirectional Long Short-Term Memory (Bi-LSTM) is a type of Recurrent Neural347

Network (RNN) that is commonly used in sequence modeling tasks, such as natural language348

processing and speech recognition. Bi-LSTM is an extension of the conventional LSTM349

architecture and performs both forward and backward processing of the input sequence,350

allowing it to gather information from both previous and future time steps. For this study,351

three Bi-LSTM layers were used, each consisting of 128 units, with a dropout of 10 % at the352

end of each layer. Finally, a dense layer with 155 units, and a softmax activation function was353

used as the output layer for classification. The BiLSTM is same as our previously employed354

one in Transfer Learning Using Whisper for Dysarthric Automatic Speech Recognition.355

4. BiGRU: The BiGRU classifier is constructed to capture both forward and backward depen-356

dencies in sequential input data, which is beneficial for tasks such as audio classification.357

The model is initialized with an input size corresponding to the number of features per358

time step, and the hidden units define the size of the hidden states in the GRU layers. The359

network consists of multiple GRU layers (‘num_layers‘), with a bidirectional configuration360

that processes the input in both forward and backward directions. After the input is passed361

through the BiGRU layers, the forward and backward hidden states are concatenated to form362

a combined representation. Specifically, the last hidden state from the forward GRU and the363

first hidden state from the backward GRU are concatenated along the feature dimension to364

capture both temporal perspectives. This concatenated hidden state is then passed through a365

dropout layer, with a specified dropout rate (e.g., 0.255), to reduce overfitting. Finally, the366

combined features are fed into a fully connected layer that maps the hidden representation367

to the output classes, with the output dimension corresponding to the number of classes.368

This architecture enables the model to effectively leverage the temporal structure of the data369

for classification tasks.370

Appendix B371

Both the features were employed for cross training evaluation of the dataset, in particular BiLSTM372

classifier. Authors choose BiLSTM as a classifier, as it was able to obtain highest accuracy on373

track T2. As we can observe in Table 3, accuracy drops below 50 % and remains around 33374

% due to models misclassifying deepfake audio as real audio. On the other hand, the model375

trained on proposed dataset (MLADDC) have accuracy almost above 50 % for each dataset,376

indicating the correct classification of the audio when the model trained on the proposed dataset.377

Current proposed system employs basic speech processing features such as, MFCC and LFCC,378

which if improved to advance features, such as, modified group delay (MGDF), or residual based379

(LPR), which may improve accuracy of model. Also limitations of current work include speech380

processing based methods for classification, which can be improved by employing other pre381

trained model based features such as, Whisper, wav2vec2.0, HuBERT and many more. Also clas-382

sifiers can be empowered to advance classifiers and end to end models such as WaveNet, and AASIST.383

384

It can be observed in Table 3, that the training on MLADDC dataset (T2) results in better testing385

accuracy, i.e., 67.92 % when tested on ITW dataset. On the other hand, when model trained on386

different existing datasets, i.e., FoR, ITW, and ASVSpoof, the testing accuracy is lower for unknown387

data testing (testing on MLADDC T2). This results may be due to multilingual data in proposed388

dataset, as well as fine generated deepfakes in the proposed dataset. On the other hand, when model389
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is trained on proposed dataset and is tested on ASVSpoof dataset, results of LFCC features are upto390

86.21 % which are much better as compared to other results. Such results on cross training are391

important for proving superiority of proposed dataset over existing datasets in various aspects.392

Table 3: Cross training results on T2 Track of MLADDC dataset.

Train dataset Test dataset MFCC LFCC
FoR MLADDC (T2) 37.31 56.23
ITW MLADDC (T2) 33.33 59.19

ASVSpoof MLADDC (T2) 33.84 33.34
MLADDC (T2) FoR 45.66 48.87
MLADDC (T2) ITW 62.81 67.92
MLADDC (T2) ASVSpoof 41.49 86.21

Table 4 displays the data statistics of selected data from VoxLingua107 dataset, and balancing of393

dataset.394

Table 4: Original and Selected audios from VoxLingua107 Dataset.

Original/Selected Language Language Label 0-5 5-10 10-15 15-20 20+ Total Time (in Hours)
Original Russian ru 2028 8860 7044 5844 22 73
Selected ∼ ∼ 1000 1000 1000 1000 - 11.39
Original French fr 4234 9465 6248 4495 7 67
Selected ∼ ∼ 1000 1000 1000 1000 - 11.38
Original Arabic ar 3950 8422 5390 3914 6 59
Selected ∼ ∼ 1000 1000 1000 1000 - 11.34
Original Spanish es 988 5117 3817 2941 3 39
Selected ∼ ∼ 988 1004 1004 1004 - 11.37
Original Vietnamese vi 6861 12292 5169 3039 5 64
Selected ∼ ∼ 1000 1000 1000 1000 - 11.28
Original Mandarin Chinese zh 3243 6220 3861 3004 0 44
Selected ∼ ∼ 1000 1000 1000 1000 - 11.37
Original English en 1232 5953 4824 3874 2 49
Selected ∼ ∼ 1000 1000 1000 1000 - 11.32
Original Hindi hi 5492 11908 7382 5240 8 81
Selected ∼ ∼ 1000 1000 1000 1000 - 11.42
Original Portuguese pt 4572 9725 5764 4153 10 64
Selected ∼ ∼ 1000 1000 1000 1000 - 11.37
Original Sanskrit sa 2575 3978 938 328 0 15
Selected ∼ ∼ 1367 1367 938 328 - 8.92
Original Bahasa Indonesia id 3880 7399 3251 1980 0 40
Selected ∼ ∼ 1000 1000 1000 1000 - 11.35
Original Bengali bn 4433 8930 4861 3195 0 55
Selected ∼ ∼ 1000 1000 1000 1000 - 11.36
Original Finnish fi 913 4443 3249 2532 0 33
Selected ∼ ∼ 913 1029 1029 1029 - 11.52
Original Japanese ja 4948 9262 4879 3218 0 56
Selected ∼ ∼ 1000 1000 1000 1000 - 11.34
Original Gujarati gu 3766 7290 3998 2842 0 46
Selected ∼ ∼ 1000 1000 1000 1000 - 11.36
Original Tamil ta 3743 7679 4486 3267 0 51
Selected ∼ ∼ 1000 1000 1000 1000 - 11.4
Original Punjabi pa 4367 9098 4549 3078 0 54
Selected ∼ ∼ 1000 1000 1000 1000 - 11.36
Original Urdu ur 1254 4817 4011 3571 0 42
Selected ∼ ∼ 1000 1000 1000 1000 - 11.35
Original Swedish sv 2387 5136 3080 2174 0 34
Selected ∼ ∼ 1000 1000 1000 1000 - 11.39
Original German de 885 4981 3986 3012 0 39
Selected ∼ ∼ 885 1038 1038 1039 - 11.54
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